This application is intended to serve as an example of an implementation of a model trained with machine learning and deployed in a production environment.
📘 Review of the model, and the process
POST /toxic-comment/classify
Parameter | Type | Description |
---|---|---|
comment |
String |
Required A comment (toxic comment) |
POST /eyes/classify
Parameter | Type | Description |
---|---|---|
Image |
file |
Required Image of eye |
POST /fruit-or-vegetable/classify
Parameter | Type | Description |
---|---|---|
Image |
file |
Required Image of fruit or vegetable |
Clone the project
git clone https://github.com/luismateoh/Antares.git
Go to the project directory
cd Antares/backend
Install dependencies
pip install -r requirements.txt
Start the server
uvicorn app.main:app --reload
Clone the project
git clone https://github.com/luismateoh/Antares.git
Go to the project directory
cd Antares/frontend
Install dependencies
npm install
Start the dev server
npm run dev
Go to the project directory
cd Antares
Run the docker compose
docker-compose up -d --build