-
Notifications
You must be signed in to change notification settings - Fork 43
/
screening.py
266 lines (226 loc) · 13.8 KB
/
screening.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import copy
import os
import torch
import shutil
import warnings
warnings.filterwarnings("ignore")
import time
from argparse import ArgumentParser, Namespace, FileType
from rdkit.Chem import RemoveHs
from functools import partial
import numpy as np
import pandas as pd
import scipy
from Bio.PDB import PDBParser
from rdkit import RDLogger
from rdkit.Chem import MolFromSmiles, AddHs
from rdkit import Chem
import torch
torch.set_num_threads(1)
torch.multiprocessing.set_sharing_strategy('file_system')
from torch_geometric.loader import DataLoader
from datasets.process_mols import read_molecule, generate_conformer, write_mol_with_coords
from datasets.pdbbind import PDBBind,PDBBindScoring
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule, set_time
from utils.sampling import randomize_position, sampling
from utils.utils import get_model
from utils.visualise import LigandToPDB, modify_pdb, receptor_to_pdb, save_protein
from utils.clash import compute_side_chain_metrics
# from utils.relax import openmm_relax
from tqdm import tqdm
import datetime
from contextlib import contextmanager
from multiprocessing import Pool as ThreadPool
import random
import pickle
# pool = ThreadPool(8)
@contextmanager
def Timer(title):
'timing function'
t0 = datetime.datetime.now()
yield
print("%s - done in %is"%(title, (datetime.datetime.now() - t0).seconds))
return None
RDLogger.DisableLog('rdApp.*')
import yaml
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--protein_ligand_csv', type=str, default=None, help='Path to a .csv file specifying the input as described in the README. If this is not None, it will be used instead of the --protein_path and --ligand parameters')
parser.add_argument('--protein_path', type=str, default='data/dummy_data/1a0q_protein.pdb', help='Path to the protein .pdb file')
parser.add_argument('--ligand', type=str, default='COc(cc1)ccc1C#N', help='Either a SMILES string or the path to a molecule file that rdkit can read')
parser.add_argument('--out_dir', type=str, default='results/user_inference', help='Directory where the outputs will be written to')
parser.add_argument('--esm_embeddings_path', type=str, default='data/esm2_output', help='If this is set then the LM embeddings at that path will be used for the receptor features')
parser.add_argument('--save_visualisation', action='store_true', default=False, help='Save a pdb file with all of the steps of the reverse diffusion')
parser.add_argument('--samples_per_complex', type=int, default=10, help='Number of samples to generate')
parser.add_argument('--savings_per_complex', type=int, default=1, help='Number of samples to save')
parser.add_argument('--seed', type=int, default=42, help='Number of samples to generate')
parser.add_argument('--model_dir', type=str, default='workdir/paper_score_model', help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_ema_inference_epoch_model.pt', help='Checkpoint to use for the score model')
parser.add_argument('--confidence_model_dir', type=str, default=None, help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model_epoch75.pt', help='Checkpoint to use for the confidence model')
parser.add_argument('--batch_size', type=int, default=32, help='')
parser.add_argument('--cache_path', type=str, default='data/cache', help='Folder from where to load/restore cached dataset')
parser.add_argument('--no_random', action='store_true', default=False, help='Use no randomness in reverse diffusion')
parser.add_argument('--no_final_step_noise', action='store_true', default=False, help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--ode', action='store_true', default=False, help='Use ODE formulation for inference')
parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
parser.add_argument('--num_workers', type=int, default=1, help='Number of workers for creating the dataset')
parser.add_argument('--sigma_schedule', type=str, default='expbeta', help='')
parser.add_argument('--actual_steps', type=int, default=None, help='Number of denoising steps that are actually performed')
parser.add_argument('--keep_local_structures', action='store_true', default=False, help='Keeps the local structure when specifying an input with 3D coordinates instead of generating them with RDKit')
parser.add_argument('--protein_dynamic', action='store_true', default=False, help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--relax', action='store_true', default=False, help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--use_existing_cache', action='store_true', default=False, help='Use existing cache file, if they exist.')
args = parser.parse_args()
def Seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
Seed_everything(seed=args.seed)
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
os.makedirs(args.out_dir, exist_ok=True)
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if args.confidence_model_dir is not None:
with open(f'{args.confidence_model_dir}/model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if args.protein_ligand_csv is not None:
df = pd.read_csv(args.protein_ligand_csv)
# df = df[:10]
if 'crystal_protein_path' not in df.columns:
df['crystal_protein_path'] = df['protein_path']
protein_path_list = df['protein_path'].tolist()
ligand_descriptions = df['ligand'].tolist()
# if 'name' not in df.columns:
# df['name'] = [f'idx_{i}' for i in range(df.shape[0])]
# elif df['name'].nunique() < df.shape[0]:
# df['name'] = [f'idx_{i}' for i in range(df.shape[0])]
df['name'] = [f'idx_{i}' for i in range(df.shape[0])]
name_list = df['name'].tolist()
else:
protein_path_list = [args.protein_path]
ligand_descriptions = [args.ligand]
test_dataset = PDBBindScoring(transform=None, root='', name_list=name_list, protein_path_list=protein_path_list, ligand_descriptions=ligand_descriptions,
receptor_radius=score_model_args.receptor_radius, cache_path=args.cache_path,
remove_hs=score_model_args.remove_hs, max_lig_size=None,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors, matching=False, keep_original=False,
popsize=score_model_args.matching_popsize, maxiter=score_model_args.matching_maxiter,center_ligand=True,
all_atoms=score_model_args.all_atoms, atom_radius=score_model_args.atom_radius,
atom_max_neighbors=score_model_args.atom_max_neighbors,
esm_embeddings_path= args.esm_embeddings_path if score_model_args.esm_embeddings_path is not None else None,
require_ligand=True,require_receptor=True, num_workers=args.num_workers, keep_local_structures=args.keep_local_structures, use_existing_cache=args.use_existing_cache)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=torch.device('cpu'))
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.confidence_model_dir is not None:
if confidence_args.transfer_weights:
with open(f'{confidence_args.original_model_dir}/model_parameters.yml') as f:
confidence_model_args = Namespace(**yaml.full_load(f))
else:
confidence_model_args = confidence_args
confidence_model = get_model(confidence_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True, confidence_mode=True)
state_dict = torch.load(f'{args.confidence_model_dir}/{args.confidence_ckpt}', map_location=torch.device('cpu'))
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
else:
confidence_model = None
confidence_args = None
confidence_model_args = None
tr_schedule = get_t_schedule(inference_steps=args.inference_steps)
rot_schedule = tr_schedule
tor_schedule = tr_schedule
res_tr_schedule = tr_schedule
res_rot_schedule = tr_schedule
res_chi_schedule = tr_schedule
print('common t schedule', tr_schedule)
failures, skipped, confidences_list, names_list, run_times, min_self_distances_list = 0, 0, [], [], [], []
N = args.samples_per_complex
print('Size of test dataset: ', len(test_dataset))
affinity_pred = {}
all_complete_affinity = []
for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
# if idx not in [54, 123, 141, 157, 165, 251]:continue
try:
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
randomize_position(data_list, score_model_args.no_torsion, args.no_random,score_model_args.tr_sigma_max,score_model_args.rot_sigma_max, score_model_args.tor_sigma_max,score_model_args.res_tr_sigma_max,score_model_args.res_rot_sigma_max)
pdb = None
lig = orig_complex_graph.mol[0]
receptor_pdb = orig_complex_graph.rec_pdb[0]
pdb_or_cif = receptor_pdb.get_full_id()[0]
if score_model_args.remove_hs: lig = RemoveHs(lig)
visualization_list = None
start_time = time.time()
confidence = None
steps = args.actual_steps if args.actual_steps is not None else args.inference_steps
final_data_list, data_list_step, all_lddt_pred, all_affinity_pred = [],[[] for _ in range(steps)],[],[]
for i in range(int(np.ceil(len(data_list)/args.batch_size))):
try:
outputs = sampling(data_list=data_list[i*args.batch_size:(i+1)*args.batch_size], model=model,
inference_steps=steps,
tr_schedule=tr_schedule, rot_schedule=rot_schedule, tor_schedule=tor_schedule, res_tr_schedule=res_tr_schedule, res_rot_schedule=res_rot_schedule, res_chi_schedule=res_chi_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args, no_random=args.no_random,
ode=args.ode, visualization_list=visualization_list, batch_size=args.batch_size, no_final_step_noise=args.no_final_step_noise, protein_dynamic=args.protein_dynamic)
all_lddt_pred.append(outputs[2])
all_affinity_pred.append(outputs[3])
except Exception as e:
# raise e
print(e)
all_lddt_pred = torch.cat(all_lddt_pred)
all_affinity_pred = torch.cat(all_affinity_pred)
ligand_pos = np.asarray([complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for complex_graph in final_data_list])
final_receptor_pdbs = []
# with Timer('modify pdb'):
# final_receptor_pdbs = pool.map(modify_pdb, zip([copy.deepcopy(receptor_pdb) for _ in range(len(data_list))], data_list))
# run_times.append(time.time() - start_time)
# sample_ligand_path_list = []
# sample_protein_path_list = []
# for rank, pos in enumerate(ligand_pos):
# mol_pred = copy.deepcopy(lig)
# if rank == 0: write_mol_with_coords(mol_pred, pos, os.path.join(write_dir, f'rank{rank+1}.sdf'))
# write_mol_with_coords(mol_pred, pos, os.path.join(write_dir, f'rank{rank+1}_ligand.sdf'))
# save_protein(final_receptor_pdbs[rank],os.path.join(write_dir, f'rank{rank+1}_receptor.pdb'))
# sample_ligand_path_list.append(os.path.join(write_dir, f'rank{rank+1}_ligand.sdf'))
# sample_protein_path_list.append(os.path.join(write_dir, f'rank{rank+1}_receptor.pdb'))
all_lddt_pred = all_lddt_pred.view(-1).cpu().numpy()
# print(all_lddt_pred)
all_affinity_pred = all_affinity_pred.view(-1).cpu().numpy()
final_affinity_pred = np.minimum((all_affinity_pred*all_lddt_pred).sum() / (all_lddt_pred.sum()+1e-12),15.)
affinity_pred[orig_complex_graph.name[0]] = final_affinity_pred
complete_affinity = pd.DataFrame({'name':orig_complex_graph.name[0],'lddt':all_lddt_pred,'affinity':all_affinity_pred})
all_complete_affinity.append(complete_affinity)
names_list.append(orig_complex_graph.name[0])
except Exception as e:
# raise(e)
print("Failed on", orig_complex_graph["name"], e)
failures += 1
print(f'Failed for {failures} complexes')
print(f'Skipped {skipped} complexes')
affinity_pred_df = pd.DataFrame({'name':list(affinity_pred.keys()),'affinity':list(affinity_pred.values())})
affinity_pred_df.to_csv(f'{args.out_dir}/affinity_prediction.csv',index=False)
pd.concat(all_complete_affinity).to_csv(f'{args.out_dir}/complete_affinity_prediction.csv',index=False)
# min_self_distances = np.array(min_self_distances_list)
# confidences = np.array(confidences_list)
# names = np.array(names_list)
# run_times = np.array(run_times)
# np.save(f'{args.out_dir}/min_self_distances.npy', min_self_distances)
# np.save(f'{args.out_dir}/confidences.npy', confidences)
# np.save(f'{args.out_dir}/run_times.npy', run_times)
# np.save(f'{args.out_dir}/complex_names.npy', np.array(names))
print(f'Results are in {args.out_dir}')