-
Notifications
You must be signed in to change notification settings - Fork 480
/
train_det.py
executable file
·87 lines (70 loc) · 2.46 KB
/
train_det.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""
train detection entrance
Copyright @2022 YOLOv7 authors
"""
import os
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.engine import DefaultTrainer, default_argument_parser, launch
from detectron2.evaluation import COCOEvaluator
from detectron2.data import MetadataCatalog, build_detection_train_loader
from detectron2.modeling import build_model
from detectron2.utils import comm
from yolov7.data.dataset_mapper import MyDatasetMapper, MyDatasetMapper2
from yolov7.config import add_yolo_config
from yolov7.utils.d2overrides import default_setup
from yolov7.utils.wandb.wandb_logger import is_wandb_available
class Trainer(DefaultTrainer):
custom_mapper = None
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
return COCOEvaluator(dataset_name, output_dir=output_folder)
@classmethod
def build_train_loader(cls, cfg):
cls.custom_mapper = MyDatasetMapper2(cfg, True)
return build_detection_train_loader(cfg, mapper=cls.custom_mapper)
@classmethod
def build_model(cls, cfg):
model = build_model(cfg)
return model
def build_writers(self):
if self.cfg.WANDB.ENABLED is is_wandb_available():
from yolov7.utils.wandb.wandb_logger import WandbWriter
writers = super().build_writers() + [
WandbWriter(self.cfg.WANDB.PROJECT_NAME)
]
else:
writers = super().build_writers()
return writers
def setup(args):
cfg = get_cfg()
add_yolo_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)