forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_conformer.py
executable file
·59 lines (49 loc) · 1.51 KB
/
test_conformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/librispeech/ASR
python ./transducer/test_conformer.py
"""
import torch
from conformer import Conformer
def test_conformer():
output_dim = 1024
conformer = Conformer(
num_features=80,
output_dim=output_dim,
subsampling_factor=4,
d_model=512,
nhead=8,
dim_feedforward=2048,
num_encoder_layers=12,
)
N = 3
T = 100
C = 80
x = torch.randn(N, T, C)
x_lens = torch.tensor([50, 100, 80])
logits, logit_lens = conformer(x, x_lens)
expected_T = ((T - 1) // 2 - 1) // 2
assert logits.shape == (N, expected_T, output_dim)
assert logit_lens.max().item() == expected_T
print(logits.shape)
print(logit_lens)
def main():
test_conformer()
if __name__ == "__main__":
main()