forked from ehoogeboom/e3_diffusion_for_molecules
-
Notifications
You must be signed in to change notification settings - Fork 1
/
analyse_geom.py
272 lines (225 loc) · 10.2 KB
/
analyse_geom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
from rdkit import Chem
import os
import numpy as np
import torch
from torch.utils.data import BatchSampler, DataLoader, Dataset, SequentialSampler
import argparse
import collections
import pickle
import os
import json
from tqdm import tqdm
from IPython.display import display
from matplotlib import pyplot as plt
import numpy as np
from qm9.analyze import check_stability
from qm9.rdkit_functions import BasicMolecularMetrics
import configs.datasets_config
atomic_number_list = [1, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 33, 35, 53, 80, 83]
inverse = {1: 0, 5: 1, 6: 2, 7: 3, 8: 4, 9: 5, 13: 6, 14: 7, 15: 8, 16: 9, 17: 10, 33: 11, 35: 12, 53: 13,
80: 14, 83: 15}
atom_name = ['H', 'B', 'C', 'N', 'O', 'F', 'Al', 'Si', 'P', 'S', 'Cl', 'As', 'Br', 'I', 'Hg', 'Bi']
n_atom_types = len(atomic_number_list)
n_bond_types = 4
def extract_conformers(args):
Counter = collections.Counter
bond_length_dict = {0: Counter(), 1: Counter(), 2: Counter(), 3: Counter()}
summary_file = os.path.join(args.data_dir, args.data_file)
with open(summary_file, "r") as f:
drugs_summ = json.load(f)
all_paths = []
for smiles, sub_dic in drugs_summ.items():
if 'pickle_path' in sub_dic:
pickle_path = os.path.join(args.data_dir, "rdkit_folder", sub_dic["pickle_path"])
all_paths.append(pickle_path)
for i, mol_path in tqdm(enumerate(all_paths)):
with open(mol_path, "rb") as f:
dic = pickle.load(f)
# Get the energy of each conformer. Keep only the lowest values
conformers = dic['conformers']
all_energies = []
for conformer in conformers:
all_energies.append(conformer['totalenergy'])
all_energies = np.array(all_energies)
argsort = np.argsort(all_energies)
lowest_energies = argsort[:args.conformations]
for id in lowest_energies:
conformer = conformers[id]
rd_mol = conformer["rd_mol"]
atoms = rd_mol.GetAtoms()
atom_nums = []
for atom in atoms:
atom_nums.append(atom.GetAtomicNum())
rd_conf = rd_mol.GetConformers()[0]
coords = rd_conf.GetPositions() # list of elts of size 3?
bonds = [bond for bond in rd_mol.GetBonds()]
for bond in bonds:
atom1, atom2 = [bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()]
# bond length
c1 = coords[atom1]
c2 = coords[atom2]
dist = np.linalg.norm(c1 - c2)
# Bin the distance
dist = int(dist * 100)
# atom types
at1_type = atom_nums[atom1]
at2_type = atom_nums[atom2]
if at1_type > at2_type: # Sort the pairs to avoid redundancy
temp = at2_type
at2_type = at1_type
at1_type = temp
bond_type = bond.GetBondType().name.lower()
if bond_type == 'single':
type = 0
elif bond_type == 'double':
type = 1
elif bond_type == 'triple':
type = 2
elif bond_type == 'aromatic':
type = 3
else:
raise ValueError("Unknown bond type", bond_type)
bond_length_dict[type][(at1_type, at2_type, dist)] += 1
if i % 5000 == 0:
print("Current state of the bond length dictionary", bond_length_dict)
if os.path.exists('bond_length_dict.pkl'):
os.remove('bond_length_dict.pkl')
with open('bond_length_dict', 'wb') as bond_dictionary_file:
pickle.dump(bond_length_dict, bond_dictionary_file)
def create_matrix(args):
with open('bond_length_dict', 'rb') as bond_dictionary_file:
all_bond_types = pickle.load(bond_dictionary_file)
x = np.zeros((n_atom_types, n_atom_types, n_bond_types, 350))
for bond_type, d in all_bond_types.items():
for key, count in d.items():
at1, at2, bond_len = key
x[inverse[at1], inverse[at2], bond_type, bond_len - 50] = count
np.save('bond_length_matrix', x)
def create_histograms(args):
x = np.load('./data/geom/bond_length_matrix.npy')
x = x[:, :, :, :307]
label_list = ['single', 'double', 'triple', 'aromatic']
for j in range(n_atom_types):
for i in range(j + 1):
if np.sum(x[i, j]) == 0: # Bond does not exist
continue
# Remove outliers
y = x[i, j]
y[y < 0.02 * np.sum(y, axis=0)] = 0
plt.figure()
existing_bond_lengths = np.array(np.nonzero(y))[1]
mini, maxi = existing_bond_lengths.min(), existing_bond_lengths.max()
y = y[:, mini: maxi + 1]
x_range = np.arange(mini, maxi + 1)
for k in range(n_bond_types):
if np.sum(y[k]) > 0:
plt.plot(x_range, y[k], label=label_list[k])
plt.xlabel("Bond length")
plt.ylabel("Count")
plt.title(f'{atom_name[i]} - {atom_name[j]} bonds')
plt.legend()
plt.savefig(f'./figures/{atom_name[i]}-{atom_name[j]}-hist.png')
plt.close()
def analyse_geom_stability():
data_file = './data/geom/geom_drugs_30.npy'
dataset_info = configs.datasets_config.get_dataset_info('geom', remove_h=False)
atom_dict = dataset_info['atom_decoder']
bond_dict = [None, Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE,
Chem.rdchem.BondType.AROMATIC]
x = np.load(data_file)
mol_id = x[:, 0].astype(int)
all_atom_types = x[:, 1].astype(int)
all_positions = x[:, 2:]
# Get ids corresponding to new molecules
split_indices = np.nonzero(mol_id[:-1] - mol_id[1:])[0] + 1
all_atom_types_split = np.split(all_atom_types, split_indices)
all_positions_split = np.split(all_positions, split_indices)
atomic_nb_list = torch.Tensor(dataset_info['atomic_nb'])[None, :].long()
num_stable_mols = 0
num_mols = 0
num_stable_atoms_total = 0
num_atoms_total = 0
formatted_data = []
for i, (p, at_types) in tqdm(enumerate(zip(all_positions_split, all_atom_types_split))):
p = torch.from_numpy(p)
at_types = torch.from_numpy(at_types)[:, None]
one_hot = torch.eq(at_types, atomic_nb_list).int()
at_types = torch.argmax(one_hot, dim=1) # Between 0 and 15
formatted_data.append([p, at_types])
mol_is_stable, num_stable_atoms, num_atoms = check_stability(p, at_types, dataset_info)
num_mols += 1
num_stable_mols += mol_is_stable
num_stable_atoms_total += num_stable_atoms
num_atoms_total += num_atoms
if i % 5000 == 0:
print(f"IN PROGRESS -- Stable molecules: {num_stable_mols} / {num_mols}"
f" = {num_stable_mols / num_mols * 100} %")
print(
f"IN PROGRESS -- Stable atoms: {num_stable_atoms_total} / {num_atoms_total}"
f" = {num_stable_atoms_total / num_atoms_total * 100} %")
print(f"Stable molecules: {num_stable_mols} / {num_mols} = {num_stable_mols / num_mols * 100} %")
print(f"Stable atoms: {num_stable_atoms_total} / {num_atoms_total} = {num_stable_atoms_total / num_atoms_total * 100} %")
metrics = BasicMolecularMetrics(dataset_info)
metrics.evaluate(formatted_data)
def debug_geom_stability(num_atoms=100000):
data_file = './data/geom/geom_drugs_30.npy'
dataset_info = configs.datasets_config.get_dataset_info('geom', remove_h=False)
atom_dict = dataset_info['atom_decoder']
bond_dict = [None, Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE,
Chem.rdchem.BondType.AROMATIC]
x = np.load(data_file)
x = x[:num_atoms]
# Print non hydrogen atoms
x = x[x[:, 1] != 1.0, :]
mol_id = x[:, 0].astype(int)
max_mol_id = mol_id.max()
may_be_incomplete = mol_id == max_mol_id
x = x[~may_be_incomplete]
mol_id = mol_id[~may_be_incomplete]
all_atom_types = x[:, 1].astype(int)
all_positions = x[:, 2:]
# Get ids corresponding to new molecules
split_indices = np.nonzero(mol_id[:-1] - mol_id[1:])[0] + 1
all_atom_types_split = np.split(all_atom_types, split_indices)
all_positions_split = np.split(all_positions, split_indices)
atomic_nb_list = torch.Tensor(dataset_info['atomic_nb'])[None, :].long()
formatted_data = []
for p, at_types in zip(all_positions_split, all_atom_types_split):
p = torch.from_numpy(p)
at_types = torch.from_numpy(at_types)[:, None]
one_hot = torch.eq(at_types, atomic_nb_list).int()
at_types = torch.argmax(one_hot, dim=1) # Between 0 and 15
formatted_data.append([p, at_types])
metrics = BasicMolecularMetrics(atom_dict, bond_dict, dataset_info)
m, smiles_list = metrics.evaluate(formatted_data)
print(smiles_list)
def compute_n_nodes_dict(file='./data/geom/geom_drugs_30.npy', remove_hydrogens=True):
all_data = np.load(file)
atom_types = all_data[:, 1]
if remove_hydrogens:
hydrogens = np.equal(atom_types, 1.0)
all_data = all_data[~hydrogens]
# Get the size of each molecule
mol_id = all_data[:, 0].astype(int)
max_id = mol_id.max()
mol_id_counter = np.zeros(max_id + 1, dtype=int)
for id in mol_id:
mol_id_counter[id] += 1
unique_sizes, size_count = np.unique(mol_id_counter, return_counts=True)
sizes_dict = {}
for size, count in zip(unique_sizes, size_count):
sizes_dict[size] = count
print(sizes_dict)
return sizes_dict
if __name__ == '__main__':
# parser = argparse.ArgumentParser()
# parser.add_argument("--conformations", type=int, default=30,
# help="Max number of conformations kept for each molecule.")
# parser.add_argument("--data_dir", type=str, default='/home/vignac/diffusion/data/geom/')
# parser.add_argument("--data_file", type=str, default="rdkit_folder/summary_drugs.json")
# args = parser.parse_args()
# # extract_conformers(args)
# # create_histograms(args)
#
analyse_geom_stability()
# compute_n_nodes_dict()