-
Notifications
You must be signed in to change notification settings - Fork 18
/
main.py
399 lines (301 loc) · 15.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
from __future__ import division, print_function
import sys
sys.path.append('core')
import argparse
import os
import time
from functools import partial
import cv2
import datasets
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import evaluate, viz
from metrics import compute_epe, merge_metrics
from deq_flow import DEQFlow
from deq.arg_utils import add_deq_args
from torch.cuda.amp import GradScaler
# exclude extremly large displacements
MAX_FLOW = 400
SUM_FREQ = 100
VAL_FREQ = 5000
TIME_FREQ = 500
def fixed_point_correction(flow_preds, flow_gt, valid, gamma=0.8, max_flow=MAX_FLOW, cal_epe=True):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(flow_preds)
flow_loss = 0.0
# exlude invalid pixels and extremely large diplacements
mag = torch.sum(flow_gt**2, dim=1).sqrt()
valid = (valid >= 0.5) & (mag < max_flow)
for i in range(n_predictions):
i_weight = gamma**(n_predictions - i - 1)
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += i_weight * (valid[:, None] * i_loss).mean()
if cal_epe:
epe = compute_epe(flow_preds[-1], flow_gt, valid)
return flow_loss, epe
else:
return flow_loss
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
if args.schedule == "cosine":
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_steps, eta_min=1e-6)
else:
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100,
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
class Logger:
def __init__(self, scheduler):
self.scheduler = scheduler
self.total_steps = args.resume_iter if args.resume_iter > 0 else 0
self.running_loss = {}
self.writer = None
def _print_training_status(self):
sorted_keys = sorted(self.running_loss.keys())
metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted_keys]
training_str = "[Step {:6d}, lr {:.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0])
metrics_str = ", ".join([f"{name}:{val:10.4f}" for (name, val) in zip(sorted_keys, metrics_data)])
# print the training status
print(training_str + metrics_str)
if self.writer is None:
self.writer = SummaryWriter("runs/" + args.name_per_run)
for k in self.running_loss:
self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps)
self.running_loss[k] = 0.0
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss:
self.running_loss[key] = 0.0
self.running_loss[key] += metrics[key]
if self.total_steps % SUM_FREQ == SUM_FREQ-1:
self._print_training_status()
self.running_loss = {}
def write_dict(self, results):
if self.writer is None:
self.writer = SummaryWriter()
for key in results:
self.writer.add_scalar(key, results[key], self.total_steps)
def close(self):
self.writer.close()
def train(args):
stats = dict()
for i in range(args.start_run, args.total_run+1):
if args.restore_name is not None:
args.restore_name_per_run = 'checkpoints/' + args.restore_name + f'-run-{i}.pth'
args.name_per_run = args.name + f'-run-{i}'
best_chairs, best_sintel, best_kitti = train_once(args)
if best_chairs['epe'] < 100:
stats['chairs'] = stats.get('chairs', []) + [best_chairs['epe']]
if best_sintel['clean-epe'] < 100:
stats['sintel clean'] = stats.get('sintel clean', []) + [best_sintel['clean-epe']]
stats['sintel final'] = stats.get('sintel final', []) + [best_sintel['final-epe']]
if best_kitti['epe'] < 100:
stats['kitti epe'] = stats.get('kitti epe', []) + [best_kitti['epe']]
stats['kitti f1'] = stats.get('kitti f1', []) + [best_kitti['f1']]
write_stats(args, stats)
# reset resume iters
args.resume_iter = -1
def write_stats(args, stats):
log_path = f'stats/{args.name}_{args.stage}_total_{args.total_run}_start_{args.start_run}.txt'
with open(log_path, 'w+') as f:
for key, values in stats.items():
f.write(f'{key}: {values}\n')
def train_once(args):
model = nn.DataParallel(DEQFlow(args), device_ids=args.gpus)
print("Parameter Count: %.3f M" % count_parameters(model))
if args.restore_name is not None:
model.load_state_dict(torch.load(args.restore_name_per_run), strict=False)
print(f'Load from {args.restore_name_per_run}')
if args.resume_iter > 0:
restore_path = f'checkpoints/{args.resume_iter}_{args.name_per_run}.pth'
model.load_state_dict(torch.load(restore_path), strict=False)
print(f'Resume from {restore_path}')
model.cuda()
model.train()
if args.stage != 'chairs' and not args.active_bn:
model.module.freeze_bn()
train_loader = datasets.fetch_dataloader(args)
optimizer, scheduler = fetch_optimizer(args, model)
scheduler.last_epoch = args.resume_iter if args.resume_iter > 0 else -1
total_steps = args.resume_iter if args.resume_iter > 0 else 0
scaler = GradScaler(enabled=args.mixed_precision)
logger = Logger(scheduler)
add_noise = True
best_chairs = {"epe": 1e8}
best_sintel = {"clean-epe": 1e8, "final-epe": 1e8}
best_kitti = {"epe": 1e8, "f1": 1e8}
should_keep_training = True
while should_keep_training:
timer = 0
for i_batch, data_blob in enumerate(train_loader):
optimizer.zero_grad()
image1, image2, flow, valid = [x.cuda() for x in data_blob]
if args.add_noise:
stdv = np.random.uniform(0.0, 5.0)
image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0)
image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0)
start_time = time.time()
fc_loss = partial(fixed_point_correction, gamma=args.gamma)
loss, metrics = model(
image1, image2, flow, valid, fc_loss,
)
metrics = merge_metrics(metrics)
scaler.scale(loss.mean()).backward()
end_time = time.time()
timer += end_time - start_time
scaler.unscale_(optimizer)
if args.clip > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
scaler.step(optimizer)
scheduler.step()
scaler.update()
logger.push(metrics)
if (total_steps + 1) % args.time_interval == 0:
print(f'Exp {args.name_per_run} Average Time: {timer / args.time_interval}')
timer = 0
if (total_steps + 1) % args.save_interval == 0:
PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name_per_run)
torch.save(model.state_dict(), PATH)
if total_steps % args.eval_interval == args.eval_interval - 1:
results = {}
for val_dataset in args.validation:
if val_dataset == 'chairs':
res = evaluate.validate_chairs(model.module, sradius_mode=args.sradius_mode, best=best_chairs)
best_chairs['epe'] = min(res['chairs'], best_chairs['epe'])
results.update(res)
elif val_dataset == 'things':
results.update(evaluate.validate_things(model.module, sradius_mode=args.sradius_mode))
elif val_dataset == 'sintel':
res = evaluate.validate_sintel(model.module, sradius_mode=args.sradius_mode, best=best_sintel)
best_sintel['clean-epe'] = min(res['clean'], best_sintel['clean-epe'])
best_sintel['final-epe'] = min(res['final'], best_sintel['final-epe'])
results.update(res)
elif val_dataset == 'kitti':
res = evaluate.validate_kitti(model.module, sradius_mode=args.sradius_mode, best=best_kitti)
best_kitti['epe'] = min(res['kitti-epe'], best_kitti['epe'])
best_kitti['f1'] = min(res['kitti-f1'], best_kitti['f1'])
results.update(res)
logger.write_dict(results)
model.train()
if args.stage != 'chairs':
model.module.freeze_bn()
total_steps += 1
if total_steps > args.num_steps:
should_keep_training = False
break
logger.close()
PATH = 'checkpoints/%s.pth' % args.name_per_run
torch.save(model.state_dict(), PATH)
return best_chairs, best_sintel, best_kitti
def val(args):
model = nn.DataParallel(DEQFlow(args), device_ids=args.gpus)
print("Parameter Count: %.3f M" % count_parameters(model))
if args.restore_ckpt is not None:
model.load_state_dict(torch.load(args.restore_ckpt), strict=False)
print(f'Load from {args.restore_ckpt}')
model.cuda()
model.eval()
for val_dataset in args.validation:
if val_dataset == 'chairs':
evaluate.validate_chairs(model.module, sradius_mode=args.sradius_mode)
elif val_dataset == 'things':
evaluate.validate_things(model.module, sradius_mode=args.sradius_mode)
elif val_dataset == 'sintel':
evaluate.validate_sintel(model.module, sradius_mode=args.sradius_mode)
elif val_dataset == 'kitti':
evaluate.validate_kitti(model.module, sradius_mode=args.sradius_mode)
def test(args):
model = nn.DataParallel(DEQFlow(args), device_ids=args.gpus)
print("Parameter Count: %.3f M" % count_parameters(model))
if args.restore_ckpt is not None:
model.load_state_dict(torch.load(args.restore_ckpt), strict=False)
model.cuda()
model.eval()
for test_dataset in args.test_set:
if test_dataset == 'sintel':
evaluate.create_sintel_submission(model.module, output_path=args.output_path,
fixed_point_reuse=args.fixed_point_reuse, warm_start=args.warm_start)
elif test_dataset == 'kitti':
evaluate.create_kitti_submission(model.module, output_path=args.output_path)
def visualize(args):
model = nn.DataParallel(DEQFlow(args), device_ids=args.gpus)
print("Parameter Count: %.3f M" % count_parameters(model))
if args.restore_ckpt is not None:
model.load_state_dict(torch.load(args.restore_ckpt), strict=False)
model.cuda()
model.eval()
for viz_dataset in args.viz_set:
for split in args.viz_split:
if viz_dataset == 'sintel':
viz.sintel_visualization(model.module, split=split, output_path=args.output_path,
fixed_point_reuse=args.fixed_point_reuse, warm_start=args.warm_start)
elif viz_dataset == 'kitti':
viz.kitti_visualization(model.module, split=split, output_path=args.output_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--eval', action='store_true', help="Enable Eval mode.")
parser.add_argument('--test', action='store_true', help="Enable Test mode.")
parser.add_argument('--viz', action='store_true', help="Enable Viz mode.")
parser.add_argument('--fixed_point_reuse', action='store_true', help="Enable fixed point reuse.")
parser.add_argument('--warm_start', action='store_true', help="Enable warm start.")
parser.add_argument('--name', default='deq-flow', help="name your experiment")
parser.add_argument('--stage', help="determines which dataset to use for training")
parser.add_argument('--total_run', type=int, default=1, help="total number of runs")
parser.add_argument('--start_run', type=int, default=1, help="begin from the given number of runs")
parser.add_argument('--restore_name', help="restore experiment name")
parser.add_argument('--resume_iter', type=int, default=-1, help="resume from the given iterations")
parser.add_argument('--tiny', action='store_true', help='use a tiny model for ablation study')
parser.add_argument('--large', action='store_true', help='use a large model')
parser.add_argument('--huge', action='store_true', help='use a huge model')
parser.add_argument('--gigantic', action='store_true', help='use a gigantic model')
parser.add_argument('--old_version', action='store_true', help='use the old design for flow head')
parser.add_argument('--restore_ckpt', help="restore checkpoint for val/test/viz")
parser.add_argument('--validation', type=str, nargs='+')
parser.add_argument('--test_set', type=str, nargs='+')
parser.add_argument('--viz_set', type=str, nargs='+')
parser.add_argument('--viz_split', type=str, nargs='+', default=['test'])
parser.add_argument('--output_path', help="output path for evaluation")
parser.add_argument('--eval_interval', type=int, default=5000, help="evaluation interval")
parser.add_argument('--save_interval', type=int, default=5000, help="saving interval")
parser.add_argument('--time_interval', type=int, default=500, help="timing interval")
parser.add_argument('--gma', action='store_true', help='use gma')
parser.add_argument('--lr', type=float, default=0.00002)
parser.add_argument('--num_steps', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=6)
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
parser.add_argument('--gpus', type=int, nargs='+', default=[0,1])
parser.add_argument('--schedule', type=str, default="onecycle", help="learning rate schedule")
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
parser.add_argument('--wdecay', type=float, default=.00005)
parser.add_argument('--epsilon', type=float, default=1e-8)
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--vdropout', type=float, default=0.0, help="variational dropout added to BasicMotionEncoder for DEQs")
parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting')
parser.add_argument('--add_noise', action='store_true')
parser.add_argument('--active_bn', action='store_true')
parser.add_argument('--all_grad', action='store_true', help="Remove the gradient mask within DEQ func.")
# Add args for utilizing DEQ
add_deq_args(parser)
args = parser.parse_args()
torch.manual_seed(1234)
np.random.seed(1234)
if not os.path.isdir('checkpoints'):
os.mkdir('checkpoints')
if args.eval:
val(args)
elif args.test:
test(args)
elif args.viz:
visualize(args)
else:
train(args)