forked from tudat-team/tudat-bundle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathjson.json
13938 lines (13938 loc) · 946 KB
/
json.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"type": "package",
"path": "./tudat-multidoc/docstrings",
"file": "__package__.yaml",
"_implicit_name": "docstrings",
"config": {
"name": "tudatpy",
"version": null
},
"summary": "TU Delft Astrodynamics Toolbox in Python, or tudatpy, is a library that\nprimarily exposes the powerful set of C++ libraries, Tudat. TudatPy\naims at accelerating the implementation of Tudat simulations, providing\nan interface between Tudat and popular machine learning frameworks and\nestablishing a platform to provide quality education in the field of\nastrodynamics.\n",
"extended_summary": null,
"routine_listings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null,
"enums": null,
"classes": null,
"functions": null,
"constants": null,
"modules": [
"astro",
"interface",
"numerical_simulation",
"plotting",
"util"
],
"name": "tudatpy",
"version": null,
"astro": {
"type": "package",
"path": "./tudat-multidoc/docstrings/astro",
"file": "__package__.yaml",
"_implicit_name": "astro",
"config": null,
"summary": "Fundamental astrodynamics calculations.",
"extended_summary": "Provides diverse low-level to support astrodynamics calculations.\nThis module can be used as standalone together with the math module.\nThe other modules make extensive use of the functionality exposed here.\n",
"routine_listings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null,
"enums": null,
"classes": null,
"functions": null,
"constants": null,
"modules": [
"frame_conversion",
"element_conversion"
],
"name": "astro",
"version": null,
"frame_conversion": {
"type": "module",
"path": "./tudat-multidoc/docstrings/astro",
"file": "frame_conversion.yaml",
"_implicit_name": "frame_conversion",
"config": null,
"summary": "Conversions between different reference frames.\n",
"extended_summary": "This module provide a variety of functions and classes to convert\nbetween different reference frames. Functionality to convert between\ndifferent state representations is provided in the\n:ref:`\\`\\`element_conversion\\`\\`` module.\n",
"routine_listings": null,
"see_also": null,
"notes": "- All reference frames used should be assumed as right handed:\n :math:`\\mathbf{X}\\times\\mathbf{Y}=\\mathbf{Z}`.\n\n- We distinguish between two different uses of the term 'inertial:\n\n * An *inertial origin*: the frame has a non-accelerating origin. On solar\n system scales, the solar system barycenter (SSB) is considered to be \n the only inertial origin.\n * An *inertial orientation*: the unit axes of the frame are non-rotating\n with respect to the celestial background. This module is concerned \n primarily with conversions between different orientations.\n\n- Examples of and inertial origin include J2000 (a.k.a EME2000), as\n well as the SPICE-defined ECLIPJ2000 frame (see `this description <https://tudat-space.readthedocs.io/en/latest/_src_user_guide/environment_setup/use_of_reference_frames.html#predefined-orientations>`_\n on our user guide). The use of the ICRF frame (difference from J2000\n is <0.1 arcseconds) in Tudat is presently limited to the\n :ref:`\\`\\`numerical_simulation\\`\\`` model, see\n :func:`~tudatpy.numerical_simulation.environment_setup.rotation_model.gcrs_to_itrs`.\n\n.. raw:: html\n\n <object\n data=\"_static/J2000_.svg\"\n type=\"image/svg+xml\"\n class=\"center invertible\">\n </object>\n",
"references": ".. [1] Archinal, B.A., Acton, C.H., A\u2019Hearn, M.F. et al. Report of\n the IAU Working Group on Cartographic Coordinates and\n Rotational Elements: 2015. Celest Mech Dyn Astr 130, 22\n (2018). https://doi.org/10.1007/s10569-017-9805-5\n",
"examples": null,
"enums": null,
"classes": null,
"functions": [
{
"name": "inertial_to_rsw_rotation_matrix",
"short_summary": "Computes the rotation matrix from inertial to RSW frame.\n",
"deprecation_warning": null,
"extended_summary": "Function to compute the rotation matrix from inertial to RSW frame.\nThe RSW frame is defined by the state of a body w.r.t. to some\ncentral body. The x-axis of the RSW frame points away from the\norigin, and the y-axis lies in the orbital plane, and is positive\nfor in the direction of the velocity vector (but is not colinear\nwith the velocity vector, except for circular orbits). The z-axis\nis perpendicular to the orbital plane, and completes the\nright-handed coordinate system.\n",
"parameters": [
{
"name": "inertial_cartesian_state",
"type": "numpy.ndarray",
"description": "Cartesian state, in an inertial frame, for which the rotation\nmatrix is to be calculated. Note that the RSW frame is defined\nw.r.t. some central body, and this Cartesian state must be\ndefined w.r.t. that central body (e.g. central body at the\norigin).\n"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Rotation matrix from inertial to RSW frame."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "rsw_to_inertial_rotation_matrix",
"short_summary": "Computes the rotation matrix from RSW to inertial frame.\n",
"deprecation_warning": null,
"extended_summary": "Function to compute the rotation matrix from RSW to inertial. The\nRSW frame is defined by the state of a body w.r.t. to some central\nbody. The x-axis of the RSW frame points away from the origin, and\nthe y-axis lies in the orbital plane, and is positive for in the\ndirection of the velocity vector (but is not colinear with the\nvelocity vector, except for circular orbits). The z-axis is\nperpendicular to the orbital plane, and completes the right-handed\ncoordinate system.\n",
"parameters": [
{
"name": "inertial_cartesian_state",
"type": "numpy.ndarray",
"description": "Cartesian state, in an inertial frame, for which the rotation\nmatrix is to be calculated. Note that the RSW frame is defined\nw.r.t. some central body, and this Cartesian state must be\ndefined w.r.t. that central body (e.g. central body at the\norigin).\n"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Rotation matrix from RSW to inertial frame."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "inertial_to_tnw_rotation_matrix",
"short_summary": "Computes the rotation matrix from inertial to TNW frame.\n",
"deprecation_warning": null,
"extended_summary": "Function to compute the rotation matrix from inertial to TNW frame.\nThe TNW frame is defined by the state of a body w.r.t. to some\ncentral body. The x-axis of the TNW frame points along the velocity\nvector, and the y-axis lies in the orbital plane, and is positive\nin the direction away from the central body (or positive **towards**\nthe central body if the ``n_axis_points_away_from_central_body``\nvariable is set to false, see below). The z-axis is perpendicular\nto the orbital plane, and completes the right-handed coordinate\nsystem.\n",
"parameters": [
{
"name": "inertial_cartesian_state",
"type": "numpy.ndarray",
"description": "Cartesian state, in an inertial frame, for which the rotation\nmatrix is to be calculated. Note that the RSW frame is defined\nw.r.t. some central body, and this Cartesian state must be\ndefined w.r.t. that central body (e.g. central body at the\norigin).\n"
},
{
"name": "n_axis_points_away_from_central_body",
"type": "Boolean",
"description": "Boolean (default is ``True``) defining whether the N axis of the\nTNW frame points away from the central body (if ``True``) or\ntowards the central body (if ``False``).\n"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Rotation matrix from inertial to TNW frame."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "tnw_to_inertial_rotation_matrix",
"short_summary": "Computes the rotation matrix from TNW to inertial frame.\n",
"deprecation_warning": null,
"extended_summary": "Function to compute the rotation matrix from TNW to inertial frame.\nThe TNW frame is defined by the state of a body w.r.t. to some\ncentral body. The x-axis of the TNW frame points along the velocity\nvector, and the y-axis lies in the orbital plane, and is positive\nin the direction away from the central body (or positive **towards**\nthe central body if the ``n_axis_points_away_from_central_body``\nvariable is set to false, see below). The z-axis is perpendicular\nto the orbital plane, and completes the right-handed coordinate\nsystem.\n",
"parameters": [
{
"name": "inertial_cartesian_state",
"type": "numpy.ndarray",
"description": "Cartesian state, in an inertial frame, for which the rotation\nmatrix is to be calculated. Note that the TNW frame is defined\nw.r.t. some central body, and this Cartesian state must be\ndefined w.r.t. that central body (e.g. central body at the\norigin).\n"
},
{
"name": "n_axis_points_away_from_central_body",
"type": "bool",
"description": "Boolean (default=``True``) defining whether the N axis of the\nTNW frame points away from the central body (if ``True``) or\ntowards the central body (if ``False``).\n"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Rotation matrix from TNW to inertial frame"
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "inertial_to_body_fixed_rotation_matrix",
"short_summary": "Computes the rotation matrix from inertial to body-fixed frame.\n",
"deprecation_warning": null,
"extended_summary": "Function to compute the rotation matrix from inertial to body-fixed\nframe, using typical pole right ascension (:math:`\\alpha`), pole\ndeclination (:math:`\\delta`), and prime meridian longitude\n(:math:`W`) angles.\n",
"parameters": [
{
"name": "pole_declination",
"type": "float",
"description": "Declination of body pole in inertial frame (:math:`\\delta`).\n"
},
{
"name": "pole_right_ascension",
"type": "float",
"description": "Right ascension of body pole in inertial frame (:math:`\\alpha`).\n"
},
{
"name": "prime_meridian_longitude",
"type": "float",
"description": "Longitude of prime meridian w.r.t. intermediate frame\n(:math:`W`).\n"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Rotation matrix from inertial to body-fixed frame"
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": "This definition of a body-fixed orientation is used by, for\ninstance, the IAU Working Group on Cartographic Coordinates and\nRotational Elements. Rotation is performed by a succesive z-x-z\nEuler angle rotation (see Archinal et al. [1]_).\n",
"references": null,
"examples": null
},
{
"name": "body_fixed_to_inertial_rotation_matrix",
"short_summary": "Computes the rotation matrix from body-fixed to inertial frame.\n",
"deprecation_warning": null,
"extended_summary": "Function to compute the rotation matrix from body-fixed to inertial\nframe, using typical pole right ascension (:math:`\\alpha`), pole\ndeclination (:math:`\\delta`), and prime meridian longitude\n(:math:`W`) angles.\n",
"parameters": [
{
"name": "pole_declination",
"type": "float",
"description": "Declination of body pole in inertial frame (:math:`\\delta`).\n"
},
{
"name": "pole_right_ascension",
"type": "float",
"description": "Right ascension of body pole in inertial frame (:math:`\\alpha`).\n"
},
{
"name": "prime_meridian_longitude",
"type": "float",
"description": "Longitude of prime meridian w.r.t. intermediate frame\n(:math:`W`).\n"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Rotation matrix from body-fixed to inertial frame.\n"
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": "This definition of a body-fixed orientation is used by,\nfor instance, the IAU Working Group on Cartographic Coordinates\nand Rotational Elements. Rotation is performed by a succesive z-x-z\nEuler angle rotation (see Archinal et al. [1]_).\n",
"references": null,
"examples": null
}
],
"constants": null,
"name": "frame_conversion",
"version": null,
"inertial_to_rsw_rotation_matrix": "\nComputes the rotation matrix from inertial to RSW frame.\n\n\nFunction to compute the rotation matrix from inertial to RSW frame.\nThe RSW frame is defined by the state of a body w.r.t. to some\ncentral body. The x-axis of the RSW frame points away from the\norigin, and the y-axis lies in the orbital plane, and is positive\nfor in the direction of the velocity vector (but is not colinear\nwith the velocity vector, except for circular orbits). The z-axis\nis perpendicular to the orbital plane, and completes the\nright-handed coordinate system.\n\n\nParameters\n----------\ninertial_cartesian_state : numpy.ndarray\n Cartesian state, in an inertial frame, for which the rotation\n matrix is to be calculated. Note that the RSW frame is defined\n w.r.t. some central body, and this Cartesian state must be\n defined w.r.t. that central body (e.g. central body at the\n origin).\n\nReturns\n-------\nnumpy.ndarray\n Rotation matrix from inertial to RSW frame.\n\n\n\n\n\n",
"rsw_to_inertial_rotation_matrix": "\nComputes the rotation matrix from RSW to inertial frame.\n\n\nFunction to compute the rotation matrix from RSW to inertial. The\nRSW frame is defined by the state of a body w.r.t. to some central\nbody. The x-axis of the RSW frame points away from the origin, and\nthe y-axis lies in the orbital plane, and is positive for in the\ndirection of the velocity vector (but is not colinear with the\nvelocity vector, except for circular orbits). The z-axis is\nperpendicular to the orbital plane, and completes the right-handed\ncoordinate system.\n\n\nParameters\n----------\ninertial_cartesian_state : numpy.ndarray\n Cartesian state, in an inertial frame, for which the rotation\n matrix is to be calculated. Note that the RSW frame is defined\n w.r.t. some central body, and this Cartesian state must be\n defined w.r.t. that central body (e.g. central body at the\n origin).\n\nReturns\n-------\nnumpy.ndarray\n Rotation matrix from RSW to inertial frame.\n\n\n\n\n\n",
"inertial_to_tnw_rotation_matrix": "\nComputes the rotation matrix from inertial to TNW frame.\n\n\nFunction to compute the rotation matrix from inertial to TNW frame.\nThe TNW frame is defined by the state of a body w.r.t. to some\ncentral body. The x-axis of the TNW frame points along the velocity\nvector, and the y-axis lies in the orbital plane, and is positive\nin the direction away from the central body (or positive **towards**\nthe central body if the ``n_axis_points_away_from_central_body``\nvariable is set to false, see below). The z-axis is perpendicular\nto the orbital plane, and completes the right-handed coordinate\nsystem.\n\n\nParameters\n----------\ninertial_cartesian_state : numpy.ndarray\n Cartesian state, in an inertial frame, for which the rotation\n matrix is to be calculated. Note that the RSW frame is defined\n w.r.t. some central body, and this Cartesian state must be\n defined w.r.t. that central body (e.g. central body at the\n origin).\n\nn_axis_points_away_from_central_body : Boolean\n Boolean (default is ``True``) defining whether the N axis of the\n TNW frame points away from the central body (if ``True``) or\n towards the central body (if ``False``).\n\nReturns\n-------\nnumpy.ndarray\n Rotation matrix from inertial to TNW frame.\n\n\n\n\n\n",
"tnw_to_inertial_rotation_matrix": "\nComputes the rotation matrix from TNW to inertial frame.\n\n\nFunction to compute the rotation matrix from TNW to inertial frame.\nThe TNW frame is defined by the state of a body w.r.t. to some\ncentral body. The x-axis of the TNW frame points along the velocity\nvector, and the y-axis lies in the orbital plane, and is positive\nin the direction away from the central body (or positive **towards**\nthe central body if the ``n_axis_points_away_from_central_body``\nvariable is set to false, see below). The z-axis is perpendicular\nto the orbital plane, and completes the right-handed coordinate\nsystem.\n\n\nParameters\n----------\ninertial_cartesian_state : numpy.ndarray\n Cartesian state, in an inertial frame, for which the rotation\n matrix is to be calculated. Note that the TNW frame is defined\n w.r.t. some central body, and this Cartesian state must be\n defined w.r.t. that central body (e.g. central body at the\n origin).\n\nn_axis_points_away_from_central_body : bool\n Boolean (default=``True``) defining whether the N axis of the\n TNW frame points away from the central body (if ``True``) or\n towards the central body (if ``False``).\n\nReturns\n-------\nnumpy.ndarray\n Rotation matrix from TNW to inertial frame\n\n\n\n\n\n",
"inertial_to_body_fixed_rotation_matrix": "\nComputes the rotation matrix from inertial to body-fixed frame.\n\n\nFunction to compute the rotation matrix from inertial to body-fixed\nframe, using typical pole right ascension (:math:`\\alpha`), pole\ndeclination (:math:`\\delta`), and prime meridian longitude\n(:math:`W`) angles.\n\n\nParameters\n----------\npole_declination : float\n Declination of body pole in inertial frame (:math:`\\delta`).\n\npole_right_ascension : float\n Right ascension of body pole in inertial frame (:math:`\\alpha`).\n\nprime_meridian_longitude : float\n Longitude of prime meridian w.r.t. intermediate frame\n (:math:`W`).\n\nReturns\n-------\nnumpy.ndarray\n Rotation matrix from inertial to body-fixed frame\n\n\n\nNotes\n-----\nThis definition of a body-fixed orientation is used by, for\ninstance, the IAU Working Group on Cartographic Coordinates and\nRotational Elements. Rotation is performed by a succesive z-x-z\nEuler angle rotation (see Archinal et al. [1]_).\n\n\n\n",
"body_fixed_to_inertial_rotation_matrix": "\nComputes the rotation matrix from body-fixed to inertial frame.\n\n\nFunction to compute the rotation matrix from body-fixed to inertial\nframe, using typical pole right ascension (:math:`\\alpha`), pole\ndeclination (:math:`\\delta`), and prime meridian longitude\n(:math:`W`) angles.\n\n\nParameters\n----------\npole_declination : float\n Declination of body pole in inertial frame (:math:`\\delta`).\n\npole_right_ascension : float\n Right ascension of body pole in inertial frame (:math:`\\alpha`).\n\nprime_meridian_longitude : float\n Longitude of prime meridian w.r.t. intermediate frame\n (:math:`W`).\n\nReturns\n-------\nnumpy.ndarray\n Rotation matrix from body-fixed to inertial frame.\n\n\n\n\nNotes\n-----\nThis definition of a body-fixed orientation is used by,\nfor instance, the IAU Working Group on Cartographic Coordinates\nand Rotational Elements. Rotation is performed by a succesive z-x-z\nEuler angle rotation (see Archinal et al. [1]_).\n\n\n\n"
},
"element_conversion": {
"type": "module",
"path": "./tudat-multidoc/docstrings/astro",
"file": "element_conversion.yaml",
"_implicit_name": "element_conversion",
"config": null,
"summary": "Functions for converting between sets of orbital elements.",
"extended_summary": "This module provide a variety of functions and classes to\nconvert between different representations of translational and\nrotational states (e.g. Cartesian \u2194 Keplerian).\n\n.. note:: Rotations between different reference frames are provided in\n the :ref:`\\`\\`frame_conversion\\`\\`` module.\n",
"routine_listings": null,
"see_also": null,
"notes": "\nIn general, unless specified otherwise, the Keplerian elements are\nordered as:\n\n+-------+--------------------------------------------------------------------------------------+\n| Index | Keplerian Element |\n+-------+--------------------------------------------------------------------------------------+\n| ``0`` | Semi-major axis (except if eccentricity = ``1.0``, then represents semi-latus rectum |\n+-------+--------------------------------------------------------------------------------------+\n| ``1`` | Eccentricity |\n+-------+--------------------------------------------------------------------------------------+\n| ``2`` | Inclination |\n+-------+--------------------------------------------------------------------------------------+\n| ``3`` | Argument of periapsis |\n+-------+--------------------------------------------------------------------------------------+\n| ``4`` | Longitude of ascending node |\n+-------+--------------------------------------------------------------------------------------+\n| ``5`` | True anomaly |\n+-------+--------------------------------------------------------------------------------------+\n",
"references": null,
"examples": null,
"enums": null,
"classes": null,
"functions": [
{
"name": "cartesian_to_keplerian",
"short_summary": "Convert Cartesian to Keplerian elements.",
"deprecation_warning": null,
"extended_summary": "Function to convert from Cartesian elements to standard Keplerian\nelements.\n\n.. note:: See module level documentation for the standard ordering\n convention of Keplerian elements used.\n",
"parameters": [
{
"name": "cartesian_elements",
"type": "numpy.ndarray",
"description": "Cartesian state that is to be converted to Keplerian elements"
},
{
"name": "gravitational_parameter",
"type": "float",
"description": "Gravitational parameter of central body used for conversion"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Keplerian elements, as computed from Cartesian element input."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "keplerian_to_cartesian",
"short_summary": "Convert Keplerian elements to Cartesian.",
"deprecation_warning": null,
"extended_summary": "Function to convert from standard Keplerian elements to Cartesian\nelements.\n\n.. note:: See module level documentation for the standard ordering\n convention of Keplerian elements used.\n",
"parameters": [
{
"name": "keplerian_elements",
"type": "numpy.ndarray",
"description": "Keplerian state that is to be converted to Cartesian elements"
},
{
"name": "gravitational_parameter",
"type": "float",
"description": "Gravitational parameter of central body used for conversion"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Keplerian elements, as computed from Cartesian element input."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "keplerian_to_cartesian_elementwise",
"short_summary": "Convert Keplerian elements to Cartesian, with elementwise input.",
"deprecation_warning": null,
"extended_summary": "Function to convert from standard Keplerian elements to Cartesian\nelements, with elementwise input.\n\n.. note:: The final Keplerian element is always the true anomaly.\n",
"parameters": [
{
"name": "semi_major_axis",
"type": "float",
"description": "Semi-major axis (except if eccentricity = 1.0, then represents semi-latus rectum)"
},
{
"name": "eccentricity",
"type": "float",
"description": "Eccentricity"
},
{
"name": "inclination",
"type": "float",
"description": "Inclination"
},
{
"name": "argument_of_periapsis",
"type": "float",
"description": "Argument of periapsis"
},
{
"name": "longitude_of_ascending_node",
"type": "float",
"description": "Longitude of ascending node"
},
{
"name": "true_anomaly",
"type": "float",
"description": "True anomaly"
},
{
"name": "gravitational_parameter",
"type": "float",
"description": "Gravitational parameter of central body used for conversion"
}
],
"returns": {
"name": null,
"type": "numpy.ndarray",
"description": "Keplerian elements, as computed from Cartesian element input."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
}
],
"constants": null,
"name": "element_conversion",
"version": null,
"cartesian_to_keplerian": "\nConvert Cartesian to Keplerian elements.\n\nFunction to convert from Cartesian elements to standard Keplerian\nelements.\n\n.. note:: See module level documentation for the standard ordering\n convention of Keplerian elements used.\n\n\nParameters\n----------\ncartesian_elements : numpy.ndarray\n Cartesian state that is to be converted to Keplerian elements\ngravitational_parameter : float\n Gravitational parameter of central body used for conversion\nReturns\n-------\nnumpy.ndarray\n Keplerian elements, as computed from Cartesian element input.\n\n\n\n\n\n",
"keplerian_to_cartesian": "\nConvert Keplerian elements to Cartesian.\n\nFunction to convert from standard Keplerian elements to Cartesian\nelements.\n\n.. note:: See module level documentation for the standard ordering\n convention of Keplerian elements used.\n\n\nParameters\n----------\nkeplerian_elements : numpy.ndarray\n Keplerian state that is to be converted to Cartesian elements\ngravitational_parameter : float\n Gravitational parameter of central body used for conversion\nReturns\n-------\nnumpy.ndarray\n Keplerian elements, as computed from Cartesian element input.\n\n\n\n\n\n",
"keplerian_to_cartesian_elementwise": "\nConvert Keplerian elements to Cartesian, with elementwise input.\n\nFunction to convert from standard Keplerian elements to Cartesian\nelements, with elementwise input.\n\n.. note:: The final Keplerian element is always the true anomaly.\n\n\nParameters\n----------\nsemi_major_axis : float\n Semi-major axis (except if eccentricity = 1.0, then represents semi-latus rectum)\neccentricity : float\n Eccentricity\ninclination : float\n Inclination\nargument_of_periapsis : float\n Argument of periapsis\nlongitude_of_ascending_node : float\n Longitude of ascending node\ntrue_anomaly : float\n True anomaly\ngravitational_parameter : float\n Gravitational parameter of central body used for conversion\nReturns\n-------\nnumpy.ndarray\n Keplerian elements, as computed from Cartesian element input.\n\n\n\n\n\n"
}
},
"interface": {
"type": "package",
"path": "./tudat-multidoc/docstrings/interface",
"file": "__package__.yaml",
"_implicit_name": "interface",
"config": null,
"summary": null,
"extended_summary": null,
"routine_listings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null,
"enums": null,
"classes": null,
"functions": null,
"constants": null,
"modules": [
"spice"
],
"name": "interface",
"version": null,
"spice": {
"type": "module",
"path": "./tudat-multidoc/docstrings/interface",
"file": "spice.yaml",
"_implicit_name": "spice",
"config": null,
"summary": null,
"extended_summary": "This module provides an interface to NAIF's ``SPICE`` package.\n",
"routine_listings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null,
"enums": null,
"classes": [
{
"name": "SpiceEphemeris",
"short_summary": "Ephemeris derived class which retrieves the state of a body directly from the SPICE library.",
"deprecation_warning": null,
"extended_summary": "Ephemeris derived class which retrieves the state of a body directly from the SPICE library.\nThe body of which the ephemeris is to be retrieved, as well as the origin and orientation\nof the reference frame in which the states are returned, and any corrections that are\napplied, are defined once during object construction.\n",
"parameters": null,
"attributes": null,
"properties": null,
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null,
"methods": [
{
"name": "__init__",
"short_summary": "Constructor.",
"deprecation_warning": null,
"extended_summary": "Constructor, sets the input variables for the calls to the spice function to retrieve state.",
"parameters": [
{
"name": "target_body_name",
"type": null,
"description": "Name of body of which the ephemeris is to be calculated."
},
{
"name": "observer_body_name",
"type": null,
"description": "Name of body relative to which the ephemeris is to be calculated."
},
{
"name": "correct_for_stellar_aberration",
"type": null,
"description": "Boolean whether to correct for stellar Aberration in retrieved values of (observed state).\n"
},
{
"name": "correct_for_light_time_aberration",
"type": null,
"description": "Boolean whether to correct for light time in retrieved values of (observed state).\n"
},
{
"name": "converge_ligh_time_aberration",
"type": null,
"description": "Boolean whether to use single iteration or max. 3 iterations for calculating light time.\n"
},
{
"name": "reference_frame_name",
"type": null,
"description": "Name of the reference frame in which the ephemeris is to be calculated.\n"
},
{
"name": "reference_julian_day",
"type": null,
"description": "Reference julian day w.r.t. which ephemeris is evaluated.\n"
}
],
"returns": null,
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "get_cartesian_state",
"short_summary": "Get Cartesian state from ephemeris.",
"deprecation_warning": null,
"extended_summary": " Returns Cartesian state from ephemeris at given Julian day.",
"parameters": [
{
"name": "seconds_since_epoch",
"type": "float",
"description": "Seconds since epoch at which ephemeris is to be evaluated."
}
],
"returns": null,
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
}
],
"autoclass": null
}
],
"functions": [
{
"name": "convert_julian_date_to_ephemeris_time",
"short_summary": "Convert a Julian date to ephemeris time (equivalent to TDB in Spice).",
"deprecation_warning": null,
"extended_summary": "Function to convert a Julian date to ephemeris time, which is\nequivalent to barycentric dynamical time. A leap second kernel\nmust have been loaded to use this function.\n",
"parameters": [
{
"name": "julian_date",
"type": "int",
"description": "Julian date that is to be converted to ephemeris time."
}
],
"returns": {
"name": "ephemeris_time",
"type": "float",
"description": "Julian date calculated from ephemeris time."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "convert_ephemeris_time_to_julian_date",
"short_summary": "Convert ephemeris time (equivalent to TDB) to a Julian date.",
"deprecation_warning": null,
"extended_summary": "Function to convert ephemeris time, which is nearly equal to\nbarycentric dynamical time, to the Julian date. A leap second\nkernel must have been loaded to use this function.\n",
"parameters": [
{
"name": "ephemeris_time",
"type": "float",
"description": "Ephemeris time that is to be converted to Julian date."
}
],
"returns": {
"name": "julian_date",
"type": "float",
"description": "Julian date calculated from ephemeris time."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "convert_date_string_to_ephemeris_time",
"short_summary": "Converts a date string to ephemeris time.",
"deprecation_warning": null,
"extended_summary": "Function to convert a date string, for instance\n1988 June 13, 3:29:48 to ephemeris time, wrapper for `str2et_c`\nspice function.\n",
"parameters": [
{
"name": "date_string",
"type": "str",
"description": "String representing the date. See documentation of spice\nfunction `str2et_c` for details on supported formats.\n"
}
],
"returns": {
"name": "ephemeris_time",
"type": "str",
"description": "Ephemeris time corresponding to given date_string."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "get_body_cartesian_state_at_epoch",
"short_summary": "Get Cartesian state of a body, as observed from another body.",
"deprecation_warning": null,
"extended_summary": "This function returns the state of a body, relative to another\nbody, in a frame specified by the user. Corrections for light-time\ncorrection and stellar aberration can be applied to obtain the\nstate of one of the bodies, as observed from the other. Wrapper\nfor `spkezr_c` spice function.\n",
"parameters": [
{
"name": "target_body_name",
"type": "str",
"description": "Name of the body of which the state is to be obtained. A kernel\nwith the ephemeris of this body must have been loaded. The\nstring must be a spice-recognized name or ID.\n"
},
{
"name": "observer_body_name",
"type": "str",
"description": "Name of the body relative to which the state is to be obtained.\nA kernel with the ephemeris of this body must have been loaded.\nThe string must be a spice-recognized name or ID.\n"
},
{
"name": "reference_frame_name",
"type": "str",
"description": "The spice-recognized name of the reference frame in which the\nstate is to be returned. Spice kernel(s) required to perform\nthe necessary conversion from the states of the target and\nobserver bodies to this frame need to have been loaded.\n"
},
{
"name": "aberration_corrections",
"type": "str",
"description": "Setting for correction for setting corrections. See Spice\ndocumentation for extended discussion.\nShort summary:\n\n- NONE: none\n- LT: light time corrected (one iteration for calculation)\n- CN: light time corrected (multiple iterations, max 3) for calculation\n- S: Stellar aberration corrected.\n- XLT and XCN: can be provided to make the ephemeris time input argument the transmission time, instead of reception time. Arguments can be combined (i.e.\"LT+S\" or \"XCN+S\").\n"
},
{
"name": "ephemeris_time",
"type": "float",
"description": "Observation time (or transmission time of observed light, see description\nof aberrationCorrections).\n"
}
],
"returns": {
"name": "cartesian_state_vector",
"type": "np.ndarray[6,]",
"description": "Cartesian state vector (x,y,z, position+velocity)."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "get_body_cartesian_position_at_epoch",
"short_summary": "Get Cartesian position of a body, as observed from another body.",
"deprecation_warning": null,
"extended_summary": "This function returns the position of a body, relative to another\nbody, in a frame specified by the user. Corrections for light-time\ncorrection and stellar aberration can be applied to obtain the\nstate of one of the bodies, as observed from the other. Wrapper\nfor `spkpos_c` spice function.\n",
"parameters": [
{
"name": "target_body_name",
"type": "str",
"description": "Name of the body of which the state is to be obtained. A kernel\nwith the ephemeris of this body must have been loaded. The\nstring must be a spice-recognized name or ID.\n"
},
{
"name": "observer_body_name",
"type": "str",
"description": "Name of the body relative to which the state is to be obtained.\nA kernel with the ephemeris of this body must have been loaded.\nThe string must be a spice-recognized name or ID.\n"
},
{
"name": "reference_frame_name",
"type": "str",
"description": "The spice-recognized name of the reference frame in which the\nstate is to be returned. Spice kernel(s) required to perform\nthe necessary conversion from the states of the target and\nobserver bodies to this frame need to have been loaded.\n"
},
{
"name": "aberration_corrections",
"type": "str",
"description": "Setting for correction for setting corrections. See Spice\ndocumentation for extended discussion.\nShort summary:\n\n- NONE: none\n- LT: light time corrected (one iteration for calculation)\n- CN: light time corrected (multiple iterations, max 3) for calculation,\n- S: Stellar aberration corrected.\n- XLT and XCN: can be provided to make the ephemeris time input argument the transmission time, instead of reception time. Arguments can be combined (i.e.\"LT+S\" or \"XCN+S\").\n"
},
{
"name": "ephemeris_time",
"type": "float",
"description": "Observation time (or transmission time of observed light, see description\nof aberrationCorrections).\n"
}
],
"returns": null,
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "get_cartesian_state_from_tle_at_epoch",
"short_summary": "Get Cartesian state of a satellite from its two-line element set at a specified epoch.",
"deprecation_warning": null,
"extended_summary": "This function retrieves the state of a satellite at a certain epoch\nby propagating the SGP or SDP models (near-Earth resp. deep space)\nwith the given two-line elements (TLE). This function serves as a\nwrapper for the `ev2lin_` function in CSpice.\n",
"parameters": [
{
"name": "epoch",
"type": "float",
"description": "Time in seconds since J2000 at which the state is to be retrieved."
},
{
"name": "tle",
"type": ":class:`~tudatpy.kernel.astro.ephemerides.Tle`",
"description": "Shared pointer to a Tle object containing the SGP/SDP model parameters as derived from the element set."
}
],
"returns": {
"name": "cartesian_state_vector",
"type": "np.ndarray[6,]",
"description": "Cartesian state vector (x,y,z, position+velocity)."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "compute_rotation_quaternion_between_frames",
"short_summary": "Compute quaternion of rotation between two frames.",
"deprecation_warning": null,
"extended_summary": "This function computes the quaternion of rotation between two\nframes at a given time instant. kernels defining the two frames,\nas well as any required intermediate frames, at the requested\ntime must have been loaded. Wrapper for `pxform_c` spice function.\n",
"parameters": [
{
"name": "original_frame",
"type": null,
"description": "Reference frame from which the rotation is made."
},
{
"name": "new_frame",
"type": null,
"description": "Reference frame to which the rotation is made."
},
{
"name": "ephemeris_time",
"type": null,
"description": "Value of ephemeris time at which rotation is to be determined."
}
],
"returns": {
"name": null,
"type": null,
"description": "Rotation quaternion from original to new frame at given time."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "compute_rotation_matrix_derivative_between_frames",
"short_summary": "Computes time derivative of rotation matrix between two frames.",
"deprecation_warning": null,
"extended_summary": "This function computes the derivative of the rotation matrix\nbetween two frames at a given time instant. kernels defining the\ntwo frames, as well as any required intermediate frames, at the\nrequested time must have been loaded. Wrapper for (part of) `sxform_c` spice function.\n",
"parameters": [
{
"name": "original_frame",
"type": null,
"description": "Reference frame from which the rotation is made."
},
{
"name": "new_frame",
"type": null,
"description": "Reference frame to which the rotation is made."
},
{
"name": "ephemeris_time",
"type": null,
"description": "Value of ephemeris time at which rotation is to be determined."
}
],
"returns": {
"name": null,
"type": null,
"description": "Time derivative of rotation matrix from original to new frame at given time."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "get_angular_velocity_vector_of_frame_in_original_frame",
"short_summary": "Computes the angular velocity of one frame w.r.t. to another frame.",
"deprecation_warning": null,
"extended_summary": "Computes the angular velocity of one frame w.r.t. to another frame.\nat a given time instant. kernels defining the two frames, as well\nas any required intermediate frames, at the requested time must\nhave been loaded. Wrapper for `xf2rav_c`_ spice function (utilizing `sxform_c`_).\n\n.. _`xf2rav_c`: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/xf2rav_c.html\n.. _`sxform_c`: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/sxform_c.html\n",
"parameters": [
{
"name": "original_frame",
"type": null,
"description": "Reference frame from which the rotation is made."
},
{
"name": "new_frame",
"type": null,
"description": "Reference frame to which the rotation is made."
},
{
"name": "ephemeris_time",
"type": null,
"description": "Value of ephemeris time at which rotation is to be determined."
}
],
"returns": {
"name": null,
"type": null,
"description": "Angular velocity of newFrame w.r.t. originalFrame, expressed in originalFrame."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "get_body_properties",
"short_summary": "Get property of a body from Spice.",
"deprecation_warning": null,
"extended_summary": "Function to retrieve a property of a body from Spice, wraps the bodvrd_c Spice function.\n",
"parameters": [
{
"name": "body_name",
"type": null,
"description": "Name of the body of which the property is to be retrieved."
},
{
"name": "property",
"type": null,
"description": "Name of the property that is to be retrieved. Naming conventions can be found\nin the `bodvrd_c`_ function documentation.\n\n.. _`bodvrd_c`: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/bodvrd_c.html\n"
},
{
"name": "maximum_number_of_values",
"type": "int",
"description": "Number of values by which the property is expressed (i.e. 1 for\ngravitational parameter, 3 for tri-axial ellipsoid principal axes).\n"
}
],
"returns": {
"name": null,
"type": null,
"description": "Property value(s) expressed in an STL vector of doubles."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": "Function returns values with distance unit km, not m!\n",
"references": null,
"examples": null
},
{
"name": "get_body_gravitational_parameter",
"short_summary": "Get gravitational parameter of a body.",
"deprecation_warning": null,
"extended_summary": "This function retrieves the gravitational parameter of a body.\nWraps the `bodvrd_c`_ spice function with \"GM\" as property type.\n\n.. _`bodvrd_c`: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/bodvrd_c.html\n",
"parameters": [
{
"name": "body",
"type": null,
"description": "Name of the body of which the parameter is to be retrieved."
}
],
"returns": {
"name": null,
"type": null,
"description": "Gravitational parameter of requested body."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "get_average_radius",
"short_summary": "Get the (arithmetic) mean of the three principal axes of the tri-axial ellipsoid shape.",
"deprecation_warning": null,
"extended_summary": "Returns the (arithmetic) mean of the three principal axes of the\ntri-axial ellipsoid shape of the requested body. Uses the `bodvrd_c` spice function with \"RADII\" as property type.\n\n.. _`bodvrd_c`: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/bodvrd_c.html\n",
"parameters": [
{
"name": "body",
"type": null,
"description": "Name of the body of which the average radius is to be retrieved."
}
],
"returns": {
"name": null,
"type": null,
"description": "Arithmetic mean of principal axes of tri-axial ellipsoid shape model of body."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "convert_body_name_to_naif_id",
"short_summary": "Convert a body name to its NAIF identification number.",
"deprecation_warning": null,
"extended_summary": "This function converts a body name to its NAIF identification\nnumber. The NAIF id number is required for a number of spice\nfunctions, whereas the name is easily interpretable by the user.\nWrapper for the ``bods2c_c`` function.\n",
"parameters": [
{
"name": "body_name",
"type": null,
"description": "Name of the body for which NAIF id is to be retrieved."
}
],
"returns": {
"name": null,
"type": null,
"description": "NAIF id number for the body with bodyName."
},
"yields": null,
"other_parameters": null,
"raises": null,
"warns": null,
"warnings": null,
"see_also": null,
"notes": null,
"references": null,
"examples": null
},
{
"name": "check_body_property_in_kernel_pool",
"short_summary": "Check if a certain property of a body is in the kernel pool.",
"deprecation_warning": null,
"extended_summary": "This function checks if a certain property of a body is in the\nkernel pool. These properties are defined in PCK kernels. Their\nnames are given in the kernel file, typical names can be found in\nthe Spice documentation. Wrapper for the `bodfnd_c`_ function.\n\n.. _`bodfnd_c`: https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/bodfnd_c.html\n",
"parameters": [
{
"name": "body_name",
"type": null,
"description": "Name of the body of which the property is to be checked."
},
{
"name": "body_property",
"type": null,
"description": "Name of the property of which the presence is to be checked, not case-sensitive."