-
Notifications
You must be signed in to change notification settings - Fork 269
/
Copy pathvq_wav2vec.py
81 lines (60 loc) · 2.3 KB
/
vq_wav2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from pathlib import Path
import torch
from torch import nn
from einops import rearrange
import fairseq
from torchaudio.functional import resample
from audiolm_pytorch.utils import curtail_to_multiple
import logging
logging.root.setLevel(logging.ERROR)
def exists(val):
return val is not None
class FairseqVQWav2Vec(nn.Module):
"""
checkpoint path can be found at https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/README.md#vq-wav2vec
specifically download the kmeans model for now
$ wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/vq-wav2vec_kmeans.pt
"""
def __init__(
self,
checkpoint_path,
target_sample_hz = 24000,
seq_len_multiple_of = None
):
super().__init__()
self.target_sample_hz = target_sample_hz
self.seq_len_multiple_of = seq_len_multiple_of
path = Path(checkpoint_path)
assert path.exists(), f'path {checkpoint_path} does not exist'
checkpoint = torch.load(checkpoint_path)
load_model_input = {checkpoint_path: checkpoint}
model, *_ = fairseq.checkpoint_utils.load_model_ensemble_and_task(load_model_input)
self.model = model[0]
self.model.eval()
assert hasattr(self.model, 'vector_quantizer') and hasattr(self.model.vector_quantizer, 'embedding'), 'the vq wav2vec model does not seem to be valid'
@property
def groups(self):
return self.model.vector_quantizer.groups
@property
def downsample_factor(self):
# todo: double check architecture
return 80
@property
def codebook_size(self):
return self.model.vector_quantizer.embedding.shape[0]
@torch.inference_mode()
def forward(
self,
wav_input,
flatten = True,
input_sample_hz = None
):
if exists(input_sample_hz):
wav_input = resample(wav_input, input_sample_hz, self.target_sample_hz)
if exists(self.seq_len_multiple_of):
wav_input = curtail_to_multiple(wav_input, self.seq_len_multiple_of)
embed = self.model.feature_extractor(wav_input)
_, codebook_indices = self.model.vector_quantizer.forward_idx(embed)
if not flatten:
return codebook_indices
return rearrange(codebook_indices, 'b ... -> b (...)')