-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
101 lines (86 loc) · 3.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import webcolors
import random
from collections import Counter
import numpy as np
from torchvision import transforms
import cv2 # OpenCV
import torch
def draw_contour(img, mask):
mask_np = mask.numpy().astype(np.uint8) * 255
img_np = img.numpy()
img_np = img_np.astype(np.uint8)
img_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
kernel = np.ones((5, 5), np.uint8)
mask_dilated = cv2.dilate(mask_np, kernel, iterations=3)
contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
cv2.drawContours(img_bgr, [contour], -1, (0, 0, 255), thickness=10)
img_np = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
transform = transforms.ToTensor()
img_tensor = transform(img_np)
img_tensor = img_tensor.permute(1, 2, 0)
return img_tensor.unsqueeze(0)
def get_colored_contour(img1, img2, threshold=10):
diff = torch.abs(img1 - img2).float()
diff_gray = torch.mean(diff, dim=-1)
mask = diff_gray > threshold
return draw_contour(img2, mask), mask
def closest_colour(requested_colour):
min_colours = {}
for key, name in webcolors.CSS3_HEX_TO_NAMES.items():
r_c, g_c, b_c = webcolors.hex_to_rgb(key)
rd = (r_c - requested_colour[0].item()) ** 2
gd = (g_c - requested_colour[1].item()) ** 2
bd = (b_c - requested_colour[2].item()) ** 2
min_colours[(rd + gd + bd)] = name
return min_colours[min(min_colours.keys())]
def rgb_to_name(rgb_tuple):
try:
return webcolors.rgb_to_name(rgb_tuple)
except ValueError:
closest_name = closest_colour(rgb_tuple)
return closest_name
def find_different_colors(img1, img2, threshold=10):
img1 = img1.to(torch.uint8)
img2 = img2.to(torch.uint8)
diff = torch.abs(img1 - img2).float().mean(dim=-1)
diff_mask = diff > threshold
diff_indices = torch.nonzero(diff_mask, as_tuple=True)
if len(diff_indices[0]) > 50:
sampled_indices = random.sample(range(len(diff_indices[0])), 50)
sampled_diff_indices = (diff_indices[0][sampled_indices], diff_indices[1][sampled_indices])
else:
sampled_diff_indices = diff_indices
diff_colors = img2[sampled_diff_indices[0], sampled_diff_indices[1], :]
color_names = [rgb_to_name(tuple(color)) for color in diff_colors]
name_counter = Counter(color_names)
filtered_colors = {name: count for name, count in name_counter.items() if count > 10}
sorted_color_names = [name for name, count in sorted(filtered_colors.items(), key=lambda item: item[1], reverse=True)]
unique_color_names_str = ', '.join(sorted_color_names)
return unique_color_names_str
def get_bounding_box_from_mask(mask, padded=False):
mask = mask.squeeze()
rows, cols = torch.where(mask > 0.5)
if len(rows) == 0 or len(cols) == 0:
return (0, 0, 0, 0)
height, width = mask.shape
if padded:
padded_size = max(width, height)
if width < height:
offset_x = (padded_size - width) / 2
offset_y = 0
else:
offset_y = (padded_size - height) / 2
offset_x = 0
top_left_x = round(float((torch.min(cols).item() + offset_x) / padded_size), 3)
bottom_right_x = round(float((torch.max(cols).item() + offset_x) / padded_size), 3)
top_left_y = round(float((torch.min(rows).item() + offset_y) / padded_size), 3)
bottom_right_y = round(float((torch.max(rows).item() + offset_y) / padded_size), 3)
else:
offset_x = 0
offset_y = 0
top_left_x = round(float(torch.min(cols).item() / width), 3)
bottom_right_x = round(float(torch.max(cols).item() / width), 3)
top_left_y = round(float(torch.min(rows).item() / height), 3)
bottom_right_y = round(float(torch.max(rows).item() / height), 3)
return (top_left_x, top_left_y, bottom_right_x, bottom_right_y)