-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathtrain.py
248 lines (221 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.multiprocessing as mp
import torch.backends.cudnn as cudnn
import torch.nn.init as init
import argparse
from torch.autograd import Variable
import torch.utils.data as data
from data import train_cfg, AnnotationTransform, ICDARDetection, detection_collate, SynthDetection, TD500Detection, MLTDetection
from utils.augmentations_poly import SSDAugmentation
from utils.augmentations_synth import SynthSSDAugmentation
from utils.logger import setup_logger
from layers.modules import MultiBoxLoss
from dssd import build_dssd
import numpy as np
import time
import logging
parser = argparse.ArgumentParser(description='Single Shot MultiBox Detector Training')
parser.add_argument('--name', default='synth_fuse_seg_mlt', type=str)
parser.add_argument('--version', default='v4', type=str, help='v4=512, v3=300')
parser.add_argument('--basenet', default='vgg16_reducedfc.pth', type=str, help='pretrained base model')
parser.add_argument('--ssd_dim', default=512, type=int, help='input image dim')
parser.add_argument('--jaccard_threshold', default=0.5, type=float, help='Min Jaccard index for matching')
parser.add_argument('--batch_size', default=16, type=int, help='Batch size for training')
parser.add_argument('--resume', default='./weights/synth_fuse_seg/synth_0_30000.pth', type=str, help='Resume from checkpoint')
# parser.add_argument('--resume', default='./weights/synth_fuse_seg/icdar_final.pth', type=str, help='Resume from checkpoint')
parser.add_argument('--num_workers', default=8, type=int, help='Number of workers used in dataloading')
parser.add_argument('--iterations', default=60000, type=int, help='Number of training iterations')
parser.add_argument('--start_iter', default=0, type=int, help='Begin counting iterations starting from this value (should be used with resume)')
parser.add_argument('--cuda', default=True, type=bool, help='Use cuda to train model')
parser.add_argument('--lr', default=1e-4, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=5e-4, type=float, help='Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float, help='Gamma update for SGD')
parser.add_argument('--optim', default='adam', type=str, help='sgd, adam, adadelta')
parser.add_argument('--log_iters', default=True, type=bool, help='Print the loss at each iteration')
parser.add_argument('--save_folder', default='weights/', type=str, help='Location to save checkpoint models')
#parser.add_argument('--root', default='../../DataSets/text_detect/',type=str, help='Location of data root directory')
parser.add_argument('--td_root', default='/home/lpy/Datasets/TD&&TR/',type=str, help='Location of data root directory')
parser.add_argument('--icdar_root', default='/home/lpy/Datasets/text_detect/',type=str, help='Location of data root directory')
parser.add_argument('--synth_root', default='/data/lvpyuan/Datasets/SynthText/',type=str, help='Location of data root directory')
parser.add_argument('--mlt_root', default='/home/lpy/Datasets/MLT/',type=str, help='Location of data root directory')
#parser.add_argument('--root', default='/home/lvpengyuan/research/text/',type=str, help='Location of data root directory')
parser.add_argument('--clip_grad', default=False, type=bool, help='clip grad or not')
# parser.add_argument('--mode', default='iou', type=str, help='bce, iou, focal, ohnm')
args = parser.parse_args()
args.save_folder = args.save_folder + args.name + '/'
if os.path.exists(args.save_folder) == False:
os.mkdir(args.save_folder)
log_file_path = args.save_folder + '/' + time.strftime('%Y%m%d_%H%M%S') + '.log'
setup_logger(log_file_path)
logging.info('name:%s'%(args.name))
logging.info('base learning rate: %f'%(args.lr))
logging.info('resume:%s'%(args.resume))
logging.info('optim method:%s'%(args.optim))
logging.info('data root:%s'%(args.icdar_root))
logging.info('ssd_dim:%d'%(args.ssd_dim))
logging.info('number of works:%d'%(args.num_workers))
logging.info('training batch size:%s'%(args.batch_size))
logging.info('output dir: %s'%(args.save_folder))
logging.info('clip_grad:%s'%(args.clip_grad))
# logging.info('mode:%s'%(args.mode))
if args.cuda and torch.cuda.is_available():
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
ssd_dim = args.ssd_dim
assert(ssd_dim == train_cfg['min_dim'][0])
means = (104, 117, 123)
batch_size = args.batch_size
max_iter = args.iterations
def xavier(param):
init.xavier_uniform(param)
def weights_init(m):
if isinstance(m, nn.Conv2d):
xavier(m.weight.data)
m.bias.data.zero_()
dssd_net = build_dssd('train', train_cfg, ssd_dim,2)
net = dssd_net
if args.resume:
logging.info('Resuming training, loading {}...'.format(args.resume))
dssd_net.load_weights(args.resume)
else:
vgg_weights = torch.load('./weights/' + args.basenet)
logging.info('Loading base network...')
dssd_net.vgg.load_state_dict(vgg_weights)
dssd_net.extras.apply(weights_init)
dssd_net.loc.apply(weights_init)
dssd_net.conf.apply(weights_init)
dssd_net.pms.apply(weights_init)
dssd_net.dms.apply(weights_init)
dssd_net.sms.apply(weights_init)
dssd_net.seg_pred.apply(weights_init)
net = torch.nn.DataParallel(dssd_net)
if args.cuda:
net = net.cuda()
if args.optim == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=args.momentum, weight_decay=args.weight_decay)
logging.info('model will be optimed by sgd')
elif args.optim == 'adam':
optimizer = optim.Adam(net.parameters(), lr=args.lr)
logging.info('model will be optimed by adam')
elif args.optim == 'adadelta':
optimizer = optim.Adadelta(net.parameters(), lr=args.lr)
else:
optimizer = optim.Adam(net.parameters(), lr=args.lr)
logging.info('model will be optimed by adam')
num_classes = 2
criterion = MultiBoxLoss(num_classes, 0.5, 3, args.cuda)
def train():
net.train()
logging.info('Loading Dataset...')
# dataset = SynthDetection(args.synth_root, SynthSSDAugmentation(
# ssd_dim, means), AnnotationTransform())
# data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers,
# shuffle=False, collate_fn=detection_collate, pin_memory=True)
# logging.info('Training SSD_CBTD_BOX on Synth')
# for i in range(1):
# for j, batch_samples in enumerate(data_loader):
# images, targets, segs = batch_samples
# gts = []
# if args.cuda:
# images = Variable(images.cuda())
# segs = Variable(segs.cuda())
# for sample in targets:
# temp = []
# for item in sample:
# temp.append(Variable(item.cuda(), volatile=True))
# gts.append(temp)
# targets = gts
# else:
# images = Variable(images)
# segs = Variable(segs)
# for sample in targets:
# temp = []
# for item in samples:
# temp.append(Variable(item, volatile=True))
# gts.append(temp)
# targets = gts
# # zero_grad
# optimizer.zero_grad()
# # forward
# t0 = time.time()
# out = net(images)
# loss_l, loss_c, loss_s = criterion(out, targets, segs)
# loss_s = loss_s*10
# loss = loss_l + loss_c + loss_s
# loss.backward()
# if args.clip_grad == True:
# torch.nn.utils.clip_grad_norm(net.parameters(), 0.25)
# optimizer.step()
# t1 = time.time()
# if j % 10 == 0:
# logging.info('synth-> iter:%6d epoch:%3d loss:%.6f loss_l:%.6f loss_c:%.6f loss_s:%.6f time:%.4f'%(j, i, loss.data[0], loss_l.data[0], loss_c.data[0], loss_s.data[0], (t1 - t0)))
# if j % 5000 == 0:
# logging.info('Saving state, epoch: %d iter:%d'%(i, j))
# torch.save(dssd_net.state_dict(), 'weights/' + args.name + '/synth_' +
# repr(i) + '_' + repr(j) + '.pth')
# torch.save(dssd_net.state_dict(), 'weights/' + args.name + '/synth' + '.pth')
# logging.info('Training SSD_CBTD_BOX on ICDAR')
# dataset = ICDARDetection(args.icdar_root, 'train', SSDAugmentation(
# train_cfg['min_dim'], means), AnnotationTransform(), '13&&15', dim=train_cfg['min_dim'])
# data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers,
# shuffle=True, collate_fn=detection_collate, pin_memory=True)
#logging.info('Training SSD_CBTD_BOX on TD500')
#dataset = TD500Detection(args.td_root, 'train', SSDAugmentation(
#(512, 512), means), AnnotationTransform(), aug=True)
#data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers,
# shuffle=True, collate_fn=detection_collate, pin_memory=True)
logging.info('Training SSD_CBTD_BOX on MLT')
dataset = MLTDetection(args.mlt_root, 'train', SSDAugmentation(
(512, 512), means), AnnotationTransform())
data_loader = data.DataLoader(dataset, batch_size, num_workers=args.num_workers,
shuffle=True, collate_fn=detection_collate, pin_memory=True)
for i in range(200):
for j, batch_samples in enumerate(data_loader):
images, targets, segs = batch_samples
gts = []
if args.cuda:
images = Variable(images.cuda())
segs = Variable(segs.cuda())
for sample in targets:
temp = []
for item in sample:
temp.append(Variable(item.cuda(), volatile=True))
gts.append(temp)
targets = gts
else:
images = Variable(images)
segs = Variable(segs)
for sample in targets:
temp = []
for item in samples:
temp.append(Variable(item, volatile=True))
gts.append(temp)
targets = gts
# zero_grad
optimizer.zero_grad()
# forward
t0 = time.time()
out = net(images)
loss_l, loss_c, loss_s = criterion(out, targets, segs)
loss_s = loss_s*10
loss = loss_l + loss_c + loss_s
loss.backward()
if args.clip_grad == True:
torch.nn.utils.clip_grad_norm(net.parameters(), 0.25)
optimizer.step()
t1 = time.time()
if j % 10 == 0:
logging.info('icdar-> iter:%6d epoch:%3d loss:%.6f loss_l:%.6f loss_c:%.6f loss_s:%.6f time:%.4f'%(j, i, loss.data[0], loss_l.data[0], loss_c.data[0], loss_s.data[0], (t1 - t0)))
if i % 5 == 0:
logging.info('Saving state, epoch: %d iter:%d'%(i, j))
torch.save(dssd_net.state_dict(), 'weights/' + args.name + '/mlt_' +
repr(i) + '.pth')
torch.save(dssd_net.state_dict(), 'weights/' + args.name + '/mlt_' + '.pth')
if __name__ == '__main__':
train()