forked from kpot/keras-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_gpt.py
261 lines (233 loc) · 9.87 KB
/
run_gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import argparse
import os
from itertools import islice
from typing import Iterable, List, Optional
from keras import optimizers, losses
from keras.models import load_model
# noinspection PyPep8Naming
from keras import backend as K
from keras import callbacks
import numpy as np
from . import wikitext
from .bpe import BPEEncoder, ID_FOR_PADDING
from .utils import (
load_optimizer_weights, contain_tf_gpu_mem_usage, CosineLRSchedule)
from .models import (
universal_transformer_gpt_model, vanilla_transformer_gpt_model)
def pad_lm_samples(samples: Iterable[List[int]],
required_sequence_length: int):
tail_padding = [ID_FOR_PADDING]
for sample in samples:
assert len(sample) > 0
sample.extend(tail_padding * (required_sequence_length - len(sample)))
def training_data_to_samples(training_set_name: str,
encoder: BPEEncoder,
max_sequence_length: int) -> np.ndarray:
"""
Reads WikiText dataset, interpreting each line as an independent sequence,
then splits those lines with BPE tokenizer and turns them into word ids
based on previously constructed BPE vocabulary (both the tokenizer
and the vocabulary are parts of the BPEEncoder instance).
Those word id's then packed into a matrix the size of
(number of lines x max_sequence_length + 1), which can be later sliced
to get X and Y matrices of sequences for training).
"""
training_set = wikitext.read_wikitext_file(training_set_name)
useful_sequences = []
for line in training_set.splitlines():
clean_line = line.strip()
is_header = clean_line.startswith('=') and clean_line.endswith('=')
if is_header or not clean_line:
continue
# the encoder is supposed to add <SEQ> and </SEQ>
id_word_pairs = list(encoder(clean_line))
useful_sequences.append(
[word_id for word_id, _ in id_word_pairs[:max_sequence_length]])
pad_lm_samples(useful_sequences, max_sequence_length + 1)
result = np.empty(
(len(useful_sequences), max_sequence_length + 1),
dtype='int32')
for i, sequence in enumerate(useful_sequences):
result[i, :] = sequence
return result
def training_data_to_dense_samples(training_set_name: str,
encoder: BPEEncoder,
max_sequence_length: int) -> np.ndarray:
"""
Reads WikiText dataset, interpreting each line as an independent sequence,
then splits those lines with BPE tokenizer and turns them into word ids
based on previously constructed BPE vocabulary (both the tokenizer
and the vocabulary are parts of the BPEEncoder instance).
Those word id's then packed into a matrix the size of
(number of lines x max_sequence_length + 1), which can be later sliced
to get X and Y matrices of sequences for training).
"""
training_set = wikitext.read_wikitext_file(training_set_name)
useful_sequences = []
def stream_bpe_tokens():
for line in training_set.splitlines():
clean_line = line.strip()
if not clean_line:
continue
# the encoder is supposed to add <SEQ> and </SEQ>
id_word_pairs = encoder(clean_line)
yield from id_word_pairs
id_word_stream = stream_bpe_tokens()
while True:
chunk = list(islice(id_word_stream, max_sequence_length))
if len(chunk) == 0:
break
sample_sequence = [word_id for word_id, _ in chunk]
useful_sequences.append(sample_sequence)
pad_lm_samples(useful_sequences, max_sequence_length + 1)
result = np.empty(
(len(useful_sequences), max_sequence_length + 1),
dtype='int32')
for i, sequence in enumerate(useful_sequences):
result[i, :] = sequence
return result
def perplexity(y_true, y_pred):
"""
Popular metric for evaluating language modelling architectures.
More info: http://cs224d.stanford.edu/lecture_notes/LectureNotes4.pdf
"""
cross_entropy = K.sparse_categorical_crossentropy(y_true, y_pred)
return K.mean(K.exp(K.mean(cross_entropy, axis=-1)))
def main(model_save_path: str,
model_name: str,
tensorboard_log_path: Optional[str],
num_epochs: int,
learning_rate: float,
batch_size: int,
max_seq_length: int,
word_embedding_size: int,
load_weights_only: bool,
show_model_summary: bool):
contain_tf_gpu_mem_usage()
encoder = wikitext.build_wikitext_bpe_encoder()
def x_y_for_dataset(dataset_name):
fat_sample = training_data_to_dense_samples(
dataset_name, encoder, max_seq_length)
_x = fat_sample[:, :max_seq_length]
_y = np.expand_dims(fat_sample[:, 1:], axis=-1)
return _x, _y
x, y = x_y_for_dataset(wikitext.TRAINING_SET_NAME)
def compile_new_model():
if model_name == 'universal':
optimizer = optimizers.Adam(
lr=learning_rate, beta_1=0.6, beta_2=0.999)
_model = universal_transformer_gpt_model(
max_seq_length=max_seq_length,
vocabulary_size=encoder.vocabulary_size(),
word_embedding_size=word_embedding_size,
transformer_depth=5,
num_heads=8)
_model.compile(
optimizer,
loss=losses.sparse_categorical_crossentropy,
metrics=[perplexity])
elif model_name == 'vanilla':
optimizer = optimizers.Adam(
lr=learning_rate, beta_1=0.9, beta_2=0.999, clipvalue=5.0)
_model = vanilla_transformer_gpt_model(
max_seq_length=max_seq_length,
vocabulary_size=encoder.vocabulary_size(),
word_embedding_size=word_embedding_size,
transformer_depth=5,
num_heads=8)
_model.compile(
optimizer,
loss=losses.sparse_categorical_crossentropy,
metrics=[perplexity])
else:
raise RuntimeError(f'Unknown model {model_name}')
return _model
if os.path.exists(model_save_path):
if load_weights_only:
print('Loading weights from', model_save_path)
model = compile_new_model()
model.load_weights(
model_save_path, skip_mismatch=True, by_name=True)
load_optimizer_weights(model, model_save_path)
else:
print('Loading the whole model from', model_save_path)
model = load_model(
model_save_path,
custom_objects={
'perplexity': perplexity,
})
else:
model = compile_new_model()
if show_model_summary:
model.summary(120)
lr_scheduler = callbacks.LearningRateScheduler(
CosineLRSchedule(lr_high=learning_rate,
lr_low=learning_rate / 32,
initial_period=num_epochs),
verbose=1)
model_callbacks = [
callbacks.ModelCheckpoint(
model_save_path,
monitor='val_loss', save_best_only=True, verbose=True),
lr_scheduler,
]
if tensorboard_log_path:
model_callbacks.append(callbacks.TensorBoard(tensorboard_log_path))
model.fit(
x, y,
validation_data=x_y_for_dataset(wikitext.VALIDATION_SET_NAME),
batch_size=batch_size, epochs=num_epochs,
callbacks=model_callbacks)
# Evaluation using test set
print('-' * 80)
test_x, test_y = x_y_for_dataset(wikitext.TEST_SET_NAME)
test_metrics = model.evaluate(test_x, test_y, batch_size=batch_size)
for metric_name, metric_value in zip(model.metrics_names, test_metrics):
print(f'Test {metric_name}:', metric_value)
if __name__ == '__main__':
_argparser = argparse.ArgumentParser(
description='A simple example of the Transformer model in work',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
_argparser.add_argument(
'--save', type=str, required=True, metavar='PATH',
help='A path where the best model should be saved / restored from')
_argparser.add_argument(
'--tensorboard-log', type=str, metavar='PATH', default=None,
help='Path to a directory for Tensorboard logs')
_argparser.add_argument(
'--epochs', type=int, default=200, metavar='INTEGER',
help='The number of epochs to train')
_argparser.add_argument(
'--lr', type=float, default=2e-4, metavar='FLOAT',
help='Learning rate')
_argparser.add_argument(
'--batch-size', type=int, default=32, metavar='INTEGER',
help='Training batch size')
_argparser.add_argument(
'--seq-len', type=int, default=256, metavar='INTEGER',
help='Max sequence length')
_argparser.add_argument(
'--we-size', type=int, default=512, metavar='INTEGER',
help='Word embedding size')
_argparser.add_argument(
'--model', type=str, default='universal', metavar='NAME',
choices=['universal', 'vanilla'],
help='The type of the model to train: "vanilla" or "universal"')
_argparser.add_argument(
'--load-weights-only', action='store_true',
help='Use the save file only to initialize weights '
'(do not load the whole model)')
_argparser.add_argument(
'--model-summary', action='store_true',
help='Display the summary of the model before the training begins')
_args = _argparser.parse_args()
main(model_save_path=_args.save,
model_name=_args.model,
tensorboard_log_path=_args.tensorboard_log,
num_epochs=_args.epochs,
learning_rate=_args.lr,
batch_size=_args.batch_size,
max_seq_length=_args.seq_len,
word_embedding_size=_args.we_size,
load_weights_only=_args.load_weights_only,
show_model_summary=_args.model_summary)