-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathDESCRIPTION
97 lines (97 loc) · 2.7 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
Package: darch
Type: Package
Title: Package for Deep Architectures and Restricted Boltzmann Machines
Version: 0.13.0
Date: 2018-05-03
Author: Martin Drees [aut, cre, cph],
Johannes Rueckert [ctb],
Christoph M. Friedrich [ctb],
Geoffrey Hinton [cph],
Ruslan Salakhutdinov [cph],
Carl Edward Rasmussen [cph],
Maintainer: Johannes Rueckert <[email protected]>
Description: The darch package is built on the basis of the code from G. E.
Hinton and R. R. Salakhutdinov (available under Matlab Code for deep belief
nets). This package is for generating neural networks with many layers (deep
architectures) and train them with the method introduced by the publications
"A fast learning algorithm for deep belief nets" (G. E. Hinton, S. Osindero,
Y. W. Teh (2006) <DOI:10.1162/neco.2006.18.7.1527>) and "Reducing the
dimensionality of data with neural networks" (G. E. Hinton, R. R.
Salakhutdinov (2006) <DOI:10.1126/science.1127647>). This method includes a
pre training with the contrastive divergence method published by G.E Hinton
(2002) <DOI:10.1162/089976602760128018> and a fine tuning with common known
training algorithms like backpropagation or conjugate gradients.
Additionally, supervised fine-tuning can be enhanced with maxout and
dropout, two recently developed techniques to improve fine-tuning for deep
learning.
License: GPL (>= 2) | file LICENSE
URL: https://github.com/maddin79/darch
BugReports: https://github.com/maddin79/darch/issues
Depends:
R (>= 3.0.0)
Imports:
stats,
methods,
ggplot2,
reshape2,
futile.logger (>= 1.4.1),
caret,
Rcpp (>= 0.12.3),
RcppParallel (>= 4.3.20)
LinkingTo: Rcpp, RcppParallel
SystemRequirements: GNU make
Suggests:
foreach,
doRNG,
NeuralNetTools,
gputools,
testthat,
plyr (>= 1.8.3.9000)
Collate:
'RcppExports.R'
'autosave.R'
'net.Class.R'
'darch.Class.R'
'backpropagation.R'
'benchmark.R'
'bootstrap.R'
'caret.R'
'compat.R'
'config.R'
'darch.Add.R'
'darch.Getter.R'
'dataset.R'
'darch.Learn.R'
'darch.R'
'darch.Setter.R'
'darchUnitFunctions.R'
'dropout.R'
'errorFunctions.R'
'rbm.Class.R'
'generateRBMs.R'
'generateWeightsFunctions.R'
'loadDArch.R'
'log.R'
'makeStartEndPoints.R'
'minimize.R'
'minimizeAutoencoder.R'
'minimizeClassifier.R'
'mnist.R'
'momentum.R'
'net.Getter.R'
'newDArch.R'
'params.R'
'plot.R'
'predict.R'
'print.R'
'rbm.Learn.R'
'rbm.Reset.R'
'rbmUnitFunctions.R'
'rbmUpdate.R'
'rpropagation.R'
'runDArch.R'
'saveDArch.R'
'test.R'
'util.R'
'weightUpdateFunctions.R'
RoxygenNote: 5.0.1