forked from cortex-lab/KiloSort
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitTemplates.m
243 lines (195 loc) · 6.97 KB
/
fitTemplates.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
function rez = fitTemplates(rez, DATA, uproj)
nt0 = rez.ops.nt0;
rez.ops.nt0min = ceil(20 * nt0/61);
ops = rez.ops;
rng('default');
rng(1);
Nbatch = rez.temp.Nbatch;
Nbatch_buff = rez.temp.Nbatch_buff;
Nfilt = ops.Nfilt; %256+128;
ntbuff = ops.ntbuff;
NT = ops.NT;
Nrank = ops.Nrank;
Th = ops.Th;
maxFR = ops.maxFR;
Nchan = ops.Nchan;
batchstart = 0:NT:NT*(Nbatch-Nbatch_buff);
delta = NaN * ones(Nbatch, 1);
iperm = randperm(Nbatch);
switch ops.initialize
case 'fromData'
WUinit = optimizePeaks(ops,uproj);%does a scaled kmeans
dWU = WUinit(:,:,1:Nfilt);
% dWU = alignWU(dWU);
otherwise
initialize_waves0;
ipck = randperm(size(Winit,2), Nfilt);
W = [];
U = [];
for i = 1:Nrank
W = cat(3, W, Winit(:, ipck)/Nrank);
U = cat(3, U, Uinit(:, ipck));
end
W = alignW(W, ops);
dWU = zeros(nt0, Nchan, Nfilt, 'single');
for k = 1:Nfilt
wu = squeeze(W(:,k,:)) * squeeze(U(:,k,:))';
newnorm = sum(wu(:).^2).^.5;
W(:,k,:) = W(:,k,:)/newnorm;
dWU(:,:,k) = 10 * wu;
end
WUinit = dWU;
end
[W, U, mu, UtU, nu] = decompose_dWU(ops, dWU, Nrank, rez.ops.kcoords);
W0 = W;
W0(NT, 1) = 0;
fW = fft(W0, [], 1);
fW = conj(fW);
nspikes = zeros(Nfilt, Nbatch);
lam = ones(Nfilt, 1, 'single');
freqUpdate = 100 * 4;
iUpdate = 1:freqUpdate:Nbatch;
dbins = zeros(100, Nfilt);
dsum = 0;
miniorder = repmat(iperm, 1, ops.nfullpasses);
% miniorder = repmat([1:Nbatch Nbatch:-1:1], 1, ops.nfullpasses/2);
i = 1; % first iteration
epu = ops.epu;
%%
% pmi = exp(-1./exp(linspace(log(ops.momentum(1)), log(ops.momentum(2)), Nbatch*ops.nannealpasses)));
pmi = exp(-1./linspace(1/ops.momentum(1), 1/ops.momentum(2), Nbatch*ops.nannealpasses));
% pmi = exp(-linspace(ops.momentum(1), ops.momentum(2), Nbatch*ops.nannealpasses));
% pmi = linspace(ops.momentum(1), ops.momentum(2), Nbatch*ops.nannealpasses);
Thi = linspace(ops.Th(1), ops.Th(2), Nbatch*ops.nannealpasses);
if ops.lam(1)==0
lami = linspace(ops.lam(1), ops.lam(2), Nbatch*ops.nannealpasses);
else
lami = exp(linspace(log(ops.lam(1)), log(ops.lam(2)), Nbatch*ops.nannealpasses));
end
if Nbatch_buff<Nbatch
fid = fopen(ops.fproc, 'r');
end
nswitch = [0];
msg = [];
fprintf('Time %3.0fs. Optimizing templates ...\n', toc)
while (i<=Nbatch * ops.nfullpasses+1)
% set the annealing parameters
if i<Nbatch*ops.nannealpasses
Th = Thi(i);
lam(:) = lami(i);
pm = pmi(i);
end
% some of the parameters change with iteration number
Params = double([NT Nfilt Th maxFR 10 Nchan Nrank pm epu nt0]);
% update the parameters every freqUpdate iterations
if i>1 && ismember(rem(i,Nbatch), iUpdate) %&& i>Nbatch
dWU = gather_try(dWU);
% break bimodal clusters and remove low variance clusters
if ops.shuffle_clusters &&...
i>Nbatch && rem(rem(i,Nbatch), 4*400)==1 % i<Nbatch*ops.nannealpasses
[dWU, dbins, nswitch, nspikes, iswitch] = ...
replace_clusters(dWU, dbins, Nbatch, ops.mergeT, ops.splitT, WUinit, nspikes);
end
dWU = alignWU(dWU, ops);
% restrict spikes to their peak group
% dWU = decompose_dWU(dWU, kcoords);
% parameter update
[W, U, mu, UtU, nu] = decompose_dWU(ops, dWU, Nrank, rez.ops.kcoords);
if ops.GPU
dWU = gpuArray(dWU);
else
W0 = W;
W0(NT, 1) = 0;
fW = fft(W0, [], 1);
fW = conj(fW);
end
NSP = sum(nspikes,2);
if ops.showfigures
% set(0,'DefaultFigureWindowStyle','docked')
% figure;
subplot(2,2,1)
for j = 1:10:Nfilt
if j+9>Nfilt;
j = Nfilt -9;
end
plot(log(1+NSP(j + [0:1:9])), mu(j+ [0:1:9]), 'o');
xlabel('log of number of spikes')
ylabel('amplitude of template')
hold all
end
axis tight;
title(sprintf('%d ', nswitch));
subplot(2,2,2)
plot(W(:,:,1))
title('timecourses of top PC')
subplot(2,2,3)
imagesc(U(:,:,1))
title('spatial mask of top PC')
drawnow
end
% break if last iteration reached
if i>Nbatch * ops.nfullpasses; break; end
% record the error function for this iteration
rez.errall(ceil(i/freqUpdate)) = nanmean(delta);
end
% select batch and load from RAM or disk
ibatch = miniorder(i);
if ibatch>Nbatch_buff
offset = 2 * ops.Nchan*batchstart(ibatch-Nbatch_buff);
fseek(fid, offset, 'bof');
dat = fread(fid, [NT ops.Nchan], '*int16');
else
dat = DATA(:,:,ibatch);
end
% move data to GPU and scale it
if ops.GPU
dataRAW = gpuArray(dat);
else
dataRAW = dat;
end
dataRAW = single(dataRAW);
dataRAW = dataRAW / ops.scaleproc;
% project data in low-dim space
data = dataRAW * U(:,:);
if ops.GPU
% run GPU code to get spike times and coefficients
[dWU, ~, id, x,Cost, nsp] = ...
mexMPregMU(Params,dataRAW,W,data,UtU,mu, lam .* (20./mu).^2, dWU, nu);
else
[dWU, ~, id, x,Cost, nsp] = ...
mexMPregMUcpu(Params,dataRAW,fW,data,UtU,mu, lam .* (20./mu).^2, dWU, nu, ops);
end
dbins = .9975 * dbins; % this is a hard-coded forgetting factor, needs to become an option
if ~isempty(id)
% compute numbers of spikes
nsp = gather_try(nsp(:));
nspikes(:, ibatch) = nsp;
% bin the amplitudes of the spikes
xround = min(max(1, int32(x)), 100);
dbins(xround + id * size(dbins,1)) = dbins(xround + id * size(dbins,1)) + 1;
% estimate cost function at this time step
delta(ibatch) = sum(Cost)/1e3;
end
% update status
if ops.verbose && rem(i,20)==1
nsort = sort(round(sum(nspikes,2)), 'descend');
fprintf(repmat('\b', 1, numel(msg)));
msg = sprintf('Time %2.2f, batch %d/%d, mu %2.2f, neg-err %2.6f, NTOT %d, n100 %d, n200 %d, n300 %d, n400 %d\n', ...
toc, i,Nbatch* ops.nfullpasses,nanmean(mu(:)), nanmean(delta), round(sum(nsort)), ...
nsort(min(size(W,2), 100)), nsort(min(size(W,2), 200)), ...
nsort(min(size(W,2), 300)), nsort(min(size(W,2), 400)));
fprintf(msg);
end
% increase iteration counter
i = i+1;
end
% close the data file if it has been used
if Nbatch_buff<Nbatch
fclose(fid);
end
if ~ops.GPU
rez.fW = fW; % save fourier space templates if on CPU
end
rez.dWU = gather_try(dWU);
rez.nspikes = nspikes;
% %%