-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPEuler.R
568 lines (398 loc) · 17.9 KB
/
PEuler.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#Edited in Rstudio
####################################################
# Acumulado de funciones #
#ggl style sheet for R dice usar cammel case para fun y explicitar return. https://github.com/google/styleguide/blob/gh-pages/Rguide.md
#Vertical alignment
#indentation
EsMultiplo<- function(x,y){
if (x%%y ==0) return (TRUE)
else return (FALSE)
}
EsPar <- function(x){
if ((x/2)%%1==0) return (TRUE)
else return (FALSE)
}
EsPar(56:100)
ExtraePares <- function(x){
return(x[which((x/2)%%1==0)])
}
print(ExtraePares(30:34))
#
####################################################
#Problema 1
problema <- '1'
title <- 'Multiples of 3 and 5'
#Consigna: Find the sum of all the multiples of 3 or 5 below 1000.
ElapsedTime <- system.time({
##########################
#menor a 1000 asi que defino 999 como tope
#armo las secuencias de múltiplos de 3 y 5, las concateno
#y extraigo los valores comunes a las 2 series con "unique"
#Sumo el vector de valores únicos.
tope <- 999
seq3 <- seq(from = 0, to = tope, by = 3)
seq5 <- seq(from = 0, to = tope, by = 5)
ab <- c(seq3, seq5)
x <- unique(ab)
respuesta <- sum(x)
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 2
problema <-'2'
title <- 'Even Fibonacci numbers'
#Consigna: By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
# Fibo suma n y n-1 para dar n+1, 1, 1, 2, 3, 5, 8, 13... muy rápido crece y pasa los 4M, en el n=34
# F0=0 y F1=1
ElapsedTime <- system.time({
##########################
Fibo<- numeric(33) #vector numérico
Fibo[1] <- Fibo[2] <- 1 #inicio serie
for (i in 3:33) {
Fibo[i] <- Fibo[i - 2] + Fibo[i - 1]
}
# aca querría solucionarlo solo con el dato de que f0=0 y f1=1 y no asumir que ya calculé que el 33 es el tope.
x<- c(0,1)
while ( max(x) < 4000000){
x <-c(x, (x[length(x)]+x[length(x)-1]))
}
x[length(x)-1] # el while corta cuando se deja de cumplir la condición, osea necesito el n anteúltimo.
x2<- x[1:length(x)-1]
y1<-which((Fibo/2)%%1==0)
respuesta<-sum(Fibo[y1])
print(respuesta)
y2<-which((x2/2)%%1==0)
respuesta<-sum(x2[y2])
print(respuesta)
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
plot(Fibo)
#Problema 3
problema<-'3'
title <-'Largest prime factor'
#Consigna: What is the largest prime factor of the number 600851475143 ?
ElapsedTime <- system.time({
##########################
tope<-600851475143
f<-sqrt(tope)
x<-as.integer(f)
l<-1:x
m<-which(tope%%l==0)
primos=NULL
for (i in seq_along(m)){
a<-2:(m[i]-1)
if(any(m[i]%%a==0)==F){primos=c(primos,m[i]) }
}
respuesta<-max(primos)
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 4
problema <-'4'
title <- 'Largest palindrome product'
#Consigna: Find the largest palindrome made from the product of two 3-digit numbers.
ElapsedTime <- system.time({
##########################
x<-100:999
productos<-rev(sort(as.vector(x%o%x)))
for (i in 1:length(productos)){
numero<-productos[i]
w = paste(rev(substring(numero,1:nchar(numero),1:nchar(numero))),collapse="")
if (numero == w){
resp <- numero ;
break
}
}
respuesta<-resp
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 5
problema <- '5'
title <-'Smallest multiple'
#Consigna: What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?
ElapsedTime <- system.time({
##########################
n<-20
repeat{
n<-n+20
if(any(n%%1:20 != 0)==F)
break
}
respuesta<-n
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 6
problema <- '6'
title<-'Sum square difference'
#Consigna: Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.
ElapsedTime <- system.time({
##########################
cuadrados1<-NULL
cuadrados2<-(sum(1:100))^2
for (i in 1:100){
cuadrados1<-c(cuadrados1,(i^2))
}
cuadrados1<-sum(cuadrados1)
respuesta<-cuadrados2-cuadrados1
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 7
problema <-'7'
title <-'10001st prime'
#Consigna: What is the 10 001st prime number?
ElapsedTime <- system.time({
##########################
#
## Defino el tope hasta donde buscar primos
#if ((M2 <- max(n)) <= 1) # me aseguro que sea mayor a 1 y defino
#return(numeric(0))
n<- 1000000
x <- 1:n
x[1] <- 0
p <- 1
techo <- floor(sqrt(n))
while((p <- p + 1) <= techo)
if(x[p] != 0){
x[seq(p^2, n, p)] <- 0
if (length(x[x > 0])==10001){
break
}
}
respuesta<- print(x[x > 0][10001])
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 8
problema <-'8'
title<- 'Largest product in a series'
#Consigna: Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
ElapsedTime <- system.time({
##########################
bignum<-c(7,3,1,6,7,1,7,6,5,3,1,3,3,0,6,2,4,9,1,9,2,2,5,1,1,9,6,7,4,4,2,6,5,7,4,7,4,2,3,5,5,3,4,9,1,9,4,9,3,4,9,6,9,8,3,5,2,0,3,1,2,7,7,4,5,0,6,3,2,6,2,3,9,5,7,8,3,1,8,0,1,6,9,8,4,8,0,1,8,6,9,4,7,8,8,5,1,8,4,3,8,5,8,6,1,5,6,0,7,8,9,1,1,2,9,4,9,4,9,5,4,5,9,5,0,1,7,3,7,9,5,8,3,3,1,9,5,2,8,5,3,2,0,8,8,0,5,5,1,1,1,2,5,4,0,6,9,8,7,4,7,1,5,8,5,2,3,8,6,3,0,5,0,7,1,5,6,9,3,2,9,0,9,6,3,2,9,5,2,2,7,4,4,3,0,4,3,5,5,7,6,6,8,9,6,6,4,8,9,5,0,4,4,5,2,4,4,5,2,3,1,6,1,7,3,1,8,5,6,4,0,3,0,9,8,7,1,1,1,2,1,7,2,2,3,8,3,1,1,3,6,2,2,2,9,8,9,3,4,2,3,3,8,0,3,0,8,1,3,5,3,3,6,2,7,6,6,1,4,2,8,2,8,0,6,4,4,4,4,8,6,6,4,5,2,3,8,7,4,9,3,0,3,5,8,9,0,7,2,9,6,2,9,0,4,9,1,5,6,0,4,4,0,7,7,2,3,9,0,7,1,3,8,1,0,5,1,5,8,5,9,3,0,7,9,6,0,8,6,6,7,0,1,7,2,4,2,7,1,2,1,8,8,3,9,9,8,7,9,7,9,0,8,7,9,2,2,7,4,9,2,1,9,0,1,6,9,9,7,2,0,8,8,8,0,9,3,7,7,6,6,5,7,2,7,3,3,3,0,0,1,0,5,3,3,6,7,8,8,1,2,2,0,2,3,5,4,2,1,8,0,9,7,5,1,2,5,4,5,4,0,5,9,4,7,5,2,2,4,3,5,2,5,8,4,9,0,7,7,1,1,6,7,0,5,5,6,0,1,3,6,0,4,8,3,9,5,8,6,4,4,6,7,0,6,3,2,4,4,1,5,7,2,2,1,5,5,3,9,7,5,3,6,9,7,8,1,7,9,7,7,8,4,6,1,7,4,0,6,4,9,5,5,1,4,9,2,9,0,8,6,2,5,6,9,3,2,1,9,7,8,4,6,8,6,2,2,4,8,2,8,3,9,7,2,2,4,1,3,7,5,6,5,7,0,5,6,0,5,7,4,9,0,2,6,1,4,0,7,9,7,2,9,6,8,6,5,2,4,1,4,5,3,5,1,0,0,4,7,4,8,2,1,6,6,3,7,0,4,8,4,4,0,3,1,9,9,8,9,0,0,0,8,8,9,5,2,4,3,4,5,0,6,5,8,5,4,1,2,2,7,5,8,8,6,6,6,8,8,1,1,6,4,2,7,1,7,1,4,7,9,9,2,4,4,4,2,9,2,8,2,3,0,8,6,3,4,6,5,6,7,4,8,1,3,9,1,9,1,2,3,1,6,2,8,2,4,5,8,6,1,7,8,6,6,4,5,8,3,5,9,1,2,4,5,6,6,5,2,9,4,7,6,5,4,5,6,8,2,8,4,8,9,1,2,8,8,3,1,4,2,6,0,7,6,9,0,0,4,2,2,4,2,1,9,0,2,2,6,7,1,0,5,5,6,2,6,3,2,1,1,1,1,1,0,9,3,7,0,5,4,4,2,1,7,5,0,6,9,4,1,6,5,8,9,6,0,4,0,8,0,7,1,9,8,4,0,3,8,5,0,9,6,2,4,5,5,4,4,4,3,6,2,9,8,1,2,3,0,9,8,7,8,7,9,9,2,7,2,4,4,2,8,4,9,0,9,1,8,8,8,4,5,8,0,1,5,6,1,6,6,0,9,7,9,1,9,1,3,3,8,7,5,4,9,9,2,0,0,5,2,4,0,6,3,6,8,9,9,1,2,5,6,0,7,1,7,6,0,6,0,5,8,8,6,1,1,6,4,6,7,1,0,9,4,0,5,0,7,7,5,4,1,0,0,2,2,5,6,9,8,3,1,5,5,2,0,0,0,5,5,9,3,5,7,2,9,7,2,5,7,1,6,3,6,2,6,9,5,6,1,8,8,2,6,7,0,4,2,8,2,5,2,4,8,3,6,0,0,8,2,3,2,5,7,5,3,0,4,2,0,7,5,2,9,6,3,4,5,0)
a<-1:13
j<-NULL
while(length(j)<987){
j<-c(j, prod(bignum[a]))
a<-a+1
}
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 9
problema <-'9'
title<- ' Special Pythagorean triplet'
#Consigna: There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc.
ElapsedTime <- system.time({
##########################
top<-floor(sqrt(998))
repeat{
m<-sample(1:top, size=1, replace = FALSE)
n<-sample(1:top, size=1, replace = FALSE)
if (m>n){
a=m^2-n^2
b=2*m*n
c=m^2+n^2
if (a+b+c == 1000){
break
}
}
}
a+c+b
a^2+b^2==c^2
respuesta<-a*b*c
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 10
problema<-'10'
title <- 'Summation of primes'
#Consigna: Find the sum of all the primes below two million.
ElapsedTime <- system.time({
##########################
n<- 2000000
x <- 1:n
x[1] <- 0
p <- 1
techo <- floor(sqrt(n))
while((p <- p + 1) <= techo)
if(x[p] != 0){
x[seq(p^2, n, p)] <- 0
}
respuesta<- sum(x[x > 0])
#
# numbrs<-c(2:2000000)
# for(i in 1:length(numbrs)){
# if(numbrs[i]!=0){numbrs[seq(i+numbrs[i],length(numbrs),by=numbrs[i])]=0}
# }
# sum(numbrs)
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
for(C in c(997:335)){
for(B in floor(sqrt(C^2)):20){
A = sqrt( (C^2) - (B^2) )
if(A+B+C==1000 & A%%1==0 & A!=0){print(A*B*C);break}
}
}
#Problema 11
problema <- '11'
title<- 'Largest product in a grid'
#Consigna:
# In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
# 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
# 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
# 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
# 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
# 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
# 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
# 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
# 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
# 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
# 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
# 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
# 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
# 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
# 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
# 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
# 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
# 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
# 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
# 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
# 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
#What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20�20 grid?
ElapsedTime <- system.time({
# ##########################
matrix1<- c(8, 2, 22, 97, 38, 15, 0, 40, 0, 75, 4, 5, 7, 78, 52, 12, 50, 77, 91, 8,
49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 4, 56, 62, 0,
81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 3, 49, 13, 36, 65,
52, 70, 95, 23, 4, 60, 11, 42, 69, 24, 68, 56, 1, 32, 56, 71, 37, 2, 36, 91,
22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80,
24, 47, 32, 60, 99, 3, 45, 2, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50,
32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70,
67, 26, 20, 68, 2, 62, 12, 20, 95, 63, 94, 39, 63, 8, 40, 91, 66, 49, 94, 21,
24, 55, 58, 5, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72,
21, 36, 23, 9, 75, 0, 76, 44, 20, 45, 35, 14, 0, 61, 33, 97, 34, 31, 33, 95,
78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 3, 80, 4, 62, 16, 14, 9, 53, 56, 92,
16, 39, 5, 42, 96, 35, 31, 47, 55, 58, 88, 24, 0, 17, 54, 24, 36, 29, 85, 57,
86, 56, 0, 48, 35, 71, 89, 7, 5, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58,
19, 80, 81, 68, 5, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 4, 89, 55, 40,
4, 52, 8, 83, 97, 35, 99, 16, 7, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66,
88, 36, 68, 87, 57, 62, 20, 72, 3, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69,
4, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 8, 46, 29, 32, 40, 62, 76, 36,
20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 4, 36, 16,
20, 73, 35, 29, 78, 31, 90, 1, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 5, 54,
1, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 1, 89, 19, 67, 48)
m1 <- t(matrix(matrix1, ncol = 20, nrow = 20))
m2 <- matrix(matrix1, ncol = 20, nrow = 20)
m1a <- as.vector(m1)
m2a <- as.vector(m2)
# las otras
# create an indicator for all diagonals in the matrix
d <- row(m1) - col(m1)
diagonales <- split(m1, d)
d1 <- unlist(diagonales, use.names = FALSE)
d2 <- d1[6:length(d1) - 6] #corto las puntas que no llegaban a tener 4 val
da <- row(m2) - col(m2)
diagonalesa <- split(m2, da)
d1a <- unlist(diagonalesa, use.names = FALSE)
d2a <- d1a[6:length(d1a) - 6] #corto las puntas que no llegaban a tener 4 val
resultados<-c()
for(i in 1:length(d2)){
resultados<-c(resultados,prod(d2[1+i:4+i]))
}
for(i in 1:length(d2a)){
resultados<-c(resultados,prod(d2a[1+i:4+i]))
}
for(i in 1:length(m1a)){
resultados<-c(resultados,prod(m1a[1+i:4+i]))
}
for(i in 1:length(m2a)){
resultados<-c(resultados,prod(m2a[1+i:4+i]))
}
max(resultados)
respuesta<-max(resultados,na.rm=TRUE)
respuesta
###########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))
#Problema 12
problema <- '12'
title <- 'Highly divisible triangular number'
#Consigna:
# The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
# Let us list the factors of the first seven triangle numbers:
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
# 10: 1,2,5,10
# 15: 1,3,5,15
# 21: 1,3,7,21
# 28: 1,2,4,7,14,28
# We can see that 28 is the first triangle number to have over five divisors.
# What is the value of the first triangle number to have over five hundred divisors?
ElapsedTime <- system.time({
##########################
# Definir fórmula de Nt
steps <- 5000
Nt <- matrix(NA,nrow=steps, ncol=3)
for (i in 0:steps){
numt <- i*(i+1)/2
nfact = 1
for(j in 1:numt+1) {
if((numt %% j) == 0) {
nfact <- nfact+1
}}
Nt[i,]<- c(i,numt,nfact)
}
print(Nt)
plot(Nt)
#Tengo los num triang
#respuesta del largest prime factors
plot(Nt)
respuesta <-max(Nt[,3])
# Es múltiplo
# Test pocos números
##########################
})[3]
ElapsedMins <- floor(ElapsedTime/60)
ElapsedSecs <- (ElapsedTime-ElapsedMins*60)
cat(sprintf("\nLa respuesta al problema %s - %s - es: %f\nTiempo de procesamiento: %d minutos y %f segundos\n",
problema, title, respuesta, ElapsedMins, ElapsedSecs))