From d20db9f3ebd20fc3b219d7e4af555638b60342d1 Mon Sep 17 00:00:00 2001 From: Luis Mego Date: Sun, 15 Jan 2017 13:54:13 -0800 Subject: [PATCH] Completed project - Initial submission --- README.md | 6 +- customer_segments.ipynb | 2088 +++ report.html | 26517 ++++++++++++++++++++++++++++++++++++++ 3 files changed, 28609 insertions(+), 2 deletions(-) create mode 100644 customer_segments.ipynb create mode 100644 report.html diff --git a/README.md b/README.md index 3ee15e0..8309676 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,4 @@ -# customer_segments -Project for ML class - Udacity +# machine-learning +Content for Udacity's Machine Learning curriculum, which includes projects and their descriptions. + +Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Please refer to [Udacity Terms of Service](https://www.udacity.com/legal) for further information. diff --git a/customer_segments.ipynb b/customer_segments.ipynb new file mode 100644 index 0000000..d198ef1 --- /dev/null +++ b/customer_segments.ipynb @@ -0,0 +1,2088 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Machine Learning Engineer Nanodegree\n", + "## Unsupervised Learning\n", + "## Project: Creating Customer Segments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Welcome to the third project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with **'Implementation'** in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a `'TODO'` statement. Please be sure to read the instructions carefully!\n", + "\n", + "In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a **'Question X'** header. Carefully read each question and provide thorough answers in the following text boxes that begin with **'Answer:'**. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide. \n", + "\n", + ">**Note:** Code and Markdown cells can be executed using the **Shift + Enter** keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Getting Started\n", + "\n", + "In this project, you will analyze a dataset containing data on various customers' annual spending amounts (reported in *monetary units*) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.\n", + "\n", + "The dataset for this project can be found on the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Wholesale+customers). For the purposes of this project, the features `'Channel'` and `'Region'` will be excluded in the analysis — with focus instead on the six product categories recorded for customers.\n", + "\n", + "Run the code block below to load the wholesale customers dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Wholesale customers dataset has 440 samples with 6 features each.\n" + ] + } + ], + "source": [ + "# Import libraries necessary for this project\n", + "import numpy as np\n", + "import pandas as pd\n", + "from IPython.display import display # Allows the use of display() for DataFrames\n", + "\n", + "# Import supplementary visualizations code visuals.py\n", + "import visuals as vs\n", + "\n", + "# Pretty display for notebooks\n", + "%matplotlib inline\n", + "\n", + "# Load the wholesale customers dataset\n", + "try:\n", + " data = pd.read_csv(\"customers.csv\")\n", + " data.drop(['Region', 'Channel'], axis = 1, inplace = True)\n", + " print \"Wholesale customers dataset has {} samples with {} features each.\".format(*data.shape)\n", + "except:\n", + " print \"Dataset could not be loaded. Is the dataset missing?\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Exploration\n", + "In this section, you will begin exploring the data through visualizations and code to understand how each feature is related to the others. You will observe a statistical description of the dataset, consider the relevance of each feature, and select a few sample data points from the dataset which you will track through the course of this project.\n", + "\n", + "Run the code block below to observe a statistical description of the dataset. Note that the dataset is composed of six important product categories: **'Fresh'**, **'Milk'**, **'Grocery'**, **'Frozen'**, **'Detergents_Paper'**, and **'Delicatessen'**. Consider what each category represents in terms of products you could purchase." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
count440.000000440.000000440.000000440.000000440.000000440.000000
mean12000.2977275796.2659097951.2772733071.9318182881.4931821524.870455
std12647.3288657380.3771759503.1628294854.6733334767.8544482820.105937
min3.00000055.0000003.00000025.0000003.0000003.000000
25%3127.7500001533.0000002153.000000742.250000256.750000408.250000
50%8504.0000003627.0000004755.5000001526.000000816.500000965.500000
75%16933.7500007190.25000010655.7500003554.2500003922.0000001820.250000
max112151.00000073498.00000092780.00000060869.00000040827.00000047943.000000
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen \\\n", + "count 440.000000 440.000000 440.000000 440.000000 \n", + "mean 12000.297727 5796.265909 7951.277273 3071.931818 \n", + "std 12647.328865 7380.377175 9503.162829 4854.673333 \n", + "min 3.000000 55.000000 3.000000 25.000000 \n", + "25% 3127.750000 1533.000000 2153.000000 742.250000 \n", + "50% 8504.000000 3627.000000 4755.500000 1526.000000 \n", + "75% 16933.750000 7190.250000 10655.750000 3554.250000 \n", + "max 112151.000000 73498.000000 92780.000000 60869.000000 \n", + "\n", + " Detergents_Paper Delicatessen \n", + "count 440.000000 440.000000 \n", + "mean 2881.493182 1524.870455 \n", + "std 4767.854448 2820.105937 \n", + "min 3.000000 3.000000 \n", + "25% 256.750000 408.250000 \n", + "50% 816.500000 965.500000 \n", + "75% 3922.000000 1820.250000 \n", + "max 40827.000000 47943.000000 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display a description of the dataset\n", + "display(data.describe())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Selecting Samples\n", + "To get a better understanding of the customers and how their data will transform through the analysis, it would be best to select a few sample data points and explore them in more detail. In the code block below, add **three** indices of your choice to the `indices` list which will represent the customers to track. It is suggested to try different sets of samples until you obtain customers that vary significantly from one another." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Chosen samples of wholesale customers dataset:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
04446654259555717782241716465
113537425750341552493271
279658782109340232776
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 44466 54259 55571 7782 24171 6465\n", + "1 13537 4257 5034 155 249 3271\n", + "2 796 5878 2109 340 232 776" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Select three indices of your choice you wish to sample from the dataset\n", + "indices = [47,138,359]\n", + "\n", + "# Create a DataFrame of the chosen samples\n", + "samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True)\n", + "print \"Chosen samples of wholesale customers dataset:\"\n", + "display(samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 1\n", + "Consider the total purchase cost of each product category and the statistical description of the dataset above for your sample customers. \n", + "*What kind of establishment (customer) could each of the three samples you've chosen represent?* \n", + "**Hint:** Examples of establishments include places like markets, cafes, and retailers, among many others. Avoid using names for establishments, such as saying *\"McDonalds\"* when describing a sample customer as a restaurant." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Using the product categories as defined in the link below https://discussions.udacity.com/t/project-3-lots-of-guesswork/174839/2\n", + "\n", + "**The first customer** selected could be a **SuperMarket** (retailer Grocery Store) based on their higher than average purchase costs across all product categories. \n", + "\n", + "**The second customer** chosen appears to be a **Restaurant** based on their higher than average purchase costs of Fresh food (i.e. greens, fruits, etc), delicatessen (i.e.meats), and lower purchase costs of Frozens, Detergent, and other \"Grocery\" items.\n", + "\n", + "**The third customer** chosen appears to be a **Coffee Shop** based on their higher than average purchase costs of Milk and Groceries (i.e. snacks, other ingredients), and lower than average purchase costs of Freshs (i.e. greens, fruits, etc), Frozens, Detergent, and Delicatessen." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Feature Relevance\n", + "One interesting thought to consider is if one (or more) of the six product categories is actually relevant for understanding customer purchasing. That is to say, is it possible to determine whether customers purchasing some amount of one category of products will necessarily purchase some proportional amount of another category of products? We can make this determination quite easily by training a supervised regression learner on a subset of the data with one feature removed, and then score how well that model can predict the removed feature.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign `new_data` a copy of the data by removing a feature of your choice using the `DataFrame.drop` function.\n", + " - Use `sklearn.cross_validation.train_test_split` to split the dataset into training and testing sets.\n", + " - Use the removed feature as your target label. Set a `test_size` of `0.25` and set a `random_state`.\n", + " - Import a decision tree regressor, set a `random_state`, and fit the learner to the training data.\n", + " - Report the prediction score of the testing set using the regressor's `score` function." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.0307317163901\n" + ] + } + ], + "source": [ + "from sklearn.cross_validation import train_test_split as Tts\n", + "from sklearn.tree import DecisionTreeRegressor\n", + "# TODO: Make a copy of the DataFrame, using the 'drop' function to drop the given feature\n", + "# Possible features=['Fresh','Milk','Grocery','Frozen','Detergents_Paper','Delicatessen']\n", + "feature_dropped='Fresh'\n", + "\n", + "new_data = data.drop(feature_dropped,axis=1)\n", + "labels=data[feature_dropped]\n", + "\n", + "# TODO: Split the data into training and testing sets using the given feature as the target\n", + "X_train, X_test, y_train, y_test = Tts(new_data, labels, test_size=0.25, random_state=30)\n", + "\n", + "# TODO: Create a decision tree regressor and fit it to the training set\n", + "regressor = DecisionTreeRegressor(random_state=30)\n", + "regressor.fit(X_train,y_train)\n", + "\n", + "# TODO: Report the score of the prediction using the testing set\n", + "score = regressor.score(X_test,y_test)\n", + "\n", + "print score" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 2\n", + "*Which feature did you attempt to predict? What was the reported prediction score? Is this feature is necessary for identifying customers' spending habits?* \n", + "**Hint:** The coefficient of determination, `R^2`, is scored between 0 and 1, with 1 being a perfect fit. A negative `R^2` implies the model fails to fit the data." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** I attempted to predict the \"Fresh\" product category. The **R^2 score** obtained was **-0.0307**. From this result we can infer that the \"Fresh\" feature is necessary in our dataset, and if it is removed our model will not accurately identify customers' spending habits. This is due to losing relevant information that is not correlated to the remaining features in the dataset, therefore making it very hard to predict based on those remaining feature, as proven by the resulting negative R^2 score." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualize Feature Distributions\n", + "To get a better understanding of the dataset, we can construct a scatter matrix of each of the six product features present in the data. If you found that the feature you attempted to predict above is relevant for identifying a specific customer, then the scatter matrix below may not show any correlation between that feature and the others. Conversely, if you believe that feature is not relevant for identifying a specific customer, the scatter matrix might show a correlation between that feature and another feature in the data. Run the code block below to produce a scatter matrix." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJYAAALFCAYAAACRXWkQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xlcm9ed6P/PYZFYxC4wNhhjGwGO8QJOmsWx07RNbNLc\n3un0tq6bpZ3ONK/kZjq9mbbz6jSZ6TKd++ukM5N20s5tm0na1E2dtMl0pktsx2njfUliwMYLSGB2\n2yAhsQghCdD5/SFBhA02YECAv+/Xyy9Lz9EjHaHvc/Q8X51Faa0RQgghhBBCCCGEEGKyoiJdASGE\nEEIIIYQQQggxP0liSQghhBBCCCGEEEJMiSSWhBBCCCGEEEIIIcSUSGJJCCGEEEIIIYQQQkyJJJaE\nEEIIIYQQQgghxJRIYkkIIYQQQgghhBBCTIkkloQQQgghhBBCCCHElEhiSQghhBBCCCGEEEJMSUyk\nKzBfKaUygC1AI+CNbG2EmBZZwP3A74COCNdFiOkgMS0WGolpsdBITIuFROJZLDRxQD6wR2vdebUH\nKq31rNRooVFKfQp4KdL1EEIIIYQQQgghhJghD2itf3G1B0iPpalrBPj5z3/OqlWrIlwVIa7ff//3\nf/PNb35TYvoqmpqaOHKkCb8/DYPBxR13LGPZsmWRrpYYx1yMaYkhcT3mYkxPhRwHYthMx7TEmphN\nc6WNlrgX0+XcuXM8+OCDEMp9XI0klqbOC7Bq1SrKysoiXRchrtu5c+cAiemr8Xr9ZGUtprj4Nmpq\njrFoEfK3msPmYkxLDInrMRdjeirkOBDDZjqmJdbEbJorbbTEvZgB15z6RybvngWVlfB//g/88pcg\nIw+FmL/M5nSMRgc1NccwGh2YzemRrpKYZySGhJDjQMweiTVxI5K4F5EgPZZm2LlzsHEjJCTA974H\nTU3w5S9HulZCiKmwWCwAOBxOzObCkftCTJTEkBByHIjZI7EmbkQS9yISJLE0w77wBcjNhaoq+Id/\ngL/9W7j/fpjHUyMIccNSSlFYWEhhYaRrIuYriSEh5DgQs0diTdyIJO5FJMhQuBl09izs3Qvf+Eaw\nx9LXvw5Ll8KTT0a6ZkIIIYQQQgghhBDXTxJLM+jFF8Fsho99LHjfaIS/+zv49a+hvj6ydRNCCCGE\nEEIIIYS4XhFPLCmlvqeUalBKBZRSa8O2ZyqldimlrEqpU0qpTWFl8UqpXyilbEqpGqXUx8LKlFLq\nWaVUXWjfxy97vadCZTal1LcuK/vz0D42pdSPlFLR1/Pefv/74LA3g+G9bdu3Q1oa/OhH1/PMQggh\nhBBCCCGEEJEX8cQS8CtgI9B42fZvA0e11oXAZ4FfhCV6vgR4tdYWYCvw70qptFDZQ0Cx1roAuBX4\nslJqFYBSajOwDSgBVgNblFLlobLlwDeBjaHnzQYemeqbamqCM2fgvvtGb4+Ph898Bn7yExgYmOqz\nCyGEEEIIIYQQQkRexBNLWutDWusLgLqs6BPAD0OPeRdoA+4KlW0LK2sE9gEfDdvvuVCZC3gF2B5W\ntkNr7dVa+4EXwso+Bvy31toeuv/DsLJJe/NNiIqCe+65suyhh8DhgD/8YarPLoQQQgghhBBCCBF5\nEU8sjUUplQ7EaK07wjY3AXmh23mh+8MaZ7hs0o4dg9WrITX1yrL166GwEF55ZarPLoQQQgghhBBC\nCBF5czKxtBAcPw633jp2mVKwbVtwEm+fb3brJYQQQgghhBBCCDFdYiJdgbForZ1KqUGlVFZYr6V8\noDl0uwlYBrSHle0J3W4OlR0fY7/hMsYpWzFO2bieeOIJUlJSRm376Ee3c+bMdr7whfH3+/jH4R/+\nAfbtgy1brvUqQkyvnTt3snPnzlHbWltbI1QbIYQQQgghhBDz1ZxMLIX8CngM+IZS6hZgCbA/VPYq\n8CjwdmjS7btCjx3e73NKqVeBVILzMX04rOz7SqlngQDBScG/Fip7DTiolPo6YA89/8vXquQzzzxD\nWVnZqG379kEgMH6PJYCSEli2DH73O0ksidm3fft2tm8fPYXYSy+9xIMPPhihGgkhhBBCCCGEmI8i\nPhROKfVDpVQLkAPsUUpZQ0VfAe4I3X8BeEBrPRQq+w6QoJSqA3YBj2utnaGyHUANYCPYa+mftdZn\nALTW+wlO5n0aOAPs0Vq/HiprIJhkOgJYCfaG+tFU3lNFRXD1t1Wrrva+4f77g4klrafyKkIIIYQQ\nQgghhBCRFfEeS1rrR8fZ3gGM2ZdHa+0BPjlOWQD4fOjfWOXfAr41TtnzwPPXrvXVnTkDN90E0dFX\nf9z998MPfgDnzgUfL4QQQgghhBBCCDGfRLzH0kJ05kxwRbhref/7ISEh2GtJCCGEEEIIIYQQYr6R\nxNI00xrOnp1YYikuDu65B37725mvlxBCCCGEEEIIIcR0k8TSNGtpgd7eiSWWAO67D44cAZdrZusl\nhBBCCCGEEEIIMd0ksTTNzpwJ/j/RxFJ5eXAFub17Z65OQgghhBBCCCGEEDNBEkvT7MwZSEyEvLyJ\nPX7pUigpgV27ZrZeQgghhBBCCCGEENNNEkvT7Nw5WLUKoibxly0vh927gz2XhBBCCCGEEEIIIeYL\nSSxNs/p6KCiY3D7l5XDpEpw8OTN1EkIIIYQQQgghhJgJkliaZnV1sHLl5PbZuBFMJnj99ZmpkxBC\nCCGEEEIIIcRMkMTSNOrvh7a2yfdYMhjgQx+SeZaEEEIIIYQQQggxv8z5xJJS6j6l1AmlVKVS6pRS\n6uHQ9kyl1C6llDW0fVPYPvFKqV8opWxKqRql1MfCypRS6lmlVF1o38cve72nQmU2pdS3JlPXhobg\n/5PtsQRw331w9Ci4XJPfVwghhBBCCCGEECIS5nxiCdgBPKy1LgX+B/AjpVQi8E/AUa11IfBZ4BdK\nqejQPl8CvFprC7AV+HelVFqo7CGgWGtdANwKfFkptQpAKbUZ2AaUAKuBLUqp8olWtK4u+P9UEkvl\n5cHJu/funfy+QgghhBBCCCGEEJEwHxJLAWA4KZQCOAA/8HHghwBa63eBNuCu0OO2hZU1AvuAj4bK\nPgE8FypzAa8A28PKdmitvVprP/BCWNk11ddDfDwsXjzZtwi5uVBSIsPhhBBCCCGEEEIIMX/Mh8TS\nJ4FfK6UagQPAp4EkIEZr3RH2uCYgL3Q7L3R/WOM0lF1TfX2wt5JSE91jtPLyYGIpEJja/kIIIYQQ\nQgghhBCzKSbSFbia0NC2p4A/0VofVkrdDPwGWA9MMX0zvZ544glSUlIAOHYMoqNh587tbN8+4Y5O\nI8rL4TvfgaoqKCub7poK8Z6dO3eyc+fOUdtaW1sjVBshhBBCCCGEEPPVnE4sEUwgLdZaH4bgkDel\nVCuwFhhQSmWF9VrKB5pDt5uAZUB7WNme0O3mUNnxMfYbLmOMsjE988wzlIWyQBYLfOQjMIWcEgAb\nN0JSUrDXkiSWxEzavv3K5OdLL73Egw8+GKEaCSGEEEIIIYSYj+b6ULgWYLFSqhhAKVUArABqgF8B\nj4W23wIsAfaH9nsVeDRUtpzg3Ev/FSr7FfA5pVSUUiqd4HxMr4SVPRRaVc5IcFLwlydS0cFBaGyE\ngoKpv1mDAT70IZlnScx9WmusVitHjhzDarWitY50lYSYdhLnQswMObbEtUiMiIVGYlosdHO6x5LW\nukMp9QjwS6XUEMFE2ONa61al1FeAHUopK+ADHtBaD4V2/Q7wglKqDhgM7eMMle0AbgZsBCcG/2et\n9ZnQ6+1XSr0CnAY08LLW+vWJ1LWlJZhcmsqKcOHKy+HRR8HlgrS0az9eiEiw2Wzs3m3F5zNjNFoB\nKCwsjHCthJheEudCzAw5tsS1SIyIhUZiWix0c73HElrrV7TWa7XWpVrrdVrrV0LbO7TWW7TWhVrr\nNVrrA2H7eLTWn9RaF2iti7XWr4WVBbTWn9dar9RaW7TW37/s9b4VKivQWj810XqazfDaa7Bhw/W9\n3/Ly4OTdb7xxfc8jxExyOJz4fGaKi2/D5zPjcDivvZMQ84zEuRAzQ44tcS0SI2KhkZgWC92cTyzN\nF0lJ8Kd/ChkZ1/c8ublQUiLD4cTcZjanYzQ6qKk5htHowGxOj3SVhJh2EudCzAw5tsS1SIyIhUZi\nWix0c3oo3I3qvvvgxReDPZeiJPUn5iCLxQIEf30xmwtH7guxkEicCzEz5NgS1yIxIhYaiWmx0E0p\nsaSUygSeBj4IZHFZzyetteH6q3bjKi+Hp5+GqipZHU7MTUopCgsLkaHhYiGTOBdiZsixJa5FYkQs\nNBLTYqGbao+lnwIrCU6SfZHgRNdimmzcGBxat2uXJJbE3Ke1xmazhX6BScdisaCUinS1hJhVchyI\nhUjiWkSKxJ64EUici4VkqomlzcBmrXXldFZGBMXGwoc+BK+/Dk8+GenaCHF1ssqFEHIciIVJ4lpE\nisSeuBFInIuFZKoz+LQivZRmVHk5HDsGTlkwQMxxssqFEHIciIVJ4lpEisSeuBFInIuFZKqJpSeA\n/08plTudlRHvKS8PTt69d2+kayLE1ckqF0LIcSAWJolrESkSe+JGIHEuFpIJD4VTStkZ3UspGWhS\nSvUAA+GP1VpnTU/1bly5ubBmTXCepW3bIl0bIcYnq1wIIceBWJgkrkWkSOyJG4HEuVhIJjPH0ldm\nrBZXoZQyAP8CbAH6gZNa64dDK9P9jOAk4l7gca31wdA+8cDzwC3AEPCk1vq1UJkC/g0oBwLA97TW\nPwh7vaeAzxBMor2itX5qNt7nWMrL4ac/DfZcippq3zIhZpisciGEHAdiYZK4FpEisSduBBLnYiGZ\ncGJJa/38TFbkKv4JCGitCwGUUsO9ob4NHNValyulbgZ+rZTK11oPAV8CvFpri1IqHziulPqj1toF\nPAQUa60LlFJpQGWo7JxSajOwDSghmHQ6rJQ6rLXeNZtveFh5OTz9NFRWwoYNkaiBEEIIIYQQQggh\nxPim1A9GKbVOKbU67P79SqlXlVLfVErFTlfllFIJwGeBkbXRtNYdoZufAH4Y2vYu0AbcFSrbFlbW\nCOwDPhq233OhMhfwCrA9rGyH1tqrtfYDL4SVzbqNGyE5GX7zm0jVQAghhBBCCCGEEGJ8Ux1g9Ryw\nCiDUI+hXBHv4PECwh9F0WQk4gSeVUu8opfYrpT6glEoHYsKSTABNQF7odl7o/rDGaSibdbGx8NGP\nwssvg5Y1+IQQQgghhBBCCDHHTDWxVARUhm5/Ajiotf4E8Gngf01HxUJigGXAaa31LcAXgJdD29U0\nvs6c9alPgdUKFRWRrokQQgghhBBCCCHEaJOZvDuc4r3EzoeA10O3m4HM661UmGaCk2//AkBrXaWU\nagTWAANKqaywXkv5ocdDsNfRMqA9rGxP2HMuA46Psd9wGWOUjemJJ54gJSVl1Lbt27ezffv0jKD7\nwAcgKwt+8QuZZ0lMn507d7Jz585R21pbWyNUGyGEEEIIIYQQ89VUE0sngL9VSr0JvB/4y9D2fN5L\n5lw3rXWnUuoPwFZgl1Jqeeg1zhIcfvcY8A2l1C3AEmB/aNdXgUeBt0P73BV6LKH9PqeUehVIJTgf\n04fDyr6vlHqW4NC+zwJfu1odn3nmGcrKyqbh3Y4tJga2bQsOh3v6aYiOnrGXEjeQsZKfL730Eg8+\n+OCobVprbDZbaBnUdCwWC0qpUdszMtIA6Ox0jXqMEHPRcOza7Z243T2YTMlkZmZMKG7HOx6EmM8m\nGtczGf9ybIlhY7XRZnM6IOcZYmHSWmO1WqmsPInWmrS0FJKSUiZ8biLEXDHVxNITwE6CSZl/0lpb\nQ9s/BhydjoqFeQx4Xin1TwR7Lz2itb6olPoKsEMpZQV8wAOhFeEAvgO8oJSqAwaBx7XWzlDZDuBm\nwEYwefTPWuszAFrr/UqpV4DTgAZe1loP98aKmE99Cp59Fvbtgw9+MNK1ETcSm83G7t1WfD4zRmPw\nMC8sLBy1vbt7HxBLSspNox4jxFw0HLutrR7q68+zcuVN5OZ2AteO2/GOByHms4nG9UzGvxxbYthY\nbbTBcA4YICVlncSHWHBsNhs7dhymulrjdjcSHT3I+vW3T/jcRIi5YkpzLGmtq7TWq7TWJq3134UV\nfRX4zLTU7L3XatBaf0BrvVZrXaq1/q/Q9g6t9RatdaHWeo3W+kDYPh6t9Se11gVa62Kt9WthZQGt\n9ee11iu11hat9fcve71vhcoKtNZPTed7mapbb4XCQnj++UjXRNxoHA4nPp+Z4uLb8PnMOBzOK7a7\nXNG4XAlXPEaIuWg4ds3mPLzefMzmwgnH7XjHgxDz2UTjeibjX44tMWysNtrlSsDlipb4EAuSw+HE\n5UogPX0jcXHLcLuzJ3VuIsRcMdXJu1FKJSulPqOU+gelVFpocwGQPj1VE8OUgkcegddeA4cj0rUR\nNxKzOR2j0UFNzTGMRsdId/Tw7WlpQ6Sm9nHw4C9paztEb283WpYxFHPUcOw6HM3ExTXicFhHxfbl\nhruoHzlyjN7ebgwG+xXHgxBzVXj8Wq3WMdvm8dr5qT5uKmbyucX8Et5GG40NWK1v0ddXTSBwgXPn\njkp8iHlrvPbYbE4nLc2D03kYr7cJk+nSNc9NhJiLpjQUTilVAvwB6AOWAj8BXASHxuUQXB1OTKNP\nfxq++lV48UX44hcjXRtxo7BYLACheS8KR+6Hb8/IeD8NDQ3s3m3DYCikpsbP8uU26bor5qTh2A3O\n35Eyao6lsYQP0TEY/BQXG0hKYtTxIMRcNZEhZuO185eb6OOmYiafW8wv4W10TU0v1dUeDIZbiY21\nk5fXQlnZeokPMS+N1x5bLBYeekiH5lgquWKOJSHmi6nOsfQM8BLwRaAnbPvvgZ9fb6XElcxm+NjH\n4Mc/hr/+62AvJiFmmlKKwsJCLs8RXb69s9NFTs4tFBffRk3NMRwO5xX7CDEXjBfT4wkfolNTc4yk\nJLjjjttmtpJCTJPL43estnmix8Rkj53JmMnnFvNLeCwopXA6GYnfvDyZb0bMX+O1x0opioqKKCoq\ninQVhbguUx0Kdwvw7/rKPtVtwOLrq5IYzyOPgNUKb70V6ZoIMZoMYxALlcS2mM8kfsV8JvErFhKJ\nZ7HQTbXH0gBgGmN7ASCzAM2Qu+6CNWvgX/8VPvCBSNdGiNHLAhcVxWIyaTIzZRiDmH/GW+5chuiI\n+exa8Tte3AsxFxQUFFBU1EBj42ny85dSUFAQ6SoJMWWjh+LHYrd3AlZpd8WCMdXE0m+Bv1NKbQvd\n10qpHODbwH9OS83EFZQKDoP7sz+Dc+dg1apI10jcaC6/CNFas2ePLTRefICtWzOkm7qYd7TWvPHG\nG+zaZcVgWEZOjh0IDrmQITpiPhsvfofb8oqKKk6fdpOSskqWcRdzitaavXv3jrTLXq+f5cvrJD7F\nvDXcHoOVEyc68fkUBkMtDQ0NJCWlSHJfzHtTHQr3RYKrv10C4oE/AucBL/DV6amaGMv27ZCdDd/9\nbqRrIm5EwxMPHj4Mu3dbqaw8KUtEi3nPZrOxa1c1NlsmXV3ZtLVpiWWxoA235QcP9lBdrUlKypM2\nXMwp0i6LhSp8rqW2Ns2uXdUj59U2my3S1RNiyqaUWNJau7TWdwMfA/4aeA74n8AmrbV7GusnLmM0\nwuc/Dz/7Gdjtka6NuNGEfxn6fGaAcceLT2SZayHmAofDicGQR06Oiba28/j9TWRkpEn8igVruC1f\ns2Yz4KG6+iBGo0PiXswZl7fL7e1VNDc3S1yKeefy8+GMjLSRc2e/vwmDIU9+oBULwqSHwimlYoHf\nAX+ptd4P7J/2WomrevRR+Md/hB/8AL7+9UjXRtxIghMPWkcSSaWl61BKjTl/x0SWuRZzz40454rZ\nnB4a/uYhIaGV8vI1ABK/s+RGjLlIG27Le3o0a9YYKCmJoqysEK01u3bV0tam8fvfoby8gXvvvVc+\nDzHrwttlv7+a+Hgjzc1L6eiQ9ni2SRt9fS4/H96yxcLWrYU4HE56ewupqfGH/UA78biWz0XMNZNO\nLGmtB5RSG4BZ/blAKfVnwPPAn2itf6OUygR+BqwkOATvca31wdBj40OPvQUYAp7UWr8WKlPAvwHl\nQAD4ntb6B2Gv8xTwGYLv7xWt9VOz8w4nLj0d/vzP4dln4YtfhKSkSNdILETDv7BUVp4EYP36tQBk\nZXmAZkpL143MQWOxBL/cjh49PvLlNpFlrsXcs5ATguGTzbvdPSQmJtHX10tiYhLFxQZuvtlMZuZ6\nLBYLR48eD4vfo1RUVMnJ2wxZyDE3W4bb64qKKi5dukh29mLKytaPtNGXC5/UOyPj/SO3m5ubaWuL\nCw098gDVLF++XD4PMSvC2+je3m6ysjwsWgQXL5qx2bLp7zfS1OQmK6tK2uFZJG301Gmtqaioora2\nh5ISC+fPt7Nv30He//5NZGSkobWmuLhnSovfzPbnIokscS1Tnbz7JeDPgCensS7jUkotA/4COBq2\n+dvAUa11uVLqZuDXSql8rfUQ8CXAq7W2KKXygeNKqT9qrV3AQ0Cx1rpAKZUGVIbKzimlNgPbgBKC\nSafDSqnDWutds/E+J+PLX4Yf/hD+3/+Dv/mbSNdGLEQ2m40dOw5TXa0BD/v3/ycZGRmkpKzDaHSg\nlBr5Qhnry+3y3k2T+RVGRM5CTggOx2lra4D6+rOkpaXgcnWzcuUKcnMTRk0+Hx6/3d3n6O4eoKUl\nT06qZ8BCjrnZEmyv93H0aDsdHTFkZZ3n9tu7ePhhNWashk/qbbVaR9rv7m4X7e3tOByF5OSYMBjy\n5PMQs+byNnrlyhUYDG46O3uxWns5eLCBrCxFWlo6ZWU2aYdnibTRU2ez2Th92k1rq6Km5j+Jjnag\n1K20tOwDYklJuWnKi9/M9uciCUZxLVOdvFsDf6mUOq6U+oFS6unwf9NZwVAPo/8A/hLwhxV9Avgh\ngNb6XaANuCtUti2srBHYB3w0bL/nQmUu4BVge1jZDq21V2vtB14IK5tTli6Fz3wG/uVfwOOJdG3E\nQuRwOHG5EoiOLmRwMJP6+naczqiRceB2e+fImPGKiip8voxRY8QtlmBX340bYetWWaZ9vggmVMae\nN2u+Gz4JM5sL8XrzMRjS8HrzychYSmurh7feOoDVaiUQCKC1JivLw9KlzaxenUhy8lqZA2GGLOSY\nm2nDPZX++Mf9nDx5Do8nGa1XYzTehMsVPaFYDb84SU5ey/r1yVgsraSmesjJiZfPQ8ya4VjMyCik\nszMVt7uHhoZuIJuysmJMpiHKytaTnLx21DmIzLs0s6SNnjq7vRO/30xhYSExMUNkZKSyfPk6zp5t\npKHBT1HRrVM+r5jtz+XyeVblXEhcbqo9ljYAp0K3115WNt0t+18DB7XWlcO9I5RS6UCM1roj7HFN\nQF7odl7o/rDGa5TdGlZ28LKybdf7BmbKV74CL7wAzz0HX/hCpGsjFhqzOZ1A4CA223mGhvzExbWT\nmOjh4MEUcnLicbsNvPuug7a2fjo6ThAfX4fWEBfXidksy7TPV+FDZC6fN2u+M5vTMRhqqa6upK+v\nGrs9C6PRiM12CZfLi9araGl5i4yM1+nsjCc5eS1xcZ0UFcVit3dK77sZspBjbqYN/4J86tQgVmsn\nvb0uvN4KYmKMlJZuuOJCY6yhDOG98+LiOtmypTxs7rx0+TzErMnISKO7ex9VVa00N1fjcuVhMvlZ\ns2YxSqWyZEksSg0QF9eJ2x0bWrJdek/MNGmjp87t7qG+/ixebz5a9wO97N79Bm63Cbe7hQMH/pu+\nvlN4PFH09nZzzz33EBU1sX4fs/25yEgEcS2TSiwppVYADVrrTTNUn8tfbzXBledm5fXmmxUr4IEH\n4OmngxN6G42RrpFYSCwWC5s359HT00xcXCaNjQYSEtLx+9spKrLgdHbx9ts2BgYycbvXk5lpIy+v\nhbKy9XLSMY8t5ISgxWKhoaGBhoZBCgpuJTGxm6ysXrq62oE8li8vYs+eZmJiFIODfsrLM+jtVZhM\nmq1bM+SkeoYs5JibacO/IBcUpHP8eC1JSd3Ex5vIztZs2pR/RayONZRhrIuT4Gcy629H3OC01nR2\n9tDR0Y/Pl0hubhGxsT0UFcXxvvctxe1OwWRKJjMzA7u9E59PyfCsWSBt9NSZTMmsXLkCszkPh0MR\nH19LXd0gFssaurrq8fneor7eRHPzGk6dqgRgy5YtE3ru2f5cJMEormWyPZZswGKgA0Ap9QrwV1rr\n9umuWMgmYBlgCw2JywZ+DHwdGFRKZYX1WsoHmkO3m0L7tYeV7Qndbg6VHR9jv+Eyxigb0xNPPEFK\nSsqobdu3b2f79tkZQffVr8KOHfCTnwSTS0JMxM6dO9m5c+eoba2traPuK6XYsKEUuz2R2tpLmEyL\n2LRpK729zZw7d5yqqh5qawfo77/E6tUZLFq0nry8rJFfDGWSv5khf9epU0qRlJRCTs7NJCXlcfDg\nb+nu9pCVdTsu11kOH34VWMzataVUVFRSXX2AoqLssAk1baGu37Zp+7vL5ymux/AvyKdO1dHf7yQQ\n2EB2dgy5uVEkJaVcEVvBRFQGSUlLqa5uHJkEWS4ap5cc11NTVXUSq9VAZ2cRXV0BXK5LLF+ez+LF\nSWzcePtlj7ZK7wkx5wV7Sp+jqamRtDQPS5cu4fRpB+fOeRgY6CA5uR2/fy3ve982KitfobGxJdJV\nHpckGBe+sb67JmOyiaXLvxXvA/52ks8xYVrrHxKaKwlAKfUW8K9a698qpd4HPAZ8Qyl1C7AE2B96\n6KvAo8DbSqnlBOdeeixU9ivgc0qpV4FUgkPdPhxW9n2l1LMEJ+/+LPC1q9XxmWeeoays7Lrf61QV\nFcEnPgHf/nZwpbjY2IhVRcwjYyU/X3rpJR588MFR24YblMzMPg4caKa6+iCBQAt9fXY6O8vIzIyi\no6OW2NgGcnKKRw27kEn+rm0qFx/yd70+ZnM63d2HOHToLE5nMwZDIvn5OcTFXSAjo4b8/MXEx3tZ\ns0ZRUpJEWVkwqTRTf3f5PK9NLtLHN9xGGwwX6e7egM+3gp6eDhITnbjdPaHhyhq//x3KyxvIz8+n\nq+sQu3eN2Lu5AAAgAElEQVS/g9/vIhCIpbTUSlFRUYTfycIix/XUXLx4kfr6OpzOZfj9XTQ2VrNs\nWRfr1z9+xWOl98TcJO31WAYANzBEYmIKK1dmEQikcehQAw7HEJ2dB/B4+sjN7SM/P3LXlEKM9d01\nGVOdYylSNO8lt74C7FBKWQEf8EBoRTiA7wAvKKXqgEHgca318AxjO4CbCfa+CgD/rLU+A6C13h/q\nhXU69Fova61fn4X3dV2efBLWroUXX4S/+ItI10YsJMO/TmitOXOmC5fLjcfjIDY2n5wcE21tbkpK\nNOXlyygrKxp1YudwOPF6M0hOTqe6+jRZWR45wbjMVC4+ZHWW62OxWCgpqcLl6qGs7C727z/BH/6w\nl/T0RPLzi9m8OZekpCjM5jtHxavd3klrqwezGVpbPdjtndPyd5fP89rkIn18w200gM9XG0oiedi6\ndU1ouHIzAwPLcbvNQDWPPZaP2dyL399BZuYm2traqKw8KYmlaSbH9dRkZy/GaDxCdLSBhIRUoqN9\nDA25UEqNmbCQ3hNzj7TXo3V2ukhJWcettwbbAqWayc2N4vjxMzidnRiNW9D6GFFRr7NhwyYSE5Ow\nWq1yviwiYqzvrrg4w4T3n2xiSXPl5NyztgyD1voDYbc7gDEHoWqtPcAnxykLAJ8P/Rur/FvAt667\nsrNozRrYtg2++U148EGIi4t0jcRCE/7FePDgL/H5LmE0ekhIaKW8/FbuvffeK74AzeZ0enre4vBh\nP5DA6dNuWR74MlO5+JDJE6+PUoqysvV0dFjxepNZurSfwUEjmzZtoaenk6QkxR133HbFfsEJOM9z\n5kyAuLhG3O6UMZ598uTzvDa5SL+20b03itFac+jQYZqbwek8w+rV2RgMeXR2uli8eAnp6dGkpKTh\ndNYByZGt/AIkx/XUlJWtp6zsMPv2NeP3L2Pp0mXk5GTR2emShMU8Ie31aJe3BaWl61BK4XJVUVvr\nAzJZvHgdmZkm7PZkjh6NkvgWETPWd5fb7Z7w/lMZCvdTpZQvdD8O+KFSqi/8QVrrP53k84rr9M1v\nwk03wY9+JCvEiekX3tDk5MRTXFxEUlIKZvP6cX9Vea9nSIA1azbR29s8bScYC6Wr9VQuPqT7//UL\n/xuuW3cnNTV+enudIysajiU4AedNmM2FOBwJmExjX4xPNjbl87w2uUi/tsvnvjhy5BgpKav40IeM\nvPnmG8TG2snJWYLZnE5GRhqnT+/D5TpNTo6B0tJ1ka38AiTH9ZUm0jYWFhbyta/9b/Lzf8bJky0s\nXlzG6tXL6e3tprr6NK2tWdx5563U1h6/4RMWc5W016ONtzjCJz/5cS5deo3Tp49jMESTnm7AYFh2\nzYTcQjn/FXPTWPFaWVk54f0nm1h68bL7P5/k/mKGFBbCpz8N//iPwbmWTKZI10jMd+FfXunpqVgs\n0bz99pvExJhYtmwrRUVFV/0yC+8Z0tvbgtE4/kX75a93tS9LrTVvvPEGu3ZVYzDkkZNjB+bnLztT\nufiQyROvn9aahoYGGhtbWLYsly1bgqscZmRYCAQCvPzyLwEoLV1HYWEhSikyMzPIze3E5+siNzeK\nzMyMkecKj1utNXv22Cb8q7p8ntcmF+nj01pjtVqprDwJvBezwxd3WqdTUhLN4sWDFBcbKCgoQCnF\nww+rSU3Oeb0XMzfaxZAc11eaSI8jrTVNTU3k5eVjMiWSnp6IweDg3LlMLlxIpr7+LAA5OYreXgNH\njhwbFU83WpzNRdJejzbcFlgswdg8cuQYvb3duFxdFBbGY7HEs3jxElJTkzl06AK7d79MWpqHjIyN\nY8az9NwTM+l6v7smlVjSWv/Z1F5GzIa//3v4+c/he98LzrskxPUI//Lq7j5CZ+clLlxYDHjo7NzP\nww9HjXzJjXUSp7VGa01WlgdoprR03VVPMIZfz+vNoKfnLUpKqigru7JHlM1mY9cuKzZbLjk5CYBn\n3v5yKRcfkbF3715+/ONKvN584uKqeOQRxZYtW6itreWZZ17m0KEmhoaSWL++iq9//WGKi4vHPVm+\n/CQvK8uDz5cnwwCmkRwn47NarXz3u69w+rQXgyGT227rYfPmRkymZIqKYnG5WujpSSYubi21tZ0s\nX14X+ltO7u95vRczE91fEgML10SGSL3xxhv8678exG6Ppb//EiUlifT11RMTY6a8/LOAZuXKDvLz\nl1JT48fvZ1Q8yUV35El7Pbbh2Gxt9VBVdZLe3nhiYoYoKYnlwx9ej9aa3/zmHdrb+wkE4kfawl27\namlr68fvP0R5+RpMpmQZaijmrPk2ebe4imXL4NFH4Tvfgcceg/T0a+8jxHjCTwJ3726kvX2ItLQ7\n6Omp5uzZSioqqtBas3u3ddSqQ8PzLdlsNvbsseH1LqWn5xRwEqXUuBcKw5Mja+2hoqIVpzOZjo4r\nTwwdDicGwzJycrJpaztPQkIrZvP62fqziAWgsbEFrzefsrJPUlHx8sjyvpWVJzl0yEZb2yq0zqWv\n7xSvv76LqKgo7PZO3O6eK4bAXX6xBM0YjY6RYQAZGRasVuuo/TMzM+SCWUyLiooq3nmnAbd7BQZD\nPKdOddLX10VOzp0YjQNkZoLfnwaoMSedn2giZ6Lzpoz3fBPdXxIDC9dEhkgdP/4uzc1menrOY7c7\ncDqrMZnygVo8nle5/fYU7r57Mw6HE7+fK+JJ5vcRc81wm/jWWwdobU0mPT2X1tZ6enqMGAzR9PWd\n5fe/f53e3j6s1gGWLv0IFy68S1XVKfLy8mhr66erK4G2tlzASnl5IUbjgAw1FHOSJJYWmK9+FX7y\nE/ja1+DZZyNdGzGfmc3pGAy1HDz4S/r6qjEa+2lufg27vZusrCVUV/dy8eIu3n13YNSqQ8uXL6ew\nsHDkBC85OZ3Dh/24XIExE0XDhidHvngxnt7eAJs35+LzxV5xYmg2p4eGv10iIcFOefmaG76rtZic\n/PylGI0VHDjwDErZiInZgNbBdSiGhhLQOpbY2CECATcVFVU0Nw/hdsfgdPZTULCa3NxOgFFDji6f\nmHO4Z9Nw8rW1NUB9/VlWrlwxan8hrselSxfp6THR359MV1cdqamXMBg+MnJhfelSHfX1Xk6fHmJw\n8F2ys9tGJTgnOnRzovOmjJcYmuj+khhYuCYyRCo52YTLtQuHI5lAIBO73c7Q0DuUlt5NcnIHJSU5\nof1sY8aTzO8j5prhXkfV1QPU1e0jLi4ap/MSvb3ZxMYm4vNd4uBBE0NDi2hoaCEq6jTx8fFAMJ79\n/kO0teWSk7MCgyE4v+PWrRky1FDMSZJYWmAWLQomlf7mb+CRR4IrxgkxFRaLhYaGBs6fbyAmJpeu\nrtPExh5h2bLN3HzzBmy245w9W09Hx3La2/eTl5eA270Yu70Ti0XT09PF6dNvcfFiF4ODSykp+Shu\nd+u4FwrDkyOvWJFGRUUlHR01FBUtvuLE8PLVj+ZTzw8Z5jE33HPPPTQ3N7Njx36GhlJ4552L3HFH\nDampyeTk+HE4DqA1JCcP0NtbgsuVS0xMK93daZjNhfh8XdjtnYA11AMkBperaeSzDC6DHbx95Mgx\nfD4zZnMqZ854MJvz8PkY8ziQ+BCTlZ2dTXp6B93drXi9jWRnR+H1NnLgwCvExjrp7W3E708iO9tN\nU1MGJ07Ec/hwJStXLsdgOIfBcAG3e+01J0Se6LwpwZ6nAczmVFpbO0Z6SE10f0kMLFwTGSK1Zcu9\nPP309wkEbkGpRWgdR3f3G1y4EIPFsn4kcT9ePFksFrTWVFRUcfHiBX73OxtLllRSWrp+ZL48IWaT\nw+GktdVDT4+iuzsFp7OahIRL+P0ulLoJv7+XujovqanpKAUdHce5444VlJZuwmKxUF6+BrBiMCSQ\nkxOc73GuDjWUcxghiaUF6POfh+eeC/7/1lsgx7SYCqUUSUkpGI3ZXLjg4/TpZcTEdJOQUMnBgxqf\nLwa3O4DBcBK3W+N03kRqaj9udw82m42DBxtpbU2lq8tEXFw7DQ2Hyc1NHHWhEP4l5Hb3kJOj8Ptj\nuP12EyUlJsrKrrwAmc/j92WYx9wQFRWF2+3m0qVFDA5aaGqqwun8OosXbyQ21kJKiofU1ASWLs3A\nbLYQFbWC2tqLKFWLw7GE3Nwo3O5YTpzoDM1B1gTEkpJyEx0dtpEYhfculFtbO4iLa8ThiCI3N2HM\nC2aJDzEZWmv6+tx4PDU4nWaUyqGuro/k5CS6u2txOBpobzfR0zPEhQsnSE0tYsmS1Zw924bW8VRX\nuzGZwOsNToicmxs1biLn8glojx49PuaFQ7Dn6VnOnPEQF9eI2106av9rhbNM/Htja2pqAlYAMWht\nB5qIicklOnox6elLRh43XjwppVBKceZMH0ePeujo6CIrC26/vY+HH1bSnopZZzan097+n1RU9AOp\nOJ0av9+Mz7cYpaqIiRmkoyMKu72BwsJYli5dzV135YwkQu+9916WL18+qcUWIkXOYYQklhYggwH+\n7d9gy5bgZN4PPRTpGon5argbbl1dNB5PInFxxfh8f8BsHiI/fwV79rQzONgNZLNokYH4+Ciczi5M\npk66umLIy7ubvLxU/P59rFzZy/vfH5ygcHgll/A5mny+RtauTaS42Exm5p0L8pcOGeYxdzQ0NOF0\nxjA0lE5/fwL79r1Nfv4G+voW4fGsJjGxAa83ioSEXuLiLrF+fTRr15ZQVGSmr6+XhoZmWlsXceed\nt7JnTzVdXX7WrRvdSwPeu1AOzrFUOmqOpctJfIjJsNlsVFd76OtbwsBAOgZDNi7XJVJTc7Bae6mt\n7SAu7k7i4hLQeh8Gw3lcrjSMxovU1Pjp6vJRWrqZvr5uVq7s4O67N1/1omUiK3IGe56uwGzOw+GI\numJOsmuZzz8ciOv39tsnGBp6H0qZ0foPQCOBwGYSE0tobw8OjS8quvpzOBxOXK4E4uJWEhcHcXFp\nNDQ08NZbBwAW5LmFmLssFgs5OTEEAjH4/bn09BwBlgBlgJdAIJasrPU4nZUYjX7y85cCwfZ9OFav\n1ibOpV5Ccg4j5nRiSSllBF4GVgH9QAfwv7XW9UqpTOBnwErACzyutT4Y2i8eeB64BRgCntRavxYq\nU8C/AeVAAPie1voHYa/5FPAZQAOvaK2fmoW3Ou3uvRceeAD+6q/gAx+AnJxI10jMRxaLha1bSzh0\n6Kf09aUSCCRjNGaRmNhFR4cNrQdJTr6Nzs53sdn6iYu7lTNn+khL6yYQuEBd3VkMhgxuuy2bu+/e\nBHDFClptbXF0dWXT1uZBqVY2bcpYsL9wyDCPuUFrTWJiPFrX4PUaiYpS+HxmurpO4XBk4/V24fEs\nwuO5yKZNadx9d9bIsMvgL3JOWltTRpa+DgTs2O297N9fNaqXBkzuQlniQ0yGw+Gkry+FqKhs/H4n\ngcA5wE5FRbDnqN+/lIGBDmCQRYsgJ2cliYl2li8PYLX68HgSqaiwsnatkbvvvnvMpd+HL1gyMoIX\n5z/5yQHa21discQD/VdcOGRmZpCb24nPB7m5CWRmZszmn0TMc8nJJoaGzgEpgAdIYmjITmNjFz5f\nFbffPsgdd9x21QtnszmdtLSz1NRcxOvtwulMYWCgj/r6Unw+6UUhZpdSinXr1vH225ewWjsIBOLQ\negCow2DoBYbo7LxIcrKfFSsUSg3S3Lz0qnOShrfNvb3doRUSMyPeS0jOYcScTiyF/EhrvRtAKfU4\n8B/A3cA/AUe11uVKqZuBXyul8rXWQ8CXAK/W2qKUygeOK6X+qLV2AQ8BxVrrAqVUGlAZKjunlNoM\nbANKCCadDiulDmutd83ye54Wzz4Lf/wjfO5z8Pvfy5A4MTnDX1xOZxcGQz8xMYMYDJpFi1awaVMW\nlZVVQCs9PTFofQGtLeTlLcXlcnL27DnS05eQl5dFTEwHd965BK01+/YdpKUliRUrLJw+fZqhITd+\nfzRtbR5yckwYDHkL+hcOGeYxc8b61W68x1RUVHL+fC9GYzd9fQeIizOhdRL9/YN4vQdQqoyUlBLi\n4xMZGAjQ3NxMc3MzWuuRX+TuvPNW4FesXNlBcvJKTCbIzFyG3a5wOrtGeuVN5tfD6YyP8f4ec+WX\nTXH9MjLSGBhoIibGQ3JyPV5vH/HxWfh8LRgMmvT0RDo7K4mNvUBiYjE5OaXY7RcYHKxn9er7uf32\nZVRXH6SkJGrMWAsf1tDdfZjW1lra25fj96dgs3Wwbp2T3t6UUbEubZy4Hlu23MuPf/xLnM79gAlY\nRiCQjN/fQGxsDgcO1JOY+CvKytaP235ZLBYeekizenUlp06doqOjGVjFxo3/C6v17Vk/x4h0j5JI\nv76A0tL1WCz/RWXlEbReBCQDbRiNdpYsWcT69ZquLkVPj4ehoX5uueXWkVgdHn48vLJsYmIStbXn\nqK72YDAsw+erxWgsYtOmyPcSkvZfzOnEktbaB+wO23QM+GLo9scJ9lZCa/2uUqoNuAv4I8Hk0GdD\nZY1KqX3AR4EXgE8Az4XKXEqpV4DtwN+HynZorb0ASqkXQmXzMrGUlgb/8R/w4Q/Dd78LTzwR6RqJ\n+WT4ouLYsQvU10fj8xno768hPr4fj+cjxMevIjY2Aa+3mfT0WJKTo6msrMBo9HP69AmSkzeyYcMH\nsdtt1NTUYrUO0taWxcmTR6moOI3JlE9qalJogvnW0NCKeMzm9Ei/9Rkjwzxmzlhj+8d7zLFjTioq\nPMTGZgJ2/P5B4uMXkZ+/gpiYQbzeFrQ+hdaXOHwYDh6MIjExiepqJytWxNLW5sJubyI21k1KSjJp\naSnk5vrx+8Fo7OLMmVhaWzXd3YcoKam66kVQuOmMj/H+HjL/wcISFxeFUhfweOoYHMwmIaGQCxdO\n0N09wNBQEgMDl0hKisVqTcNq/SnZ2VBYmMSKFedQKoqiouBcdmPFZviwht27GxkYSMJiycFma2PR\nombWrl0Z+qWcUfEkbZyYqubmZpQqAFKBLKAbaMPvB0jGah0iMbGb9vZazp8/T1dXDwClpetG5qRR\nSlFUVIRSCrvdxNBQcEXOw4dfvWJ+u9lIukR63plIv76AgoICXK4KenpsQCyQR3R0I7m5/RQWZjEw\n4KGtzcCFCwV4PCfp6nqSoqJlNDenj/RIamvT1NefJS0tjro6K7CBwsJsAoE2lGqaE72E5BxXzOnE\n0hi+APyXUiodiNFad4SVNQF5odt5ofvDGq9RdmtY2cHLyrZNQ70j5r774MtfDv7bsAE2b450jcR8\nMXxR0dl5FKfTzOBgBtBPQ0OA558/zuLFWaxYsRmn04vRWEd2th2frwaPJ5nW1lwGBk5SVXWB3Nwk\nent9ZGev4M47/wdtbRfo77dz771b6e1tprgYNm3KuGpPEyGuZayx/eGGVwqqrQ0wMKBxOpPweKLw\n+fzExPiIivJy8eIZDIYMkpIWMTBQQ3LyEG73BwkEDKSkJHHq1FFstniSk4sZGKglIQGam++hvd1B\ncbEBk0nz9tv91NVFERs7yKlTAVyunqt2aZ/tv4fMf7BwdHa6GBrKQOsCfD4TAwPttLY66e9vQqn3\nEROzDp/PQ1SUncTERfT3u0lPj6O5OY78/DqWLjUBCq01WutRF9SBQIBz587w7rv11NbWsmjRAKmp\nZgYG+lm/3k15+V2YTMkcOaIknsS0aWxsweNJx2DIwe93AX7ARn9/CnV1fWRkRLFoUR5tbd1UVLxN\nV1cWkMDp04evmJw7vHep1hqTqZqsrMJR8T4bSZdIzzsT6dcX8Oabb3LkSA9DQ+8H7EAlQ0MXCQTW\n0Nu7lr6+Qyi1nuzsj1BXZ6C1dS+Zmem0tKzj2LF3MRgWYTav5cwZDwaDG60tpKRo2trOU1AwQHl5\nEUlJSC8hEXHzJrGklPoqwR5KjwAJEa7OvPJ//y+8+y58/ONw/Djk50e6RmI+GB4r3dZWRyCQBiig\ngIEBRUtLD05nPTEx+zAae8nPj2bjxhLefPMCFy7k4vXGEgicwO+/SHx8MbGxAfz+Jmprj7N8uQHI\nore3BaOxk8xM+YVbXL+xxvY3NNSPlAcnOnZSU9NBS0sD/f1+fL6VgJnBwdP4fDX097spLPyfbNny\nSY4c+R39/Q5iYrJpbm6hqek40dF9JCR8kJSUVbhc7aGEqZGmpj4WLeonPz+fzs5kWls1p079EYNh\nkDVrHqK31znrJ/PjzXUg8x8sHBkZabS1VeBy5ZCYWIDbbaa/v51AIBWtFYODiWidQX+/jejoI0AC\nHs8y+vsHOXy4gq6uJJYvv/uKlQwB3njjDV5+2YbdHsXQ0G+5/34Ld911F0lJKWRmrh+Zb0ziSUyn\nmBiF230Gv39daIsXSEbrNcTFJZOcbODSpSb6++u5cEED2fj9Jt5++wQlJZWjehwNt4G1tccxGi/h\n9y+hpSVvVLzPRtIl0vPORPr1b3SBQIDf/e51OjsNQDywHGgHFtHdrbnppvfh9Z6nr6+SqqoAUVHN\n9PRE0d1toqjoNux2O36/FYcjjri4Rvz+ODIyvKSnx2EytVJevoZ7771XhjeKOWFeJJaUUl8C/gT4\nYGiYmlcpNaiUygrrtZQPNIduNwHLCB65w2V7QrebQ2XHx9hvuIwxysb0xBNPkJKSMmrb9u3b2b59\n+8Te3CyIiYGXX4Y77giuFHf4MJjNka6ViKSdO3eyc+fOUdtaW1tH3bdYLGiteemlZgKBS8Bigr8e\nZjM05KOvT6O1g+joC/T1DdLTYyU1tZSsLB/nztUTCNhJSlpEb68fk4mRX1QyMjYCwV/b5dcVMV3G\nGtv/zjvvjJQ7HE78/jQyMhTnz9fg81nROpng+g6xDAy04HKtoKXlLL/97c/o7+8gJWUxQ0ONLFlS\nS2pqD1oXk5Ji5uTJvfT2vo3RmIzVGsWiRVGkpaUDJ0lJWUV5eR4HD/6W2NgGeno6iYvrvOrJ/EwM\nx7jaXAcy/8HCkZqaRGxsE319MQwMnCcQ6AQGgLPAINCF1rkMDrpQyoHL1UVSkomOjkz6+roxmbpQ\nKjBqJUOA48ff5cKFDJKTN9PQ8BtOnHCTnT1AcXFPKDZtFBQUsHWrxJOYPnFxCQQCduANYAXB35GL\n0boZrzcRi6WAmJiz2O1uLlwY4uLFvURFmUlPd7Jv3xBpaW9gMiWPzEVTVBSLyaRpaUmjpWXpFQmk\n2Ui6RHremUi//o1u7969HDrURX//EHAe6CU4f5iRjo4qjhz5KYmJHrq76+jpOYtS+Xi9mri44xw6\nlENOjqK4eE0orktJTEyir6931AqzMmeXmCvmfGJJKfXXwCcJJpV6w4p+BTwGfEMpdQvBtRv3h8pe\nBR4F3lZKLSc499JjYft9Tin1KsFB3NuAD4eVfV8p9SzBybs/C3ztavV75plnKCsru743OQuysmDP\nnmBy6cMfhj/8AUymSNdKRMpYyc+XXnqJBx98cOS+UsEhEhcu+AEjwTxtL+ACfAwNDRG8gLmJnp5O\nzp6NIj7+PGbzGWJiEoAMAgE36eknuO++T8kvKjPsRv+yv9bYfrM5nYGBQ/T15ZKaaqG5uRVoJTjf\nQQuQj9ebQ1ubg97eOgyGKHJyBvF6a9Dag8dTTHt7I/HxNTidfSQkrCItzYTL1UFp6RZ8vl5qa60M\nDLjQGt73vhyKi5eTlKSueTI/E8Mxxvt7SO/A+WEix3Nnp4v16z9GSkobL774BQKBGKCI4KldM1AD\n5BMVZSQ+fgVDQ3a8XgeBQA7R0eD19nLo0LssWRI7spKh1pra2lpOnDiB3a7p6fGhtZelS4tpa+un\noaGRnJybR+YPKy1dR0ZGWmiope2Ga3fE9KqurqarK5VgUtRLcDHobCCRqKjzQD6dnUU0NjajVCcD\nA2dJTEwiI2MdJ0+epampkSVLbqG5uZWsrEyWL0/hoYfyyczMoKPjygTSbCRdIj3vTKRffyGbyKIh\n58834XLFotRJtE4BlgI9QDOBgA+7/QAezxJ8vmUotYiYGE10dD1RUS5MplNs3frxkfnD5gKZs0tc\nzZxOLCmlcoB/BuqBt1TwqPJqrW8HvgLsUEpZAR/wwP/P3p0Hx3XdB77/nts7uoFGA42N2EliIcWd\noqmFlGRHEkXrJbHLtmR6SSXOeCqOk8qo4rykyk4ySZypZJKK49jzJjOZKCPLNr1vE4uSRl4k7qLE\nFSR2AgQaKxt7o9H7eX+cJgWS4CqSWPj7VHURvKe7cRv39rnn/O7vnJNdEQ7g74DnlVIdmKvTZ7XW\nFybceBG4H2jHBI/+Xmt9GkBr/Xp2Mu8mQAPf0lq/dDc+692wYgXs2QOPPWbmXnrpJQkuiavTWvPC\nCy8wPJwP1GECS2OYO4hOzFckh0ymHHCi9RTx+GaGh3+KUnbc7kaSyTaqq11zBpVk1arbSy7211ZX\nV8fOnWvRupXOzrfIZKqBAiCMCZBuRGsbsVgxeXk+pqfhrbdaCASqmZgYwe2OEI0W4XSew+/fiNdb\nyvR0mPz8JGNj3fT29hIMVuP3T3LffT1s3rzxuufvhe/AL37xBqFQHtu2baW19bDMgSFu6PscDBYw\nNbWPV1/dTSy2CngYcz73YJp3HmCETCZDNDqB32/D4diM1hVEo2coKBjj4YcfxbIUPl/exd/75S9/\nh+bmCpJJiMd/QSAwA5QTj5/D5WogN7eKffvOMDY2SVPTLwEHfv9qqXfEu9bX14fWIeBxYD3wYyCB\nx7MFr9fD4KCbYNDLxMQoqdQkmcxmIpFxWlubcDpr8fnyGB8Pcf68wuks49SpaY4dO8Gzz34EuDSA\nNLsNUlgYQGvNwYOHpe0hbtiNLBoyMjLM0NCR7Gpw92PqZRsmcBokk6ljenqCTOYMSsVJJiGRmGZ6\negXxeNnFCekXCpmzS1zLgg4saa37AOsqZcPAjquURTFZTnOVZYDfzz7mKv8i8MVb2d/FYNMmePll\neOop89izB3Jz53uvxELU3t7O/v0tJJNrgY2YREALCACV2GzdKFWC1hbpdAYAu90PNJBMTpCXV08y\nOX/RBMoAACAASURBVEE0OjlnY+1mV6261zNyrkcu9temlOLJJ58E4ODBn2NZMTKZUWAcM8xzBnN+\nDzI+nkdpaR45OXWUlHgZHOwnmSzFsizs9lxqaiqYnITi4gl27NhMKDRAd3cZLtdj9Pfvv2K+mqu5\n8B0IhYrp7DwDfPeKVYtulHw/lpYb+T7X1dWxevVRRkaagYcw57ETOIXptExiWY8DB8hkBonHVxCP\nd2O3j+LxDOF2a5SC8nIPkcgkBw4coqenh8HBKPn5D+P1VjA0tIeKinFycx2sXesnElGcOrUXiLJ2\n7Q5OnXoDyGHrVql3xLtnMqGHs48UZmBBB5nMMaamJunqmqGrK0kyOUImU0Jx8X243SNEIm2UlT0G\npAmH95PJjOByrSedjgK5c2bttLW1XWxvTEz8kvkMkEr9vThdb9EQgFRKY1kuTDapBfiBaaACc4M2\nP9sWcWBZUez2HFyu91JWVkIy6VtwdarM2SWuZUEHlsSd8dBD8OqrZr6lHTtMcOmyaaKEYHg4zNBQ\nHK0HMVOSpYBVmAvhKZSy4/P143DYSSTOMTMTJTe3Go/Hy/i4C5fLwmZT9PQk+dGPhikvP39xJZZw\neJSenh5isUpWrbqxVaskI+fa5GJ/Y8bGJpiZ8aBUFDO0cwZYB3QBUSBCKvUWdvtmystX4/HEycsL\nYLfPkEwmKSwcpbi4mOXLU+zcuYMnnniCL3/5n0gkBpmYaEPrKFr7aGtru24nYfaqRQArVgzz3vdu\nuKXhGPL9WFpu9Pvc1dVJLFYI5AFHMMM7ZzBrnSRwuWxY1jLsdgd5eX6SyRmKiuzU1n4Yj6eHlSun\nqK7288YbIcbHx8hkenG5ponF3iYSOUNubpyNGx8nmYyTk6PYtq2ekpITNDU5mZwcIRBIA1Gpd8Rt\nkUwmMEOFFPAaEAGmSadbSaUeIxY7TybTS0NDLdGohWX14ffbiMWcuN0hIEp5ucbtLiAQmKCgwMmG\nDevmrI9nBwVefrmJ+QyQSv29OF1v0RCAvDwfDkcOJqg0ADQDhZhRAF7MKnFDOBx+7HYvNlsRBQXF\nRCI24vEegsGNd/lTXZvM2SWuRQJL96gHHoDXXjOBpUceMcGlZcvme6/EQtLScoa+vjHMRe8UEMRM\nZaaA/aRSXmKxXNxuJw8/vB2tB9F6jEzGT19fGKfzCJFIiImJBg4dGsblGmBw8CAlJVvp71cMDbXg\n8bQTDveQSPQyNbWW6upqJiYO8PLL3QQC0YsTfcP8ZeQsljuJcrG/vtbWVn7847fo6homnS7HDBsq\nwwSYwKz7UEQm00A4PEVFRTM5OQqfL43DkaKqys6WLcsIBu3U1i7niSeeoKOjg/PnfaRSQ3R2/oDV\nq/PIz185Zyfh8nOpoCCfiYnXeeWVJgKBNI899thNdSZmv19PTw/x+JWT096sxXK+L3U38n1ub2/n\n+PEw6XQDJpM0hJkcthAzh0eCePw1nM5C7PZ6pqYmKSycwOMpJhw+yZo1bh59dBt79rzMG2/EKCqq\nJ5Wa5tFH7Wzdqujq6mZ42MG5cyMoNcPp0042b1Y8++xH2LTpwhCixwBZjEHcHgMDw5gM6UmgD+jH\nDB3aClQyM6NRaorpaR8NDVM4HOfIz/dTXFxBOj2J3++joeEpJiamUEqxcaNZXW6u+rigIJ+zZ7/D\nwYM/xuWaprZ23cUAQWFh3Q3dHLiWm6lLb3f7Rurxu+N6i4YANDY2YDJI38TMwFKFGQo3jplawg7c\nRybTSzJpkUw2E4nEKCx0snbtexZcnSpzdolrkcDSPWzLFti71wyJe+ghM7l3Q8N875VYKEKhATIZ\nBazEpKMfBn6BaeQFgJXE43HGxhRut5/a2g3E4wfp7R0nGLQzNnaadNrN0NAUra0n8PujjI/PUFNT\nQiDwIOFwPQ7HawwNDZGTU8kbb3SxbVsGM99NBLNa1zsNpJ6eHiYmIrS0aFyua6+ydbl308haLHcS\n5WJ/fS+9tIcjRxLEYmmgAygGTmNWaCnGLAPsAzJMT3dx/HgKl+s+kslhHI5m8vIC9PZWMzCQS29v\nCK1f5dy5EMPDdior30so1InLFWJiYpJ4vAqfr4J9+44zNnacj37UzPHxyivtF8+l+no7ZvLwHEy2\n1PXNPpenpiZoaUmQSBQxMTEGRGhpUe8qc2SxnO9L3Y18n8PhUQYGoqTTQ5i74SnMOVyAmZB+BZnM\nNPG4B60dWJYNywpRXFyC17sSrWd46aU97N3bTjhcxMTEGzgc3VjWffyn//QHZDIZvvCFP+XAgb2s\nW/cIPl9jtsN783XNUu/oLvXPd7dEIlPAIcyQzlJM3RghlRpnZuYwTmcBPp+DeLyVcFiRk/Ne+vv7\naW0dZ8OGR0mlBjhwYDA7pC2MUorz50cIhTIEg/mEQsMXV0Ds7u6mszNOJFKFUq3U1HRSWZl3zWDU\nzRznm6lLb3fGsdTjd8eN1NNnzrQQjXow9bOfC0F/swj5RHZ7inTaC5zGsipIpaZIpXLxenMvnl9S\nx4jFQAJL97j77oMDB0zm0sMPw09+YoJMQvj9uWQyJg3d3FlZjhkulMKMFS9F60GSyQxvvnmEqalJ\n3O5yWlpCuN3LGRqaZmrKgda5JJMDOBz5RCLFtLe/gcejqazMIxr1MTERoKhoHW+8cYjJyRaqqp5l\n69YHaWk5xMjI2MUGUixWCZyksrKXTZs2XDH55rUutNdqZF3vPWTuoqWju/sco6MR0ukioBsTXHID\nJZhsvAQm62OAdLqIycliPB4XLtdawEZ391tMT4+wdu2v09LyCqdP/4h0OkBnZxc+30OsX19LIFAI\nwMREMy+/fIje3g5aW90MDv6E7dsrCYUsgkEIhaI4nRP4/WsvDr8YGRm77meYfS739bXhdJawffsD\nNDdrqqp6qariXWWOyPm+eASDBUxMnMUE4/dhgkubMHW0CxOsrEDr08TjYLc7mZwMMjGRwuuNcuLE\nGJ2dGUZHc/F6JwiHUxQWlhIO59LW1sa+ffv42c8GGB2tYGSkme3b+wgG55y+8rqWekd3qX++u2Vy\nchyoARox6+iEMOdyBss6htN5H5HIOrTuQKllNDQ04Hb7GB1tp7CwjpMnTxKL5fLEE5VMTmY4evQ4\nAwP9HD9+HocjitvdfXEFxHPnQjgca9mw4Qlef/3rtLYOUlrqobu7m+7uXkKh4isWVLiZ4xwOjxKL\nFZKXV8CpU00UF0ev2ka53RnHUo8vHHv37iWZnMHclPVjgqZhzBxLM8AxzM3bGGBhWevIZMaJxbou\neR+pY8RiIIElQWUl7NsHH/iAWTHuS1+C3/1dkED4vW3nzqf467/+B+LxUWALZmx4MSbANIW5I34C\npQpJJhUzMyVEIuc5f34Ip1MTj1ukUkM4HJXYbAnGxyeBUZSKYbN1EQ7nolQfo6NeJidjJJM5hEIh\n/P7mS7IuLjSQzFxMiqqqdy6msyffvNaF9lqNrKtdrG9HppRYWKqrq9F6L6aBtwmzelY9MAoMYhYL\nncGc40XAGWZmjpNKrSIvbyuZTAEzM2EmJrrp6+sgleqloGAzkcgYWr+B1g7KyyvYuLEerY/zi1+8\nSiZTzszMdk6daic//ySdnXmcPp3B7e6moaEIlyt8U3epZ5/L588Pk0iYu9xu9wibNm24JGB6K0M5\nltJcXUv9Du/y5csZG2vBdEouzIF3YaVDG2ZoZxem3o6QSuUyOurk9Ol2WlsdzMxARYUikwmSTh/F\n613Oxo33k0wqjh07zquvdjI5+R5KSwNMT7dQWmrdUId3rr/7XHVwXd3SOT7Skb89LMuJmS/MCWzG\n1NVxYIZk0sPUVBKlDmOzpRkZmaG19d9wuSw8ngytrT+nu/sssZiLF17475SUzNDV5QdKSadzWL8+\nB6WWX1wBsaamErf7GMePfwfLCrF+/eP09U3Q1dWN01mSXVABKiqsi0PjzAqeVwac5hIMFjA5+Qv2\n708AOTQ1Rdi0qX3ONsrtyjiWdsu7d7uvG9FoDJMZ/TCmbTGIWWH5KGbYcikmyNQMJMhk3iKdricn\np4hA4J0JcIeHw5w82YvTGSGRGGPTpgIJLIkFRwJLAoCCAjPn0h/9Efze78Ebb8A//ROUlMz3non5\nUl9fTzCYx8hIBeZOeBLTcQlgGnp7gWWk09sZGztFU9Mh0ulHiEaDaH0Cy3Kh9TRu9ylstjFycqbZ\nuvUpotGnKC/30tPzJplMLh5PjJGRQzQ2FrB8+fsoLBwiJ6eJmppKVq5cCXRctaN7o435a3WWr/Ye\n18qUEovT6tWN2GzfxyxjHQHqMBPFzvDO0LjzmLuKVUAUy7Jjs0Ww2w8QCBQzM9PFoUP/nXhck07P\n4HQmyM9fT27u21RVjfDUU++jvr6e7u5ukkk3k5N2PJ5O8vLCuN25rFixmsLCOtrbx0gk0jQ0OPD5\nNEVFN3aXeva5XF6uaGxcS27ulVlKt3p3cynN1bXU7/C+8MILjI+vwgypOIGZhD4fs8DCDOZ8zs0+\nFKDIZEaJxfIoKqojGu0mHD7Phg3L6O8PMzIyzv79UFGRoqyslNzcBgoKvITD5yktHWbr1l+7Zofr\nQofs6NHjNDVF8PtXXfy7z1UHL6Xjs5QCsvOpunoZZ88OAGsx5y2YjngHWudi5qKZJhI5SzqtUCpM\nQ0M9DQ1FDAy8Sl+fD9BMTu4jHE4zMfEIjz5aRX9/nGg0SkODj6Iik1X6xBNPAHDo0BFaWuIMDp4j\nGu2kqOhBamtX0dfXhs93kh07zDBms4Jn3iUBp2sd57q6OtasOc7YWIa1a7czNdVzxwOO0m559253\nvZSX58W0mYPZRw8m6L8a09YoxQRSq7EsFx6Pj4cfLmf9+sfJzX0nsNTa2syRIy3E4424XC08+KCT\nbdtkiIlYWCSwJC5yOuHLXzZD4n73d6GxEf7zf4ZPfxpycuZ778Td1t7ezsREGjOB5hBmroN+TLbS\nW5gO+MeAp0gmU0xNdePzVQEWWufhdE6TTo+g1CiFhcvJz08DDkZG9jM+XorNNoPTuYbGxnxOnTqK\n3Z7G6fTS1pbEsnz09vZRU9NOXV0dDQ1ddHfPDjYZN9qYn91ZLihYydmzZ/nFL96gpqaS6upqXK6O\nK97jWplSYnEaGxvPLmd9ANP5bsR0uDsxcytVYgJOjuxjNZZlsjdnZn6MUiuYmmpkdLQfp7OQWCxM\nKPQ/CQQ2EQyuJ5Ewd8Lb29vp6uqhqqoRr9fP+HgvdXWarVvvp60tRSh0kp6eEDMzlYRCIbZvLweg\nq6sLny+PoqLCGxwy0XDdFecaGx+gufkgR48ev6E7sEtprq6lnkXS0tJBOl2PCfhbmGFDEUzHpSz7\nLIUZWrQPmMRud5BKacbGpigsBMvqYXi4g6GhFNPTBczM9ANxhoYUXq+N8vJxKioG2bFjMzU1NezZ\n00pf3wyJxD527lzLk08+efFcutAha22dJBRS7NxZxdSUWX3rwQfNyoezA5YHDx5eMsdnKQVk59PU\n1HT2p3ZMNkcrZh6aUWAzWi9H6xCQTzrtJxarQik/Z86c5/Tp00QiG8lkagAHTuc4XV2d2O1hVq4s\nZ9u2YjZvfufYWJbFjh07qKmp4cUX9zM2lkM8buPEie/wy1+W4PdXUVOTd8kKcmYFz+9mV/B85LrH\nORDw43Cc4uzZ/ZSXewgG78xEpheCuiajKo9t256mtVXaLbfidl83Uqk0Jkgaxiyu4MR0v9dgMqNb\ns9stgsFGPB4HhYUKp3OA3t4Yra0FADQ3t6N1AbW1yxkZmSKRSM/5+5Z6pq5Y2CSwJK7wzDPwvvfB\nH/8x/OEfwhe/CB//OHzoQ2bCb7d7vvdQ3A3Hjp0gGq3HdFLSvDNvRwgTZCrGNP7saH2adDrF1NTL\nZDJVQJx0uoh0+iDpdB1+/wZisTYikQ5KSqoZHR2lpiZIc/NZxscLCQaLCQQihMMnePvtcux2B+l0\nHwUFL/H00++ntTVJPH4fe/c2Mzb2vYt34K7XmL9wgT1/foRIZBKfL4/9+/fz058OE4/X4nYf49Of\n1jz1VP0V7yF3oJeeU6dOEYl4MA27NKYxN4KZQ6wA0/izYdLUQ0AvmUwhiUScZNLJ2bMZMhkbmYwb\nmCaTuY9YrJ2pqQ6WLdtEbm4Dx46dYHg4h1CohEwmzIoV4PWWsm6dF58vj4aGKcbG2kmngzgcj3Ho\n0B7OnDmGx7OGc+daqamporbWzyc/qWm4gdUUrtaInH3+Tk6epKnJQW8viz4z5GYs9e+w3+8lmTyI\nOZd7MOdyJyaQVI/JwpvGDGN2AedIpT6A292G0/kKeXllKJXPzIyLeHwAp7OGdPpBhoZ+yv79PTQ0\nVLNsWYT3v/8xnnzySQ4ePExf3wzj4zn09VUAbdTW1l48ly50yNaurScUeoVTp/bS0OAjGKyfM2A5\n+/g4neeZmnJy4MChRdkZWkoB2fk0PBzGnL9TmPM3jbmxVQHY0LoJpUbR2mRROxxn6enJYWpqlOnp\nRlKpNFonABex2IVJj8sZH4/T1tZOQUE+K1euvOTcGhkZw+9fTXl5BS+8cIJz5wZIp6toaCgkmcy/\n2H7o6zvF+fM9lJd7eO97N1y3Dm1vb6e5OU4kUsTU1HEaGlawcuXTF4cpHzt2AoCNG9dTX1//rs73\nC0HdUKg4m1H1XSoqcpZcnXc33O7rhs12oasdwwRLpzBtkCbMCoijwDCQxutdSU1NPoWF/YyMKPbu\n9fP66z+hoCCX7m7F4GAb4bCHvLyzOBz3z/n7llImqFh8JLAk5hQMwr/+K3z+82ZI3He+Y7KZHA5Y\nvx42boQNG8zP69ZBbu7131MsNppk0gWUY9J32zFpuw9gspX2A23AEUx2R1l2su9mIEM6fRa7PcPM\nzDIGB1cQi53D45ng13/9/bz++ut0d0fQ2sHk5FuUla1kaChGf38LoVAMrQuw20fZuzeEUoqOjlKK\niso4eHCKM2f6aGqKXOx4z9WYv3xIRiIRpLPzDCtWLKe7+zijoxvYvv2jHD36Lc6dC/HUU09d8R5z\nBa3kTtDi5nbnoFQc2IDJVnoDOIU5f4sw84bVZP8/CRzFstagdR2WFSadPk0qVUc6Pcr09CQQIJks\nZHzcy549rxGJNDE+XsjERC1r1mxnZGSUgoJW6utXcPas5ujRHgKBKAUFXnw+O0qNMzFxlomJHLze\nYjo7w9jtHiIRzbFjJ2hoaLgiODoyMsbevb1YViWBwBm2bTtLW1vqikbk7PO3pydAb2/lksgMuRlL\nPYvE6XShdTNmHqUCTHaSD1NnRzABpWj252HAjWVFicdL8PnGsKw8IpEKiorWMjDwM+LxM3g8QWCK\nqanlWNZmXK5BxsYmOHjwMFNTE8Tj5+jrq6S8fDlOZ84l59KFDtnkpGbtWidr1lhs2nT1v/vs4zM1\n5cyucHhvBT/FpYLBAnp6pjDnbSNm6P0JTFaeG6UO43KlUOoR0ulpHI4zeL1gWVuJxaZIJHoxHfhB\nEok+vN5GbDaLt9+eoavLxcmTx9Bas3z58mwGcz5NTSf5P//nNYaGkpw/P4plrSWdzuXs2XMsX95N\nS0s5p05FiUSK8PmGaGy8sbokHB6lvx8saxWRiItTp0J0dHQA8OKLv+TUqQRae3j99e/z6KMrL94w\nu9E2xez2SE9PD/F4Jdu2PQCQzaiSIXC34nZfN7xeN2aRkJWYerodc14PAj/ADIW7D5hmdPQQq1bV\nMzCQpK/PR0PD/0NnZy+VlefJzS0inW7G6ezE5XKTk+Od8/ct9UxdsbBJYOkySqmVwAuYnvQ48Jva\ntNzuScuXwz/+I/zDP8CxY3DoELz5Jhw+DP/2b5BKmeetWGGCTBs2wPbtsG0b2OXsWtT8/jxMRkcA\nk8Fhw9xBVJiOTAcmw6MMk92RwEzybQFvkU5PkMn40PoEkYiDRKKLc+d6eemlb+B0DhEIbKCmZhmv\nvjrK4cMu0ul+vN5abLYoyeRxXK48+vpsvPrqCRKJGQ4damdqapi8vPdz8OBRHI7vsmvXM3M2xC4f\nklFfHyAWqyEYrGJ0dAXDwy0cPfot3O5uamo2zvn557oDfaOThYuF6T3v2YzL9U2SyX7eGe6WxJzL\ndmAF5u6hHbt9CsuyUKqIdNpJMllFOh3G5QphWSnicR+mw74JpdzEYs309ETo7IwxOTnCyy//gry8\nJCtWrOSNN37IxISPmpoPkEgM8P73e1i71snYWBOVlTEmJsrIZCaBAWZm0qTTMU6cUFRWVhKJTNLS\nkqCvT9PZeYZEYpDu7mLq6moJhZpwON4iJ+fxKxqRs8/fYLCA4eFL78DeC0HSpZ5FsnfvPjKZ5bwz\nT1gaE0A6iQmMujDndROmHn+WePw0cIxU6tex2SoYH28lGh3DZguRm9tHUVEzTmeAysoV9PWdJR5v\no6mphJ6eSiYmusjJGSMYnMTv91BebhEMFlzcn0s7ZO+97jk1+/gcOHCIRALpDN3j7r9/C0eP7sZk\ndmQwQSIfpo1RjdY+UqkUxcUWqdQENTX3UVmZS0/PGP39A4AJeGrtw+OB6ekZjhw5Syo1QlnZFkKh\nOF//+m4sazljYxCNttLdPcHQUDGpFGg9hM+ncbns5OaeZtmyCk6eHKWjoxKvN5+ZmRnGxibIZDK8\n9tprdHf3UlNTyRNPPIFlWZd8lmCwgETiCH19UcrLfTidVZw/P0Jvby9nznRjs21Eax9NTX1YVobh\n4ZtrU8zOTJmYGAMitLYqKios3vveR6Rtcotu93VjYGCYd4Z1tmK6lmsxE9MnMFNLnAM2k8m4OXky\nhGWtJxodxOfbj9OZYmamhxMnUiQSDTgcXmZm+hkaGprz9y31TF2xsEnX/0r/A/hnrfWLSqkPYYJM\n75nnfZp3lgWbN5vHZz9rtsXj0NwMJ06Yx/HjZkW5P/szMxn4r/4qfPCD8OST4PHM7/6Lmzc+PonL\nlWFmJhfwYgJLGcxFcBozPnwMU41swQzDMA07uB+tO9DaCYwxPX0E8BCNbqajY4R161Zis9l5++3v\nMzW1CY+nkVTKS27uBOm0n3j8NFqvYnBwmEzmPoqKvCSTb+B0ZtB6nN7efg4cKCOZ3DfnkKHLh2T0\n95/G7R4nHLZYs2Y5Dz6YSyoVoaZm48UJPG+E3Ala3KqrqykoyCMSOYEJCuVgspfeg2nw7cesRFRJ\nKtWNUqUoFSaTMatuWVYFyeQIqVQN5vsAECGTmSEe72RoKJ/x8UYymTosq4uxsTeIx4sZGlpJNNpL\nNNpGbm4EpXL4xCceZc+el7GsHFyu8yhlY3IyTCoVxWbL5623PKTT50kk2nA66wkG62lqmsayBolE\nzjIyEsDvT5Kb62V09AQvv9xEIJCmsPCxKz73XHdgJV1+8RsbG8cEleoxHZMUpqPyNmbo0AZMHe0F\nlmHq5gRwklhsnI6OQaanp9HahVJJ/P4CqqudlJRUkJvrI5nspbo6j2RyHXl5hezfn6SiYh2VlVHW\nrIlfMSnwu+mQSWdIAKTTKcwE9OWYDOk8zNChKPAWWlehtSaVeovS0gYeeGAX4+Onycs7g8+Xg2XZ\nSSRiZDKdTE15SSZT2O1JtF7GkSP7yM21MTSUIB73o3U+0egMMzMuTBvGDUzgdLaybJmLLVsaWLdu\nJceOKbzeCKdP91JQEKWpSTE9/b956aXzxGI1uN3HANixYwdw6RD8tWtz0LoXl6ua8nIPkcgkTU0R\nJiaKGR4+gss1id9/X3Zy797rrpZ4eZZSLFbJqlUP0NysqarqparqyoUcxPxqbW3BZNzVYrKiL9zQ\nysdk/5djspbGicXGSKeL8fvXEYvtY2DgJzz88CaczhyGhyGVqkOpCF5vN6WlZXP+vqWeqSsWNgks\nzaKUKsL0Kp4A0Fp/Xyn1VaXUcq312fndu4XH5TIZShs2vLMtk4G334Yf/Qh++EN44QXweuHpp+HD\nH4adO8Hnm799FjdGa83AQD+x2IVhFAWYTokD0zGZyv7fh0nnjWE6L22YIUV+oCRbthkz3EgRi9mI\nx8fp72+ls/M8g4MhUqkgiYSFZXWQSLhZudJNPJ5PXp7F4GAhPl+Knp4x3O71uN2DnD//I2AFXu/j\nnDp1mmPHTlBfX39JQ6ywMIDT2UZn5zkCgRDr15eyatUGcnP92YmRf/WKO+k3ksEhnZ/FS2vNCy+8\nyOTkfZjOdi7mvHZiztVSYA8mWXUZ4EHrCFp3YQKqFkrZcDh6SKencDiqSCTCmOBUmHQ6TX//EJbl\nRalSnM4009MuenqiuFzVgI94PMWyZXmUlZWxf/9+fvSjVkZHvUxPt7J2bTdPPNHIuXOFRCLDhELT\nhMNDDA0NEokcITe3nvHxPtLpfByOYqan21i9OsCqVVvYv38gux/ROT/7XB1+CZIufjabDZNBasOc\nyyFMBumvYurpJCbwFMZ0YJowWU2bSKfPY1nDuN1P4/E8yeTkL7CsNkpLH6G+fpicnClqatZSXV3N\nq692cOrUaSDnYgf4dk8KLJ0hAdDfP4jJevYBD2HqtWOYDDwPUInL1U1hYQlOZ4K33nqboaHTWFYh\nmYwiN1czPHyITCZDOm0BfaRSm1HKSypVhtfrYmQkwszMaSzrITIZO6nUOGZYtBfL6qK21sejj7oo\nKvIwMNCPzeYiGm3DZktQXX0/nZ0x9u//HuPjO3nggcfp6TGZSxe0t7dfnOQ+Hh9l7doAXq9GqRlG\nR6Pk5TXy4Q9XsW/fv1NY2EJurpepqR5crpHrrpZ4aZZSBDhJS4vC7R5h06brz/sk7r6pqSlMHb0R\n0zY+zjvz35Vjbgh4gCTJZBd2ey0TE6dRagaIMDwcobBwI15vG5lMJ3a7Ys2aGjZuXE9bW9sVbdal\nnqkrFjYJLF2qEhjQWmdmbevBrDstgaUbYFlmgu8tW+Cv/xpaWuD73zePZ54xE38/9RQ89ph5zqpV\nkJ9vVl0SC0d7ezuHD/cRi/VhVs9KZx85mKDSeeBhTCc8hunQTGMCSa1AAybINA5swlw4bUAQ2QkK\nZQAAIABJREFUrUO0tbVhsz1IOr0ROIfWb6F1mFRqFXl5dhKJlSSTdVjWCZTqo6CgkV/5lSeIRvsY\nHf0pbncufr9mdDQK5F7RENuxo46GBgdHj7aSStUSDjuora295mTIN5LBIZ2fxau9vZ2f/ew4kUgQ\nk5Z+YWWWYUzgyI2Z56APE3jyYIJNBZgOei+ZTBitG9E6SiIxDJzBBKEeyT7nFTKZViCHmZkxbLYx\nYrFzZDIeXK4pvN4S6usdBAL5/OhHJzl7topoNEI0Wkk0GmV8vIuRkWZGRpxEozYGBn6Ky+XHsnIp\nKNAUFGiKi+toaNjK8HAb27db5OXl4/cH2LrVBIhGRsZu6O9xO4Kk98JwuoUsHD6PqWPBnLMRTJZS\nLaZOPgmcQik/TmcvyWQCpR4G8nE6W6mpgfPnexgb+yWZTDczMzOMjx9nZGQFqdQaWlvD1NQonnqq\nnuLiKE1NkUs6wDfrWueLdIYEwJtvHsLcpApi2hRhzND7EUxd24HTmaGyspCKijVMT0/R1eXD6XST\nSg1i5mNahtZbMQGpt4A+tC4gk4mSyRQTi8VJJhNYVidKTWR/jxfoIZPRRCJrefttSKfH8Plq8Hha\niMdHSKdh376j2YwpJ8nkMf7v/02zfPk4NTWPXPwM4fDorEnuKxkfP01lZS1+/2omJs5gvpMWW7dW\nsGPHey+uOncjqyVeekNAU1l5d7KUpK6/dRMT45hMpb2YtoYd015QmHaIwrSdZ4AMmcw0NtsYgYAd\nrcsZGlpBMLiaqiqorAzR0FDPxo3rAa65SqcQ80ECS+KOamw0E4B//vNw9iz84Acmm+mP/9gMpQPI\nyYHiYpMB5XSaf93ud/4NBKC62jxWroSGBigrk2DUnRQOjzI66sTEVPMwmRA9mCDSFOZu+H7McLgI\nJvjkxNyNKc2+pgE4jBmWYcdkOBVg5rGZwOXaQizmJZOJotQkXu9DVFd/AJfrbfLzi1i37mHa2+1U\nVvaSTBbj9SYoKLB43/s+yL595xgbO015uZONG9dfkX0xMjLG+Pgk4+PlFBQ8TFPT/ouTIV/rM18v\ng0M6P4tXODyK07kMhyOHVGoaE0ByYu4ctgEPAnXAQSyriUxmE7AOc/d8FJjAbi/B79+Oz5cgkxli\nchKSyRhaD2KCpxuwrDE8HgeJhJu8vEJisftwOpMUFTlZt26Gj33sCXy+PHJzG3A4RpmejuF2a1yu\nevr62kmlAmjtICenkkSinYKCDD7f4xQXF5Cff5qiohQ5OQkaGnxs2mROxFsJEN2OIKkMp5tffX39\nwFZMllICs3pWO6ajEgbi5OZq6ur8bNq0krNnNWfPjmKzzbBmTQWf/vRT7Nu3j5/9rIuCguXk55fQ\n2DiKx7Pukrr0oYceoK6ujk2b2uV8EXdUPJ7CBP4ngW7gNKauLgL6yc2tZdOmYj784QeYni7htdd+\nRjIZx+VqQKkQMzPDwHosq5ZMpoN3JkY+j802jGV58PnGgI2kUuXAj4nHq0kkHkepTpTqxOUqJxLx\nEQh4KSh4mFDoJDMzKygqKmVk5C0CgXw8no9js50iJ6ednTtXXzKk3syttI++vgrKy5czPd3L2FhO\nNvh/ZTDItCu45PVXq9MvLbt7WUry3X03NCZQ2oQ5H7dh6uwzmHO7D1Nn+6ms3I5l+SksbCCTOYdl\nxamoyKW//yx1dVPs2vXMxb/7gQOHrrlKpxDzQQJLl+oFypRS1qyspSpMj3pOzz33HH6//5Jtu3bt\nYteuXXduLxep5cvhc58zj0QCmpqgowP6+iAcNoGmeBxisUt/7uqCX/7SPE9r8165uVBfbx4NDeZR\nX28mEXe7zcThlmWG5qXTVz5Sqbm3X/5QygS+vN53Hg7HvP4Z3xWtIZmEr31tN9/5zm5stnc+TygU\nuvi8YLAAn28St7uBWCyGma8jgrkLrvH53k80+vNsdsZ9KFWCz/cmluUnGg2jdRU+nxu7vYJodBpY\nTjRqUtxttn60jqH1SRwOsKxWXK4Uubl2HI52SkpsFBY6saxx1q0rZMeOBy65o7dy5UqWL++45M5Z\ne3v7FQ2xnp4eTEBsPPvvtZculGFuS1swWMDatbWcO9dJKpVHMjmFuQteiLlb2IzbXY7TaScYfJCh\noSmmpzsxQdJ8nM4yiooKyGT6cbsjlJTkE4uVMjDQQTj8Blo/hMtVhM3mJT9fE41msNtXEgwWkZfn\nYdWqMT71qUd58sknaW9vZ82aAKFQL9PTx7CsHCwrg89XjtvtpqvLjtcbwOUKYFk9xGJvE4sto6Ym\nj0ceqSA398o71Dfb4b8dQVIZTje/HA4nJtOiDJjA1HFtmGDpajyeMlavLuHxx9fzyU8+BnDFEud1\ndXWUlV3oMIZpaFhBa+vIFfWgnC/ibmhoWMHbb7sxN7EGMNlEy3C7lxEMTvHYYwE+//k/pr6+no6O\nDsbHTxAOQyCwHKezm3j8LKOjw8zMvJ1dpCGKUmFycmwsW1bE/fdrOjsLGRqyo/UIpaUlDA7mMjQ0\nQjI5iss1QGHhWjKZQWIxO6OjCp8vTiZTgN9/H3l5A1jWAMnkMQKBfB58sI6nn952ycTddXV17Ny5\nFmjD6cyhqCgXpaI3HAy6VtB/vrKm5bt76+x2N6nUhcm6u7KPccxNqxlMENVJbe1KqqtLcTjSVFW5\nSSZteDwl5OU5SCR62blz7SXH+/IA5uWrdAoxH5S+0FMXACilfg68oLV+QSn1YeD/1VpfMXm3Uuop\nYM+f/umfXjMLQtw+qRQMD8PAwKWP/n6IRO7efthsl2ZWXf6zzWYCUld7zKb1O48L/wcTEJtdPrvs\n8tdcvk1rE7iLx82/s3++kCV2wTPPwK/9mvn5pz/9Kbt37+YP//AP2bhxIydOnOC1107S2RkiGo1j\nWV48ngwORxyPp4ZkcohYLIPTmU9+PqxbV4Ld7qC1tY1o1ElpaQO5uRa9vZ3MzDiJRkMkkzM4nQHc\nbgu/34bP56W0tAzLMh2X/PwA1dVVKKWIRKbx+byUlc09QeHlBgYGLnnNwMAAe/c2E40qcnI027ev\nuu57Xf4eYnG7/Jzu7+/nxIkTDA0NMz4+Tl/fAFpDIJCLZflxOPIIBLyUlXmYnJzixIl2xsYU6XQ+\nHo9Ffr6P/PwE5eU+Kiur8HpzmJ6eprm5mf7+FB7PMlyuKOXlDqLRKCMjNsBHIKDYsKGKdevWXdy3\ngYEBJicj9PeHGBsbJ5lMAMVMTqbp6QmRnx8kP19TVmZHKcjPD1BTU72gzsuBgQFOnhwgmczD4Zhk\n3bqyBbV/S9Hsc/rAgQMcPDiACX6OYoZ1JsjJKae8vJiKinxWrVpNbW3NNY/L7HqvtLSUwcHBO1IP\nyvki5jL7nA4Gg/zX//o/shPTx7DbIT+/iPLyRqqqynnkkfsuOWfMdd60OTKZEbSO09MzwfT0JD5f\nikDAweSkIieniIqKIrZvX004HKaj4ywej4uysjJaW8/T0TFEMjnKihUBtmx5D4lEnEgkmr256KG1\ndYxo1EU6PUJZmQ2lwO8PUFt79Tp59vcKWNRtC/nu3rjL2x3PP/88P/95D1CMCSqNYobeF+F2Q0mJ\njfvvX0NJSSmg8PlycLs95OaaCWmvdd6cPHmSEycGsduDBAKwfr0cF3H7tba28ld/9VcAO7XWL1/r\nuRJYuoxSqh7435jb2BPAb2mtT8/xvK8Cn727eyeEEEIIIYQQQghx1/w3rfXvXesJEli6RRcylr7+\n9a+zatWq+d6dS2it6enpYXx8kvz8PKqqqmQyN3FdP/7xj/nLv/xLFuI5LcStuJfPabkOLE1XO6fl\neIvF6l6up+8GqRvurmudz3IsxGLU3NzMJz7xCbiBjKUFPceSUqoA+Blm5jMwkwnUYvIJHcDXMDMB\nx4DPaq33Zl/nAf4V2IJZyurzWuvvZ8sU8E/ATsz0/F/WWv+3Wb/zC8BvZn/nt7XWX7jK7g0DrFq1\nik2bNt2mT3x7tLW10dvrIB5vYGoqzH335cpkbuK6mpubgYV5TgtxK+7lc1quA0vT1c5pOd5isbqX\n6+m7QeqGu+ta57McC7HIDV/vCdb1njCftNajWuuNWutNWutNwP8E9mitx4G/BQ5qreuBTwHfVErZ\nsi/9HBDTWtcBTwH/n1IqkC37JNCotV6JWU7lj5RSqwCUUo8Az2KWuroP2KGU2nl3Pu3tM3uSvXg8\nSDg8Ot+7JIQQ4i6S68C9RY63EGIuUjcsHHIsxFK3oANLc/ht4H9lf/4I8M8AWuu3MOs1Ppote3ZW\nWTfwS+CD2bJngH/Jlo0B3wZ2zSp7UWsd01ongOdnlS0aZnWr8KxVXQrme5eEEELcRXIduLfI8RZC\nzEXqhoVDjoVY6hb0ULjZlFIPAfnAT7ND5Oxa69kpWeeAquzPVdn/X9B9nbKts8r2Xlb27Lvf+7tr\nvpYjFUIIsTDIdeDeIsdbCDEXqRsWDjkWYqlbNIElzHC3r2mtMzLR2bUppaivr0eG7QohxL1JrgP3\nFjneQoi5SN2wcMixEEvdoggsKaW8mGFq94OZe0kplVJKFc/KWqoBerI/nwOqgaFZZa9kf+7Jlh2e\n43UXypijbE7PPfccfr//km27du1i165FN4JO3EN2797N7t27L9kWCoXmaW+EEEIIIYQQQixWiyKw\nBHwUOK61bpu17bvAZ4C/UEptAZYBr2fLvgf8DvCmUqoWM/fSZ2a97tNKqe9hhtY9Czw9q+yrSqmv\nYFaM+xTw59fasS996UuyioVYdOYKfn7jG9+4sJykEEIIIYQQQghxQxZLYOm3MCvCzfYnwItKqTYg\nDnxca53Olv0d8LxSqgNIAZ/VWl+Yev9FTOZTOyZ49Pda69MAWuvXlVLfBpoADXxLa/3SHfxcQggh\nhBBCCCGEEIvWoggsaa23zbFtGNhxledHMVlOc5VlgN/PPuYq/yLwxVveWSGEEEIIIYQQQoh7hDXf\nOyCEEEIIIYQQQgghFicJLAkhhBBCCCGEEEKIWyKBJSGEEEIIIYQQQghxSySwJIQQQgghhBBCCCFu\niQSWhBA3bGICPvIR+OAH4fz5+d4bIYQQQgghhBDzbcEHlpRSTqXUV5RSbUqpE0qpr2W3Fyml9mS3\nn1RKbZ/1Go9S6ptKqXalVItS6kOzylT2/Tqyr/3sZb/vC9mydqWUrA4nxCx/8Afwyivw+uvw2789\n33sjhBBCCCGEEGK+2ed7B27A3wIZrXU9gFKqOLv9b4CDWuudSqn7gR8qpWq01mngc0BMa12nlKoB\nDiulfq61HgM+CTRqrVcqpQLAsWxZs1LqEeBZYA2QAfYrpfZrrffczQ8sxELU1wdf/zr8wz9ASQl8\n9KNw5Ahs2TLfeyaEEEIIIYQQYr4s6IwlpVQO8Cng8xe2aa2Hsz8+A/xzdttbQB/waLbs2Vll3cAv\ngQ/Oet2/ZMvGgG8Du2aVvai1jmmtE8Dzs8qEuKf9+MegFPzGb8CHPwyVlfD88/O9V0IIIYQQQggh\n5tOCDiwBK4BR4PNKqSNKqdeVUu9TShUA9llBJoBzQFX256rs/y/ovg1lQtzTfvITeOwxyM8Hmw0+\n9jH49rchmZzvPRNCCCGEEEIIMV8WemDJDlQDTVrrLcAfAN/KblfzuWNC3EtSKdi7F5588p1tH/oQ\njI3BwYPzt19CCCGEEEIIIebXQp9jqQdIA98E0FofV0p1A2uBpFKqeFbWUk32+WCyjqqBoVllr8x6\nz2rg8Byvu1DGHGVzeu655/D7/Zds27VrF7t2yQg6sXDt3r2b3bt3X7ItFApd9fmnT0M0Cg888M62\nzZshGISXX4ZHHrlTeyqEEEIIIYQQYiFb0IElrfWIUupnwFPAHqVULSbYcwb4LvAZ4C+UUluAZcDr\n2Zd+D/gd4M3sax7NPpfs6z6tlPoekI+Zj+npWWVfVUp9BTN596eAP7/WPn7pS19i06ZNt+HTCnH3\nzBX8/MY3vsEnPvGJOZ9/+LAZ/rZ58zvbLAt27DCBpf/yX+7k3gohhBBCCCGEWKgWdGAp6zPAvyql\n/haTvfQftdYDSqk/AV5USrUBceDj2RXhAP4OeF4p1QGkgM9qrUezZS8C9wPtmODR32utTwNorV9X\nSn0baAI08C2t9Ut352MKsXAdPgxr10JOzqXbf+VX4JvfhPFxM/eSEEIIIYQQQoh7y4IPLGmtu4D3\nzbF9GNhxlddEgY9epSwD/H72MVf5F4Ev3ur+CrEUnTgBcyXmbd8OWsOBA/D+99/9/RJCCCGEEEII\nMb8W+uTdQoh5lslAczOsXn1l2YoVUFpqJvYWQgghhBBCCHHvWfAZS2Jx0lrT3t5OODxKMFhAXV0d\nSslCfotRb6+ZuHvVqivLlDJZSxJYEkLcKrleLCxyPIQQs0mdsDDJcRELjQSWxB3R3t7Oyy+3EY8H\ncbnaAKivr5/nvRK3ornZ/DtXxhLAtm3wR38EsRi43Xdvv4QQS4NcLxYWOR5CiNmkTliY5LiIhUaG\nwok7IhweJR4P0tj4APF4kHB49PovEgvSmTNm0u6qqrnLH3oIEgk4duzu7pcQYmmQ68XCIsdDCDGb\n1AkLkxwXsdAs+MCSUqpbKdWslDqmlDqqlPpIdnuRUmqPUqpNKXVSKbV91ms8SqlvKqXalVItSqkP\nzSpTSqmvKKU6sq/97GW/7wvZsnallEzifYuCwQJcrjAtLYdwucIEgwXzvUviFjU3Q0MDWFepLdat\nA5cL3nzz7u6XEGJpkOvFwiLHQwgxm9QJC5McF7HQLIahcBngGa31qcu2/w1wUGu9Uyl1P/BDpVSN\n1joNfA6Iaa3rlFI1wGGl1M+11mPAJ4FGrfVKpVQAOJYta1ZKPQI8C6zJ/t79Sqn9Wus9d+ejLh11\ndXUA2XG/9Rf/LxaflhZobLx6udMJGzdKYEkIcWvkerGwyPEQQswmdcLCJMdFLDSLIbCkso/LPQOs\nANBav6WU6gMeBX6OCQ59KlvWrZT6JfBB4Pns6/4lWzamlPo2sAv4s2zZi1rrGIBS6vlsmQSWbpJS\nivr6emSo7+LX1QWPPXbt52zdCv/+73dld4QQS4xcLxYWOR5CiNmkTliY5LiIhWbBD4XLelEpdUIp\n9S9KqUKlVAFg11oPz3rOOeDCLDBV2f9f0H0byoS458Tj0N8PtbXXft573gOdnTAycnf2SwghhBBC\nCCHEwrAYAkvbtdbrgU3ACPBCdruspyjEHXbuHGh9/cDS1q3mXxkOJ4QQQgghhBD3lgU/FE5rHcr+\nm1ZK/SPQqrUeVUqllFLFs7KWaoCe7M/ngGpgaFbZK9mfe7Jlh+d43YUy5iib03PPPYff779k265d\nu9i1a9eNfUAh5sHu3bvZvXv3JdtCodAVz+vqMv9eL7C0fDkUFprA0s6dt2svhRBCCCGEEEIsdAs6\nsKSUygEcWuuJ7KaPARcWNf8O8BngL5RSW4BlwOvZsu8BvwO8qZSqxcy99Jls2XeBTyulvgfkY+Zj\nenpW2VeVUl/BTN79KeDPr7WPX/rSl9i0adO7+pxC3G1zBT+/8Y1v8IlPfOKSbV1dYLNBRcW1308p\nMxzu8OFrP08IIYQQQgghxNKyoANLQAnwfaWUhRn6dhb4jWzZn2DmXmoD4sDHsyvCAfwd8LxSqgNI\nAZ/VWo9my14E7gfaMcGjv9danwbQWr+ency7CdDAt7TWL93pDynEQtXVBVVVYL+BmuI974GvftUM\nnVMyUFUIIYQQQggh7gkLOrCkte7CzK00V9kwsOMqZVHgo1cpywC/n33MVf5F4Iu3sr93ktaa9vb2\n7JKSBdTV1aGk9y7usK6u6w+Du2DrVviLv4CzZ2HFiju7X0IIsZTd7DVf2ghCCHF3zVXv3s73kjpc\nLDYLOrAk3tHe3s7LL7cRjwdxudoAqJf1JcUd1tUF69ff2HO3bDH/vvmmBJaEEOLduNlrvrQRhBDi\n7pqr3r2d7yV1uFhsFsOqcAIIh0eJx4M0Nj5APB4kHB69/ouEeJduJmMpGDQBJVkZTggh3p2bveZL\nG0EIIe6u21nvSh0ulgLJWFokgsECXK42WloO4XKFCQbvbhRbUjTvPVNTMDJy44ElkAm8hbhZUreK\nudzsNX++2wjiUvK9vnXytxOLxVz1bldX5217LyHutnc7vPO2B5aUUmu01k1XKfuA1vpHt/t33gsu\nHFhzoOvf1TjeWyEpmvee7m7z780ElrZuhR/8ABIJcDrvyG4JsaRI3SrmcrPX/PluI4hLyff61snf\nTiwWc9W7R44cuW3vJcTd9m6Hd96JjKVXlFLbshNvX6SU+hDwNcB7B37nkqeUor6+nvm6ts5O0Wxp\nOUQ4PDpv+yLujq7sN7im5sZf88ADEI/D8eMme0kIcW1St4q53Ow1f77bCOJS8r2+dfK3E4vF7ax3\npQ4XC8Fc9a/bfeOZAndijqX/BbymlCq9sEEp9SwmqPSbt/qmSqnfUkpllFK/lv1/kVJqj1KqTSl1\nUim1fdZzPUqpbyql2pVSLdmg1oUypZT6ilKqI/vaz172e76QLWtXSi241eHmi0nRDM9K0SyY710S\nd9i2bfDKK1Baev3nXrBxI7hccODAndsvIZYSqVuFWHrke33r5G8nhBDz493Wv7c9Y0lr/edKqQJM\ncOkR4ClMsOmTWuvv38p7KqWqgf8AHJy1+W+Ag1rrnUqp+4EfKqVqtNZp4HNATGtdp5SqAQ4rpX6u\ntR4DPgk0aq1XKqUCwLFsWXN2f58F1vD/s/fm0XEd54Hvr7rRCxqNfSN2gMRCiQBJQBspk5JoayG9\nHWViR6YtOT7O5B37OX4zSnzOZGInGc/zvGxONE6cPL8sSmJapmQpthNbIrVYEkVSIkWRAAmQBLoB\nAmgsJHtFoxeg13p/3AYEkAAIEjtYv3N42Ojqe7v63u9+VfXVt0ASOC6EOC6lPHQr/V5PKBfN24+8\nPHj00Zs7xmjUqsO99x781/+6NP1SKNYTSrcqFOsP9VzfOuraKRQKxcowk/5tbW2d9/FLkrxbSvl1\nIcRzwAmgDNgvpfz3WzmX0DL2/SPwO8BfTWn6DWBT6vs+EEIMAQ8Cb6IZh76causTQrwN/BrwbOq4\nf0i1+YQQLwD7gT9KtR2QUo6nvvvZVNttb1hSLpqK+XL//fDjH690LxSKtYHSrQrF+kM917eOunYK\nhUKxMixU/y5KKJwQ4tPX/gN+CpiBg4Cc8v7N8rvAUSnlpLks5RGVJqV0TvlcP1CZel2Z+nuCvkVo\nUygU8+D++2FwEAYGVronCoVCoVAoFAqFQqFYahbLY2muSm9fTv0DkIB+vicVQmwBfh3YfaPPrhRP\nP/002dnZ097bv38/+/fvX6EeKRQ35uDBgxw8eHDae4ODg4ty7p07tf/ffReeeGJRTqlQKBQKhUKh\nUCgUilXKohiWpJRLkQQcNINSFWBPhcRtAP4e+B9AXAhRNMVrqRpwpF73p467OqXt1dRrR6rt5AzH\nTbQxQ9uMPPPMM7S0tNzUj1prSCmx2+2peMs86urq0G6HYq0yk/Hzueee48knn1zwuYuKYNMmZVhS\nKBSLgxqDbh117RQKxXKidM78UddKsd5YkhxLi4WU8gfADyb+FkK8BfyVlPIXQoh7ga8C3xZC3AOU\nAkdSH30J+ArwvhCiBi330ldTbS8Cvy2EeAnIQcvH9Ikpbd8XQvwNWvLuLwN/vIQ/cU1gt9s5fNhG\nJFKAyWQDoF4Fvyvm4P77tQTeCoVCsVDUGHTrqGunUCiWE6Vz5o+6Vor1xqIYloQQ/9d8Pyul/OsF\nfJUEJky5vw8cEELYgAjwhVRFOIC/AJ4VQnQDceBrUkpvqu0AcDdgRzMefVdKeT7VtyOpZN4dqe96\nXkr5ygL6u2pYiFXc7fYSiRSwefMOOjtP4HZ7VVJFxZzcfz8cPAjhMFgsK90bhWJtoHYvZ0aNQbfO\nbNdOyZpiPaPke+VQ+nr+rLdrpZ47xWJ5LD09z89J4JYNS1LKj0557QQem+VzYeBzs7Qlga+n/s3U\n/h3gO7fax9XKQqziBQV5mEw2OjtPYDK5KShYw1pPsSzcfz/E4/DBB/DAAyvdG4VibaB2L2dGjUG3\nzmzXTsmaYj2j5HvlUPp6/qy3a6WeO8Vi5ViqWYzzKJaOhVjF6+rqJs9RUFA/+bdCMRtbtkBWFhw7\npgxLCsV8WW+7l4uFGoNundmunZI1xXpGyffKofT1/Flv10o9d4pVnWNJsXgsxCouhKC+vl4pB8W8\n0eth92546y34gz9Y6d4oFGuD9bZ7uVioMejWme3aKVlTrGeUfK8cSl/Pn/V2rdRzp1isHEt/Bfyh\nlDKUej0rUsrfXYzvVNwc680qrlj97NkD3/oWRCJgMq10bxSK1Y/S04rlQsmaYj2j5FuhWH7Uc6dY\nLI+lZsAw5bVilbHerOKK1c+ePTA+DidPqnA4hWI+KD2tWC6UrCnWM0q+FYrlRz13isXKsbRnpteL\ngRDiVaAYLfH3KPBfpJRtQohC4IfAJmAcrfLb0dQx6cA/AfcACeCbUsp/S7UJtATi+9Cqwn1PSvm3\nU77vW8CXUt/3gpTyW4v5exSK24Vt2yAnRwuHU4YlhUKhUCgUCoVCoVifLFqOJSHEs/P4mJRS/tZN\nnvqzUsrR1Hc8DvwLsB34M+A9KeU+IcTdwM+EENVSygTwDWBcSlknhKgGTgoh3pRS+oCngM1Syloh\nRC7Qmmq7KIR4AHgCaEQzOh0XQhyXUh66yT4rFLc9ej089JBmWPrjP17p3igUCoVCoVAoFAqFYinQ\nLeK5vgTsAXKA3Fn+5d3sSSeMSily0DyQAD4L/CD1mQ+AIeDBVNsTU9r6gLeBX0u1/QbwD6k2H/AC\nsH9K2wEp5biUMgo8O6VNoVDcJHv2wHvvwdjYSvdEoVAoFAqFQqFQKBRLwWJWhft/0YwwNcA/Az+S\nUnoX48RCiH9FM1pJ4ONCiDwgTUrpnPKxfqAy9boy9fcEfTdou29K29Fr2p5YSN+llNjtIrsUAAAg\nAElEQVTt9lQiszzq6urQovEUipVjJrlcCvbsgWgU3n0XPvaxJfkKhWJNsdAxQY0pivmw2uVktfdP\nsX5Yr7K2Xn/X7cBy3DslH4qVYNEMS1LKrwkhfhf4T8CXgT8RQryMluvoNSmlXMC5fxNACPEU8Odo\n4Wxr4umw2+0cPmwjEinAZLIBUK+ymilWmJnkcinYsgUKC+GNN5RhSaGAhY8JakxRzIfVLiervX+K\n9cN6lbX1+rtuB5bj3in5UKwEixkKh5QyIqU8KKV8BLgTOA/8HdAnhLAuwvkPAA+l/owJIYqmNFcD\njtTrfqBqljbHLbbNyNNPP82nP/3paf8OHjw42e52e4lECti8eQeRSAFu99xOXFJKbDYb7757ApvN\nxgLscQrFrBw8+Dw/+MGf8dJL/w8/+MGf8eUv/xZ/+Zd/uejfo9PBY4/BIZWlTKEAbn5MWOzjb4Qa\ng9YHs8nJarm/Sy3HCsUE61XW5vpdq+U5V8zMTPduse/ZepV7xepmMUPhriWJFromAP2tnEAIkQ1Y\npJSXU38/DniklF4hxIvAV4FvCyHuAUqBI6lDXwK+ArwvhKhBy7301VTbi8BvCyFeQsvZ9ATwiSlt\n3xdC/E2q/18G5kw7/Mwzz9DS0jJre0FBHiaTjc7OE5hMbgoKpluLr3VVlFLy6qt2ZWFWLCn793+O\n3NyWlJy52bu3nlOnTvHkk08u+nd9/OPwox/B0BCUlS366RWKNcWNxoTFOv5W3eDVLuf6YEJOLl58\nj9HRczgcuatqjrHQ50ChmC/rVdZm+l0Tev/MmTY6OoJkZ9+h9PgqZKZ7d6Ox92bH9PUq94rVzaIa\nloQQJj4MhdsF/BL4HeCwlDJ5C6fMBl4UQpjRjFRO4JOptt8HDgghbEAE+EKqIhzAXwDPCiG6gTjw\ntSn5ng4AdwN2NOPRd6WU5wGklEeEEC8AHanve15K+cot9HuSidw1miKovy6XzbWKpKgoTCRSyebN\nO+jsPIHb7UWNBYrFZia5PHXq1JJ816OPap5Lhw/Db91sTUiFYp1xozFhsY6/VQPR1F1ONQatXSbk\nQltgGhgYqMDpXD1zjIU+BwrFfFmvsjbT75rQ+11dowwOCvbtqyQQEEqPrzJmunfvvXdyzrH3Zsf0\n9Sr3itXNohmWhBB/B3wOGCBVTU1K6V7IOaWUDj5MrH1tmxN4bJa2cKovM7Ulga+n/s3U/h3gO7fQ\n1xktyUII6uvrZ1Xo107iwYHJ5FYWZsWSciO5XEzy82HHDnjlFWVYUiimPnu34lU032f3Vg1Eapdz\n7TGbHNXX1+N2exkYYNXNMZZzDFLc3ixU1lZrEuSZfteE3m9qqmdw8FXa24/S0GBVenyVMdO9u9HY\ne+2Y7nJ5ANuscql0rGIlWEyPpa+g5SO6hBZ69uBMildK+Z8W8TtXDbe6O1xQkIfR2MXRoz8hGnXQ\n1NRIc3MNHo9PWZgV64ZPfAL+9E+1CnFG40r3RqFYGZYz9PlWDURql3PtYbfbOXSoi6GhMaLRY+zb\n18Sjjz6KEOI6OWhu3oYQQt1fhWKeLCQ8eLmNUhPP++iopKnJSGOjjpYW9ZyvRq6VjdraWvbunX3s\nvVaXB4MGTp/2rHhYs0IxlcU0LP0QLXzstuRWd4fr6uro7e2lt7cPo7Gerq4YGzcK7r9/x9J3WqFY\nJj7+cfjmN+HYMfjoR1e6NwrFyrCcoc+3aiBSu5xrD7fby9DQGCMjFoaGygEbNTU11NfXzygH2j1e\n2T4rFGuFhYQHL3fOuunP+55V412luJ5rZWPvXuYce6/V5S6Xh0hErHhYs0IxlUUzLEkpv7RY51qL\n3OrusBCCzMxsysruUcpBsW7Ztg0qKuBnP1OGJcXty3KGPisD0e1DQUEe0egxhobKKSvbiNFomZxH\nKDlQKBbGQsKDlztnnXre1w43KxvX31ubCltXrDqWsircbcV8doeTySSvv/46fX0DVFdX8Mgjj6DT\n6VROC8W6Rwj49V+HF16A731PS+atUKxH5gp9WKmwpNWaI0SxONTV1bFvXxNgw2i0UFamhcDdDPOV\nESVLiuVitcjaQsKDl2t+v1qulWL+zCUbM91P4KZC5xSKlWBVG5ZSVeaeB+4AxtCqwv2fUsoeIUQh\nWvjdJmAcrfLb0dRx6cA/AfcACeCbUsp/S7UJ4K+BfWhV4b4npfzbKd/5LeBLaGF9L0gpvzXPvs65\nSyCl5J//+Z85cKAT2Exe3hkAHnvsMZXTQnFb8NnPwv/+33D8OOzevdK9USiWhrlCH+YKS1rKhcFy\nh2MolhchBI8++ig1NTW4XB6CwdHJxK7zlaP5yoiSJcVysdyydqtFeOZiueb36rlce8wlGzPdTykl\nBw4cx+ezkJt7gaeekjQ0NCjvNMWqYlUbllL8f1LKwwBCiK8B/wjsAf4MeE9KuU8IcTfwMyFEtZQy\nAXwDGJdS1gkhqoGTQog3pZQ+4Clgs5SyVgiRC7Sm2i4KIR4AngAa0YxOx4UQx6WUhxbyA6SUvPba\nazz33Ks4HDuprd2N13uUvr4BUr8rpVC0AQ3sardBse7YsQPKyuAnP1GGJcX6Zap7+8WL73HmTNu0\nhcpsC5RbXRjMxyC13OEYiuVnYvErZReHDp3D59OTm5vgqack9fX1iyYjSpYUS82ETnvrrXcYHMxi\n16776Oo6ueSythTGmZmMUkuxiaCey7XDtfd/58775qWP+/v7ee+9y5jNm+jsvMyWLW00NDSs0K9Q\nKGZmVRuWpJQR4PCUt04Av5d6/Vk0byWklB8IIYbQqtG9iWYc+nKqrU8I8Tbwa8CzwG8A/5Bq8wkh\nXgD2A3+UajsgpRwHEEI8m2q7oWFJSonNZqO19SwAzc3bqK+vRwiRqthiIxDYhJR9dHe/TGXlMNXV\nD08er3YbFOsdnQ4+8xnNsKTC4RTrESklgYCfoaF2XC4HBoOXjg4jAwPcUK/f6sJgPmPHUoVjqPCL\nlWWmqkKvvHKII0ccFBbuYGDgCq2tZxFCLJqMqNB9xVIzodMGB4vo6bkAvEh5uWXJw8iWy5C1FPP9\npX4ula5fHCYcDV555RyhkIGMjBgf//jWySqeE8x0P0+ePIHTOYLZDOPjI1y5cnkFf4lCMTOr2rA0\nA/8F+LkQIg9Ik1I6p7T1A5Wp15Wpvyfou0HbfVPajl7T9sR8Oma32zlw4G3a26OAhY6O43zxi5on\n0pkzbbhcBqqqHgLeJjPzPb7whcd45JFHJo9Xuw2K24EnntCMSm++CQ8/fOPPKxRrCbvdTmdnFKOx\nnmi0n5KSBPH4tnnp9RstDGab2M9n7FiqcAy1IbKyTL3+RmMXVutRXnuth8uXK4lGR7FaA8CGRZUR\nFbqvWGom5HXXLm1qvmmTkz17ti95GNlMhqy14l201M+l0vWLw4SjwdmzmUSjIxgMJoT4sIrnBDPd\nzw0bNmC1BgGwWrPZsGHDivwGhWIu1oxhSQjxB2geSv8HYFnh7lyH2+3F59OTl3cPkIPP1zYZ1tbR\n4SMQiBEKXeDOO9P5/Od/a17WaYVivbFjBzQ0wD/9kzIsKdYfbreXaLSQ3bu1BUNJiQOn0zMvvX6j\nhcFsE/v5jB1LVSlIbYisLFOv/9Gj/0FfXxtjY1vIzEwnGvVSURGeTBC/WDKiqk4plpoJndbVdZLy\nch179jywpEaMuQxZa8W7aKmfS6XrFwe324vRWEVWVhybTdLQYMRoLLzues50P3Nzc8jMDBEMXsVq\nDZGbm7P8P0ChuAFrwrAkhPgG8DjwsVSY2rgQIi6EKJritVQNOFKv+4Eq4OqUtldTrx2ptpMzHDfR\nxgxtM/L000+TnZ1NMBhkcNCNzzdOfv4d7NlzH/n5zbjdXrKytvLxj+fT3v4Ou3eXXWdUArULqFhe\nDh48yMGDB6e9Nzg4uOTfKwT85/8M3/oWeL2Qd3OFixSKRWGp3PoXUvXtRguD2Sb2Kzl2qA2RlWXq\n9Y9G+8nK2kR2dhl2+xDFxS72739w2iJ4JhlRIS6K1UZdXR1SysnUElJKpJRLJpdzGbLWonfRUqB0\n/eJQUJBHWZkLrzfA6OglCgs3zlrF81rdbLVmsX17MwUFlbjdDjIzs1fgFygUc7PqDUtCiN8FPodm\nVApMaXoR+CrwbSHEPUApcCTV9hLwFeB9IUQNWu6lr0457reFEC8BOWihbp+Y0vZ9IcTfoCXv/jLw\nx3P175lnnqGlpQUpJa+++ioHD75PPF5EXp4B0JSI2WwjEBA0NGygpaX+usFRTewUy83+/fvZv3//\ntPeee+45nnzyySX/7i9+Ef77f4fnnoOvf33Jv06huI7ZdqEXqovnqvq2UGab2K+kB8laXCCtJ6Ze\n/0CgnosXIwwPj7F9e5B9+x6ctok1ISPXyrg2d7GrEBfFqmGiEpvTaSESKcDptE++vxTz5Ln02Fr0\nLloKlK5fHCau2913ewgGN2C1ZlFYmD/5/lT9HAj46eyMEo0WYjLZaGgwUF5uIRKB8nILhYX5K/lT\nFIoZWdWGJSFEGfBdoAd4S2ijyLiUcifw+8ABIYQNiABfSFWEA/gL4FkhRDcQB74mpfSm2g4AdwN2\nNOPRd6WU5wGklEdSybw7AAk8L6V8ZZ59JSsrh8bGRyd3NjweHzt3aq61cyljFbusuJ0oKoJPfQr+\n/u/hd35H82JSKJaT2XahF6qLl3LBsBon9mtxgbSemHr9pZTU1EwYjLbPuvC+VsaLisJEIpUqxEWx\nqrhWR7e2np00NC32PHkuPbYa9e5KoHT94nCj6zhVPw8NtWM01k+G1lutkr178297WVSsbla1YUlK\nOQTMWDsqFQL32CxtYTQvp5naksDXU/9mav8O8J1b6W9BQR5GYxdHj/4HV6+2kZaWRX5+bkqJzL56\nXunY5akW8vz8XAA8Hp/ynlIsGV//Onz0o/DGGzAlh71CsSzMtgvtdnsZH88nKyuP9vYOiorCN60D\nl8oDdbYJ6a1+n/KUXftM3EOXy0MwODpt93u2e3ntfAMcmEzuJQ9xUfKmuBkZyM/PZWTkLZ5//ihp\naaN4PHECgY00NdUzOiqXbZ682AYV9RzcflyrpzMyMgmFAjPq66n62eVyEI32T+rmwsJ66uvrqavT\nzvfeeyeVDClWHavasLTWqKuro7e3l9bWNxkcNOLzWfF4jvPUU1r7RLx4c/M26us/DImby9V2OQah\nqRZyv/84ECM7e5vynlIsGQ89BC0t8N3vKsOSYvmZbRe6oCCP0dG3OH58orpnkJYW+03pwJm8niaS\nwC6GHp8tlGl8PJ/R0bdobGyjpWV2j5W5+ql0/drCZrPxwx8e49y5Qa5e7WPr1q00NdUCs8vcQvKA\nLQQlb4qblQGvN4DDkSAeH8NuHyU9vYTBwVdpajJSULBn0fq1nMaeD69BPn7/sUl9XVtbS3d3tzI4\nrUPsdjuvvNLJ8eNn6O52UFxcgsViZdOmOzGZzk0bs6fq57KydDZvriczk2m6WelSxWpGGZYWESEE\nVmsWsVgmZvMG0tLK8HpHaG09S0eHj3PnIoRCASoqzrJ//wOT+Q8mlIVmzTbgcnkA25JVpLiWqRby\nw4f7gCD33afc4hVLhxDwjW/A5z8P587B1q0r3SPF7cRsu9B1dXU0Nrbh8yVpatpNIOC4oQ68dlHi\ncnmu80CF2fX4zS5qbDYbBw68jc+nJzc3wZYtOUQiVWRl5XH8eBSfL4nTeeOxYqU9ZRULp7X1LCdO\nXOHyZQtXrlQQCp3n6tV+CgtDXLp0icOHOzAaKykrcwGkdruXLg/YXCh5U9yMDHg8PnS6Cmprt+N0\ntuH12mlpaSYcHqKxUTerAfRWjEQ3M8++mfPP9NmJa5CZWcGxYxfw+UZxOm00NPTS1RVTxoJ1iNvt\npb19kLY2By5XJk6nm7y8DNLTPVy54sXny54cs69NXF9dXT/NEWHifEqXKlYryrC0yASDo7hcIYaG\nfMRinUgZ5exZK11dkrGxYoLBYmy2GIcO2aipqZlUGNoAYuP0aQ+RiJgcWJZDgUy1kOfmhoGEqvyg\nWHI+8xn45jfh29+Gf/u3le6NQqEZnFpatuN02ggEBjCZPDfUgdcuShoaDJhMsWk6dC49PvV4o7GL\n3t5eMjOzJxciE5+ZWJycOdNGe3uUvLx7GBw8RX7+ZUymDNrbOwBLyiA2cMOxQlX5WR9Eox5isXLi\ncQuDg4WEwz6ee+5tpDQQDm+nri4dKcOcOdM2bYE7V3j+UqDkTXEzMlBQkEdu7gUGB48zPj5EZqYf\nIXw0NFhnLIIzwa1sxrpcHgYHwxQUwOBgGJfLM68cODc6/0yfnbgG7e19QJjGxkfp7T3L4GArsJNd\nu+6jq+ukMhasIwoK8hgePoXXa8ForGR09CTxuIszZ6oJBtPIzS0jIyOZkrv66xLXf7hG/PB8Spcq\nVivKsLTIaOUgd1JRITlx4jJXrzq5ejVJIlHI8PCbJJP1bN16L0aj+bqBY6bFx1IrkIkyrkVFYcDB\npz51P0KIVI4llRxOsXQYDPA//gf85m/CqVNwzz0r3SOFAmpra2lo6KWvr4Pq6gpqa2vn/Py1envm\nBJv2WfW4tqhJUlCQQ3t7F5cuOSkr2zUZ1pabmz2tMkwicRnIRCtqaqGkRFtoFRWF6egIEgg45mUQ\nU0lp1z7NzdvYsuUiTucZ0tJyyMzMorR0B93dR5DSSkYG2O1Xqa62095ez5kzTqLRU+zb1zutYtxy\noORNMR8ZmJqPZteuUhob/UjZQG5uNpmZ2dMqaM3ErWzGBoOj9PRc4vz5JGZzH8Hg9DLuUz2PHA4H\nkUgFDQ33cezYL3jrrXcmf9u1z9NMfZko6FNU1EZHh5FLl9q4dKmX3NxKfL4LAJSX65SxYB1RW1tL\nRYWJtjbQ6SAeN5GbG8NgiDE66uG993SMjur52MceAG4sw0qXKlYzyrC0SEwMPAMDAxiNQcbGouh0\negyGRtxuE5s3W3C7rYyNDdHff4rsbInDcc91uQ8mkn9Ho/0EAvXs2HEve/fOHCa3GJNCu92eKjVc\nicnkRqfTKfdbxbLxhS/An/85/MEfwOuvr3RvFAro7u5OhSQ00tXlpqame86wtWuN/xMJNqeq0WuN\nVZs2bcJms+FyeXj77Tc5edKHEE7C4Q8oLjaTlzfKuXMRfL4kBsP0yjDl5SGamkL4fG2UlkJOTjZu\nt5fm5m00NzPvTQFV5WftU19fz+OP38fly5cJBC4yOprFpUsehPBisVjxeGxkZg6RlVXA1atRhChm\neDjMyMg7+Hz+eeXiWiyUvCnmIwPTvXzi7N3bfFNz0vz8XPz+4xw+3Edubpj8/I/c8BirNYuNG+8A\njAwN6ejoOI/XO4IQgubmbQCpeXIBfr8PCHLsmIuengvARiKRmT2XtATkx3j++TbS0pw0Nd07+bm6\nujpaWuy89dY7CHEnH/nIJzl+/CU2bXKyZ88DyliwjrDb7QixAYulD5/vDGlpw3i9EcbHLaSlgU7n\nJhbLobfXgc1mIz8/F5PJPqtDgdKlitXMqjYsCSG+B3waqAK2SynPpd4vBH4IbALGga9JKY+m2tKB\nfwLuARLAN6WU/5ZqE8BfA/uAJPA9KeXfTvm+bwFfAiTwgpTyW/Ptq91u59ChLgYHTTid7ej1AxQW\n1pKV1czly7/AZrvM2JgVvb4Ej+cy58+nUVmZztWrH4Y+5Ofn0tBgoLdXy4vQ2Rmdsqi5PkxuoQYg\nKSVnzrTR1TVKY2Mdly5dnXP3RaFYbPR6+F//Cx5/HF5+GT7xiZXukeJ250Zha4cOdTE0NEY0eoy9\nexupqqoikegmHG6jqenuaR5OUkpsNhuvvHKIs2ddFBVtZXw8CrxBV1eMwcEkJ0+6CYfNZGY6iUZ1\n+HzFvPHGEQwGC0VFzdhs3aSlneLixULMZg8tLdu56y4t2XIg4E95M4HJZGfv3nruv3/Hylw4xbIz\nkdfR45GEQnmMj8PY2Dukp28kJ2czweDP8fks9PZu5cqVDiyWcYqLCxkYsHD06Oi8cnHdLKrqlWIh\n3Gplzgm5O3OmlZ6eDsbHc0gm0ya98ueSycLCfEymc7S3RwkGYzz33AV0OifZ2aXs2BGgqSmTSKSS\nhob7OHr0KpmZ7RgMw2zcWMeuXZ+dM3TN6x3C4RjBaMzn6NEhNm60X5MCAyIRGzbb+5SXW9izZ7va\n3F1ntLae5fLlPCyWcYaGLiBEBYlEkESiC6v1LoJBPX19p/npTwMcOXKRT37yHhoa8rBaJYWFyiNJ\nsbZY1YYl4EXgz4Bj17z/p8B7Usp9Qoi7gZ8JIaqllAngG8C4lLJOCFENnBRCvCml9AFPAZullLVC\niFygNdV2UQjxAPAE0IhmdDouhDgupTw0n4663V6GhiQdHQkGB7MoLob6ehgZuUhamouREfD7r2Ay\n1QJGwmEz+fn1DA3Z6O1tp6xsFyaTnaKiMKWlHyErK5/29ncoLh6blvDvZnMtTSxsZqpIZ7fb6egI\nMjgo6Oz8KXq9GyHum3X3RaFYCj79aa0y3Ne/Dh/9KKSnr3SPFLcrUkoCAT9DQ+24XA7KytIpKGiY\nbNf0fJi+vhgDAxbOn/8JFouBq1fTicVGaGvrB+Cxxx6b1LEHDrzNkSNOvN5i7rwzitfrZXDQgc+3\nGaNxA2NjFZSUJHC5xsnMrOHhhz+GzfY+4XAbp0+3EgplkpU1gsFwksce2zdlUQLvvnuCaBSVxPM2\nRUrJ22+/yZkzbzM21gjUAj50ulwyMox4vXl4vZtJT7+DWMxLRsY5DIatWCxWiooq6OoamPfCfb6o\nikWKhVBQkIff/yavvuokEjHi9fYipeSuu5rnlNMJuTt5coSOjnQ2bKilo8PBoUOHEUJMehyZTDak\nlAghcLk8BAJ+vN4RRkcvYrVWkZaWwYULFtLTN6LXV9PXd4mmJjCZ3Bw79gt6ei6Ql5dPLObCYumh\nq+vErKHHWgLyUmprHwVyGBlpU2FNtyUSpzPE0NAIkUgxkEQII1BMPJ6NECfxenO5dKmF9vZWgsGT\nPPLIw+zdmz8v3amM+YrVxKo2LEkpj8Gkp9FUfgPNWwkp5QdCiCHgQeBNNOPQl1NtfUKIt4FfA55N\nHfcPqTafEOIFYD/wR6m2A1LK8dR3Pptqm5dhKT8/l9bWf+b06SL0eiPDw358vv8gPT2dUGgraWnN\nJBJvEo0eIS2tjlgshN1+gljMQTyuY/PmPPz+JJcvd3PhwmkGBoxkZFTR0RGkudmWWuzYcLmclJWJ\naYuduZhY2LS3T5TPPs4Xv6jtlLjdXrKz72Dfvkpef/0lzObcG+6+KBSLjRDw/e9DUxP8yZ/A//yf\nK90jxe3Gh7vdbbS3BzAa64lG+9m8efpEPz8/F7v9R7S1lWMypTM4mI5en0Y4PEY0qmNgIB14fbIw\nw+nTrZw8eYaRkWLGx9M4f36AwsIBioqK6eo6DeQQDg+Ql5dPXZ2OjAwzFkuEe+8tI5kc54MPjJjN\n1YRCxfT3DyKEmDZhVEk8b2/sdjvHj18hFqsHIql/ZsbHL9DdfRmjsRi9Pko47CQ7W/DII9soKSnl\nyJFOTp+2IYSFjo4gLS32RTP+qIpFioWghRe/QjSajsWyhfb2VnQ6B06nhd7eXqzWLILBUazWrMl8\nS0KISbkrLc3m5EkXQ0MdCGGirS1ESclZIpFKNm/ewcWL7/Iv//KvXLoEyWQxQ0MX8PvTgExMpk4i\nkRixWAQhevF4XGzenKC5eQ8Azz//IrFYAr+/mlAol6KiVioqBiZDSieYGE8cDgfJ5DAezxhCWFJz\n97xpv1eFNa1/srOz8HqPMzoaBQxAAVJa0emcRKM9JBJBdLrtQC5CFGK1mohECuatO5UxX7GaWNWG\npZkQQuQBaVJK55S3+4HK1OvK1N8T9N2g7b4pbUevaXtivv1KJpMMD59jdDSElGaSyTTC4RbS088j\npYWqqnrc7g7S0i5QURElN9dKenoraWlFDA8Xc+jQq5SW+sjLKyMWM+P391FdbSEatdLa2sbVqxaM\nxmKiURubNzfNq9SqZuxq48IFJ3r9vWRnV+HzfbhjMrEoCQQEd9yRCZjp6jqpFiiKZae+Hv7bf4M/\n/VOtWtzWrSvdI8XtxMTErKtrlMFBwb59dxEIFJGZqbXbbDbcbi+joyNIOU402ks0aiYWy8BoFIyM\nCJJJM0bjFtrbO/jlL19BpzvEyy+f5dw5N4GAH6PRSUHBZYqKmrnrrt+gr+8ARmMQk2kDmZnjfP7z\nD1NdXU1r61muXLmMlBK9fhCfL5vy8kyMxkq1262YhtPpZnhYEo8XAxloU7pGpBxnZOQiev0YJpOO\n8fFzVFUVsW/fb9LQ0AC8yNGjyVQFQceiGn+UsVOxEIQQlJSUkpd3lXh8FCnjlJa2MDQUo7dXyzfX\n03OBTZs2UlbmnkwlMTo6wsjIEENDMdLTbej1edTXt6DXBzh+/F0GB9+hre09Eolhenqu4PE0EYuF\nCARGMBqbMZnuIC3tNTZs8JGbW4rD0UlGRoBdu56grq6O7u5uYrFCRkau4PV2sGVLPkVFd1FZWXnd\nIv7DhX4FeXkB6upGESJASUnJZGie8ii5ffD5/ASDXhKJKsCCVngjSTKZQTLpB4pJJAYJBt/HZOpk\nYCCDoiITgcDWGWXlWg8ll8ujjPmKVcOaMyytVl555TBDQwYSiS1AHtCH0WgGykkkzuHzSbKyBtDp\nSvD5JBaLidFRE8XFTWzb1sKxY78kGh0iFttOXV0ZZ896OH36JDk5MfT6HHJzP8Xu3Tvp7DxBZibz\nKrXq9x/H4xnE74/hdL5DUVExO3daJ3dMpi5KJhIcqmpwipXim9+En/8cnnxSqxJnMq10jxTrnYkJ\n2ptvHuHcOSM5OWUEg220tx+locFKQUE9NpuNAwfexufTEwrZSUvbRFHRGIODfcRiI+h0xUAfQmST\nTGbidJ7l7//+PZLJHLxeA9FoMQbDJqzWHiorcygtzcPr7SYjww9sZcuWFnJyrscEbw4AACAASURB\nVJCVlYNOp+P8+RHa2/WABYvFTWFhGzk5d6XC8tRut+JDLl48T09PN1CGtmdmQJvWZQG/RiIxTCzm\nAiIkEjH6+vpoaGigpWU7TqeN0VEHo6PncDhyFy2EQhk7FQtl+/atHDnyU3p6usnJieD1XiEYtJOZ\nWUFdXT3nz4cpKKhkaMg5mUpiZKQPt9vN6KgLk2mYnJx0MjMDXLx4gqtXA/j9ATIzu8nPjxKJNGE0\nJnG7JdGoC4PhEvF4HIPBh9UqCQQipKUVYbHcRV+fju7ubtxuL1lZW3n44Tt5441DGAwRysq2XaeT\n4VqvPUFpqeZxNTAwc/l4xfrmypXLjI9bEEIgpQQcaHo6AYwCms5NJi9jNOYQCGQSChWl8uxe7016\nrYdSQ4MBkyk2aczPz6+b3AxToXGK5WbNGZaklF4hRFwIUTTFa6ka7UkFbXZVBVyd0vZq6rUj1XZy\nhuMm2pihbVaefvppsrOzOXOmFb9/PHXIHUCc0dHzGAx3YLW6SU8/SnZ2OVI+wJUrESyWEGlpG4hG\n+zl92sfQUA+FhSV4vR3EYq1IeR6zuRK4g+FhJ3r9OTo7xZw7gFOTcTc11dPbm44QJXzmMw9w7NiL\n1NeP8rnPPTbjRE8IoZTPbcTBgwc5ePDgtPcGBwdXqDcaJhP86Edwzz3wh3+oVYtTKJaSiQnauXNx\nTp3qICdnM0ajm6ysAEVF24nH43zve9/jV7/qpajoLuLxEYToIR7Pp6goysiIn/R0M8GgmfHxIfT6\nPsbHCxge3oxON04yaSAW02G1GklPryE720F1dZLi4jBZWaWcO2fD57uC2WwhEDAhpcTn05OXdw+Q\ng8WSwe7dOiorKycniAtB5WJYX7S1nSMcjgEXAQ8wBBQCu4EGoIhk8jRS5uP1tnD4sJ2amhoAiorC\nXL7cjZSZOBzldHQco7GxbcGV4pSxU7EQpJT09vZy5UovyaQgLc3L0NCvyMysxOPx4fe/Sig0SFeX\nF6+3k1AoQm5uEx6PwGYbwOXSEwrtQogBotEj+P3j+HyFjI1VIWUaer0dg+ES0WguRUVJxsasjI8f\nJRw2YbHUkExmY7UaKC39BNnZVZN5kQoK8jCbbQiRz4MP1tLYaKWlpWFGnXyt1x5IBgeTFBTkMDjo\nxOXyqOfjNiKRSBCNXkHKUbR6Uw4gE22tWA04gRKEsGI2JzCZtlFffx/R6Ahut5e6urk9lKxWyd69\n+ZPGfCmlCo1TrBhrzrCU4kXgq8C3hRD3AKXAkVTbS8BXgPeFEDVouZe+OuW43xZCvITmi/gE8Ikp\nbd8XQvwNWvLuLwN/fKOOPPPMM7S0tPCFL3yBH//4LFCPpijeB9LR6y1kZT2AEP04nVcZGTlEeroZ\nv38b0egw6ekGurpOkky2kEw2MDx8kEhkjEjEQjCYTlWVjliskPz8Me69d+4KATabjSNH+unoSNDZ\n+Tx1dXoKCgoIBn3cd9929u7Vjp1QUB9WFCrA758+qQSmKbLa2trJXRu1IFn77N+/n/37909777nn\nnuPJJ59coR5pbN0K3/mOFhb34IOqSpxiaXG5PAwOhjEYcjEaLZSU+Ontvcpbb7lxOgv52c+O8s47\nAQKBj3Llyjn0+oukp+tJJn1YrY34/Q5GRlzAOEJ4kDJCWtr9ZGdX4fGE0OuvoNeHycl5ny1bKtmw\noYZ4/D4uXDiHlCVkZZVz7twpxseLeOedQXbvLiM3N8Hg4ClAy8nR3PyRyRwiYF+Q7lW5GNYXDocD\nrWZJM3AFLcxCAJfQ6YIIEUSILvz+ZjweL4HAJlpb23A6M4hEKhkacmA0FhIOmzh0yMH777tpb/fy\nxS/KVMjc8qOMn7c3XV1d/NVf/ZyOjlzMZj2joy7M5lE2boyh1/eQTLrIyqqhv/9NhocNjI3V0tv7\nU0pLL9PXN8bIyGaysgR+f4KBgUFGRgKMjcWJx+8lHs8lKyvJ3Xd78PujJJNZDA2V4HDk4/NZCAaD\nDA9HaWgIEYt10tl5mNzcES5e3MWXvvQl9u6d7uE/m06uq6tDSjlZNCcYDNDdfYnz58OYzX0Eg80r\ncWkVK4TdbiccrgDcaAalT6NtAmSiRbgUAx50Oi9+/0W6urr4l385xe7dd/KpTz0+p4eS0egiGDQi\nhJjUl++9d1KFxilWjFVtWBJC/ADN8FMMvCqECEgp64HfBw4IIWxo2Sq/kKoIB/AXwLNCiG4gDnxN\nSulNtR0A7gbsaMaj70opzwNIKY+kknl3ABJ4Xkr5ynz76vX6Ut1sAKKAGXAxPt7L8PAwubljSFnK\n2Fg98bgJq7Ubr7eQUKiBy5c9mEy9vPvuGcbHh0hLqyEtzUA02ktv7xgGQz4eTx6FhddXCJg6CTt5\n8gRDQ3kUFjbidB4hN9dHY2Mt4KC5eRu1tbW89tprHDpkw2isIhrtx2gsZuPGSo4du4DP92H5YeAa\nRdZLV1fsphckapKouFl+7/fg2DH4/Oe1kDg1ICoWk6k66eLF87S1deN0ZuPxXODKlRFGRtIR4g5G\nRnoIh48xOtqA2WzE5wsiRBGwlfHxYeLxDsbGskgmc4BuoAopi9Hre4hERhHCSyJRgsEwhpQuNmzI\np6bmM2zevJPDh88DGeTmlhEK+Ukmi+noCNHU5Oeppx6aVsUTPtTFRmPXZE6RW9GnKrHy+kKnE0Au\n2oZWNmAEeoCrSNmJlOVIeRdgwuEY4syZARobm4nHd7B58w5cLgdXr7bR0XGKoSEvsVgdJ074KCg4\nhMfjIz8/F5gIkV+e8VsZP29vXn75EK2tUYLBahKJCySTI6SnZ3P69ABmcwijMYOmpmYcDjd+v46C\nglrc7j4sljTM5geR0o/X6yCZvMjwsJnxcT2JxCg63VmSyXTM5nEef/zz6HQ63nzzCGNjRbjd6Tid\nZkZHrxKNXmL37kzy86/yq19FCYd38fLLTsrL3+Cxxx6jvl7bxJ1LRieKLDidFiKRAgYH3ycvL536\n+mrcbh1Wa9ac10DNm9cX/f0DaHWhQsBm4E4gHTgFjAExoIBEQpJIFBKJVNDT4yUS+QUNDSZKS8sY\nH6/gjjuu91AKBIwpBwEmZVHluVOsJKvasCSl/Mos7zuBx2ZpCwOfm6UtCXw99W+m9u8A37mlzpKG\nThcjmWxHs0JLNLuWnVgsjs8XRa8XpKWVkZ5eBYTp6hohHvfi8wVJT79CKGRGr8/F7x9BiE1kZfVh\nNJrYvv1jRCKjvPnmEXp6erh4sZNAIERZ2QYsFivnz4eIRjM4efIdvN4C6urKMJkCDA+nk5dXhcnk\nRghBd3c3hw61Y7eXU1a2IbXr7qC9PQmEaWp6jEDAm9qFYdoCpK+vg0ik8aYXJGqSqLhZdDo4cADu\nvRcefxzefRdycla6V4r1woROGhvL4/XXX6WnJwOj0UAolEc8biSRMCJEBpcuHSEeH0FKD+Hw60AH\nUjYSCvlIJAJEo+eAPcAWtMjrPLKy9hKP/ztm81lATyKRgdFYTzi8FYfjCoWF7XR26sjNTQBhenvP\no9MNYjKVEI+HuHw5QGVl1bRwpHffPTGpi48e/Qm9vX2Uld1zS/pUTTjXF5WVVWj7ZEeBYTQ5rADM\nqbALgBZARzJ5jFAoiJTbGBo6hcvlpLTUTElJFpcvXyQWq8RgaMbnO8I771yiu9tKIjGE5nldSW7u\nBZ56auk9mZTx8/amtbWVYNBLLPYrkskgYCWRCBGNxpGymrGxTNraOkkkxhkb8xCPXyAU6sFozKWm\npgqP5whjY+8QidQg5Wa0MKMgyeQQ0WiY4eFs/vVfX6G2thloxus9zNWrYRKJGvR6DwaDjtLSckpK\nSigstNLS8jlOnz7IiROn8Pn8gGb4GR+vnFzozySjU+XY5XIihA0hoLzcQmFh/pzXQM2b1xfRaATw\noUWztKP5Q1gAK1pmFgncCxQANUipIxYTDA318847ki1bAni9b9Hf309ubpiCgo9Mhhu/++4JolGm\n6cudO7WaVCrPnWIlWNWGpbVEUVEuQoTQkmfGgDCwDU2RHCcWu0Qi4SaZ/IB4/ALRqJ1QqBIhAsRi\nl0hLc6LTbSUcjhGPlyJEgni8HCGiOBznSCSS9PVZ6Ox8Ca9XABZMpjbuuKMMr1eHlFaGhxuQcgCb\n7QXy80MYDB+nvv5ejh9/ibfeeofs7CwMhgrKyjIYGrpEXd0o+/Y14fP56egwMjrqwWz2TC42pi5A\nqqsr6Opy33BBspBqBWqXRjFBVhb8+7/Dzp1aONxrr0FGxkr3SrEecLu9jI/nMzh4njNnRggEskkk\nPkCnK8ZoFEQiZqQ8m1qYbwQ2AC6glgljkebwmofm2n4a0ANDhEKvk5HhISOjjvHxTAKBfvT6EnJy\nssjI2ERjYy6VlZCf/xAAra1tZGVlIoQfKUdwu8s4fpxpi4mpxqBo1IHRWH/Li+7bLbHyeh9T7rxz\nM/CvaJtZFWjeS1G0eUcNoAPagAyk1DEy4uOXvzyLlFmYzaepr9/Frl17cblMvPVWD+HwK2RkDDEy\nUoUQmbS2HgfupK6uhbGxVvLyNCfuG3kwLeS6K+Pn7Y2UkkQiQDLpQctyYWJ8PAvoJhIJIKWOSCQP\nk0kghJnxcSfJ5G48nnP4/X9HNJpBPL4FKXXAZbTQ0Eagk2RSEok8wtmz5wmFBti8+T7GxkaAMEJ0\nEotJkkk3ZWUPU1lZgdncypkzzxOPf0Bnp5kzZwJAmNLSAPn5I3PmPZ0qx2Vlgs2bm8jMZF56VxlX\nV5bFHjc2bCgB/GheShtTr68CI2hZWYqBic8cB7YjpYFoNJdkcpxYrJaxMRsZGQE8HhdnzrRN5sWd\nSV8uZZ679T6mKhaOMiwtEvfeu5Of/exlAoEStOSZYTSPJS+a4riLZNIK9KLTdRIKhUkmq9BuwccI\nBNowmQbQ6UoxmzNIJNLIzk5QUZFDVtYlhNjJpUs6+vuLGRvzoNNdJpHoJi1tiEikmkhkGyZTEQUF\n2SQSnWRlaeVS//Ef/28ikShwH4FAF6GQC6OxlNraGHv3NlFVVYXXe5b8/DFKShw0N2+fNuhNLEBq\na2upqem+4YLkRtUK5pokzrRLMzUn1EKVmFKIa4uGBjh8GD72Mc1z6ec/V8YlxcIpKMjD73+TX/7y\n3xkZKULKdDSDURtjY3qEyEHKSmArcAHNE8SEtnDPR6viYkSbDIbQJor1wGnS0w8D23A6GzCbg5jN\nBkymfgyGNOLxMaB0mu6pr6+npUXTSQ5HNgMDFdctJqYagwKBJjo7o7e86L7dEiuv953/M2fa0MLv\n7wMGgXNohqX61Hth4A2gG6u1hmi0lLNnnaSlZWEyFVFYOMSuXVBTk8bx4wPodBmkp0cIBCQejwuv\nN5dEwk8odAKDoY+XXhrm6NFBLJY6qqsNs+ZiupXrPjE+u1weGhoMWK1z55RUrE/KykpJJM6izZ99\nwHY0Q2kYKS8DJUipQ683k0xaSCYhPX0LkUiMYPAgOt3dGAx3kEgMo+U6fYiJXDY6XYhEwszYmJn+\n/jZ6ewUeTzbxeBCDoRBIJyPDQEZGJo888ggAfX0DhMMVdHdvwGzeDoyg07XT2JhNZeXshqLpRvwG\nZVxdQyz2uBGPR9GM/IVo+jkNTbbr0IynF9A8T13AANrc4y6kNHLp0klqaqykpZVgsRRz5owTIUZx\nOrWweKs1a1n15XofUxULRxmWFgmDQUc8PoK24LgAdKEphzy0HZMqtAXIKLGYIJnMIpnsAYrQykpv\nIjMzyvh4OjpdFuFwB2lpSTIzWzAaR7hypYP+/mzi8VPE40E0l8ly7PZ+8vIusmlTIx6Pi1CoHavV\nRHV1Ixcu9BGJDBKJlHP27AD9/S5KSqJUVvqprs4G4MCBt+noiAGZNDWFaGkRk4PftQuQqX9LKbHZ\nbLhcHoLBUazWLAoL829YrWAiqeFMBp6ZdmmktHHgwHF8PsuCXfFvViEqQ9TKc++98ItfwCc/CR/9\nKPzyl1BYuNK9UqxVpJRIKRkdvYjfn4aUETTX9C60SV4hUl4AmtAmfH3AebRwNwfQiZbLpgqtuosA\nihGiHKOxH52uCKPxHsbHzUSjLrKzzdxxx158vg8QIpOBgYrJPHYTRvMJHSqlxO+/SGcnmEwfeo5O\nNQZJKampsd82HkcLZb3v/NvtPUAlkIXmRVeLtut9Em1HPBtwYDZnk5V1F6OjZ4jFwkhpJRx20NUl\nOH26lZdfPkl3t5709BIyMkwYDOcIBo3k5W1lbKyDYPAseXnl9PQk6e9Po6CghM7Oc+Tnz+zBNJ/r\nfu34mkwm+dGP3k2N9WGeeqpaLVhuQ4TQPPA1fRxH08FGtNChO9CM+QlCoQ6ECKDTxYlGLyFlAiE2\nAneQSBjQ6YJI6UZLZJ+FTjeMxRLBYPBgMgVJS4uRnV1MevoGenp+BeRgMjVitRqw27vp7u7m0Ucf\nRQiBzWbjhz88xuDgcSBMWZmR5uZtcxZVWIgRfy7PUjUvXXoWe9zQQiiTaN6jJWi6OYRm8KxEMzr1\noHk0CbT5SA46nQcIU1QU4IMPBB98cBqPp5Xc3EYikSCXLukpL78XkynG3r3X5+BdCtb7mKpYOMqw\ntEj09PQSjxehJWW7hFb+N4y2GDGhueRGgRDxeBo6XVnqcwNADqFQHxUVEeLxJC7XIPF4P6FQgsrK\nPMrLW0hLe4murnPo9SY0q3cCbdJoxes9SWHhG9TUFCFlFuFwAe+8c5SMjDzuvvshfvGLVzl//gpS\nmgiFLDidfuJxPX19NtzuUfLyHgZy8PnaZlUSUwez/Pxcent7OXy4g2AwA693hNraTZSXe67zUCos\nrL9ucJ0t8eFMuzRnzrTR3i7Jy9vO4OBxWlvP3rJh6WYVorLMrw4eegjeflsLiduxA55/Hu65Z6V7\npViL2O12Xn3VTk9PEp9vFG2xYkYLIbKiTfqGgV4giKafdwIZaDrXjDbxS6Il4TyGTmcjLc2BlEOE\nwxuIRHpJJHIoKIhQVJRBYWGAsrICioruY/PmnZO6BzT9MjiYpKfnAhs31mAyxaioGJhWnXMqt5vH\n0UJZ7zv/FosRrRrcCJpxaSea8dOHVockBygjHjcSCnUhhItoNJ9kEnS6Knp7T/Ef//Fz7HYLodCd\njI6CwRCgsnKU3NwRRkfTycgIE4/noNNlE4sZMZkieL1u0tKCHD06hNdrITt72zQv40DAz9CQDZfL\nSVmZoKDgxl5NiUQ37e2ZizLWrwRqwb84OBwDaAvuDDRdK9D08D1oRv6cVJseqCGZLEJKP+BCynzS\n0sZIJoMYjXYyMgoJh61kZgYwGjMpLy/jzjs3cuFCnGjUhcfTQ0ZGJjU16UQiIeACOTlxQqE6Dh/+\ncM5XV1fHU09NVHnLvK6owmLPD+fS82peuvQs9rjhdF5FMxoZ0OYWZWihyn1oOcAy0TxP9anXbwEh\nMjJ2UlXVQjyeIB73A37C4RpOn9ZTWHiBrVtblt3As97HVMXCUYalaxBC1KIlLShAm619SUp58UbH\n9fT0kkwWo+2yDKAtOrah7R6eBwJAUaoktZ5kchhN0WwCrMTjYez2dozGjQQC6UA5V65E+fGPf8aG\nDWEMhsu43ZJ4vAlt8WNGM0wBFNLfn48QPnJyJAZDITrdVpJJOx7PJczmANnZmYAFny9JLBYmFmsg\nGEwQDvfjcPwEozGfujoDDoduxknR1MHM73+bgYGruN316PVB/H4zO3ZUEolARkaShoYAfX0dVFdX\nUFtbC0yfdDkcDiKRuUM+JnZpNFf/cOpWhNGU7q1xswpRWeZXD3ffDSdOwBNPwP33w7e/Dd/4BhiN\nK90zxVpCe6bz6emxoVVj2YiWJykbbTHeiqZfrWg7iAk0He1IfWYMIYyYTGPo9VkYjeVkZXnJzTXj\ncFQh5X0kEmcxGu08+uiXyM+3Ulvrorp6y3UhbBP6paAgh/PnwxQWViFEFZWVaqGwWKz3nFLV1ZvQ\nKgsNAw+iJYFNoC1cJvKA1RKPewgEfkpWVh1SpgHjGAxxQqEaDh/+FfF4GfG4FW18HUOIjdx/fyOd\nna0EAi5CoTjhcCHxeIxIpJ20tDgVFf8/e3ce39ZVJ/z/c2RZ8r7Kjrc4dhLbSRNncdMmXdK0FJoE\nZoGBh9Ih7UCHdYCHKcww8MDDDAzMwANDhxlgmB+lMGTaUCg7bVIGumRr0rRxEruJLTlxYstZbNny\nbkuydX5/XMmRE3mXbMn5vl8vvSTfo3vvsXTP0bnfe865ufT3J9Dc3Mv992+msfHoWMC0ocGLxbIE\nr9fOqlXVYXsqX9u7eWjoBMaJ1dx/6xeCnPBHxuuv13F1KokijOO5C+Ni7asYQzx3Aj601sAGTKYu\n/P4GlCrBZOpgZOQcIyPJ9PUpEhPNrFy5haSkC5SU+EhKspKfX8DGjdtxOF6jsnKAW299F93dvdjt\nDgYGNnLnne8cO54rK41AT1VV1bhAZ+hNFeazfSjt0uiL9O/G4OAwV9sVKzA6B4xg1NHtGMPr2wLp\nSRg9T/tJSbGQmHiRhoYMWloScLkgL6+IJUvWkZlZR2pq/7wHeBb7b6qYOwksXe8/ge9qrXcrpd6O\nEWS6daqVsrLS8ftfwwgkncPospuDMWYWjDhVA1qvDKR1Bt53OvDsx+O5BY+nF6NRaAPcuN1n6O3t\nRetyjJOgsxhX1/swfnBPAgV4PIM0NWlggISEUyxbVkh2dhY5OR0sX57ByZO99PWdJSFBY7OtpqVl\nhIKCOgoKVpKSksngoIPubi/792dTX//CuCFnWmuOHz9BY6Of6uqNnD9fh8+XR2qqGYfjHImJ5+no\nKGLp0lQGBhJpbPTh8aylsdFFeXkTlZWV1wSm3ED/dRMfhrtKs3HjeurrX8Ttrh/rfjxbM60QJTIf\nW8rL4eBB+PznjccPfwhf+Qr86Z9CQsJC507Eg9zcbByOn2C3v4AR/PdiNPj6MU5oRzECTOWBZR6M\nOtwRSF+LUqP4fC2kp4+Qn59EdXUZSuUwMODBZFpCf7+N7OwubLZ0SkpM3HPPXVRUVIQZwubAarXj\ndLZjtTZjt7tJSxuht7eCxsbGeb3F+2K12Ht4paamABcwAjKvYByzRRgXrUYwhl5kAOcYHQW324kR\nUHUyNKQxeuwVYrQ5LgO1pKaaGRxM4MCB43R1XaazcwClUliyJIHR0WRSU12YzU14vRmYzVY6Oi5z\n8OBvKCkxkZtrXAyy2/1UV2+lr28p6elqbDjRZPMvVldvwuu9EJHf+oUgJ/yRceWKC2PoW/AkOwnj\n2O7DmOOuGyPI1IlRX5/A7+/GZCokLS2XgYHL+P0ZKLUTrU9itb7OkiUtrF6dz9atZXR391JfbyEl\nJZHNmyvYvv3q8M2cnCwaGrw0Nh6dss23UO1DaZdGX6R/N4w5luoxAkYejGN5COMUvBCjV94AxgUs\nN0bw6TwlJadJT8+nra2c/PwVdHW9QEJCI1lZNtauzeWuu0qmPSF8pAQnDQfHhMNAxY1NAkshlFJ5\nwM3AmwC01j9TSn1LKbVca31usnV9Ph9ad2DcEa4H44dRY3TbzcRo/A1iVCx3YlxhbAs852P0dDIF\nHiMYlcxhIJXR0U0YDUUT0IRRMa0O7KsLWI3Ww4yMFKBUFSMjDpqbL6J1MkuWJJCenkdKygWGhhRm\n8wr6+nzAy7jdfdhs67n//g/y4x//J42Nr1BQoGhsdLJmzYmxwJLD4aC+3o3T6cXp3EdRUQcZGRqH\noxuTKZnMzHQKCy9y3307qa09SWNjH9XVlfT26rHGVWij68wZTWlp66QTHwZVVFSwdet5zp9vpays\nbE6V50x/LCQyH3ssFiOYtGsXPPIIvP3tsGIFvO99xgTfVVUgv28iHK01DQ0N/PCH38KY1yAf48Qk\nEeOW7I2Bv1Mw6m8LRm/TZ4ASAJTyk5p6KyZTAevXD7F+/T3U1MDly5cYGnIzMnKB7OwU7rrrLaxe\nnUdeXu64ibpD655gfdLR0UlDQz6nTnVhsSzjwIHzHDx4kczMm6Tng5jUhQvNGBMbr8U4KQnemTYb\no3dHB8YcYvkYQ4ncGCcxZoy7HfZhtE/WYQRPLzI0tJKurnP4/W4GBkrxev8MpRppazuJ1ZpIZuaf\n0tl5DK/XwYMPfpHm5pOkpZ0iP7+S5uZm6uq6cDp9OJ37qK5W2Gx3AtcHXtLSNNu35wSGF0FZ2TrK\ny8vHBVTjiZzwR0ZXVwdGM7wYoy6uwujRUYoR8D8O/BKTaQsmUzIJCQ5GR69gNneSkjLK0FAPWleg\ndTl+/zlSUjRVVUNUV+dQXl5ORUUFNTVXb0SjtR4LeFosXlatskzrZH2h2ofSLo0/fX3BeXFXYJwX\n1mJMj7Icoy4u4updxI8DPSxZkkpJyXK6uzNob79IZeVKKitzWLMGbr/dGI5ZWVm5IAEd6Z0pJiOB\npfGWApe01v6QZS0Yv2iTBpYOHjyE0RW9GKMxdxbjxzANo9GXizGe9iLGnVt8gTXzgTsCfzsD6ywP\nvC89sG4yRjDpdYxJZVMwglJujBMiI3oMGSi1BK07MJm6ycpajsfTg1ImKivfzpUrMDLSy+Cgnfz8\nNEZHy2hqOsfBgz9laKiJvj4LJlM+w8PNXL58aex/c7m6yMhYx86dudTV7efOO1egFPT1ucnNLWNg\noIKWFifnz59n//6z1Nf309BwgS1birHZ3gCMb3QlJXVSU7NhWhVRU1NT2B5Q82GxX+2OZ2vXwv/8\nD7zyCvzrv8IXvwif+Qzk5sK6dVBYCDYb5ORAVhZkZhrPWVlGWnm5DKO70djtdt7//o/i81mBrRhX\nCo9hnIRbMIJHbow61ozRRX0o8J6VmM1LACtmcwv5+YMsW3YTpaVp5OYm0tGRSkVFMV5vCzt3bhmb\n9HUyofWLUoquLli1agv79j0GpLB5s/R8EJNrbzcuLMHtGMfvQYwmSxtGm+EOjOEWuRjH9BqMdkhO\n4OHGOM6N54SEJVita/F6RxkZOcXIyDbM5vUo5cds/jUpKWvp7CxkYOAWjEKPUgAAIABJREFU4Di1\ntS9SUGDC6y2itbWUI0eOkZiYz86dG6mr28/ateljJ742Ww4WSyMHDvwar/cC/f3GvIrt7Sl4PDba\n25vYsaOS22/fMn8fYATJCX9kjIz4MC7ADmFcmE3GmLvUitHWNSY0Tk9Px2z2k5hYgtlso6xsOT7f\nRZKSFF1dgwwO/o6srA5Wr76NoaFCWltLaW93XNeuu3ZIW3o60zoGF6p9KO3S+ON2d2PUvWsxzvVa\nMc4VszAC/26M+lkB5aSltZKVVUB3dw15eRbS048DL3PbbWU8+OD9Cz73nPTOFJORwFKEGLP+B68U\nnsZozA1iDLWwYPxQ5gAvYfxAZmEEnTowrjKOYASWRjF6JqVgRLdXYPRSagHSUeoulDLj97+MUTmV\nA5dJSBjFZLIzOurCZOrGbC6ju/scK1aYycqyYbefxePpJi0tE6u1h9HRm6isvBmtU1ixopfCwmJ6\nekwkJ2cxPLyEwsIlY/+bzZZDUpKdvj5FVVUBN99s1CBHjjyHw9FNcXEaFkspr7zyKhcvZpKXdzMd\nHUew2YbHGlezbXRJBSYmc+ut8OSTMDgIL7wAr70G9fXQ1gYnT4LbDd3dRnookwmWLYOKCqPH09Kl\nUFJiPGw2SEuD9HTj2WqVXlCLQW3tSTo6XBhXwMG4OtiIMVwoJ+Sdr2HUzZcBF5mZa0hIuBWfr5vM\nzJPcffdytm3byqpVN5Gfb6OjoxOvV7F169UTk5leRQwNvGdnjwKD0vNBTGnJklyMYzid4An31clg\n7wOWAEcwJoxdhdHuyMVoTwxitFmMO2YlJJwnJWU5NpsJrzcbszmTixfr0bqTpCQnGzaU4febaWnp\nYdWqlfh8o+TktLB27UZaW405Ezs62vF67fT1LaOqqoCamqtX1CsqKmhubqa5uQ6LpZSGBi9u90k8\nntJF8fsuJ/yRdAXjGO7AuN7bjXHR1QPAkiVbWbq0nVWrTFgsWcDt/MmfPMShQ7/l8uUDtLa2c/ly\nM2vWbKGoKBWLZdmEx5j0NBPRpnWw40BzYIkJ466yuRg9mF7FOMaXkZKSTUXFCszmIjIy8hkcHKCq\nKoUdO9ZPeFOP+SZlRkxGAkvjtQKFSilTSK+lUoxWWFiPPPIImZmZ+HzDwC8x7laRiNHjqAjjymEO\nRnS6GyPwFAwcDQdev4jRc0ljRLPbA48ClOpA62YSE5NJTi7C42kkKSkDpfpQKhmzeZCMDBdLl+aT\nmLgcp7MOs7mMTZu24PF080d/VMjGjRuorT3J5cuXKCgoYGCggLq6QazWyxQX53DPPVVorensPITb\nfZHs7DQ2btww9j9OFBTaubMZMBqJxcXJ+P1pQAqZmcsYHXVSWJg+1qicbaNLKrDo2LNnD3v27Bm3\nzOl0LlBu5i4lxbhr3FveEj7d54OeHiPQ5HRCUxM4HMbj0CFjWVdX+HXNZqPnU26u8VxQAMuXG48V\nK4znkhIjACViXXDujlaMYUA9GAGkdoyT7n6CJ9wJCbBy5RIKCt6KxbKKK1cO8OY3b+XLX/4SJpMp\nZJv2OddRoXVsbu7dQPAW7tLzQUzsj//4T/nZzz7G6OhFjPZEJkYwKQdj+H1wuP0ljItWfYHXV7Ba\nO0hLSyclpYq8vBSWLLkVi8XK6GgHw8OKkpI343QeIyHBzsaN63jwwQc5fPgw//3fx9FasWSJhXvv\n3UJ5eTnt7cbxX1ysWLWqOuxQIqUU6emZFBffOXaSDy1YrS75fRfXOItxepKNMX9YI0av/HVkZ9+C\nzWZl06bVPPLIOwDj7mx2+ysUFyvuvfeNpKVl0N/fO/Z87Y0TQklPMxFtSpkxZlM5wNU5HXsxzgm7\ngELMZh82Wxc2m2b58tWMjiaSm9tFWlovO3feNa1e0PNFyoyYjDLuqiCClFLPA/+ltf4vpdQ7gE9p\nra+bvFsptQPY+3//7/+lqqqKP/zhDzz55O/xeMwkJIyQk5NAZqYVv3+U0dFEhoZ8DAy4GR1NQakM\noIe0NC+5ublYrUn09/dhNicyOupjeDgZr3eIvj5ISMjGah0gKyuT1NQCRkYuUlycydKlJSQlJaOU\nYtmyUpRS9PcPMDQ0yMWLI4yMZJCY2Mu6dYUUFhZe939eunSJ/v4B0tJSx9LDLZtK6Dpaaw4edDA4\naCElxcvWrZXT3s509xGJ7YnwnnnmGfbs2cMnP/lJNm7cuNDZmXcejxF46u83Xg8NGc+DgzAwYCzv\n6zN6QLW3g8sFodVnRoYReEpPh8RE4zE6Cl6vEdjy+YzXoX/7/UbgymK5uo7ZPP45IQFGRsavPzJi\nbDv4HNyO1WpsKynJeB18JCWNX6bU+PWDj2v/Hh0dnz+L5erDbDbyFnwOPsbFXGZJa+MRmp9rXwc/\nj+BnGXzs2GEMdYTxx3RBQQHf+MZ/cunSCEYPURfGyXiQCYvFTFHRUrKzM1i1ajUlJcU0NroZHLRO\nWqdJHSXmy7XH9PPPn+APf3gWr9eNMY9HOsbQikGMC125KOUnKSk50PvIQ2FhIevXb2Dp0mIGB4cA\nxtoRfX39DA8PkZSUTHp62rjjWWtNXV0dLlcnNlsu1dXVKKWmffxfunSJU6cu4fNdbZ8AUnZucKHH\n9I9+9CM6OlK5ekOFEUwmE9u23YvFYiI1NZXk5GTWr19PUVERMHX9K/WzmE/XtqW/+tWvUlfXjNFx\nINhASsRsHqG8vITS0mWkpCSxdOlS0tLSsFqT8XjC18FCLITGxkb+8R//EWCn1nrfZO+VwNI1lFKV\nwA8x+ij2AO/VWr8e5n3fAj4yv7kTQgghhBBCCCGEmDff1lp/dLI3SGBploI9lv77v/+b1atXR31/\nWmtaWlro7u4lKyuD0tLSmOkWKRaHX/3qV3zxi19kvo5pEVlSR1xPjmmx2Ex0TEv5F/FK6mkRr8LV\nu7/+9a9ndTxLHS5i1ZkzZ9i1axdMo8eSzLE0e+0Aq1evpqamJuo7s9vttLYm4vFU0dfnYs2adLm9\no4ioM2fOAPN3TIvIkjrietM9pi9fNoYKZmXNV86EmJ2Jjmkp/yJeSdtDxKvJ6t2ZHs9Sh4s40D7V\nGyIwG4aYD6F3R/N4bLhcE8w0LIS4IUkdMTsHDhh3CFy+HM6dW+jcCDE7Uv6FEGJ+RbLelTpcLAYS\nWIoTxt3RQu+ekjP1SkKIG4bUEbPziU/AqlWQlgaf/vRC50aI2ZHyL4QQ8yuS9a7U4WIxkKFwcUJu\n7yiEmIzUETN35gy8+ir8/OfgdBpBpvZ2yM9f6JwJMTNS/oUQYn6Fq3ePHTsWsW0JEW8ksBQnlFJU\nVlYiw22FEOFIHTFzzz5rzK20cyf09cHHP24se897FjpnQsyMlH8hhJhfkax3pQ4Xi4EMhRNCCHFD\nOnAAtmwxgkt5eXDrrfDMMwudKyGEEEIIIeKLBJaEEELccLSGgwdh69ary3bsgOefN9KEEEIIIYQQ\n0yOBJSGEEDeclhbo7ITNm68uu+MO6OoCu33h8iWEEEIIIUS8kcCSEEKIG059vfFcXX112ebNoBQc\nPrwweRJCCCGEECIeSWBJCCHEDae+HtLTYenSq8syMmDtWjh0aOHyJYQQQgghRLyJ+cCSUurNSqnX\nlFK1SqlTSqmHAsvzlFJ7lVL2wPKtIeskK6WeVEo5lFINSqm3h6QppdS/K6WaAut+5Jr9fS6Q5lBK\nfWn+/lMhhBDzpb7eCCIpNX755s3w2msLkychhBBCCCHiUcwHloDdwENa643AHwP/qZRKBb4KvKy1\nrgQeBp5USiUE1vkbYFhrXQHsAL6jlMoOpD0IrNJarwQ2A3+rlFoNoJS6C7gfWAusAbYrpXbOy38p\nhBBi3gQDS9fasAFOnwavd/7zJIQQQgghRDyKh8CSHwgGhTIBF+AF/hfwXQCt9atAG7At8L77Q9LO\nAy8CbwukvRP4XiDNDTwFPBCStltrPay19gKPh6QJIYRYBLQ2Juiuqro+bcMGI6jU0DD/+RJCCCGE\nECIexUNg6V3AL5RS54H9wF8A6YBZa90e8r4LQGngdWng76DzEUgTQgixCLS3w+AgrFhxfdq6dcbz\niRPzmychhBBCCCHilXmhMzCZwNC2zwFv1VofUkptAn4NbADUpCvPk0ceeYTMzMxxyx544AEeeEA6\nOonYtWfPHvbs2TNumdPpXKDcCDG/zp0znpcvvz4tPd0IOJ04AQ89NL/5EkIIIYQQIh7FdGAJI4BU\nqLU+BMaQN6WUE1gH+JRS+SG9lsqAlsDrC8Ay4EpI2nOB1y2BtKNh1gumESYtrEcffZSampoZ/ltC\nLKxwwc8nnniCXbt2LVCOhJg/wcBSeXn49A0b4OTJ+cuPEEIIIYQQ8SzWh8K1AoVKqVUASqmVwHKg\nAfgp8OHA8luAIuClwHpPAx8KpJVjzL30y0DaT4H3K6VMSqkcjPmYngpJezBwVzkrxqTgP47qfyiE\nEGJenTsHeXlG76RwNmwweixpPb/5EkIIIYQQIh7FdI8lrXW7UuoDwE+UUqMYgbCPaK2dSqlPA7uV\nUnbAA7xbaz0aWPVrwONKqSZgJLBOVyBtN7AJcGBMDP51rfXrgf29pJR6CqgHNPBjrfWz8/PfCiGE\nmA/nzoUfBhe0bh10dcHFi1BcPH/5EkIIIYQQIh7FdGAJQGv9FFd7FIUubwe2T7DOIMak3+HS/MDH\nAo9w6V8CvjTb/AohhIht0wksAdTVSWBJCCGEEEKIqcT6UDghhBAiopqbJ55fCWDZMmOY3KlT85cn\nIYQQQggh4pUEloQQQtwwRkagrc0IHk1EKaiulsCSEEIIIYQQ0yGBJSGEEDeMK1fA74eSksnft26d\nMRROCCGEEEIIMTkJLAkhhLhhOJ3G81RzJ1VXw5kz4PVGP09CCCGEEELEMwksCSGEuGEEA0vT6bHk\n80FjY/TzJIQQQgghRDyTwJIQQogbhtMJSUmQkzP5+6qrjWeZZ0kIIYQQQojJRTywpJT6glJqkmlR\nhRBCiIXR1mb0VlJq8vdlZhoTfMs8S0IIIYQQQkzOHIVt/inwWaXUS8D3gZ9prT1R2E/c01rjcDhw\nubqw2XKoqKhATXW2I0QMkmNZxAunc+phcEFyZzgRy6TeFUKIyIp2vSr1tljMIh5Y0lpvUEptBN4L\nfBP4tlLqx8DjWutjkd5fPHM4HOzbZ8fjsWG12gGorKxc4FwJMXNyLIt44XRCaen03rtuHfzXf0U3\nP0LMltS7QggRWdGuV6XeFotZVOZY0lrXaq3/N1AE/CVQAhxSSp1SSn1cKZUZjf3GG5erC4/HxqpV\nW/B4bLhcXQudJSFmRY5lES9m0mNp3Tpj6FyXHM4iBkm9K4QQkRXtelXqbbGYRXvybgUkApbAazfw\nUaBVKXV/lPcd82y2HKxWFw0NR7BaXdhsU8wmK0SMkmNZxAOtr86xNB3BCbxlniURi6TeFUKIyIp2\nvSr1tljMojHHEkqpmzGGwj0AeIAfAR/RWjcF0j8G/BvwVDT2Hy8qKioAAuNsK8f+FiLeyLEs4oHL\nBV7v9ANLlZVgsRjzLG3bFt28CTFTUu8KIURkRbtelXpbLGYRDywppeqAVcDvMIbB/UZrPXrN2/Zg\nzL80ne1ZgH8BtgNDwEmt9UNKqTyMgNUKYBgjcHUgsE4yxsThtwCjwGe11j8LpCmMoNZOwA98U2v9\n7ZD9fQ54D6CBp7TWn5vpZzBdSikqKyuRobUi3smxLOKB02k8TzewZDbDmjUygbeITVLvCiFEZEW7\nXpV6Wyxm0eix9BOMibrbJnqD1trF9IfhfRXwa60rAZRS+YHlXwFe1lrvVEptAn6hlCoLBLH+BhjW\nWlcopcqAo0qp57XWbuBBYJXWeqVSKhuoDaSdUUrdBdwPrMUIOh1SSh3SWu+d4WcghBAixgQDS8XF\n01+nulqGwgkhhBBCCDGZiM6xpJRKxOjtkxGh7aUADwOfDS7TWrcHXr4T+G5g2atAGxAcrHB/SNp5\n4EXgbSHrfS+Q5sYYjvdASNpurfWw1toLPB6SJoQQIo61tRm9kPLzp35v0Lp1RmDJ749evoQQQggh\nhIhnEe2xpLX2KaWSIrjJFUAX8Fml1BuBQeALwAnAHBJkArgABG8iXRr4O+j8FGmbQ9IOXJN2w08y\nrrXG4XAExgPnUFFRgTGiUAgxF1K25pdScMstkJAw/XXWrYPBQTh3DlaujF7ehIgGqWOEEPNJ6pzp\nk89KLDbRGAr3beDvlFLv01qPzHFbZmAZUK+1/oxSagPG3E1rMe4yJ+aBw+Fg3z47Ho8Nq9UOQKUM\nDhZizqRsza8PftB4zMS6dcZzXZ0ElkT8kTpGCDGfpM6ZPvmsxGITjcDSLcC9wH2BibwHQhO11n82\ng221YEy+/WRg3RNKqfNANeBTSuWH9FoqC7wfjB5Jy4ArIWnPhWxzGXA0zHrBNMKkhfXII4+QmZk5\nbtkDDzzAAw8snhF0LlcXHo+NVau20NBwBJerSyadi3N79uxhz54945Y5gxPQiHkjZSv2LVkCeXnG\nBN5ve9vU7xcilkgdI4SYT1LnTJ98VmKxiUZgqRv4WSQ2pLXuVEr9AdgB7FVKlWMEe04DPwU+DHxB\nKXULUAS8FFj1aeBDwCuBdbYF3ktgvfcrpZ4GsjCGur0lJO1bSql/x5i8+2Hg7yfL46OPPkpNTU0E\n/tvYZbPlYLXaaWg4gtXqwmaTWi/ehQt+PvHEE+zatWuBcnRjkrIVH9atkzvDifgkdYwQYj5JnTN9\n8lmJxSbigSWt9XsjvMkPA99XSn0Vo/fSB7TWl5RSnwZ2K6XsgAd4d+COcABfAx5XSjUBI8BHtNZd\ngbTdwCbAgRE8+rrW+vVA3l9SSj0F1AMa+LHW+tkI/z9xp6KiAiAwBrhy7O/JyLhhIaY2m7IVbVJ2\nr7duHfz2twudCyFmTn6/hRBzNZM6IRbbNbFqrp+V1NUi1kSjxxJKKTNwN8bk209qrfuUUkVAr9a6\nfybb0lo3A28Is7wd2D7BOoPAuyZI8wMfCzzCpX8J+NJM8rjYKaWorKycUfdMGTcsxNRmU7aiTcru\n9aqr4V//FQYGIDV1oXMjxPTJ77cQYq5mUifEYrsmVs31s5K6WsQaU6Q3qJRaBtQBv8KYyDsvkPR3\nwNcjvT8Rm0LHDXs8NlyurqlXEkIsOCm711u3DrSG119f6JwIEX1SBwghQkmdEJvkexGxJuKBJeCb\nwKtANjAUsvwXGJN6ixuAMW7YFTJuOGehsySEmAYpu9e76SZISIATJxY6J0JEn9QBQohQUifEJvle\nRKyJxlC4rcDtWmvvNeM8zwPFUdifiEEyxlqI+CRl93rJyUavpSNH4AMfWOjcCBFdUgcIIUJJnRCb\n5HsRsSYagSUTkBBmeQnQF4X9iRgkY6yFiE9SdsO77Tb4wx8WOhdCRJ/UAUKIUFInxCb5XkSsicZQ\nuN8Bfx3yt1ZKpQFfAG74O6wJIYSIP7ffDo2N0Nm50DkRQgghhBAitkQjsPRJ4A6l1GkgCXiSq8Pg\n/i4K+xNCCCGi6vbbjecjRxY2H0IIIYQQQsSaiAeWtNZOYD3wZeBRoBb4NLBRa90e6f0JIYQQ0VZW\nBgUFcPjwQudECCGEEEKI2BKNOZbQWo8ATwQeQgghRFxTyphnSQJLQgghhBBCjBfxHktKqc8opd4b\nZvnDSikZCieEECIu3XEHHD0KXu9C50QIIYQQQojYEY05lj4InA6z/HXgQ1HYX0zQWmO32zl8+Ah2\nux2t9UJnSYgbmpRJEWlveAMMDcHLLy90ToSQOk4IMT+kroks+TzFYhWNoXAFQLi5lDqAwijsLyY4\nHA727bPj8diwWu0AVMr9H4VYMFImRaStXw+5ufD738O2bQudG3GjkzpOCDEfpK6JLPk8xWIVjR5L\nrcAdYZbfAVyMwv5igsvVhcdjY9WqLXg8NlyuroXOkhA3NCmTItJMJrj3XiOwJMRCkzpOCDEfpK6J\nLPk8xWIVjcDS94B/VUq9Vym1LPB4GOMOcd+b7UYD2/Mrpf4k8HeeUmqvUsqulDqllNoa8t5kpdST\nSimHUqpBKfX2kDSllPp3pVRTYN2PXLOfzwXSHEqpL003fzZbDlari4aGI1itLmy2nNn+q0KICJAy\nKaLhTW+CV16B7u6Fzom40UkdJ4SYD1LXRJZ8nmKxisZQuK8BucB3AEtg2TDwVa31P89mg0qpZcD7\ngNCZLb4CvKy13qmU2gT8QilVprUeBf4GGNZaVyilyoCjSqnntdZu4EFgldZ6pVIqG6gNpJ1RSt0F\n3A+sBfzAIaXUIa313qnyWFFRARhRaJutcuxvIcTCkDIpouGNbwS/H55/Hv7szxY6N+JGJnWcEGI+\nSF0TWfJ5isUq4oElbcxA9ndKqX8EVgNDgENr7ZnN9pRSCngM+CjwjZCkdwIrAvt8VSnVBmwDnscI\nDj0cSDuvlHoReBvweGC97wXS3Eqpp4AHgM8H0nZrrYcD+348kDZlYEkpRWVlJTJEVojYIGVSRENZ\nGaxZA7/6lQSWxMKSOk4IMR+kroks+TzFYhWNHksAaK37lVKXAq9nFVQK+ARwQGtda8SYQCmVA5i1\n1qGThF8ASgOvSwN/B52fIm1zSNqBa9Lun0PeZ0xrjcPhCESxc6ioqCD4fwsh5p+USXGtt74VvvMd\nGBkBc9R+RYWIPKnPhFj8pJzHH/nOxGIQ8SaxUsoEfA74JJAWWNYH/AvwZa21fwbbWgO8Hdg61XsX\nC7lTgBCxRcqkuNbb3gZf/jIcOAD33LPQuRFi+qQ+E2Lxk3Ief+Q7E4tBNK61fhn4S+DTwKHAsjuB\nfwCSgM/OYFtbgWWAIzAkrgD4/wLbGlFK5Yf0WioDWgKvLwTWuxKS9lzgdUsg7WiY9YJphEkL65FH\nHiEzM3PcsgceeIAHHnhg6v8ujNA7BTQ0HMHl6pKukiLi9uzZw549e8YtczqdC5Sb2CZlUlyrpgZK\nSuCXv5TAkogvUp8JsfhJOY8/8p2JxSAagaW/AN6ntf51yLJTgTmQvsMMAkta6+8C3w3+rZR6AfiG\n1vo3SqlbgQ8DX1BK3QIUAS8F3vo08CHgFaVUOcbcSx8OpP0UeL9S6mkgC2Oo21tC0r6llPp3jMm7\nHwb+frI8Pvroo9TU1Ez3X5qScacAe8idAqRWEZEXLvj5xBNPsGvXrgXKUeySMimupZQxHO7nP4dH\nHwVTNO6vKkQUSH0mxOIn5Tz+yHcmFoNoBJZygIYwyxsCaXOhgeCA008Du5VSdsADvDtwRzgw7kz3\nuFKqCRgBPqK17gqk7QY2AQ6M4NHXtdavA2itXwpM5l0f2NePtdbPzjiTcxgnK3cKEGJy8z0OXcqk\nCOdd74JvfQv274e7717o3Igb0WzqQqnPhFg489V+kXIee6b67uU7E4tBNAJLJzHu4Pa/r1n+0UDa\nrGmt3xDyuh3YPsH7BoF3TZDmBz4WeIRL/xLwpbnkcy7jZOdypwCZ+E3Eqkgem/M9Dl3u3iHCuf12\nWL4cdu+WwJJYGHa7nd27D+F2p5CdfZoHH9RUVVVNuo7UZ0LMr9D2T19fDw0NXrzevKi2X6Scx56p\n2q4TfWdybifiSTQ68H8KeFgpdVop9f3A4zTwHuBvo7C/mBM6TtbjseFydU29UgQEK61Dh2DfPjsO\nh2Ne9ivEVCJ5bC5U+RIilFKwaxc8/TQMDS10bsSNqLb2JHV1msHBDdTVaWpr53TtTggRBaHtn717\n62hr09J+uQHNtu0q53YinkQ8sKS1fgmoBH6BMYdRFvBzoEprfSDS+4tFxjhZV8g4WWMEoNYau93O\n4cNHsNvtaK0jul854RaxKpLH5kTla7qiXQ7FjWPXLujthd/8ZqFzIm5cg0B34Hn2pF4UIjpC2z8W\nSyle74VZt18mIuU39s227Ro8fqqqNuN0DvLCC/vlOxYxK6JD4ZRSZuD/AI9rrWdy97dFZaJxsuG6\nQVZUVESsi+PVid9epqfnDC0tadJtUsSESE5KONdx6NMdSifdj+NLuO8r2ioqYMsWePxxeOc7o747\nIcbZuHE99fUv4nbXU1SUSFZWBocPHxlXX023HpNbXQsRHaHtn+LiZFatqiQ9nYjOo3O1/ObS03OQ\ntWtPUFOzYdz5h7RlFlZFRQVaX+1ZqrVGaz3ldxE8fg4e/AknTpyirW0pra0HpzX0WYj5FtHAktZ6\nRCn1KeBHkdxuvJlonGy4W0lC5BpzwR+Q48dP0NPjo6VlKe3t0kAUCy+SkxLOde6A6d7SVU604ku4\n72s+fOAD8Jd/CefOGXMuCTFfKisreeghdc3cLYyrr6Zbj8mtroWIjvHtn6qoBHaC5Tc9fSkHD57G\n7e4da/8D0paJAUoplFK0t6fg8dhob3eMtWcnEzx+9uz5CaOjNhIT76au7hC1tSclsCRiTjTmWPoD\nsC0K24174bpBTjVEaCbdW4MVVGlpKZmZ61m9+jYZEidiQvDYvP32LVRWVs6qURWprt7T7Y4sQ0vj\ny0J9X/ffDxkZ8L3vzcvuhBijlKKiogKbLYfz51tpaxuiqmrzuON/uuVirkOMhRDhTaf9M9f2TbD8\n1tUdAAaprr5rrLxLWyZ2hH4Xw8O5HD9+YsrvPHj8VFVVkpZmRqm5D30WIlqicVe4vcBXlFLVwGvA\nQGii1vrXUdhnXAjfa8Mx6RCh2fSaiOSwIyFiRaR6EE2395SUo/gS7vtqbj4b9f2mpMBf/AV8//vw\nhS+AxRL1XQoxJlgvOp35nD17GvgpJSUpY/XVdOsxudW1EAtnru2bYHnNzz9Bfb2F3t5OkpI6x8q7\ntGViQ2h93Nt7ivr6RFpbmdZ3Hjr0ubjYwsaN6+cr20JMWzQCS98JPH8iTJoGEqKwz5gx0Twfoctu\nu23z2BWLaxtzK1euxG63j723o6Nzxt3TpYEo4tVk84GETmB48OBveOGF/QCTdiufaHvTGUon5Si+\nhPu+jh07Ni/7/tCH4N/+DX7+c3jXu+Zll0IAxvE+PJxDSoqVvr6vDsjMAAAgAElEQVRTDA8foqJi\nBx0dnYCdlStXsmPH1PWY3J5cxJp4n+dwovyHWz7XoajB8ltRUUFNjSNseZe2zMII/b5zcrKoqEjg\nlVd+T2+vi6SkN1BVtZnGxqNTfuehQ5/nax5JIWYq4oElrXU0htfFjYnm+ZjoSsS1jTm73T7uvVVV\niVitvhldaZAGoohXk121uzqB4W8CV+aX4/FMfpVnLlcBpRzFl4X8vlavhm3b4D/+QwJLYn7ZbDk0\nN/+Kgwd9+P2jDAx48PmOsXz5fVitdnbsQOoxEZfifZ7DifIfbnmkekhP9DsodcDCCf2+e3oO09l5\nmYsXC+nv95CQ8DIAJSWmKb9zaZOKeBCxIJBSKlkp9Uchf/+zUuobIY//p5RKitT+YlVHRydO5yBa\ng9M5SHu7i+PHT9DQcInBwR4aGi5x/PiJsGNptdYcP36CxsbLpKfnMDycS1paBjt2VHLHHbBjh1xp\nEPFjNnMGhJsLILid9nYXqalX0PplsrOTuOOOd0w5X0Ck5xaQW/qKiXz0o7B/Pxw/vtA5ETeSiooK\nCgs9pKWNsG7dZq5c8fHqq7WkpGRy8qSDxx77Ac899xx+v3+hsyrEjMTi3EAzaQNMlH+jl2Eu6ek5\nNDZe5vjxE4GehUZbf/t24+5hU+1D2iPxoaOjk9bWAdrbWzh69CR2+yVMpiJ8vnT6+8+RmnqK7dsr\n5PxOLAqR7LH0F8BbgN8G/v4o8DowFPh7FXAZ+EYE9xlz+vt7OXv2HK+/7icp6TwNDb289pqbY8c6\n6O2tY+nScnJyEqipcVx35cXhcFBf34/TqXA6n6O62kJe3j0SoRZxKVLzg12dQ8TP2bMdZGeX4nb3\ncOjQ0+PmEgkV7Hrc0tJCT08/DQ0aq7VzznMLxPsVVBE9b30rlJfDv/wLPPHEQudG3CiUUmzefAsH\nDvyOQ4d+SW+vYmiojO9971GGh4cpKNjG2bO1AGzfvn2BcyvE9MXCPIfXDlvTWvPcc45ptQEmyr/N\nlkNv7wscOuQFUqiv76empmmsrX/tyIWJ9iHtkfjQ39/LyZMnaGvLwedLxGy2c/bsLxgeziMjI5/L\nl01jd4ybTLwPDRU3hkgGlt4N/L9rlv251vocgFJqF/ARFmlgKVjgm5tbyM4upKJiA52dKTidJ7Hb\nTYyMwOCgmbKycjIzl4QdS+tydZGZuZqdO0upqzvA2rUmiWCLuGVcrcslPX0pdXXnyc8/MeUPYbg5\nx37yk6dpbPSTklLM8HAZFRXL6OzsYMWKdu65Z0PYMhJscA0PLwVOsXRpKzU14d878/9Jbsktrmc2\nw1//NXziE/DP/wylpQudI3GjeOMb38jPfvYLTp92kZm5jYyMEjye50hOLuHOOx/m+PEfc/ToMdLT\nM+WERMSNWJjn8NrgTX7+IB5P6ZRtAK01Wmvy8weBFjZuXD+W/4qKCtauPYHb7Wft2jtpbj40bs7I\n6bYzpD0SH9LSMsjLW0Zi4k1YrYP09w/T3Z1EcvItWCwDXLlSxzPPPEtHRyd5ebkT1s8SSBTxIJKB\npZVAXcjfw0Bo3+tXgG9HcH8xxeFw8OyzDRw61EVT0zl6erq5445yrlwZor3dh9YrGB19lfb2k6xf\nf3PYKy/Bqxt9fYqqqjRqamZ3W3YhYoHNlkNPz0EOHjwNDFJfb7mup14wINvR0Ul/f2/gBzh3bIJ7\nu91Ofb0bp9NLf387CQmX6Ow0UVKSwj333DXhj2qwwbV69RYaGhSlpZH5AY6FK6gidj38MPz93xsT\neX/96wudG3GjaGpqoqPDwshIEh5PI1pfoqrKj1IeamufYmTkVS5dKuDQoendfUiIWBALc8qEBm/O\nnHmZixcd1Nc3cOLECcrKEsnNvTPseg6HI9CzqRSr1TWuR4pSipqaDbS322luPszZs83ATWNzRk63\nnSHtkfhgs+WQkdHHhQtHGR11sWTJMLm5mbS3N3P58kX6+0fYu7eDS5c6KCnpBMLXzxJIFPEgkoGl\nLMAa/ENrnXdNuik0fTqUUlbgx8BqjCF17cBfaa3PKqXygB8BKzCCWB/RWh8IrJcMfB+4BRgFPqu1\n/lkgTQH/BuzECHx9U2v97ZB9fg54D8Yd7J7SWn9uOnl1uboCJ8DL6ekZwuF4iQ0b+rFak0lLSyYr\nq4z09A42bVITzpUUC1dnhIiUq1fleqmu3k5vb+d1P4RXh7kNcvbsOVasuIniYhfNzc2kp2fS0tJC\nRkY1O3faqKt7iZUrl3DrrUvHrupMJFoNLimjYjJpafDBDxqTeH/+85CRsdA5EjeC2tqTXLqUh8lU\nzNDQSTIz63nnO9/N0qVLuXDByeDgUrzeW2bUe1QIcf3t4V0uH05nAh6PHb9/hOPH01BKXVeepgoC\nBNsORk+lm7jzzj8euzPYbbdtHtvGZO0MaY/Ej5ycdLKyztDScomRkRoyM0fIyztPQUEZhYXLOXNm\nCJutEo+ne8KAkQQSRTyIZGDJCawFGidIXxd4z0z9p9Z6H4BS6iPAY8A9wFeBl7XWO5VSm4BfKKXK\ntNajwN8Aw1rrCqVUGXBUKfW81toNPAis0lqvVEplA7WBtDNKqbuA+wP/hx84pJQ6pLXeO1Umc3Ky\nsNv/B7vdh82WzchIEQcONJObuwaTqYXs7GaWLbOSnp44Nnl3ZeX4HknRvDojY3PFbM322Am9KtfX\n10VSkjHHUXDCydrakzQ22unvr8BmK+X11/3k5lZQV/cihw6dpqzsTnp7mxgaamDJkg1UVhawc2fV\ntK60hxtSZ7fb53z8z7WMSjlc/D72MfjGN+C734VPfWqhcyMWs2B90thoZ2TESU7ObWRk3Az08oMf\nPEF1dRUf//jHSUhIYPfuQxw+3ECw9+jGjXaUUlIXiUVpot7Q1x7noe0RrTVZWRl0d/eilBobvrZj\nh9GWaGnJ5sCBTEpLN9DTY8fpfJGDBzUdHdf3AgwNAlgsHfT1WTh8+Mi4shZ8v8djp7Hx6FiwYLrt\njFjo0SWm5nJ14fPlkJGRx+CgFb//Ni5edFBY2IrP18qFCz1YLBbsdg+pqT2cOZOK1vq643XlypVU\nVTVz/nw9ZWVLWbly5QL/Z9eTNq6IZGDpWeCLSqlntNbDoQmBHkR/Dzwzkw1qrT3AvpBFR4BPBl7/\nL4zeSmitX1VKtQHbgOcxgkMPB9LOK6VeBN4GPA68E/heIM2tlHoKeAD4fCBtdzD/SqnHA2lTBpaa\nm5u5eHGQgYEcBgf7SE1tx2xeSUHBDpKSfo7N1ojPl8OLLyajVB/19Yd46CE16+7oMy28MjZXzJbd\nbmf37kO43SlkZ5/mwQc1VVVVE74/9NjMzc1m+/YKOjvdY1fUHA4Hu3e/SF2dl/7+DBISTlBaeomk\npGEcDjdNTeeANYAPl0tTWGjC67WzalX1tK/IXdvgmu5kmNEm5XDxKy6G974XvvY1+Ku/MnoxCREN\nDoeDvXsbaW0tweM5g1K/xucb5fLlRFpb76K+/gJO5zf4xjf+lrVr08b1Hq2tPUF9fTdudwLZ2aNT\n1utCxAutNb/73e/Yu7eO/n4zXV1DrFy5JuwwI6M9coi6Ok1/fzvDww6SkspISysea6cb7Q7jZiB+\n/zk6O/txu89hseRSXb2Vvr7WCXskuVxd9PVZaGjw4vVePxRVeh0tfsGbOp07BwMDvfh8Di5ePIzd\n3klGRg1JSW5uvlnh9ycyMJDIM8+009iYd93x2tTURGOjD49nLY2NLsrLmxak/TjZ+ae0cUUkA0v/\nhBGYaVRKfQuwB5ZXYdwhzhx4z1x8HPilUioHMGut20PSLgDB6VJLA38HnZ8ibXNI2oFr0u6fTsaO\nHj2G211KQsJtaF1PWpqbtLRklOohLS2D3Fw/jY3Q0zMC+GhuHqKjo/O6Kw0TFdi53JkC5j42V6LQ\nN67a2pPU1WlycjbgdB6itvYklZWV0/phsVjsVFUl0t3dS0tLC1prXK4u3O4EcnJuIScnC6/3RTZt\nSqC8fDXnzl2gp6cElyuVEycaSEu7yDve8SnOnz/F+fOtOByOWR170zn+5+MYj8QYeSmLse+zn4Uf\n/AC+9S349KcXOjdisXK5umhr08BqkpJ66ex8mu7uBkZG7icj404GBkY5e/YELldXSO/RTnp7z3Do\n0ClOn05n6dI343S+Sm3tSQksRZDU07M318/OCLjacThKMJud9PRkjw0z6ujoBOxjF75qa09w5kwf\nCQk1jIyYuHjxKMuW3Up29h243UbZ8fsb+eY3f8OVK4lYLP1s25aEywVtbSOcO/caxcUKm2182QkO\njwMHdXX1tLXlc+edm8eGuwV/96XX0eKXmppOdnYBRUUe2toaqK//DlrbSE7eTnZ2FcPDDnp7G0hK\nWkp2dgqXLg2GHRZ3bfsx9FiezzpmsuCRzAMV/8LVvzMRscCS1vqKUup24D+ArwDBo1sD/4MxN9KV\n2W5fKfV/MHoofQBImWN2I+706dP09SXi919G6yuMjrZjMiXicv2Y6uoqiosLee65w9jtFkZH8+no\nsHP0KNd1dZyowM72zhRBcx2bK1HoG90g0B14Th+7Ut7WNoTXe5CdO6u57777xoZWBH9YDhz4NbW1\nL+B2l2DcVvcQW7cWk509itN5jP5+PxkZrQwNlVBWVobf7+fixV9w/jyMjvaTmgqvvbaX7m4PoZNb\nzvTYm87xPx/HeCTGyEtZjH2lpfD+91/ttSRzLYlosNly8HqPcerUBS5ebMblWsbIyCB+/0k6O0Gp\nPgYHB3jllaO8+c072b69gtrak/T0+OjsrKK93UlmZjcx2KSKe1JPz95cPzuXqwuLZRnFxQU0Nl5C\nqUZcriJKSkz09yfy2mudeDw2enpepLOzk+5uRWvr7/B6L+LzpdHU9Ard3Q2sX59CX182R468zMGD\nPqzWzXg8Bykvd1FQcBujo0Nhe1MHT8yOHz9BfX0/Xm86Z8+eBqCkxDSnuXEkYBl/+vt7OXPmGGfO\nmOnt7UEpsFjSSElRXLjQit//PAMDisTE10lOTsJsHsTlSrnuWLm2/Rh6LM9nHTNZ8EjmgYp/4erf\nmYhkjyW01s3AjkCPouDgzyatdddctquU+hvgrcC9gWFqw0qpEaVUfkivpTKgJfD6ArAMuBKS9lzg\ndUsg7WiY9YJphEkL65FHHiEzM5MTJ07i949gMu1ndNTM0FA68Ef09dlZscJCVdVqcnIukJWVicfj\no7c3i9deS8Zsnl6099rl0ILV6pp24Z1rd1uJQi8uTz75JI899hherw+LJZG0tDSczvBToG3cuJ76\n+hdxu+spLrawceP6wJXyIbq7U2hrKwHslJeXU1lZOe6Hxeu9gM+XTnb2Jnp7uzl9+lXWrEll165t\n7N27j/37G+jpKeGFF0x0dr5ITs4gHo+V9PSVWCzDFBcPkZvbTm7ubeMmt5zpsTed438+ejVFotu7\nlMX48JnPwGOPGfMt/cM/LHRuxGK0cuVK8vJ+itv9Em63Ca+3iMTE2/D7WzCb21iyZAk22600NRXw\n3HMOduyopLS0lNbWUrZuLeHKlZ8Dr1JdXczGjevnNe+L/QRZ6unZm+tnZ7PlUFzcAVxmw4YEqqvX\nkJY2BCi6uvTYRdl9++qBMrZuzeHZZ59gZGQYm+2ttLbux+u9SGLim2lo8HL+/AX8/myysixcuuSj\no6OTnJw8tm418peezrhjN3hi1tjYi9Op2LHjDkCxYkU799xz15yGu0nAMv643T14PIOMjHjx+zOx\nWpcwMnKZhIRXyc+3cuXKML29byU1dZTc3HbuvTePW2/Nu+4mNde2Hzs6OvF41ITlJFp17GTBIxna\nGf/C1b9JSZZprx/RwFJQIJD0SiS2pZT6BPAujKBSX0jST4EPA19QSt0CFAEvBdKeBj4EvKKUKseY\ne+nDIeu9Xyn1NMad7O4H3hKS9i2l1L9jTN79MMbcUBN69NFHqamp4bHHHuOf/um3uN02fL5REhOt\nrF27jQsX0hkZ6Sc/30ZuLlitA1gsHrzeYoqK1uDxJI7rztjX10NioocDB36N13uBvj5jsuNrC/LG\njetDJt6cuvCG6247k0pHotCLy6ZNm3C5MgKNExc7dlRy7Ngxdu3add17Kysreeih8ZO8OhwOvN6D\ntLWVUFy8HIslZexHbfzcApW89NI5XnhhD1euKJYsKaS+vp+bbzaxefMWmpoKUKoYj6eN5uYmEhMh\nM3M5CQnL6e8/h83Wy7333k1jo2/c5JYzNVl382A5aGlpoafHzZkzemyi8WvNtVEXiW7vUhbjQ0kJ\nPPIIfPWr8J73QFnZQudILDZNTU20t6eTnLwZk+kAcBCfbzNms42MjCRyczXZ2SXj5oEJ1h/9/Zrb\nbktj7doCamo2zPsJwGI/QZZ6evZyc7Pp6XmRffvqyc4eJTf37hmtP/7kdtW4qSN6ek4CAzQ0KLKy\nRjh37gT19akkJKwBzuPxtFNZWUFPTxqVlVvwerspK1tGcbGTvr7/obi4ly1bbmFwcOILu8ETs+rq\nSlpbn+Pgwd+Sl+ejrKxyzif3ErCMP0opMjNXYrXW09+fic9XRmLiELm5zSQkpOLzZVFQYKKzU5Ga\n6uctb3lz2Lrw+vajfdI6Jlp17GTBIxnaGf/C/Xb19/dPe/2oBJYiRSlVDHwdOAu8oIzaeFhrfRvw\naWC3UsoOeIB3B+4IB/A14HGlVBMwAnwkpNfUbmAT4MAIHn1da/06gNb6pcBk3vUYQ/h+rLV+djp5\nfe9738vZs+d4+eUEEhJyOXu2nRde+Bfy800kJNzM6OgohYUj2GynUCqTxMRClHJjtY7vmmuxeElP\n78DrdWOxlNLQ4KW83BG2IBsFePafrzEp84vTmrxTotCLS7jGyUTC/VBUVFSwc2c1WjcyMODG4+mn\nr8+K1nrc+7XWaP0ctbXHGB6uZOnS9fh8vrETnNHR/dTXv47PN0RhYS+rV5eSnt6Ex3OBiooE7r//\njbzpTW+ivLwpcHeXq4HYSF19ufrjuxTop7S0dcITrVho1ElZjB+f+xzs3g2f+AT8/OcLnRux2HR0\ndHLxomZgoBCfrxRow2TqwmpNprLSzd13V2EypdLX14LV2jmuvjDqjzsj3lNouhesYqEujSapp2fP\n7/dz9mwjFy/2U1SUht9/14zWv7bNcvjwkbFj7cwZTWlpK6Wl0NtbRmvrOfr7rVit2SjVQUrKcWy2\nGhIS3LhcdkpKTNx3307WrLnA+fOtlJXdyhvf+EbOnj074XcbPDHr7dUUFXVx5UoHHR0r2L/fSVmZ\nfU5zmUnAMv5s3LiezZt76eo6yfDwCMnJFhIS0unsTKKvrwq3u4uOjifIy9NUV++c9t3epqpjolXH\nSvBocQt3XNXW1k57/ZgOLGmt2wDTBGntwPYJ0gYxejmFS/MDHws8wqV/CfjSTPNqMpnYtu0uGhp+\nz4ULHVitTfT395CcvJrf//4sx445uXy5CLO5kOJiN9u2lbBqVR42Ww7Hj5+gocFPQoKPtrZ6ios7\nWbr0naxefXtIZTB5QZ5Nl0djUmYvOTm34HQem3TyTqlIFpdwjZPm5rPTXl8pxX333QfA3r12LJaq\ncUHQ4G1+e3u7efbZffT2WigoyGBgoAevt2MsCJWd7cZsvojJVMSVK0O88MIF4CaU6qCwMInly5dj\nMpkCV1nsgQCsmvHVl8nKx/gfX0Vp6cTbjYVGnZTF+JGWBl//Ovz5n8MvfwlvfetC50gsJn19PZw/\nX8eVK0OMjAyTkPAOlLpCQkIHqanJvPvd7+bIkSO8/PIPMJsVNtvdaK0D9Ud0hp1N9yp5LNSl0ST1\n9Ozt3buP117zYDJt5NKlevbu3cfq1atntS2tNX19PbS11dHR0UJRURJZWRm0tLTQ2GhnYCCJnh4X\nV660k5Rk59Zbc7jpJo3JlExh4RAbN26gsrKSVatWjdvuZN9t6IlZYmImly6VYLHcQX39oTlPki8B\ny/hTUVHBihUHWbIkkZ6eHgYHzzE05MDt7sFqHUWpXDweC15vKk5nIg6HI+wxEq4dG5wg3rg4PP7m\nNou9jhXRMdffrpgOLMWTxsZGfvjDP/Daa048nhSys4cYHKymu3sr+/cfoKDgFOvXf46cnGxSUk6w\nenUZt922md/97nfs23eckye7uHw5ibS0fK5c8eHzvYDL5cTrbaGvr3qsJ8hEZt/lMQVjRKBM3nkj\nCdc4OXbs2Iy2oZQiPT2T4uJbAkGZlzl+/ERgwko3Hk8Whw/v5/z5BAYHfaSkHGTTpixstiKefPIl\nRkbyOHeuha6uIZTKx+Nx4PensHHj7WRmakymejo73WP7m8vVl8nKx0x+fKVRJ2bqXe+Cp56C970P\nbr0ViooWOkdisTDm7hjF4/n/2bvz6LiO+8D33+oVe2NpbMRKEqtEUCRFiVpILbYUilLiie0TS7Ql\n23HGcfQUvzzFmZNMIsdx7JnJTJzojeOcyM+xM7Es05It+8iyRWqJNoriIokkSJAEGvsOYms00EDv\nXe+PaoAACW4WQIDg73NOn16qb+M2cFG37q+qftVNPL4WSEKpbLQO0tmZzDe+8Q3a2zPp7g4RCo1x\n8OABHnhgis99Ti3atLNLraelLhXn09HRyfh4IWlp2/D7R+jo6Lz4RufR3NzMqVMh/P5UxscP4HLl\n8Pbb2Zw4EcXvz6Cr63X6+oJEo1nE43aamobJzZ0gP7+Go0cP09/fD5jjtaWl5ZI6b2dfmHV1dWHS\nvZ5Z/OTDkIDl1ae5uZm33mqnoyOVycl+JieHiUTSCIfXEQodw2LJwOG4EaXW0NDQw0sv7WZkxHvB\nFZdnJ1U+X9tW6lixFCSwtEBeemk377wzyMREBdFolEDAQzjcTjicTCzWTjzejcPxY1JS8iktDTAx\nkYXH42H3bg9DQxuwWN5EqVTWr7+LYLAXu/0A4XAGDkfVzEiQ+RqC0xHsN954m56eDG6//Wb27fsZ\nb7zxNsAFT34mKfM+vN6jFBUpNm68YcUn1BTGQjROzvQEehgaGsRuH6StrY/Tp6Gvb4CcHDutrVOE\nw3eRnh5naupZRkd7eeWVAB0da3A4AoyNaWKxNBwOG5mZRSQnjzM09DaxWBJFRQ7c7uyZnzc7AORw\nDDEx4eDddw+c9zidfSx3dXURCpXMCYBNH+MVFRXcd9+lnXylUScul1Imiff69bBzJ7zyCjidS71X\nYqXwegNEozagB+hHawt2ezkTE3aOHfMwMlLK1FQSWlczNhago2N8Jtjzm5zvL7bNpQbqpS699lzq\n8VZeXkZGRjsWy0GSknrQ2snLL79MWlrGOSspX+znffDBEf7jP44yOZmB31/MyEgjKSk+3O6Pk52d\nRXf3u2idnsj1eIKRkWaGhzcTDI5x4kQKbW0RRkb2sXVrO++80zmTOuLhh+NYLJaLfpf5Fj8R15bD\nh49SX99Lf7+PyUkL0EEsth2bDaLREbSeQOtiolHNyEgbr7wSo6+vEIfjKHV1R2dSM0wH7auqbubF\nF5+mp+ffKCzMJxK5mdracwP5UseKpSCBpQXS3t7B+HgXweAE0WgOFssoYCUUakEpH07ndUSjQ2Rk\nQF7evTQ2hvF663E4yiguLmB4uI3U1EZ6evaTktJPWloK2dmbqam5dc6FcE5OFsBMNHs6KWFPTx6t\nrScZHf02Xm8QuI5gsIn29nbS010zJz5g5sSek5PFI4/cPicyvpITakrQbGFM/x4/+OAwL7xwkJGR\nGFofoqAAWloKicXKaW1txW4P4PePEYn8iljMQiyWjMeTRjCYRjhsweGIE436yciwE43Wk5wcYOvW\nCmpq7BQW5rNx4w3nXRFjYsJBY2OYcJjzHqezj2Wfzwv4aWxU+Hyn8PkidHeX4nR6uO++Cw9rF+LD\ncrvhuefgnnvgc5+DZ54Bq3Wp90pc7TIzMxgb6wVqMGkjTwAufL7rcDg8pKU5iUTaCQTyUCrA1FSY\nyckWurqK5rQfLnS+P/u8ebFtpJdcnM+lti/vv38Hzc3P0dp6hOFhL21t+fzDP7zJhg23Ulw8Mmc7\nrTUej4cjR+oBE8ipqqpCKUVjYyNPPfUsR454iURuITU1l5ycLNLTu+jufhqtLVitg9hsUQIBG1BL\nJBJlbOx9vF4bNlsBFksu7e2D2O3vc/y4ayZ1xO7de7BaKy76XeZb/ERcW/r7+xgYGCYQSCIWm8Sk\n932baLQKWA8EsNk6iMV6CAZ9DA39Nh980EwgMMHYWCaDg+b4mg7av/ji07z33mEyM8txOk+zdu2b\nKGWR6W5iWZDA0gJJTU0hGk0nEqkAuonFgkA+Fksh8Xg5kYgdn2+K7OwIa9bcyPh4J/39hwiFIsTj\nvdxySxpWq5ve3gEyMqoATVvbO4llTrsZG0unu7sUn+9NwI7LdR1Op4e8vClCoVK2bt2S2JP9ZGeb\npdnfeedF2tuPU1S09TzDJs3yw7fddstZI5/y2Lp1y2+8tPtytZKDZotlvmDc9O/xtde6eO+9AGlp\nlfj9mr6+NrzeIqzWIKFQOnZ7gPT0Mnw+L8FgMxbLWgKBSsLhCaLRbpTqAU4TCFRis2mSk6MkJ/tI\nSioiK8s1E/g7ex9uvXUL+/cfJBzmgtMtZk/JmJ2ws6srja6ukhWbNFYsT1u3moDSpz4FoZB5nCIz\nkMWHcPJkI9FoKVAKhIE0YBIYwGbLJhTyEY/7sVhsWCwBnM4hkpJW09VVwuDgmfbDherCs8+bF9tG\nesnF+VzqNMnq6moef/whdu16jrffzkLrUnp7x1i/PoueHu+cEfnNzc08/fSbHD8eBlI4fnwvq1fv\npbd3gD17XuLYMRuRyA1EImNEIhMkJY1hsYwxNjaIxbIardOw2VqxWDaSnr4FpzODwsLjxOMDnDgx\nTDS6FqdzkNJSDRQynTpifLyflJSLfxf5fxBKQSzmJBotwNTRGYAPKAOS0Lqbyck48bhCqSys1hCd\nnS3YbFE2b76FYDCH4eFRbr3VXOf19PwbmZnlbNv2/3DkyENguHEAACAASURBVLMUFLRw++1IIF8s\nCxJYWiC5uXk4HAMEAg7MHOoCwE483otSw8Tjq+jtHWB0dIyenn9k/XoHa9aU4nSuYWzsKKmpQZzO\nbCYmSqisvAWP53Wi0XHS0vxMTY2TlmYacnv2NAAp3HzzFt5550W8Xg+RiJ+mJk1RkSItrYLjxz28\n885PCYUGcDrPNACHhkbo7u6mqSlOXd1GJib0zMlwuvHY05NBa+tJAIqLLSsq+r3SV6FZDPMF46Z/\nj2lpZYTDYUIhRSiUhd2eSiBwklisl0jEz/BwP0pVonUm8Xg+dvsI4XAyDscgTud44v8iBZstCa2z\nOH06hRdf7OPIkTLcbrMCwfbt2+fdh0uZbjH7PUlJI2zaZJJwut3ZDA5KQkNx5X3yk/DCC/Dgg7Bl\ni1kxbsOGpd4rcbVqa2sjFJoA6jHtjjWAn1jsPZKScsjKSmZqqgyXax1Wq4fcXD/Z2euprb2VxsYD\nQBdO5/mXTYdzz5uXso0Q87n8aZKVvP12C5OTfiKRVpqa4jgcGlhNV9de3O6XGB/3097uxGqtIxhM\n5le/eo7R0WNMTrrxeseBEpTSQJB4vBGvt5Tx8SAWSxXp6dvx+w+RldXP1NQpJiftKNVNSUkhmZk5\nRKNxqqtXY7EUUFensVqnZlJHbNmyGY9H/g/ExeXlFRCJBNA6HSgG7MAx4HDieRcQIxzOYWxMMzm5\nD6s1CZutgqNHj+FyDeJ23z3zf/HRj95Fa+sRjhx5lqSkDm655SZuu+2WJfyGQpwhgaUFUlhYSErK\nf+DzhYFh4FZMVPpZtIZgMBmtM4lGrQQCxxgePk19fQ3XXXc/vb2a1tYgsZjG6z1AS0sQaKCiYgv3\n3fc59u79JeGwORlnZkYZHe3m2We/S0fHCUpLy8nMHGDdulSysjI5dSoXhyOXcLiT9etTmZhIYu/e\n5wiHu2hszKKtLUJPT4Senj3U1Snc7q3AmcajGfn0U9auHeTuu+9YUdFvWSHh8p19UTE0NILfP05v\nr4fRUR9W6wn8fjvhcCft7UGmprKIx0No7cf0zIxietMziUS6sViOAmk4HHnEYhlYrQ6CwRDRaDKR\nSBs2W4D161cRCMTp6Oiedx9m99xcaLrF+aZkyFQNsZR++7fhwAF4+GG46SZ47DH467+G7OyLbyvE\nbG1tLWg9jFk8txhwYXrC0xkZGSE9PYm0tAxstnEgnbKyMNnZcU6d2s/4+DGKizOprraTmhpnctLO\n0NAI4LngykIbN96AUkrqT3HZLvXcOz1Kub+/j2BwmHi8ktxcO+Xl/SQn30pKSgW//OUvCIU6SUoq\nxOdrIhjswOcLMzXVjNY5iYv4DYAXrVuBHpKSNuFw3IxSB7HZYgQCHiKR9xgfT8ViKcRi6SIeH+D9\n96eoqSnHbg9gsUBxcSo33ljJ5s1nprRVVFSwZk2L/B+Ii2pvb2VycgToBfox+fCKMaNM9wN5wL3E\nYieIxY4CxUSjqykszKS0NJt167LmHF/33nsvAB0d3ZSXb+See+7B4/FImg+xLEhgaYFkZbmwWgOY\nYeinMXNor8P8iiux2+8iHHYQi71LLAah0FpGRz20t79AWlqYDRsewG5fw9jYr8nK6iAQiOHzNbJ3\n7y9ZtQpqa+tITwefr4wXXjhEc/MxBgcjuN33cfr0EWy2/bjdbiYnK9m69VM0NR2kpkbj94/T0dGJ\nw1HFsWNNOBxV7NhRy/Hjb7NuXfpMZTXdeGxqOkhxcQp33WUSDO7ff3BJK6qFzIskAYXLd/ZFxcSE\njb17Oxgc9DE5eYiCghCRSDa9vS4mJx3E46uAbMyFTg/mhNmDueCpIiWllczMWlJSnExNFRCLeZiY\nsGKxTBGJlBKJ9PP++/9BaWmUqan1eDwecnKycDqb5wQEL2V4+fneI0PTxVKrq4NDh+Af/xH++3+H\nH/4Qvv51ePRRsMlZWVwii8WJCeCvAYqAk5iLFzvxuI32dj/JyVbc7uNs3JjFH/7h77JmzRqOHKmn\nocFOT08pQ0MjVFdP0NQUIRRSM6NCp6cZmXI7aWma3NyqmXPwQtefkgNx5bvUc+/0KOWWllTi8RxW\nr84hJeVGkpMbOXDgRdrawvj9fmy2NaSkFDA2tp94fJDJyXFMR1Y6oBO3bKATi0WRnBzH4WglJydO\nLObF5ztFSkoBkUg6VmsdKSlWRkd3c/p0JbW1a8nObp3TyXr2cS/tCHEp2to6icezMR2tPZhBBxWY\naZURoB34AFOHZxONxrFYOhkfn8RmW0NW1uo5n2exWNi+ffvMc4/HI2k+xLIhTdgF4vX6gGJsthyi\n0QiwFziG1ZqP1pp4vBWIEY+fAmqwWi1YrdcDFsLhDvr69uFw1DM5OURraxHBoKa4OEpq6kHuvnsr\nZWVlHDlSz0svvcTJk8lYLBsIBLrp63sVn2+C8fFcXK5UrNZjgKK4OIXcXHMBPr0c/PTIpYmJfKqr\nC9i4sXJOIu/t2ysTibyr0FrPqai01rN6Kc/f6FvoxuFC5kWSgMLlmw6+DQ4O09R0mueeO8C77waA\nYoaGFE4nhMMWLJYctB4DkjCB1REggEkomw24sVg6cTjScDr7gVIyMsaZmpoiHA4Qj2ficCSTnX0L\naWm95OUFiURuZs8eD9u3V3LffVUSEBQritMJ//W/wu//Pnz1q/AnfwLf+x58+9tw111LvXfianDL\nLTfy0kvPArnAUWACc1EdAzLROpepqTUMDfURjw+wevVqqqqqGBnx0t19Jkdde/txenrycbsz6ekZ\nTIxcmp2PMcJ99+Us6sWK5EAUcGYlt4MH+wgGg3R1NTIwMERKSj92O3R3J+Pz2bFYwmi9H7+/HYul\ngEikFViNuWAPAC1ACFBYrZnY7TmkpkYoKBjmYx+rIRrVNDfnUll5HS+//Co9PY2EQqNkZOSwdu2N\n9PVNUlkZ5e6775DjUHwo4+M+tA4AVZi6eQg4BDgBB/BRYBAzmmkd8fgE0Eck0kU4XHfBlcFh/pkF\nsDgjmKQDQFyMBJYWyLFj9Xi9p9G6GKVSgXy09hGPFyaG4XZhsWji8RDgIRZLJR5fhcWSi9OZS1JS\nB6mpduLxzUxMNDE+HqOg4CN4vZM0Njaxb18/+/f34/FECQTyyMgIo5SPQKCbtLTrKSm5E4DTp5+n\nre15CgpuIR6vmDPao6gomerqSsbGugCTn+Gdd/oYG0slK+skjzxy+8w83XffPTCnojpypJ7BwZSL\nNvrObhxeakAK5q+wljIv0rVegU5//6GhEd566w327BmksXGI0VE3FouLaDQJpbrQOhVzQkzCXNjY\nMBc6NwO/ALKACEplMTHxLmlpKUQiVjIycsnICFNcvAq73UJXl5/s7CzWrs0gP/9mamtvo7HxACMj\nXm677RYJCIoVqaDABJS+9CX48pfh7rth504zmqmgYKn3Tixn8XgcGMDUvbmYFYaGOVMXZwBDBAJx\n3nnHxx//8T+yejUMDg7h9dppbLyLdeuKGBkZ5NAhDzBEVtZp3nxT4/P5GR3N53d+5348nkPznnsv\n9xw5+/1nr3A7ODhMT88Ubjf09EwxNDQidf41qKmpiaeffpEDB3oZH9fEYn6sVivgxW5PResHiMcL\n0PoE8fgJYrFMlPIRjw9hRiuVYDq2RjHtkkns9htJSvJy003rWbu2krvvziU3N4c9ezwEg3buvnsV\nWseYnLQSChXicqUSDneyY0eddGSJD62pqQlIwRyTESAVSMZ0wl4HbALeA17DjD5dh1K1hELv4XYX\nEg7nMjw8SmXl/PXt2TML/H47H3wwsihBeukAEBcjgaUF0tXVQzA4lJgfm4qJPidjs00QjWri8VXY\nbJuIx7vJzGwmFOohFLIChUSjg0Sj4HLVMjSUxsBAMtHoIbq7U7DZihgft+L1FuB0riUpKZlIJITf\nP05ubpSCglKUGmVg4DVGRsKJCsiF1zvK6OhbPPLIXbNGe1TPWSp4z54X6e52U1p6Oz09+zhypJ7q\n6mrg3ClQwLwBnrMblkNDI79RQArmr7CWMi/StV6BnknoHufVV1vp709jcrKceDySaMS1oHUNUAu8\nj0lAWAq0YqbAhYC1wCgWywhajwO3MTExRW6ujW3bbiIc9pOaasHhyKek5DAbNjiorV1PU1NEcmGJ\na8rmzbBvn0no/Wd/BjU18Hd/B3/4h2CxLPXeieXI42nDjNIIYlascgBuwIO5QDmFmRpXjN9/GwcP\netm//32gDocjE693P2vW1HD6tB2tV5GZCYHAKK+8EkWpOkZH6/H5nqCoKJuJibqZjqJpl3uOnP1+\nn28fEMHlugGn00Nq6mlaW4c4cSJOUlIHfr9rUX5nYnnbvXsPhw+H8fluIR7vALzEYm7ARSz2PiYn\nzSa0bgYKE/mUcjDBpH7gXcyljQXTBiklKysLm82Oz9dJOKzx+53ceusW7rtvOjXCR2cCSGfaszXX\nXGeiWByBQBgT+LdjFnZKxlwnJgFNmHq7HVN3A0zhcKSRmlpDb+9xKiszcLur8Hg8PP30m3i9VrKy\nYjzyiKa6uvqcNB/mOkwtSoe8LIIkLkYCSwtkYmKCWGwtprekBZNjKY1IJILdDvF4KXZ7BtFoHL+/\nD63HsVhKcDq9BINJNDe3MjDwQ3y+ciIRKxZLOX19x3A4DmO1/i6ZmX683lYmJgYJBOxo3U5SUjrR\naDWFhXGsVg/hcCqxWB7RaBJOp5X29kFef/0t7HYLPT39hEIBnM5kJier2LbtAY4e3U8wOEh3935a\nW18gFIrhcqWzffv2cyoqrTWDg2fy3OTkVOLxeDh8+CgNDV4yMtaTlOShutqO0xm5aEBqPr9pkubF\ncq1XoMPDowSD2QwOnqatbZTx8dcwVUYMcyKMAVHAj0kYa+NMYsJWTC9MFNDE4w1YrSVkZPwnQqFD\nxGLvkpaWwapVeaSnDxGNTnDPPR+ZSUqo1Kt0dDRQXl5CRUXFnP26UK+3NATF1cxigc99ziT4/vM/\nNzmXfvhD+O53TV4mIWarrl4LPI/J1XEcyMH0gkcw+R4nE68pYrFGgsFxlErGbl+HUna83kGOHKnH\n4agjP9+F359CJDKM1jezalUR7e2/ork5Rnn5H3DyZJDu7u/T1zdAenoaO3bcx8iI95I6nKbP24cP\nH6WpaZy6uira25NRKs6WLWZbh6OftWuvIyeniubmEO3tXXg8HqnTrzFer4/RUU083gUcwXRYbcAE\nTjVmCtFJTG6xJExbWwHVQAdmhUQHUI75v4BAIEJW1iBKxXE47klMLWqZNzWCpEsQC+3666tobW0E\nphK3dEyKiGGgO3GrAK7HdBJ8QDhcTkqKhdtv38L27ZVorXn22Z+yf3+c0tJ76e5+n5de2j2n7VtV\nNV1PehatQ14WQRIXI4GlBWLaPTFMhZELdGJ+vbVEIvVYrQeIRIJYLC2J3pW7iEabiEZHgDJisSjB\noBcYA1YTi11HLPY+vb0T/OpXnWzZMoTTeQKHw0ksls3kZB5NTem4XCdYu3YL0WgpIyM+fL4ok5P1\nWK1+fD4HfX0ddHRMEggUEwx24nIFKCpqB6C8PIOxscN88MFBJiby8Xor6O19nr6+Pr7whS/MOcHO\nndJmAk27dzdx6NAoXV1d3HNPOZBDWhrcd1/OOQGp6VVourqyzhsMmK/CWsq8SNd6Bep2Z9PW9gt+\n+tPXmJoKADcCXkyjbQwzBSOOuXixY3oHk4Ftide6MEN/t6BUEIulgVDoABZLI3V1mfzO7xTh8TRy\n/PgUDkcZwaBp7AGJRLLraGoanmkATrtQrzdcW6PKxMqUkwP/+q8myPSlL8HGjfCnfwpf+xqkpi71\n3onlIj8/H9PLPR117MNMf0vH5JnZmHh9kni8G63z0LqfSOTHhELriURSeP/9UZKSGggGA7jdQW6/\nvZb33nufN944QSi0hmh0iNHRfjo6BmhsPMno6CosljEOHvwhn//8HTid0XPOkfONZAJoaPDT06Po\n6XmZVasmyM7Omdl29epSwuEIPT0evN5+2trWEA5LnX6tqa8/TCTSi8k/4wR2YEYf+TAjoEsxnVkO\nTAC1E3O8W7DbNYWFWxkZmSAczkKpfpKTHdx+ewZKraGkpJBt2z52TXYUiqVz66238ctfvokJdm7D\nJOpuACox+ZW6MaP8I5hRpt7EKuHJpKWl0tHRwe7dHlpbQ5w+nYTLFWVyMkp9/TDRKOe0fRdzoSJZ\nBElcjASWFozGYokQj5/GVAxtmMbeJsxF9ntYrTGiUR+QiVIFmN6VVExPi8acRF2YC/b3gG7C4TLq\n64/T0gIWi4vR0SFisXbs9vVAjNFR2Levmby8GGVlNaxfv5rGxlHS0rqIRrcyNRVjdHQQpbIIBp0o\nZSEtbZD09GYefPD3sNv7OHkSLJa7iETWMTS0m5dfPsq2bWcSxZ3d+1hRUcFzz/2MQ4c6GR11MzKS\nx2uvvcydd1aTm3v3vAEpM7LJTnd3CQ0NbwJ2XK7r5lSIy63CWm77c6VVVlYyNlbP1NQB4AHMsTyM\nOTYdmKHncUzPSymm4ZeBOe6Hme6ZsdvTgRCZmZMUFHQAxZSUVDA15ef4cS/NzcUUFRUAAwwPjwIX\nHuU2eyTZnj0dgH+m11sai2Il2bYNjh6Fb30LvvENeO45k+j7M5+BpKSl3jux1F599XXMKOkbMe2H\nAUx7YwhzoaIxbYpuoBytNaYToB+HYwKb7Sa83gCxWC+wlmh0gkDAhdvdSXd3PllZNvr7o7zyykli\nsRYmJ8Fu30gkks7Bg29QW/s+W7ZsxuvtRCmF1hqt9byjfcFM99+xo5Tjx/eybVseGzdumFkwpKKi\ngtWrW3jjjbeBNWzd+ns0NR2UOv0a09TUghm9kYsJlOZijmEfpp0BZnpnFLNceyswRnJygKqqXGpq\nbub06V5ychz09YXJz8/l1lu3Mj7eCMgUe3HlvfPOPszAgyrgVkygNADcmXgM5nI8nnjPKFbrDYRC\nA/z85y+Ql3c9DQ12nE4nVuso8AHFxRPk5a2ft528mB3ysgiSuBgJLJ1FKVUB/DumG3AM+LzW+tTF\ntisuLsFq7SEet2JOflFMI+8ZoI1YLItYrBhzMZ6K1i2YwJIdOAE0Yhp/00MZi4EbiESGiETaCQZL\nsViyiMeTgSCRSBhwEIlM0tMzyvj4JENDPdhstVit41gsdqLROGlpa4jFjhEMtgMVRCIFTE3ZaW5u\n4fDhoxQXF1JY2EZj4wEikS6Ki8fJyFg7p5I6u/exurqdhgY/XV0wOtpFWVkK2dklrFuXRUVFBR7P\n3NUIqqpMjqfpVWj27DkBpJwTDJivwlrKBNrXegWqlOKtt97CBI7CmBFInZgLl+me8UnM1M8ezkzD\nCADDKBVD62K0DmGznSI3101R0e+Qnu5gZKSdAwfew+GopKgold7eNlJShnC7awAuOFJs9kiyrKwp\nICaNRbFiORzwl38JDz4I/+W/wBe/aJ7/wR/AI49Abe1S76FYKklJTszFyHHMtJ8WTGfVBCawb8V0\nBPgxUyzSgVVAKYFAD+Hwy2idTDy+DpttCK/3NHv2nCQry43f72Jo6AOi0Ryi0WS0dhOJvE8sVo/W\nTny+Xt5/30o43IFSDlyu6zh92kN7ezunTjXS0DDO0NAgRUVqJr+jz7ePjo5OsrKm2Ljx9pmcjtOm\nO7NCIQ9NTQevqjr9Wl/sY6H4fGOY4zaOOYb3YvKI2RPv8ALjmGPaRkZGgLw8J5/85L189rOP8PLL\nr1BfHyU3dz1bt26kttZJerqFnJzbAWYCmddaR6FYOs3NHsw14XuYkf0DmDZ1CybgdAhzvG/EXD8q\nYrHDRKOrOHnSR2fnIIFAHYHAIAUFbWzbVsJ1122hsTEsbV+x7Ehg6VzfBZ7SWj+tlPokJsh088U2\nstksRCKngTJMBDof8+t1YRp5PcCPgBswDb8ApqHXjxn+GAGKMBfqGZgEby7MyXMN4CQeD888NlOM\nAkCAyck4k5MbGRp6D7v9dZKT3SQn5+J0NuB0BsnKGuP06dPEYiFCoSF8vggHDqTR19fCLbfk8/u/\nfxtvvfU2R4++QkZGCVari+zszJnvZnLt5JCRkc3x4w14vQOkp9/Nhg2DvP32q9hsDm666SNs3FjN\nq6++yu7dx3E4SikqGgJMY3FuMCAGTF1ShWiS1e3D601JrFynz2mMisURDocZGOjDrFpxHHMyrMas\nbjF9XAcxPYkOTO94L2bZ60Ls9hKiUY3N1kZZ2Y3U1bkJhd5hZKSEtLQ8BgZOk53tJzNTkZLSc84K\nLOcbKTZ7JNl0Y3F4eBS/3z6zzKo06sVKs3Yt/Pzn4PHAt78N//Iv8D/+h5km9/GPwwMPmMdy2F87\namqqMPlmUjEJu+OYVTijmAvwDs5ckB/HTCXajLmo6ScWa8EsvjBFNGolGg0yNQUjI92kpJQQi6UT\ni2UxNTWBzRbGtD2eJx53Y7XW4nBcT0fHaTIzK9iy5Rb27v0lhw+/gddbxOSkFaUO8tGP3kFlpcnJ\naNo5fszF1Pyu1pHC1/piHwvFtDlaMCOVchL3LZzp6x0G0rDZ/KxencTWrZ9n/foS7r/fdEpZLGvJ\ny1tDONxJbW0Vv/VbvyVtAbGk+vsHMQGj1Zgk3d2Yuno/Zxa5cWGuBwcwI5ZKSEm5icnJCBMT4HIl\nkZHhID3dSUFBIffeey+rV7dcdfWkWPkksDSLUioXM6b8XgCt9fNKqe8opdZordsutG1jYzOm0dSS\nuJ8C7sL0Itoxw9JbMUPUV2MqlcJEWSqmcTeJaRDGE/fvYoJNd2BGOh3FXLyHMUkLSxLvTcFiySEW\n24TVGsLnixMIZJGZOUkgcJTS0mzS0z9NMDjCyEgzOTnZuFzrSUpSjI3B9deXU1JSwuDgXvz+Ytrb\ne+jo6KCmxpyo3e5sxsffYN++MJBCPG4B3qKvLx23u4bs7DFqa51orfnxj9/B43FQUuKdGRJfVXV2\nMOAu4NJ6jo4cqef4cU129oZzVq4Ti0drzSc+8YnEs0zMMV2GuSgZw1ykODCBJj8moDQ91LcEWIfF\n4sNu38fq1dfz5S9/jYmJLgKB1xkcXE1d3TbGxzspLe2htLQUt3vDnGDQhUaKzTeSTClPYnlVJY16\nsaJVVcF3vgP/8A/w0kvw4x/D3/89/PVfQ2Eh3Hsv3H473HYbXHedrCi3kmVn52IC/W7OjPC4HtPx\n9AGmOTMdxHFicuC9h7mIqcQ0AU9jcn9MYkanbiEUOozFcoJ4/LdQKgetj6FULykpZVit6Vgsd2O3\nR+nuPk1t7QRZWaajKBzuJBpNJyfnZnJyMklJOUp6ugulFCMjXlyuG2ZGKo+MeM87yudqHCl8rS/2\nsbDSMKP212E6aqcwnbP5wC1YLJpNm8p46KF0tmy5cebY2b//IOFwLtu2mb9Berr5tLNH0UugSVxJ\nfv8EZjRSJWZwQAwT9F+FaVfnJ269wH6s1hhOp8blGiMcdhEOKwKBBpSKkpRUx4kTk7S0zJ98Xoil\nJoGluUqAfq11fNZr02uoXzCwFAhMZ/rPwwSXrJgT4RTmwvsGzIV4L2cuyPsSt02Yk2cw8bw6sa0H\nU/GkAoOYyiiMmY5UwpnpSIPE46dQyoXWGWgdxmKJYbdnkJISIzNTMT5+EovFQU5OmNRUTSh0mGAw\nk6ysQtxuMxLJbq/jox99iMOHf0JnZ8/Md6usrGTduqN4vfGZgEAg8DoWSy51dduYmOgiPV1x9Ogx\nenpSiMfXcuLEKZKT23C7TfLQD9dYnMIEM6Z/x2KxNTc38+qrezEXIKswwSUH5tgbxJwUSzHHuQXT\nO56ZuAhpxunsIDvbSUZGOZs3r8Xv7yEpaZQbbriJpqYIExPdJCWNsmnThgUJAEmjXlxrnE4zUunj\nH4dwGPbtg1//Gt58E555BmIxcLnghhvMinJ1dbB+Paxbx8wFl7i6OZ02LJYR4vFuzAjmMCZQNA7U\nYEYvjWJGlVZjOrJexdTZ06tt2hLvDwOrsVjc2O3Xk5r6BlofQ+s6wuE4TmcG6ek+XK47KSx8gJaW\nfaSn17Nz50OsXr2akREvExNVvP12Ow0N7wEpiWlw2cD8i2GspFE+1/piHwsrBxME7cIETCOYTtkI\nEKOsrJR77ink/vu3zeloXOnHmLg6mUvK6Xp5CtOeLsTUwemYy8sQZkDBWpKTvWRlTWGzfYDVupn1\n64uYmHiH1NRCPv7xz+H3d0sbVyxbElj6kB5//HFcLhf9/X0oNYTWJzC9h+mYi++jmB7FTEywSGMu\nwn2YYIkfOIy5SG/CnEwVoFGqHJsth1isAat1lKysErKzs3C7K2lubsPny0apZMCPzXaY/PwbmZqC\nqakJsrPXoFSEkpIsdu78CI2NTfh8ExQV3UZqajqnTw9QUFDIpk1mpEh7eztJSUc4fPgnJCV1UF6+\nceY7KqXYtGkDg4OemYDA7ACB0zmC211FV1cXaWl5uFxlDA11smGD60MPz9y48QYaGt7E622gqMjB\nxo03fKjPE8auXbvYtWvXnNd6es4EE4eHRxP5wooxAUwwgc0JzFDeYcxJchKYwGabIjd3HUlJIVwu\nRXZ2iPz8asrLb+SOO1aTkcGcBK0LPXxXGvXiWuZwwN13mxuA3w/vvQf790N9Pbz+Ojz1lAk2AZSU\nQGXlubfyckhOXrKvIS5TdXUtdXUbqa9/HtOplYaZSrEaM6p5GHNBbse0K1KAYazWCFZrN/F4GKt1\nDZBMNNqGxTJFcnKM0tIp7r//YzQ09NLV1UY0mkxZWTm1tQ46OpLxeg9TWtrFpz+9je3bt8+MANFa\nU17u4ciResCcv6fr+PmmuO3ff3DFdAhcrVP4lqchTPBzBNPhakbyp6Qks3lzJl/60nY2b950wWny\nK/EYE1cnpzOJUKgHqMeM6rdgLr9bMPVyB1CPxVKF3Z5GXp6De+7ZTHZ2hL4+TX6+G7v9ZpRy4Pf3\nzFxzCbEcSWBprm6gUCllmTVqqRTTbTKvJ598kk2bbixr8QAAIABJREFUNnHq1Cm+9KU/58iRLsLh\nbCwWSEoawOFIQWtNOPwqKSlTRKPFhEINBIM+bDYL8Xg+LlecpKRT5OTYiUbzGRwcJhYL43TW4HRq\nMjPD3HjjWu688y6ys7NIS8ugsfEkb7/ditebhNW6nvz828nIqGVw8ANCIRcWSzF2+xA7d97M9u3b\n2bFjxwW/+L333gtAR0c35eUbZ55PO/uEPV+AQGtNQ8M+vN52rrsuh/vvv/1DDzmuqqris59Vc4Yx\niw9v586d7Ny5c85rzzzzDA8//DBgAjVVVTWcPKkwPd4dmNFJIWCE5ORccnI0Nls/paUbqK4upqYm\ni1WritiwYf3M1If5hp4vxvBdadQLcUZa2txAE0AwCI2NcPw4nDoFzc1w4AD86EcwOXnmfS6XmVJX\nUGBuLhekpp65ORxgtZ65WSxzn5/vdvb7tCbREQKBwLmPAwGzz3a7GZ01fXM45j6ffbNaz+SYutC9\nzWYCaMnJZnW9sx9brQv799Da3OJxE9yLx8/cQqEz33f2bfZrn/iE+ZueLS/Pzf3338X4eJT29l9h\n6udszFTlESCK1eokMzMfuz1EKDRBRkY+VmsJSo2RnGxn1ao8AoE2HI5VuFyVWK0TbN++lc9//vO0\ntLTMCRJVVFTw2muvJdoJ93HvvffOqduVUlRXV887XX2+UcsrqUPgap3Ct9xkZmYyNhbAdLT2YTqz\nbHzsYw/w0EMPsWnTRqqqquZtW670Y0xcnT7xif/Erl2vYgYXTAf7B4F0srPzqKjIJzW1lOTkQhyO\nINu21fDAA/dTWVlJS0tLIoWIqVMl+bxY7pRZfnb5Uko5gH8AtmPGetdrrT+byIf0Q0zWsyDwmNZ6\nb2KbZOD7wE2YYRZ/pbV+PlGmgG8DOzBjbP+31vqfZ/28Vky33zgmvFyqtT4nebdS6j5g91e/+tWZ\nRlRfXx9Hj9YzNDREUpKT4uIS0tPTSEpKJj09jfz8fBoaGhgcHGZycoKUlHTsdguFhUVkZKRRUFDA\nwMAAHR2deL1eALKysigvL6OwsPCc301/fz9+/yRpaakA8z6eb7vFNHufrvTPFh/Or3/9a3bt2sVX\nvvIVNm7cSHd3N9///r/R2WmGo+fl5bFt21ZKSkpITk4hPd1c6cjfWyxXZx/TYn5eLwwMwMgIjI2d\nufl8ZwI8oZC5RaMmIDIdKFnIJsTswJHdbm6xmPmZ0ShEIuY2/XixzA5Qwfkfz/fa9O9kIX8/3/qW\nCfLBucd0f38/7e0ddHZ20NbWzsTEJLm52axZs4b0dBd5eW7cbjd+/yTBYAC/fxKfbwyXK5O0tNSZ\n9gksTV0ubQYx+5iuqanhK1/5CuPjk9jtFm6/fSs33bSZ9evX/8YdlXKMiSvp7Do6Go3y3e9+l/r6\n40SjMdLTU8nLy2fNmtXceecdFBYWMjAwIMeoWLaampr4xje+AbBDa73nQu+9GgJLTwIWrfWfJJ7n\naa0HlVLfBzq11n+rlNoM/AIo11rHlFJfBVZrrb+glCoHDgI1WmuvUuqzwCNa63uVUlnAEcwv6pRS\n6g7ge5ghGtmYzNlf0Vp/d579+g7w2GJ/fyGEEEIIIYQQQogl8s9a6z++0BuWdWBJKZWCWX+xSGvt\nP6tsAlirtR5MPD8A/KXW+nWlVAPwBa31oUTZs8DLWusfKKV+BfxQa/1coux/AiGt9V8ngkVdWuv/\nlSh7FLhVa/3ZefbtPmD3j370I2praxfpN3DldXZ28u67nYTDWTgcXm67rYyysrKl3i1xBbzwwgv8\n7d/+LVfDMS3HqbgUS3FMy7EpFtOFjuknnoDdu+FP/xQ+85kl2kEhLtPF6mmpU8XVZLHbHfL/IK60\nU6dOTadKueiIpeWeY2ktZvTQXyml7sGk0/86JiO2bTqolNCJyYdE4r5zVlnHRcq2zCrbe1bZg+fZ\nt0GA2tpaNm3adKnfZ9kLBsPk5RXOJDrMz2dFfT9xfqdOnQKujmNajlNxKZbimJZjUyym8x3TY2Pw\n6qvm8fPPm+lzsqq6uBpcrJ6WOlVcTRa73SH/D2IJDV7sDZYrsRcfgg0oAxq01jcBfwL8JPG6NJkW\ngUl0ODwr0WH2Uu+SEOeQ41QsV3JsiqXw6qsm99RTT0Fnp0nOLsRKIHWqEGfI/4NYzpb7iKUuTPLt\nHwNorY8qpTqAOiAynW8p8d5yzqze1okJSJ2eVfbyrM8sw+RdOnu76TLmKZvX448/jsvlmvPafCtu\nXS1kda1rw65du9i1a9ec13p6epZoby6fHKdiuZJjUyyFQ4egrMxMgXvsMXjzTWSFMrEiSJ0qxBny\n/yCWs2UdWNJajyil/gO4D9itlFqNCfacBH4KPAp8XSl1E7AKeCux6c+APwIOJba5M/FeEtt9USn1\nMyATM9XtgVll31FK/RNmxbgvAF+70D4++eSTK2oIoiyZe22YL/j5zDPPTM+hXfbkOBXLlRybYinU\n18OGDZCWBtXV5rkQK4HUqUKcIf8PYjlb1oGlhEeB7yeSbMeAP9Ra9yul/gJ4WinlAULAZ7TWscQ2\nfw/8QCnVAkSBx7TWo4myp4HNQDMmePQtrfUJAK31W4lE3w2ABn6itX7pynxNIYQQQojLd/w4fPGL\n5vH69ea5EEIIIcSVsuwDS1rrduAj87w+CGw/zzZTwEPnKYsDX07c5iv/JvDN33R/hRBCCCGuFL8f\nBgbOTH2rqzOrw2ktCbyFEEIIcWUs9+TdQgghhBDiPDo6zP3q1ea+rg58PujrW7JdEkIIIcQ1RgJL\nQgghhBBXqbY2cz8dWKqoMPetrUuzP0IIIYS49khgSQghhBDiKtXeDklJUFBgnpeXm/vpgJMQQggh\nxGKTwJIQQgghxFWqrc0EkyyJFl1yMhQVSWBJCCGEEFeOBJaEEEIIIa5Svb1QUjL3tTVrZCqcEEII\nIa4cCSwJIYQQQlyl+vuhsHDua2vXyoglIYQQQlw5ElgSQgghhLhK9fefya80TUYsCSGEEOJKWvaB\nJaVUh1LqlFLqiFLqsFLq9xKv5yqldiulPEqpY0qpbbO2SVZK/Vgp1ayUalRKfXJWmVJK/ZNSqiWx\n7WNn/bwnEmXNSqlvXrlvKoQQQghx6bSef8RSWRkMDUEgsDT7JYQQQohri22pd+ASxIFPaa2Pn/X6\n3wH7tdY7lFKbgV8opcq11jHgz4Cg1rpSKVUOHFRKva619gKPADVa6wqlVBZwJFF2Sil1B/AgsC7x\nc/cppfZprXdfma8qhBBCCHFpxschGDw3sDSdc6m3Fyoqrvx+CSGEEOLasuxHLAEqcTvbp4CnALTW\n7wO9wJ2JsgdnlXUAbwIfn7Xd9xJlXuBZYOessqe11kGtdRj4wawyIYQQQohlo7/f3J8dWCouNvfd\n3Vd2f4QQQghxbboaAksATyul6pVS31NK5SilsgGb1npw1ns6gdLE49LE82kdC1AmhBBCCLFsXCyw\n1NNzZfdHCCGEENemqyGwtE1rfQOwCRgB/j3x+nyjmIQQQgghrgnTgaWzk3cnJ0NOjoxYEkIIIcSV\nsexzLGmtexL3MaXU/ws0aa1HlVJRpVTerFFL5UBX4nEnUAacnlX2cuJxV6Ls4DzbTZcxT9m8Hn/8\ncVwu15zXdu7cyc6dMoNOLF+7du1i165dc17rka5tIYS4qgwMQGoqpKefW1ZSIoElIYQQQlwZyzqw\npJRKAexaa1/ipU8DRxKPnwMeBb6ulLoJWAW8lSj7GfBHwCGl1GpM7qVHE2U/Bb6olPoZkInJx/TA\nrLLvKKX+CZO8+wvA1y60j08++SSbNm36UN9TiCttvuDnM888w8MPP7xEeySEEOJyzbci3LTiYpkK\nJ4QQQogrY1kHloB84HmllAUz9a0N+Gyi7C8wuZc8QAj4TGJFOIC/B36glGoBosBjWuvRRNnTwGag\nGRM8+pbW+gSA1votpdSzQAOggZ9orV9a7C8phBBCCHG5LhRYKimBd9+9svsjhBBCiGvTsg4saa3b\nMbmV5isbBLafp2wKeOg8ZXHgy4nbfOXfBL75m+yvEEIIIcSV8sQT4PfPX1ZcLFPhhBBCCHFlLOvA\nkhBCCCGEmF9NzfnLSkpgdBSmpiAl5crtkxBCCCGuPVfDqnBCCCGEEOIyFBebe8mzJIQQQojFJoEl\nIYQQQogVpqTE3EtgSQghhBCLTQJLQgghhBArTFGRuZc8S0IIIYRYbBJYEkIIIYRYYZKTISdHRiwJ\nIYQQYvFJYEkIIYQQYgUqKZHAkhBCCCEWnwSWhBBCCCFWoOJiCSwJIYQQYvFdNYElpdTvK6XiSqmP\nJZ7nKqV2K6U8SqljSqlts96brJT6sVKqWSnVqJT65KwypZT6J6VUS2Lbx876OU8kypqVUt+8ct9Q\nCCGEEGLhFBdLjiUhhBBCLD7bQn+gUsoCPAJ8FMjjrOCV1vq3foPPLAP+M7B/1st/B+zXWu9QSm0G\nfqGUKtdax4A/A4Ja60qlVDlwUCn1utbam9i3Gq11hVIqCziSKDullLoDeBBYB8SBfUqpfVrr3Ze7\nz0IIIYQQS0lGLAkhhBDiSliMEUtPAv8CpAItQNNZt8uilFLAvwJ/DIRnFX0KeApAa/0+0AvcmSh7\ncFZZB/Am8PFZ230vUeYFngV2zip7Wmsd1FqHgR/MKhNCCCGEuGqUlMDICAQCS70nQgghhFjJFnzE\nEvBp4FNa618t0Of9KbBXa33ExJhAKZUN2LTWg7Pe1wmUJh6XJp5P67hI2ZZZZXvPKnvww34BIYQQ\nQogrrbjY3Pf2QkXF0u6LEEIIIVauxRixFAU8C/FBSqnrgU8C/20hPk8IIYQQ4loxHViSPEtCCCGE\nWEyLMWLpScy0tf97AT5rG1AGNCemxBUA/x/wN0BUKZU3a9RSOdCVeNyZ2O70rLKXE4+7EmUH59lu\nuox5yub1+OOP43K55ry2c+dOdu6UGXRi+dq1axe7du2a81qPJOIQQogVZTqwJNW7EEIIIRbTYgSW\nbgLuVUrtABqAyOxCrfWnLvWDtNZPkciVBKCUegP4R631i0qpm4FHga8rpW4CVgFvJd76M+CPgENK\nqdWY3EuPJsp+CnxRKfUzIBMz1e2BWWXfUUr9EyZ59xeAr11oH5988kk2bdp0qV9JiGVhvuDnM888\nw8MPP7xEeySEEGKhpaRAdrYEloQQQgixuBYjsBQEXlyEzwXQgEo8/gvgaaWUBwgBn0msCAfw98AP\nlFItmKl5j2mtRxNlTwObgWZM8OhbWusTAFrrt5RSz2ICYhr4idb6pUX6LkIIIYQQi0pWhhNCCCHE\nYlvwwJLW+pGF/sxZn/2RWY8Hge3ned8U8NB5yuLAlxO3+cq/CXzzQ++sEEIIIcQSKy6WHEtCCCGE\nWFyLMWIJpZQFuANYCzyntZ5QSuUDfq315GL8TLG4tNY0NzczPDyK251NZWUl06v0CSGuHPlfXFnk\n7ykWW0kJHDq01HshxKWROlEIIZbGfPXv5VjwwJJSqgTYjQkq2YE3gAngCcAK/F8L/TPF4mtubmbP\nHg+hkBun0yz6V1VVtcR7JcS1R/4XVxb5e4rFVlwMP//5Uu+FEJdG6kQhhFga89W/l8OyCPv0beAY\nJjF2YNbrPwfuWYSft2JorfF4PLz77gE8Hg9a66XepRnDw6OEQm5qam4hFHIzPDx68Y3EirWcj9WV\nTv4XF8ZyOYbl7ykWW3ExDA1BMLjUeyLEhWmtOXz4KE1NftLTSwiFcqROFCvecmmPCPFh26SLMRVu\nG7BVax06a+hqO1C8CD9vxVjOvTRudzZOp4fGxgM4ncO43ctjv8TSWM7H6kon/4sLY7kcw/L3FIut\nONHy6u2FtWuXdl+EuJDm5mYaGrz09ITp6dlDXZ3C7d661LslxKJaLu0RIeZrk/r9/kvefjECS1bm\nHwlVhJkSJ85jdpSwsfEAw8OjLJd6ZXqOpZlzWXXZcy7FyrKcj9WVTv4XF8ZyOYbl7ykWW0mJue/p\nkcCSWN6Gh0fJyFjPjh05HD/+NuvWpUudKFa85dIeEWK+NumRI0cuefvFCCy9hllx7dHEc62USgX+\nBpN7SZzHcu65VkpRVVUlFZ0AlvexutLJ/+LCWC7HsPw9xWIrKjL3PT1Lux9CXIzbnU1SkoeJCUV1\ndQGbNlVJ4m6x4i2X9ogQH7ZNuhiBpa8AryiljgFJwA+BKsAHPLwIP2/FkJ5rcbWQY1Vc7eQYFteK\ntDTIzJTAklj+pF4W1yI57sVKseCBJa11l1KqDvg0cAOQBjwDPK21nrzcz1NKvQzkAxoYB/5Ea31U\nKZWLCVqtBYLAY1rrvYltkoHvAzcBMeCvtNbPJ8oUJsH4DiAO/G+t9T/P+nlPAJ9P/LxntdZPXPYv\n4TckPdfiaiHHqrjayTEsriUlJdDdvdR7IcSFSb0srkVy3IuVYjFGLKG1jgD/vkAf93ta63EApdTv\nAv8H2AD8T2C/1nqHUmoz8AulVLnWOgb8GRDUWlcqpcqBg0qp17XWXuARoEZrXaGUygKOJMpOKaXu\nAB4E1mGCTvuUUvu01jKFTwghhBBXpeJiCSwJIYQQYvHMl2T7Q1FKhZVSryqlMs96PU8pFb7cz5sO\nKiVkYkYgAfwe8FTiPe8DvcCdibIHZ5V1AG8CH0+UfQr4XqLMCzwL7JxV9rTWOqi1DgM/mFUmhBBC\nCHHVKS2Frq6l3gshhBBCrFQLHljCjIJKB95XStXOel3xG46QUkr9u1KqC/g68FmlVDZg01oPznpb\nJ1CaeFyaeD6tYwHKhBBCCCGuOmvWQFsbaL3UeyKEEEKIlWgxAksa+ATwMrBfKfXAWWWX/4Faf05r\nXQo8AfyvxMuyTIQQQgghxEWsXQvj4zAystR7IoQQQoiVaDFyLCkgqrV+TCl1EnheKfU3wL992A/W\nWj+tlHoq8TSilMqbNWqpHJge6N0JlAGnZ5W9nHjclSg7OM9202XMUzavxx9/HJfLNee1nTt3snOn\nzKATy9euXbvYtWvXnNd6ZMkgIYRYkdasMfdtbeB2L+2+CCGEEGLlWYzA0syoJK31PyulmoDnOJP/\n6JIppVxAita6P/H8d4ERrfWoUuqnwKPA15VSN/3/7L15cFzXeej5O71i37oBkNh3gBTBTZQoWqQk\nOxZJWVkc5z1bSuy8WDOZssfxG2sqM5NM5c2rqXI5ebZTGseeif1eonGskWVZdhI7kkhKskiJ+yKC\nJEAs3SDWxtboBb2i9zN/3AYEkOAOEE3w/KpQ3bin772n+373u9/5zvd9B6gAPkjv+gvgK8AZIUR9\n+txfTbe9AfypEOIXaDWbvgA8u6DtB0KI76MV734B+M836uNLL73E9u3bb/erKRSrylLOz1dffZUv\nfvGLq9QjhUKhUKwUCx1Ljz66un1RKBQKhUKx9lgJx9I4HxfYRkr5nhDiMeDNOzhWIfCGECILzWHl\nBH473fYXwCtCCBsQBf4ovSIcwHeAl4UQ/UAC+JqU0pNuewXYAdjRnEfflVJeTvf1AyHE60BX+nw/\nk1K+fQf9VigUCoVCocgICguhpERzLCkUCoVCoVAsN8vuWJJSVi+xzSaE2Aqsv81jjQA7r9PmBPZd\npy0MPHedthTw9fTfUu3fBL55O/1UKBQKhUKhyGTmCngrFAqFQqFQLDcrEbEEgBBiCzC3Kly3lPIS\ncGWlzqdQKBQKhUKhWJrGRriirDCFQqFQKBQrwLI7loQQVuCnwKeBYHpzrhDiPeAPpZRqTRKFQqFQ\nKBSKe0hDA5w8udq9UCgUCoVCsRbRrcAxvw9YgS1SygIpZQGwLb3t71bgfAqFQqFQKBSKG9DQAKOj\nEIutdk8UCoVCoVCsNVbCsfQM8BUpZefchnQa3NeAz6zA+RQKhUKhUCgUN6CxEaRUdZYUCoVCoVAs\nPyvhWDKgrdJ2NRFWsKaTQqFQKBQKhWJpNqSrXvb0rG4/FAqFQqFQrD1WwrH0PvCSEKJ8boMQYh3w\nt+k2hUKhUCgUCsU9pLwciouhu3u1e6JQKBQKhWKtsRKOpa+j1VMaEUL0CSH6gOH0tq+vwPkUCoVC\noVAoFDdACHjoIeVYUigUCoVCsfwse2qalHJYCLEF2A+0pTf3AIeklHK5z6dQKBQKhUKhuDkbN8KZ\nM6vdC4VCoVAoFGuNZY1YEkIYhRCHgCYp5QEp5Uvpv4N34lQSQpiFEP8ihOgVQnQIIQ4JIRrTbaVC\niANCCJsQ4pIQYs+C/bKFED8VQtjT+/7BgjYhhPi+EKI/ve/XrjrnX6Xb7EKIb97Fz6FQKBQKhUKR\nMWzcCL29kEyudk8UCoVCoVCsJZbVsSSljAMPA8sZmfQjKWWblHIb8GvgH9Lb/wtwUkrZArwA/FQI\noU+3/TkQkVI2o0VO/T9CiOJ025eANillE7AT+F+EEBsAhBBPAF8ANgEPAfuEEM8s43dRKBQKhUKh\nWBU2boRIBAYHV7snCoVCoVAo1hIrUWPpVeDLy3EgKWVUSnlwwaZTQG36/b8Hfpj+3DlgDHgy3faF\nBW1DwBHg99Ntnwf+W7rNC7wOPL+g7RUpZURKGQNeXtCmUCgUCoVCcd+ycaP2evny6vZDoVAoFArF\n2mLZayyhRSv9mRDi08A5ILSoUcr/9S6O/T8B/yqEKAEMUkrngrZhoCb9vib9/xxDN2nbuaDt6FVt\nX7iL/ioUCoVCoVBkBBUVUFoK58/D7/3eavdGoVAoFArFWmElHEsPA5fS7zdf1XbHKXJCiP8daAT+\nByDnTo+z3Lz44osUFhYu2vb888/z/PP3T6CTlBK73Y7L5cFqLaG5uRkhxGp3S7GCvPbaa7z22muL\ntjkcjmU9h5Irxf2GklnFWkcI2LEDzp1b7Z4oFDdG6WPFg4SSd8VaYNkcS0KIBmBQSrnnph++/WP/\nOfBZ4LeklBEgIoRICCHKFkQt1QEj6ffDaClzUwvaDqXfj6TbTi+x31wbS7QtyUsvvcT27dtv+ztl\nEna7nYMHbUSjVsxmGwAtLS2r3CvFSrKU8/PVV1/li1/84rKdQ8mV4n5DyaziQWDHDvjRj0BKzdGk\nUGQiSh8rHiSUvCvWAstZY8kOlM79I4R4XQhRfrcHFUL8z8BzwNNSysCCpjeAr6Y/8whQAXyQbvsF\n8JV0Wz1a7aV/XbDfnwohdOmUui+g1Vmaa/tSelU5M1pR8J/d7XeQUmKz2Thx4hQ2m407WCBvRXG5\nPESjVtraHiMateJyeVa7S/Nk+m/3oHL1dUmlUtdcp0yWK4ViKa6W2elp903lXKG439ixA5xOWOYg\nVYViWXG5PEQiFvLzS+jrm+Ctt97m+PGTSvcq1hRSSvr6+njttZ9z+rSdvLwqolGLspkV9yXLmQp3\n9bzXZ4C/vKsDClEJfBe4AhwWWkxgREq5C/gL4BUhhA2IAn8kpZxbQPc7wMtCiH4gAXxNSjl3h74C\n7EBzhKWA70opLwNIKT8QQrwOdKGl7f1MSvn23XwHuL4XOlPCHq3WEsxmG729pzCbXVitmeMhVx78\n1eV6Mnr1dWltHaSvL77oOmWyXCkeTG6mc6+W2WDQyEcfuW8o50ofKe43duzQXs+eherq1e2LQrEU\nUkoCAR+XL7+Pw5ELFGK3TzExMUpVlRtQuldxf3Azu8Nut/PKK8c5eTIXp3Ocycl/Yteu9Vitu1ex\n1wrFnbESNZaWDSnlGNeJqkqnwO27TlsYLcppqbYU8PX031Lt3wS+eSf9vR4LZ8F7e0/hcnloackc\np0lzc/N8P63Wlvn/M4Hr/Xb3gkxx/K0ES323pbiejE5Pu3E4wlit4HCEMZl8RKPti67Trl1aTfxM\nlKs7ZS3LxIPAzXTu1brQ6XThcLiwWotwOJyYTCPXyPnt6iMlQ4rVpqICamvh6FH43OdWuzcKxbXY\n7XZ6eqJ4PCZcrgTNzcWEw+VYrTVEo9yW7lU6V7GaLLQ7TKY+BgcHyc8vnJdFl8uD15tDdfUnKCy0\nASfZtCnvrm1mJfeK1WA5HUuSa4tzPzCxqje6ga8XubGaTpOFCCFoaWlZlXPfjNWMeskUx99KsNR3\nuxopJefPX6Cvz097ewt+v5yX0WDQz5UrA1y+nCIra4jW1lLMZtei65TJcnWnrGWZeBC4mc69WmYH\nBga4cOEkweAgeXmTtLQ0XiPnt4uSIUUm8NRTcOTIavdCoVjMnC19+PCHdHXFyc7eTCLRzdDQFUpK\nYrhcOqqqcm5L9yqdq1hN5uyO1tad/PrXP+T48W7q6vZQWTkNaOOc4uJuHI7jQJj29jq2b996104g\nJfeK1WC5U+F+LISIpv/PAn4ohAgt/JCUck3Oj93oBr5eRNDVThOLpRmbzXbPvcuZ7NVezWiqTHH8\nrQRLfbersdvtdHUFcTgEDsch2ttNWCxPYbPZGBwcobi4kObmLbjdObS2Wikrs96T67Sa8rqWZeJB\n4FZ0LjAvX93dPSQSeoqLc4lEDOTk5PHEEy13JedKhhSZwFNPwU9+Ah4PlJSsdm8UCg2bzcYrrxxh\nYMBHV9cZhKigpsZKcbGBRx4p5tFHqykttdyW7lU6V7GazNkdx469QX//AFJuBLw4HDZSqSs88sij\n7N5dwUMP+RAin23btiyLDa3kXrEaLKdj6Z+u+v//W8ZjZzw3uoGvF7lxtdNESrkq3uVM9mqvZtTL\nWq4RtNR3Gxy8sugzLpeHwsINPPNMDZ2dR9m0SctKPXjQhsNRjtfbjdvdSVVVDmVl1nt2nVZTXtey\nTDwI3IrOBea3dXUFECKbsrLdeDwCnU5313KuZEiRCTz1lLYq3Icfwmc/u9q9USg0Ojou0tkZQ6+v\nxe8fICsLYjGory/l2Wc/dUfPeqVzFavJnN1x+PCHeDyb8PtzuXz5MllZCVyuWSYmHFRV5bB//7Zl\ntWWV3CtWg2VzLEkpv7xcx7ofuZMb+GqnyYkTp1bFu6y82kuTybWn7palvtvZs2cXfWZOpgMBQWtr\nHtu3t8zLyu7dWv2kxkYnn/zk1gcmkmwty8Q9tMTAAAAgAElEQVSDwK3oXGB+2/S0EyFOk5NzgcpK\nwbZtW+66D0qGFJlAXR00N8NbbynHkiLTyCEaleTmbmDXrjrM5lna23V3rCuVzlWsJnN2B0Ak0seZ\nM72UlOTQ2trCxMTsHdUNuxWU3CtWg4wu3n0/cSc38NUpPRZLMWazfcW8y1efr6mpif7+fkZGRvD5\nvPT0SLKy3MqrnWYt1gia41a+29Iybcdk6uPYsX8jFhumrq5lPhXtblPUbnX/1ZyFWcsy8aAxt+rQ\n2JiN6WknlZUCq7UVKSU+3xEOHuyiqCjBc8/toaCg6IZF7m92nqvlWsmQIhP4vd+DV16BVAp0Sy6T\nolDcW7Zu3cyRI7+ms/MsOp0PMNHSUsW2bS13bF+o57YiE5izH8rLZ+nsDDA1NU4weIkzZ3rIyUli\nMFixWIppaWlZlvIOSu4Vq4FyLC0Tt3oDLxxkBAI+entjxGKlmM029u1rZv/+u6vfcSOuv0R8NRCk\npmaU7dvvbfSJInNZKNNzcjs97SYvz0k06sFsrqW3N0Z9vZ2Wlpa7TlG71f3VLIxiOZhbdSgYNOD3\nH6G19SGamp7FbrcDRiAHIcLU19fT2tp6V+fJ1FRjxYPNZz8L3/0unD4Nu3atdm8UCtID6lkikSxS\nqQLc7n5aW+sBlB5V3NfM2dRNTU2EQv8vdvsI2dmVDA3ZMRpL8fnycbuP88d/LJRsK+5b1BzVPWZu\nkHH8OBw40MnYmKSt7TGiUStut5eWlhY+8YnHls1jvZCFKUTRqJWhodH0/7soLNxITU3NipxXcf8z\nJ7cnTgg6O72Yza3s2fN5YrHS+fShq+VrqYLgN+JW9597OK/UfaJ4MHC5PIyPg073MKHQo3R2eunv\n78ft9lJYuJH9+5+jsHAjbrf3rs9zN/eFQrFSPPYYrFsHr7222j1RKDTcbi+BQA4GwyfIzv5tXK5S\nZmb8uN1epUcVa4L+/n46O72EQlswmTaSTFZSUrKDkpLH8XpzlGwr7msy2rEkhPieEGJQCJESQmxe\nsL1UCHFACGETQlwSQuxZ0JYthPipEMIuhOgVQvzBgjYhhPi+EKI/ve/XrjrfX6Xb7EKIb67Ed1o4\nyDCZaojFhhek9Nx4aRYpJTabjRMnTmGz2ZBS3la7lkL08VLZdXXVVy2drZaGUSxmTqYOH/4QhyNM\na+vOBXJ7Ep+vm5GREWw2WzqV887l6Wr5VPKoWEms1hJisWFstvPo9dMEgwamp92L5NBkmiYQ8F1X\np97qeZRcKzIRvR7++I/h1VchGr355xWKlcZqLUGv9zE5eQq3+wiBwCipVErpUcWaweXyYDLVUFmZ\nh9/vxGicIhKxMTLyDsGgDb9/hr6+vruyOxSK1SLTU+HeAP4LcOyq7X8DnJRSPiOE2AH8ixCiTkqZ\nBP4ciEgpm4UQdcBpIcT7Ukov8CWgTUrZJIQoBjrSbT1CiCeALwCbgBRwXAhxXEp5YDm/0ML6MJWV\n2bS1tZCfzy2l9GjLsB7H682huLibL31JLkrRuFnKxdUpRE1NTdTX96uUIsV1mZMph6OM/v7LeDw/\nJDc3zubNueTmjuDzxRkZqcbpvPtUTpXipriXNDc3095+lI6Oc0xOVuHzeentzWfXri+zfz/pdGVT\nOl2ZO06/UHKtyGS+/GX49rfhn/8Znn9+tXujeNBpamqipCRIJNKJlDUYjXHC4aDSo4o1g9VaQkWF\nE49nlLIyO5s315OTk8ulS2OUlm7n6NEhjh0bp7Bwo0r7VNx3ZLRjSUp5DLRIo6uaPg80pj9zTggx\nBjwJvI/mHHoh3TYkhDgC/D7wcnq//5Zu8wohXgeeB/6PdNsrUspI+pwvp9uWzbEkpURKSVlZGBhh\n27Ytt5XKoy3DKikp2YrDcZyOjouLHEvXWy3r6uKxu3btnD9nphd2u9uC0Iq7Y3rajcORwmJpYXBw\nEL//MiUlTxAMZpOTEyYWKwYEDkcYl8vD44/vumN5uleFBpVMPdgsrBfm8/kpLKzHYCgjmbRw6ZKH\n/v7+eTk8ceIUsRi3tQKhKtatuJ9oa4NPfQq+8x147jlQqlCxmvT39+NwxNHpHsVkqiUe76Onx47d\nbk/rUiWgivub5uZm2toGuHBhCKOxhNlZK42NxSSTj5GfX8M777xMVlYpe/ZU0dU1RFnZBWWnKu4b\nMtqxtBRCiBLAIKV0Ltg8DNSk39ek/59j6CZtOxe0Hb2q7Qt32s+lBhd2u51Dh+xEozWYTNMMDQ3h\ndntvc3AbRkovweAQfX1mbDbb/L4Lo6G0FA4Tx4+fpLe3m0uXtGLLlZXTwLXe70wdbKvCt6tLIOCj\no+MELtdpZme7qK1twmJpZ2zMTjI5Tn9/hNOn/YTDJ/D5jIyOjrBt29aMrn2kZOrBxm63c+BAH52d\nV7h06SzhcB6pFDz0kIVg0MDf/d0P8Pl8FBUVsXnzJozG8ttagVDJl+J+46/+SnMuvf02PPvsavdG\n8SDjcnnw+yEQ6CESsQGjHDlShcv1Y7ZuLeMzn3lmXp9mos2qUFzNwsmsQMCH1+vj5MmTjIzkUV39\nKU6dOkAg0Es8foWxsTJCoRhTU51MTcXIyxN88EEAeGN+caXlWIVZoVgp7jvHUqbx4osvUlhYuGjb\n888/z8MPP5weXFjw+Y6xadMFAKLRatraHuPo0V8zONhJZeXuWx58bNu2ha6uIwwO/ga9PkEo9Ag/\n+Yl27O3bt9LU1HRNCsfY2ChnznQBm2hpyQHCS866Z+pg6HpRWIq747XXXuO1qyq2OhyOaz7n9foI\nBv3EYkX4fI309IwRiRzAbB6jtTWBXt+AThdhasrA228Lzp2z8eijI3zjG797VytprSRKph5sXC4P\nY2OzOJ16/P7dgI1w+DgjIzp0umpGRqbw+7Mwmws5f/4yL7ygY8OGsltOv1DypbjfeOop2L0b/vIv\nYe9eMBpXu0eKBxWrtYRweJxYTAdUkUrBwAC4XHo6Orqx2fx84xtfQAiRkTarQnE1c2VMBgd9DA31\nkZVVy8yMhUDAiV5/GaczRXl5K7OzV5idHWbPnt+nr+8s0aiPLVue4qOP+jh61I/T+bGcZ+qYTaG4\n7xxLUkqPECIhhChbELVUB4yk3w8DtcDUgrZD6fcj6bbTS+w318YSbdflpZdeYvv27ddsP3HiFNGo\nlfz8ao4d68br9VNcnASC9PYKYrFhTKYaWlt3cuzYG7z//gcMDAzg9foQAoqKCsnPL6S01EJTUxP9\n/VotpD176qiq0jEwUE59/XZ+8Ys3OHPmNAcPfsRzz32Sffv20dIiOH78JGNjowSDfsLh9ZSXlzE2\nFiQnx4HVuvWa/mbqYGhhFNatRgxcD+Xh/5jnn3+e568qqPHqq6/yxS9+cdE2IQR6fSHQAkzj8/Ux\nMvIzhCgkmdxOIGAjFssFBKFQI15vPWfOXOBnP3uDxx57hLy8AkpLLRn1Wy+nTCnuPyyWYqam/hm7\nXYfbbcDvdwMDhEKS4uIUqVQpRuN29PoGJiZO4XBM8MILL9xUfuf0y8jICD6fl54eSVaWW8mXIuMR\nAr73PXjkEe31z/98tXukeFBpbm6mvr6As2cFyWQ+4GNmppBw2IPR2EBnp5OOjovU1NRkpM2qUFxN\nR8dFLl5MMjnppL/fg8lUiBBFJBLT5OUdJjd3E7FYDjYbmM1w/ryNykqJxVKF0zmGELO0t+8jEPDM\ny3mmjtkUivvOsZTmDeCrwP8phHgEqAA+SLf9AvgKcEYIUY9We+mrC/b7UyHEL4AitFS3Zxe0/UAI\n8X204t0vAP/5djq10HERCPgwmWJ0dg4BYdrb9+H3u6muHkGIEQyGJC6Xh6NHf87AwCAez3r++Z8/\nIJk0AKXo9RfYunUbVVVuWlsH6euLE41aMRqjhEJOhocHOXv2HKOjTvT6Quz2XHy+96ivr6e1tZVg\n0M+VKwO4XGYiEQdZWWYqK3U880z7krPuyz3YXi4nznIWbFQe/ttn27YtVFefYnj4KDMzEI3qCQRa\n0emc5OfrECKLSOR9wuFyIhEjbreDQGCQw4druXjxPE1ND1FV5QYy57dWRUBvzIPggI3FIBh0MTOT\nJJFIYTA0MTMTJZHQk0wOEo0Oo9O1I6WbCxdyeeedd3j66afnHfxL/S4f65dqIEhNzeh86LrixjwI\nMpfpbN8O//E/wn/6T/DpT8PWa+efFIoVRwjB7t2f4PXX/y8gBKwDQsRibtxuD6Wl6wA1QXSvUTr6\n7nC5OhgbixIIjJJMSqAFnS5IKnUOk2magYFt6HRJWlos5OcneeKJVrZv30pHx0W6ukz4/e5FE1Vz\n8t/TcxK//xIjI8Xquigygox2LAkhfojm+CkHDgkhAlLKFuAvgFeEEDYgCvxRekU4gO8ALwsh+oEE\n8DUppSfd9gqwA7CjOY++K6W8DCCl/CBdzLsLkMDPpJRv305/FzouTKYYbW0mystn6ew0cuVKB/H4\nKBZLMcFgGYnEToToIS/PTmPjZiyWFrq7ZyguzgVa8HolVmsN0SgMDXURjW6ire0xfvWrv+fSpRHi\n8fX4fB0kEmFSqT9CpytgdLRjvqB3Xl4BjY0befTRZuz2I+zYYeBTn3ryukpnuQfbc79FJGLB7z88\nn653u0pvOQs6Kw//7dPS0sLv/u6jjI6ewufrJxptQYgtpFIdOJ0nsVofp6SkjXg8G50uSCjkRUoj\nHk8uPl8WJSWSUCiYUcUH71WR8PuVte6Adbu9FBdvo6FhErf7KInEw6RSHlKpCAZDOQaDEyFOAZ2Y\nzdUMDKzjtdfeR0qJzZa47u+yWL8IamrW1u+2kqx1mbtf+Ou/hqNH4XOfg5Mnobx8tXukeNCQUnLu\n3EfE4zEgB3gMreTpaVKpGEVFZoqKChaVflATRCuP0tF3ztatmzEYXsHvT5JMOtAyAMpJperwekfJ\nzs7HZHJQUrKFeNxMaWmChx/elrZTW9i+3X6NnM+9nj9/ga4uI6Oj1YtS5RSK1SKjHUtSyq9cZ7sT\n2HedtjDw3HXaUsDX039LtX8T+OYddZZrHRf5+bB3716Ki9/hwAEbRmMzH354nEQiTlPTei5cGCGR\nOEt2thePx0Nu7jgeT4BYrJusrCC9vQaSyUkqKpLodAl6eiRjY+fxeGqpq/sTAoHXyMn5F6LRLgoK\naigs/LgwQmmphaoqN9Goj82bq/nUp1puqGyWa7A9N6tx+PCHOBwF1Nc3c/x4DK83dUdKbzlnSdQM\n1+0jhKCoqJBQKEAkEkDKTnQ6I1J6iEaH0OnW09r6CD5fJ6FQIXl5JozGJB6PFyE8fPCBE6s1TjCo\np7i4kL179666c0nNvN2Yte6ALSkpwuM5T3//GWIxLxAnlfIjRA46XTFCCOrrnyYcLsbtHqKgIMLI\niIm33z5IMrmJ9vYW/H55ze+Syfol02V+rcvc/UJWFvzyl7BrFzz9NBw+DBbLavdK8SDR19fHb35z\nCm0+2Q30A2PADHp9ilTKwoEDNoQQ7N27V60Sl2aldbzS0XeOEAIh8olEnIAOLbYhC5jCaHyI3Nzt\nzM5+QCJxgXXrStm37xmklJw4cWrByrJLF+x2uTyMjt7eyrV3Q6bbEorVJ6MdS/cbFksxPt8RDhy4\nhNfbSyhUTCDgIzc3n8rKR8jLK+bYsUN4vSc4cuRDwuEkOl07+fljbN16jCefrMNmy2FmJptwuJ+R\nkSNI2Y7XW0dlpYf29lG2bi1ldHQGn+8Y2dlOdu3aRDSqJ5HwU1dXxrZtW4Bbi0BaCQUxN6vhcJRx\n5Uo3Y2M2YD3t7XsIBEZxuTw0N9/6eZdzlkSlQN0ZPT29eL0hjMb1xOMBksmjGAx+DIZ6fD4D584N\nMDFhIxbLQ68vByawWNazceMWurpsRKMmurvr+Md/PAKwIs6l25FlNfN2YzLZQbIcDA0NMTIyg89n\nIZksAyaAJEL4CQTexWBI4XQ2kpvrJC/PS0XFNgKBSS5cmMZoDDM6epDKyhlqatoWyVom65dMl/m1\nLnP3E7W18N578OST2kpxhw7BunWr3SvFg8KBAwfx+eqBSqAX+DFagkElkUgdIyNxZmcTCNFJfX39\nvB570Ae8K63jlY6+c7SVDmMIYQAeAXzACcBLPP4IodBh9PoE69dXsnFjG2NjYxw61I/RWIPJdIH2\ndi3jQ0qZXln842t8r69LptsSitVHOZaWHSMOh4ve3gCdnUFef/0o7e3FCFHGlSujTE8XU1a2E6fz\nMAZDCQUFX0TKD/F6L5BISEymMoQw4XaHSSb9NDVtpbCwBZ3uAjU1NWzdupmZmZ8zNXURsznJE088\nRTQ6Szyeor6+Zn4wMxeBNOfEOXHiFMGgf1Ex5ZVQEHOzGrt37wQgL+8SsZjA7x/G7+9kZERztvX2\nxojFSm963uWcJVEpUHfGzIwfr3ecRCIfyEYz+MYRIh+9PodYTJBM7sVkipCXl8BqjbBpUyMmk4VE\nYobp6Rb0+jyi0Rn+8R/fBBY7l5bDILwdWV7Nmbf7wfjNZAfJ3SKl5PTpczgcYySTFqAZKAMCpFIh\nYjGJwaAnHO6nslLQ1PQ4Ol0cv38EIXZgsbQQDp9ictLD0aM+uroO86UvSVpbWxc4l7TrC/Zbvr4L\nlyO+Wk8vh3xk+mzzWpa5+5GNG7Vopb17Yc8eePddqKtb7V4pHgR8vgBClKINvrOBhvRrI/F4E2Nj\nw1RUTGEyPbxIjy0uRdHHwMAAMzN+pJQUF3+8GE4mPnOXg5XW8UpH3zmBgI+JCRuJxDqgBvCmW5LA\nDDqdj5KSx9i+/dNMTU1ht58lFNpNbm4ct9vLzEwRTqeNsrIw0WjNomu8a9dOpJR0dFwENFtCSrli\nMq7JmYX8/Go6O4euKXNxP9i4ipVFOZaWEbfbS2HhRqqr/XR0TDMzM04gsIHx8Vmys8eBLGKxQqqq\niikoqGN2tgeP5yckk1cQws2bb14hEFhHPP4oBkMQvV7idJ4kmZymslLM36QvvvgcH33UwYcf9vH2\n2wO4XF62bHmCWCxOfX3/ogH1xxFEKa5c6aahoR6z+RKbNl0AIBKpZsOGGz+ItNoitnnFtW3bFpqb\nm5csZDvnPe/rO01VlY59+/49QohFecCnTh3HZGphz56bPwDVLMnqIqWks/MCgYAeKSWgByCRaGJ6\n2k402kFW1m+h15vQ6QSxWCc1NVb+8A93MjQ0is/XyPh4gpGRIWZn49jt1fz0p6epq6ujtbUVuLsZ\nkMWpl2Xs3r2Tvr7TyypTy/mgvB9me9ayA9Zms3HmzCRTU4JYbByIo5XiGwC2IEQtiYQkmTTh8UiK\niqyEQqcxGKJkZ/sJBDzAMLOzLRQVteNwnJ2vawd3fn2v1tONjQ3LWvT+dmR+NQzDtSxz9yubNsHx\n41oh78cf15xLGzeudq8Ua52KinICgQNANSDQJrICgBkhStHpBkmlpli/3kwg4JtPF5qedhOJWCgo\nKOHo0aMcOXKFZHIHodAwen2CrVt3ZdxCIsvJ1TreYmnGZrMtmx5XOvrO8Xp96HTFQBXa4uNJNMdp\nJbCTUKiXROIDDh1KIYSDnJwIpaWljI+HyMsrnc/4gBHMZtei57iWZidwOnOIRq04nfb5a7USWK0l\n+HzHOHasGwjT1WVi+3b7/PnuBxtXsbIox9IyYrWWYDL14XReZmbmXUKhYnS6dhIJPdFoDg0NzTgc\nnTgcB3nooXxSqRSdnUeJRkuYnW0hHDYSjyfJzQ0CZRQUTLNnj2DLlny2bGlnYGCAw4c/pLa2ivHx\ncbq6ZtDpqpmeTlBVFWR83InXe4GdO3fMz85MT7uJRq1YrUVcvhwGBJcuRRkcHMNodJGd3Qtww2Wx\n7XY7r7xyhM5OrZhiV9dx9uwZml+pbqHyWGpWQwixKA94enqUWGz4lgY5apZkdenr6+PixQmkbAIK\n0VTGGGBDylmiURNGY5xY7CJ6/QhGYwEuVw7nzp2joaGJlpZGCgv9eDzvEQ7vwGjcgMPRv2gwvnim\n7STnz3dw/rzm+Ny2bQstLS03TWtzOAq4cqUbgKoq3bLK1HI+KDM9cmQtI6Xkrbfeprs7hJTVaAuD\n9gEewA/0kko5iUZ1GAwtGI0WOjq6cLsjBIMNCNHDpk3d7NjRQE9PWXr/nEXHP3/+An19KdrbtxEI\nXFuHaak+LaxJZ7G0c/lyGIulGodjlMOHPwS460HB7ci8MgwVc9TXw7FjsG+fFrl08CA88shq90qx\nlgkEQiQSRUAbMI7m9L8CzGA0Bli3zkxWlplwuIuennZiMYnffxiLZZbBQT9jY0V4veDx6LFadUAB\n4bARq7WFaHTmuuUYgNtyqGdaZMbVOl5KqfR4hiCEwGjMR3OQDgDDaLZ0ExAGjESjeYyPp5AyF6Mx\nzszMCDk5I1itDQwMfERlpWDr1s0MDw8zNNRFXV01TU1NwL21K5ubm9m06QJer39+tfOF51M2rkI5\nlpaR5uZmBgcHOX8+itG4ESmnSSa7gACJxAiDgyMkk2HicSOTk0lisSzM5s8TCPQSDJopKgoRDruI\nRn00NFSyefMWnn32McrKrLz55lv88pd9pFKVCHECKaOMjtai1w8Tjzs5dWoIvb6UgYFCjh//gK1b\nt1FV5aalxYDPN87gYIx4fJixsVxCIUFWVi0zM+uxWm3U1IyybduWa4rFzT0kp6fdDA76SSRaMZvL\n8XoHGRoanV+pbqHyuN6sxsLZlMrKbNraWsjP56aDHDVLsnqkUim+852/ZXBwGi2y4ynACATRBuKP\nkEhAUVE2yeQsOl0bOt06hodj/PjHnTz5ZBXr1yf41KfWo9dXcfKkm6KiAFlZ+kXnWSgbPl8PAwMO\nxseLgRw6O4/xxBND5OcXLmm8LU69fIPGRief/OQT18jUUkbgzYp+3kk01M1Y6VlFxfWx2+0cPdqN\n2+0hmWxGmw0vAFyAFS0azwwEEOIS09O5uFzdxOPPIMR2UqkEsdggTz75BAbDBF7vBSorxbzufOed\ndzhw4CMcjlwcjhDt7QKL5fEbXt+ra9J5PG6ysnzY7ZN4vRFgI5FIH4ODg9e9B67Hncg8ZKZhmGmD\nuAeJ9evhgw/g2We1mku/+pX2qlCsBENDQ6RS+Wj6OIFWA68BbbFmGybTdkKhVi5cGKC+vp2GBgvH\nj8eoqlpHOOwnPz9Jbe0WDh4MMDLSidHop7Q0C5erYX7SaSnnObBo21w60c109906bpZLt11d/uLI\nkaPLZrfcLkpfL2bbti3o9RNo9vNs+lUPnEGLYJoENhKNbkWv96LTXSEeFyQSjZSVtRCL2Whra0dK\nyb/+62mmpmYpLx+ntraWtra2e5rZIYRg+/atOJ02AgHPNUEJKstEoRxLy4gQgvz8QvLyWiksLMTr\nHQCOALlAC5HIGDpdmIKC/46xsUMkEtMUFQ0RCp0glZplaqoW7ZJcob9/mooKP2fP6nC5sjh8+CS9\nveXU1m7D6RxACCPRaCXh8DAGQyc5OXmUlW0ikWjkypWD5OZ24PGUY7GUA3GKivQUFOTT1JTFsWM2\nHI5cqqpaMRpr8Pn8DA0NXbfuUTDox+mcZHBwklRKj9lspLZ2Dzab65aVx+LZlNYlHzTqYZRZvPPO\nO/z85+8DdWgyfAnIRxuIzwBhkskEExPjmEwNGAw6/P4IZWVeIpFqXK4UDkcnx4/3EYnoycqqJRS6\nRElJlPHxJD/72c/Ztm0LTU1NtLQMcObMe/h804yOQiq1nqysCgYHewiFwlRWPrKk8bY49TKHT35y\n65LG3Z0YgUtFQ1VWCgIB05IO2FtBzSquHi6Xh6ysavLzpwgEjqDJ9Vwq3CzwaWArQpwnlfqAWKyU\nVKqAZHIIKWvQ6z1MTU3z3ntHKCkpoLKylIaGWpqamjh06BDf+97rjI/ns359NonERXw+HS+/bOf8\n+SmgnsZGM9/4xu/S1tZ2TaTS44//OwAaGqaor9/G4OAIAwMN7N79Oxw79gaDg0Pz98DNBjxz3OnA\nJxMNQxVFtboUF2upcJ/7HDzzDLz+Onz2s6vdK8VaZHY2hGZrpNBShgzAesDE7GyCwcEkTU1uyssL\niMWG6ex0Ajls2rSbjz7yMjvbjccD1dV6amubGRzsxmKZQqc7STxexkcfhQCIRGrYsOExurtP8Oab\nb9Hd3cvUVCH793+ZwcFJfvCDvycQyKWsbDOVldPAYp2zXA745SgFsPBZcCdR3MuN0teLaWhowOsd\nBjYAJjR7WgAXgRG0FRB7gBBS6ojFwgQCSVKpVkpKNlFZWUB+Phw8eIhjxwJkZT1MV9dRjMYf8md/\n9j/S1NTE/v33LrPjRhHQKstEsayOJSGEEW0Zh9+WUvYs57EznVQqxbvvvsvp02cZHp7C5wujKYwk\nWq74p4EOUqkf09f3PfT6GqAFj+dI+ghPoQ3WUwjxDOHwYc6evUhW1gYmJuzMzASYnbUwMjKFECki\nkSvEYoUkk5Po9S1MTxczPf0e8fivSCTCuFzNWCx2LJYmUqlt5OQIxsenADCb8wmFHNhsXkpLI5SU\nPExPjw2TqXy+7tH0tBvQZto9nhmqqytJJr14vVFMJh11dXU0NOhuWXncSuSRehhlFidOnCYYNKDl\nhVvQlv3tR5tpyQZmkfIyyaSTSGSKWGwnyWQAp9NGPO7lN795i0ikBoOhASmHqakZpaIiztiY5Oc/\nt2AwdFBVdZS6ujz6+lz4/dWEwzlMTY2j042RnT1EU5Mbo/EZ8vNL6OzsJJnsZ3raPV+E81YfYndi\nBC4VDVVXV512wHJHMnr1fXDixKmMiw5Zq1itJRQUJAmHY2jpnFloK7SUAv8KdAJGpDyOlGbM5o3M\nzMSQshuIk0iEGRyU/OQnPRiNRtrbt7JhQxSHw8GHHw5ht1cQj5cwMzNAYeEwbvc2+vtHCAYhPz+P\n4eEZWlsP0tbWtihSqb//Mh7P35GXl6CubhN1dXV4vT5Mpgl6e08Ri41gMrXMy0hHxwW6umbwevUU\nFyfni4dfzZ0OfDLRMMzEKKoHjdxc+JGRCicAACAASURBVPWv4Utfgj/4A3j5ZfgP/2G1e6VYazgc\n42gpcM1oDqUJoCv93ojRaMHjGWVy0ktDgyQ7G4SI8dZbDqLRCHp9OTMzH2GxGBHCysREmNHREk6c\n6KesDGprDVRWBrBYZujtFQwNvcelS9NMTVURCjkZHf0+ubkRotFcZmfLeOihODC7yCa2WkuwWIox\nm+03dMDfaLJ0OSKil7KZbzWKeyVR+nox3/rWt/D5Umh2RwzYiBa11AQMoQ3FK4FpUqlxhAhSUvIY\nEGNs7DLNzc1YrS34fAFmZ02kUik8HiM9PXEOHrSxfz+L7Mq5urgrNUl/o/GcyjJRLKtjSUoZF0Jk\nLecx7zVCiCbgn9ByI2aAP7kVJ9m7777L3//9Oez2EYaGDhEOTwCbgAogApxCi/TIAopJJq3AKNog\nvRHNix0DnEi5BSjG7S7gzJkIkYifSMSJECai0fcwGoeIRCIkkx1AEVI+TCIRIJHwIUQeiYQBaMfv\nn6S3t4/Z2ThjYwUIYWBg4Bix2EbKyjYyNXWMrKw86us/wbFjb2I0XqS3txqz2U0waOSjj7T6TD5f\niGRyiuzsbTQ1NVBUNInb7aW01LLoN5hzrg0NjVJXV83TTz+NTqe75d9ePYwyi7Nnz6DVkekEWoF6\ntFkWbXl2LVfcTCTSDEQwGjuxWLbg9eYTjZYQjY4BbpLJnQhRzejoKVIpG2bzHmZm1pNKOejoOIRO\nl0LKQkpLy6iqqsZsLqCkRA94sVhSTE2d5fz5biAHu32KiYnRRUU4r/cQW1h0fnx8jCtX4gwNDVFc\nHMZiefym33+paCiXy0MsxrLJaCZGh6xVmpubKSyMMjsbBUrQHP5TgBtNni+jzSBaSaXa8HpPoqV9\n1qM9CvqJx5twuSSQi9c7yuDgLJcu2ZGylJycnQQChUQiPaRSCZJJC5GIIJmMEAwOkUj4GRjwIaVc\nZPx7PB7Gxo5TXLyd73//LXy+CQyG9RQWpnjyyTD792+iry9Ob+8pTKZpLl68yLFjEUpLH2N0dJLz\n5y8sGcF0p7KViYahuk8yA7MZXnsNvvpV+JM/Aa8XvvGN1e6VYi1x6tQptNp1o2i1aMrRBuAjSNlB\nMLidREJHIJBgetqNED6iUQ+pVJxwuIp4PJ9UKkl+fi9FRR14PO0IkYPfX49OV0pjYy1+/yXWrZum\nqmqY4WE3U1NG4vFKkskYLtcZEgkdOTlPYzBYGB31s359iN7eAG+84cVkqqGycpr9+1vYv7/lhg74\nOcdPJGLB7z/Mpk3asvFNTU28++67HDhgIxg04PFcBj6OLLrV6P2lbOZbjeJeSZS+Xswrr/w0/a4c\n2I5mV6TQUuCSaOO/9en2IqScweEYo6ioj8bGHFpaNnD+fAfj4w5mZ0N4PCZgmtbWp4hGrdfYoWqS\nXrGarEQq3P8N/G9CiP9eSplYgeOvND8CfiilfEUI8QdoTqZHb7ZTX18/Bw78jFisCM2h1ABsQ6tF\n40BzLKXQlrZuQnMo5aQ/G0Ub4AyjDWA+TB/VxPh4PzpdL1JWoNNtJpk8AnQAxWgOK4mUF4hEUuh0\nleh0OqTMJR6XSGnE4/FSXV2OwdDKzMwQo6NxpBxHr68jNzcHgyHCwYOHkDJGbm6AcPg3bN78CLm5\n+USjuvQDS2Kx+BkensZkyqGiAnp7u/n5zz2EQnnk5sb5zGcGkVLyX/9rBx5PGfAeDoeDF1544ZY9\n5ephlFmEQmG0GZYiNHkdR5PPEjRZNaPdGl5gnHjcxuRkH7AL2IPmeHoXmEbK0rRMRggG+3A6vYCf\nZHITWmSfn3D4fUKhMlIpA1NTNeh0E4TDMSoqspmZEVRUWAkEarFYqolGxQ2dOnM1b37609M4HEXp\nQuP91NXFKC4uveazSxlxS0du2JdVRpczOuRBTyVd6vsvRAiBwzFKNDqKVhi2HE0/D6MZdZ8BDqHp\n7ocAO9rKLQ+j6fAQH08CXCESmcFu19HfP4uUfnS6YxiN5eh0oXQK3TGSyWxSKS/RqB4hZunuDvKt\nb32LeDxFb+8s58+fp7PzEDMzBeTkwMREklQqhclkoKCgAJ3OgXYJBVVVIUKhIB0dPkZGrHg8PRQU\nzHDx4gSnT4/OD3hAMyKbmppobR28ptDn/UgmRlGtNJl6P+v18KMfQUkJvPgi9PfDd74D2dmr3TPF\nWsDnm0GL5qhJ/wm0FPwiIJ94PEQ8bkana2NmxgfMYjaXkUqNEIt9gFazphS/v5jJSS/J5CRCGIBx\nXK4xTpw4Qm5unO7uanS6s/j9wwwP60gkriCECYPBTyhkQq8fJS9vioaGBGVlJRw61I/T2YjV6uPM\nmUMcOxZi166dfOYzz1z33pyeduNwpBgc7KCzs4eLF6uZnMxiw4ZBDhzoxG6voqKinpKS84sii27k\nGFioFwIBHyZTbJE9spSuvNe65EHS1zezOwAmJ6fQxnltaDJ9AXgPzZ5oQXM09aA5mQTQDuQyO3uC\nvj4bgYAVm83MwMAMgUCU/PwUUhbhdk/Q3LzumvIMapJesZqshGPpEeC3gL1CiE40a3weKeXnVuCc\ny4IQohRtFPE0gJTyl0KIHwghGqSUAzfa92//9tvEYl4+nmnZgRb0FEMbkFvQBuUxNOeSH02ppIBp\ntAHMk2iDmSHgMbSH6ySp1ACQTzI5g1YTZAtaKGUUsAEX0emKESJBLJYNOIlE1pGfr8PlysdsvoTD\n0cHUlA8paykp0RONXmLLliwqKnI4f/4M+fklDAyYiUbziMfH2L27ArM5kX5gudm375n5WfFAwMeB\nA2EuXiwhGo2QTAaYmDjEunUpPJ52zOY9DA/HOHToAnv22G/ZU/4gPYzuBzweF9qD7qH0liCafDeg\nye16tJXinGgyb0CL0AuiRTUZ+Th3PEgqNcrg4CSaI6oI7YFqTh+nFSn7cLlOYTBsJJWqQ6+vZHh4\ngIaGHAIBD729JpLJTj78sIeCAj2hUDGBgG/JyDi73Z423ApJJtvIznaRSiXZsuXTCAFut3fRZzUj\nzoLPd2x+VlErdrw4cmO5ZXQ5o0Me9Fmq6xVkXcj58x1oMizRDLgsNEeoB00Wi9FWaRlGc6p60Jyq\npPfzoun1DWgTAGak3AyMkEpJotF8IItkshYp+0gkjqPT7USvN5Cfb6C7201X11Gs1kfx+c4RDr9N\nIJBDIpGHwWBDSicmU4xodJZQKE5nZwync4qsLCMFBb1AEre7mWQyB683jE7XS29vEV5vGYWFwwwO\nejGbJwHN4NVW7txEX5+L+vr+RfKQqY6LpbjT++R++o5Xk8n3sxDwN38DtbWac+n99+Hb39YKfN8n\nP68iY5FourgJzdbtTP/p0Jz6fuATpFJhNH3sJBIpRLOxq9D0+jSaHs4D1iFlPuAhFruAy1WO212A\nyaQnFrOQSAym94khZZB4XEcymYfZHMNoHCM3N4ueHkFPD0xPnyYUmiSVEmRltXL27CWOHu3jK1/5\nffbu3bsozc1ms/Hmm//Gr37Vy+RkNqlUHULkUl7uwedzMD0Nubk+xsYGaGlJ8NRTWkX8kydPMzIy\nQiRSzYYN1zoGFuoFkylGW5tp0UI4S+lKm812T3VJJka93g6389y4FbsjFPKl342i1XQcRnOWVqPJ\ntDH9OoEWZLADyCEabaar6zIOR4RwuISZmSrC4VGMRiP5+UmsVjd5eU4OHAhjMtXOTyypSXrFarIS\njqUZ4JcrcNx7QTUwIaVMLdg2guZivqFjaWRkBNiM9mCTaMujhtDSLExAHlpKhS19qBTQjTbAnku3\nWJ/eJ7XgL4nmq7OiOZ1SaH4vC9rD04nZnEtpaR5ut5VUqhwh/MAADQ3/jtlZM273u0xP+4lGH8dg\nqGF2dpjWVhdPPrmFs2fdTEwUcPnyMLGYpLBwN52dLh56yMf+/dsWDaC1h4VWF8ZkqqWgQNDVNUBO\njpepqWri8W7C4fNMTsYoKfFRUNB4W57y+/1htJaQUqLXm9EcR6NoA2mB9gB0ozmX7GjG3no0GXWi\nOUsDwDvAOjR5jfBxSPsn0eR/AhhEe8juAnYCWUjpSC81nIMQRmKxLAYGLgJtFBXpGB/Px24PkUjE\nGR+vprOzA4B9+/Yt6r/L5cForKawcITe3sPk5PipqMjC5Rqhqipn0YN2bnYnP7+aY8e68Xr9OJ1L\nG1+ZLKMP+izVUt9/IVJK/P4g2oy2BziHFlVagpam/G9oTqRSNPnWIvE0PT2KtoJcAZpM69EGPeNo\nMp+T3lYADBKL9aSP204qZSCVCuP1xjEa20gmjZhMcWZmKkkk6kkm8xDCSyp1HiFySKVKSCadJBKV\nRKMSKfMIBguZmjKRleWgoCCC222kslJHUVEbiUSQeNxEV5cPnW6CwsJWYjEbZWVhotGaRb/HwmW2\nAwHfdRdsuFUy3XGTyc6Zm3E/3M9f/Srs2QNf/zr8zu9AYyN8/vPwiU/AQw9BRYWWPnc9UimIx8Fg\n0CKhFAqNIrQ6jgk0PTwMPI5mJ4fQJgCG0fT2hvS2JFoGQALNMTXJx5NcTenXRpLJBoTwkkh4SaVK\n0ewSK9piDpeAIWZna4nF/CQSCXp71xEK9eHxFOHzVRCPO8nOtmA2b2J2dhi7PciBAzbq6+vndYvd\nbueVV45w9KgJj0cCSXJyDHi9fmy2cxgMTQSD6wgGx6iqGuCZZzSn0pyu8vmCwCV6e8U1joGr9UJ+\nPnziE4/d8NdcDl2S6bp+Obmd58bN7I6PyUKT0xjaUHNOJkGzQ8qAs2hO1INodrEbvb6UaHQKt3uU\nZBJMpkJMJg9Wa5T6+lY6O73Y7VVUVq4DJnG5POzatXO+b2qSXnGvWXbHkpTyy8t9zPsDgaYsnkR7\nwP0j2oNxK9rgI4E2SLeiOZoE2gB7F9pAxwucQPPLlaLNytjQlM/m9Dk8aAMXM5pT6TwFBTqKiuop\nKfEQCmWj0zUipSCZPI7X6yI/X1BZ2cLUlCQnp4p4XJCbO83evVtoa9vI+fPDNDfXMzh4GqfzHAbD\nLBBGiPzrDqCt1hIqK6fxeDwUFl7EYCinpaWJwsL1tLVd4sqVbgoKGtm0qQGrtWTZf2nFymO32ykq\nqkNLu3SiOUZr0GR4EG1QnkKT5x1okUrH0JxI69Kvo2hRdWa0wXczmuMVNH/tOrRopgm0e8SDEGUY\njTPEYh9hMpVSVZVDY2MKr7eURCKLZLIKKU2EQiYslo1EIl6Ghkav6b/VWoLJdIFo1E9JSZiaGj3P\nPruBDRuq5wt/L/ys2Wyjs3MICNPevo9AwJORA7kb8aDPUi31/QcHr8y32+12CgrWMzHhQ9Oxg2jO\noIfQnKNz0Unr0PRsNdrAJYgmnzlos4xJND0dQLsHdGiO/tF0mx8oQYgapPSh000ipR4pS9DrW0il\n3MzMdAEW9PoydLo44ESvj2CxNFJbW4bTmU1b23rcbifBoJ1kchM1Na1Eo7nk5o5QUzNJU1M75eXF\njI72EQxmUVGRSyy2nebmnUSjM8AIZvPilTsXGsxjY52YTC3zCzbcibxnuuPmfnDOXI/75X7etEmL\nWPrwQ/jxj+Ef/gH++q8/bs/L05xGOh0kk5BIaM6kRAKk1D5jMEBdHWzYAI8/Drt3w44dN3ZKKdYy\nTWg61o6mj6N8bPsWotnLY2h6uwYtyt+JtrhIFM3G3oA2yevlY90+gxAz6HS9JJMgRD0fR0iZ0VKQ\nwggRRa8vIyengOLivXi9/SSTxRQXtxIO60kkeggEPsRszqG6ejsmk2WRbnG5PHi9esrKduFyFTE+\n3kUkMkpBQRCzGfLzN7F16w46O4+yZ4+OvXv3cvLk6QW6SlJdPUpNDdc4Bu5ELyyHLsl0Xb+c3M5z\n42Z2x8dsR5tADaKN/7LRMlViaJkoM2i2wzY0m+Iier0Vg2E369d3EY9P4fOtIxYrpKTEzyOP1FNR\nUcHkpKCyMoexsQFycqaxWtsyegJUsfZZiYglhJbQ/BTaaPKnUsqAEKIC8EspgytxzmViFFgvhNAt\niFqqQRsFL8mLL75IYWEh/z97dx7exnUe+v/7giTAfSdFiotIiassWqK8yrbsOIktyUnb5GZxdGM7\nv+Y2zdY8vW7yS9skbW9ap20aN26bNE2TNjeNY8tLmrRObUl2Gi+SLMubFsoSV3ERSYngApAAFwAk\nz/1jQBqkSImiCBME38/z8AEwB5g5AM+cmXnnLNbB6Q2sYFAFVmWRhXUQ9GK18pjEuohOx6o4ErAO\nlpuAF7EuzNOC73MG19kNxBATk4XNNoDNJhhzBLv9HLm541x77b1kZBjKy+PYt+80p061Eh8fQ1xc\nKZs2nSUn5yp8vhRSUuoYHT1DYqKb667L4K67rK5tGRmn6ew8SWaml8TEWDIymiktzaG2dvO8P9LU\nQe7aa/vZtm2cEycGcDhGKShIYufOT1wwkKyKPHv27GHPnj0zlnV2dk4/7+sbYOfO3+fNN+/D6/Vg\nnbhtxbqr4uTt1krJWC063Fjj0ASwAqUFwfd5sA6ig1h3A/uBBsBObOzV2Gw5TE42IPI8SUl+EhKS\nsdsdjIwMUVq6hve851q2by/h0KEOjhw5RWqqj+zsarzeOlpbh1m/Pp6SktoLvl95eTk1Ncdwu9Op\nqdmOx9PBxo0y5529qTKam3uMkyftDA31Ex/fH7EXcvNZ7V1J5/r+r7322nR6X98Au3Z9mZGR73P2\nbCdW2e3HqqutCQ+sZujnsAJK1hh2b8+E6GdqggXrUJEQfH0Ea/rg4eBnc4iPX8f4uIPx8SPYbPmk\np+cBoyQm9uD395Kd7SUzMx2ncxSns56EhAGKirK4+upKUlNLaGlpZcOGPOLiYpicHKG7e5Q1a+KJ\ni0tj06ZtZGamk5ycSnZ2Jq2tBezb14TXm8zAgJv+/kYKC23U1m4OqYut3yP04qW3twO/v/2KLjYi\nPXCzUoIzc1lJ+7MI3Hab9WcMtLVZYy91d0N/v9UyaWLCCjDFxVmBpNBHrxdaWuD4cXjgAet1fDzc\ncIPVIurWW2HrVmtcp0hsJDExAR4PDA29/SdiBcbsdiu4lpJi/dnty53byFZYWExn51QAPxGrlXQe\nVmuOfKzz46l6OAbr/GMcKMBmq2dyshurNSlY5yN2rDq8C7tdSElppqrKwfBwCX7/CH19qTidb2G1\nME0H1pCY6Cc/P55AYJyxsaNUVWXS0eFmdLSTpKQRcnMhJ2cAmy2JsrJMCgpkxk3U7OxMMjIm6Oxs\nZO1aSE4ewOFI4o47PonX6yYQ6MDjWUNlZTJbt1bMMdlCP1u3zj3o9mLqhaWoSyK9rl9Kl3PcuNR5\nhyUGa3ylPKwGBVPj5AawWjJ1YJ0/x2Pd6AoArWRm5lNV1c/27dfS3V0KOGhoeJlrr3XwsY99BICe\nnkZghMTETnbtqono44RaHcRM3TJaqhWKrMNqx1eMdQugwhhzRkT+HnAYYz6zpBtcYiLya+DfjDH/\nJiIfBr5sjLlg8G4R2Qns/ZM/+RMqKyvZu3cvjzzyLNYFxiDWhfYaIAObLUBsrIOJCSsyHRMTIDfX\nRlZWNk5nLIODcYyPnycvb4KSkhJGRkbx+caIjXUwPj7G5CSkpaWSl7cGEBIS4tm82bpo8HqHSU5O\nIi8vj7q6Og4frmd8PIWcnARuucU6YA0Neenu7sTlGiQhwcHmzZtZu3YtAOfOnaOtrR1jIDk5kfj4\nBFJSksnPz1/wb3bu3LnpfFzO51Rkefrpp9mzZw9f/OIXycvL48SJczidIxw69Axe7zmsVkn5WK0r\nuomNjcfnE6yDZoDk5An8/gwmJlKJiRkkOxvWrSvi/Plxzp0bJRDoBwIkJNhITl6DMQXExQXIyQlQ\nWJhGUVERPp+PiQlDbKyN/PwCUlOTycvL4/z587S2tlNf340x6YyOnmXt2lTKyjZQU1MzZ5Psc+fO\nceLEOQKBVOLihrj66vxLlk8ty9Fldpk+fvwcAwMGt7sZl6uFhoYGJienbgBMEhtrIy4uwOSkm4mJ\nceLjISkpmdHRMcbHY4mLSyIxMY7s7AQmJqCjw83YWAITE/3ExWXgcGSSkZHEmjVrGRzsYHLyHCL5\npKUVMzraj91uSEqKZdu2jeTk5NDe3oHb7SItLYOSkmJEBI/Hy9jY6HRdPFX+L1Yuz507d8Hn5nvf\n1D4RGzvE2rWxJCQkLrq8L2Yfe6dF2z4dWqZray8Mqq901n4F9fXQ0GA9eoO3IxMSICsLkpIgMdEK\n0thsbwebQp9PMebtv6nXs5dfLG2u9UxMwPCwla/hYRgdXfj3i4mxvkd8/Nt/oa8XY75g2+z8h36P\n2csu9Z7Q5bMvG+b6LcFqlebzgd9vPU49Nwb+9V/ffl9omTbG8N3v/hy/P4B1buEAXMTFDZGZmYnN\nFoMxsH79OtLTM2hqamZkxE5cXAEpKQHy8mycOdPK2bNDQB4xMTFkZY2zZo2d3Nw8Cgryqaio4MSJ\n87hcfvz+XgYGmmlosLrYxcePUlSUQUrKWiYm3JSUpLN582Z6e3tpaWmdPofOz8+/aL08dW4NkJSU\nSHf3OOPjF693I7muWgl1/VK6kv/F7Dr6iSee4KmnTmK1lO7CCiKBFcxMBYaw2wNkZZWQnLyO0dHz\npKSMsmXLZmprtyAi8/72kVxmVPRoaGjgL/7iLwB2GWP2Xey94Qgs/QdWM4X/hXU7eHMwsPQu4IfG\nmEWFU0Xkt7H6l33AGPNUcKDtn2C1ihoDPm+MORB8b0Lwvddh3fb4qjHm34NpAvwDsAvr1sffG2P+\nMWQ7DwGfwTqi9QJ3GmPemiM/3wU+v5jvopRSSimllFJKKbUC/KMx5vcu9oZwdIXbDtxkjPHPakXQ\nhtU/5rIFW0H9DnA4ZPFfA4eNMbtE5FrgFyJSYoyZAL4EjBljykWkBDgiIr82xriAe4EqY0yZiGQA\nR4Npp0XkVuC9WG0UJ4FDWC2vLggsAf8FfP6nP/0p1dXVi/lal8UYQ0dHB273EOnpqRQXF0ftwHlq\nefznf/4nf/7nf847VabV0tI64kJaptVKNd/+PF+Z1v1frVRaT6tostjyrHW4ilSnT5/mnnvuASv2\ncVHhCCzZeHt+5lCFWC2ZLkuwhdG/AL8HfDsk6aNYrZUwxrwuIl1YI2f/Grgb+GQwrU1EXgA+CPwo\n+LkfBtNcIvI4sBv402Daw8aYseC2fxRM2ztH1pwA1dXVbN269XK/1mVrbGzk7Nk4fL5KPJ4+rroq\nJWoHzlPL4/Tp08A7V6bV0tI64kJaptVKNd/+PF+Z1v1frVRaT6tostjyrHW4WgGcl3qDLQwbfRb4\n3yGvjYgkA18HnlnE+v4AOGCMOTq1QEQygVhjTOgXbMdqXUTwsT0krW0J0pZV6MB5Pl/2Raa0VEqt\nRlpHKBU9Lnd/1v1fKaVWLq3DVTQIR2Dpi8DNInIKa4j7R3m7G9wfXs6KROQq4EPAN5Y4jyuONUtB\n6NTRmZf+kFJq1dA6Qqnocbn7s+7/Sim1cmkdrqLBkneFM8Z0ishm4GPA1VhzOv8r8Igx5jLmzgCs\n8ZrWAU3BLnF5wA+A/wOMi0huSKulEqw5G8FqdbQOa+7oqbT9wecdwbQjc3xuKo050uZ0//33k5aW\nNmPZ7t272b1796W/3WVYSVMPq8i3Z88e9uzZM2NZZ2fnPO9WK4HWEUpFj8vdn3X/V0qplUvrcBUN\nwjHGEsaYceCnS7Ce7wPfn3otIs8D3zbG/FJErgc+C3xdRK7Dmgv9xeBbf4Y1s9urIlKKNfbSZ4Np\nTwKfEpGfAelY4zG9LyTtuyLyHazBuz8J/NnF8vjQQw+9I33CRYSKigq0u61aCnMFPx955JGpwdnU\nCqR1hFLR43L3Z93/lVJq5dI6XEWDsASWRKQS+AIwNRz+aeC7xpj6K1y1AaaGyP8j4GERaQR8wMeD\nM8IBfAv4kYg0A+PA540xU51VHwauBZqwgkcPGmPeAjDGvBgczPtkcFuPGWMWMy7Uwr6MMTQ1NQWj\n05mUl5frDABqRdKyrJSKNNFeL0X791NKqWij9baKZkseWBKRDwGPAa8Dh4OLbwTqRORjxph/X+y6\njTHvDnnuBHbM874RrK54c6VNYgW9vjBP+gPAA4vN4+Voampi375GfL5sHI5GAJ0BQK1IWpaVUpEm\n2uulaP9+SikVbbTeVtEsHIN3/w3wV8aYbcaYPwj+3QT8ZTBNBekMACpaaFlWSkWaaK+Xov37qdXt\n1Vfhi1+E5ublzolSS0frbRXNwhFYygd+MsfynwbTVJDOAKCihZZlpVSkifZ6Kdq/n1q9BgZgxw74\n9rfhrrsgEFjuHCm1NLTeVtEsHGMsvYA1m9vsewy3AAfCsL0VS2cAUNFCy7JSKtJEe70U7d9PrV4/\n+AH4fPDss3DnnfDkk/A//+dy50qpK6f1topm4QgsPQV8U0SuAV4JLrsR+AjwZyLym1NvNMY8FYbt\nrxg6A4CKFlqWlVKRJtrrpWj/fmr1+vd/h/e/H+64A7Ztgyee0MCSig5ab6toFo7A0veCj58L/s2V\nBtasazFh2L5SSimllFJqhenuhtdfhz/4A+v1Rz4Cf/zHMDwMSUnLmzellFLzW/IxlowxtgX+aVBJ\nKaWUUkopBcChQ9bj7bdbj3feaXWLe+WV+T+jlFJq+YVj8G6llFJKKaWUuiwvvwylpZCXZ72urobM\nTDh4cHnzpZRS6uLC0RUOEUkCbgOKAXtomjHmH8KxTaWUUkoppdTKdfiwNa7SFJsNbr5ZA0tKKRXp\nljywJCK1wDNAIpAEDADZwAjgBDSwpJRSSimllJrhq1+1WiiFuvlmeOABmJy0Ak1KKaUiTziq54eA\nXwIZwCjWjHDrgDeAL4Vhe0oppZRSSqkV7jd+wwokhaqtBa8XzpxZnjwppZS6tHAElrYAf2uMmQQm\nAIcx5izwZeAvw7A9pZRSSimlVBTavNl6PHZsefOhlFJqfuEILAWAyeBzJ9Y4SwCDQFEYtqeUUkop\npZSKQmvWWIN5Hz++3DlRSik1BPAoXwAAIABJREFUn3AM3n0UuA5oAl4E/lxEsoF7gZNh2J5SSiml\nlFIqSm3erC2WlFIqkoWjxdJXgHPB518FXMA/ATnA74Zhe0oppZRSSqkotXmztlhSSqlItuSBJWPM\n68aY54PPncaYncaYVGPMNcYYPSQopZRSSimlFqymBs6ehaGh5c6JUkqpuSxpYElEbhSRb4jIt0Rk\n5xKtc7+IHBORoyLyoohsCS7PEZG9ItIoIidEZHvIZxJE5FERaRKRehH5UEiaiMh3RKQ5+NnPz9re\n14JpTSLywFJ8B6WUUkoppdTiVFdbj/X1y5sPpZRSc1uywJKIfBg4BPw+8DvA0yLypSVY9UeMMVuM\nMbXAQ8CPg8u/CRw2xlQAnwQeFZGYYNqXgDFjTDmwE/ieiGQE0+4FqowxZcANwP8vItXB73ArcDew\nCbgK2CEiu5bgOyillFJKKaUWobLSetTAklJKRaalbLH0x8APgTRjTAbwNazxlq6IMSa00Ws6MBF8\n/hHg+8H3vA50AbcF0+4OSWsDXgA+GEz7aDCfGGNcwOPA7pC0h40xY8YYP/CjkDSllFJKKaXUOyw5\nGYqK4PTp5c6JUkqpuSxlYKkSeNAYMxX4+VsgRURyr3TFIvJvItIBfB24T0QygVhjjDPkbe1AcfB5\ncfD1lLYlSFNKKaWUUkotg6oqbbGklFKRaikDS4nAdOuiYIufMSD5SldsjPmEMaYYqxXU3wQXy5Wu\nVymllFJKKRX5qqu1xZJSSkWq2CVe3++IiHfW+v8/EembWmCM+YfFrtwY87CIfD/4MiAiuSGtlkqA\njuDzdmAd0BOStj/4vCOYdmSOz02lMUfanO6//37S0tJmLNu9eze7d2sPOhW59uzZw549e2Ys6+zs\nXKbcKKWUUkpdXHU1fO97EAhAXNxy50YppVSopQwsdQCfmrXsPNZg2VMMsODAkoikAYnGmHPB1x8A\n+o0xAyLyJPBZ4Osich2wFngx+NGfAZ8BXhWRUqyxlz4bTHsS+JSI/AxrzKa7gfeFpH1XRL4DTGIN\nCv5nF8vjQw89xNatWxf6lZSKCHMFPx955BHuueeeZcqRUkoppdT8qqpgfByam9+eJU4ppVRkWLLA\nkjGmZKnWFSINeFJE4rGCUk7g/cG0PwIeFpFGwAd8PGR8p28BPxKRZmAc+LwxZiCY9jBwLdCEFTx6\n0BjzVvA7vCgijwMng9t7zBjzTBi+l1JKKaWUUmqBpoJJ9fUaWFJKqUiz1F3hFkxE6oC7jDFn53uP\nMaYDuGGeNCewY560EeBj86RNAl8I/s2V/gDwwEUzr5RSSimllHrH5OZCero1ztIHP3jp9yullHrn\nLOXg3ZerBNAe0koppZRSSqmLErFaKunMcEopFXmWM7CklFJKKaWUUguiM8MppVRkWraucGrlMMbQ\n1NREX98A2dmZlJeXIyLLnS2lVjzdt5S6NN1PFk9/OxVtqqrgiSfAGKsFk1IrldbPKtpoYEldUlNT\nE/v2NeLzZeNwNAJQUVGxzLlSauXTfUupS9P9ZPH0t1PRproavF7o6oLCwuXOjVKLp/WzijbaFU5d\nUl/fAD5fNlVVN+LzZdPXN3DpDymlLkn3LaUuTfeTxdPfTkWbqirrUbvDqZVO62cVbTSwpC4pOzsT\nh6OP+vpXcDj6yM7OXO4sKRUVdN9S6tJ0P1k8/e1UtCktBbtdB/BWK5/WzyravCNd4UQk3RjjnrX4\n00DPO7F9dWXKy8sBgn2AK6ZfK6WujO5bSl2a7ieLp7+dijYxMVBRoS2W1Mqn9bOKNkseWBKRPwTa\njDGPB18/AXxIRM4DdxljjgMYYx5d6m2r8BARKioq0G6/Si0t3beUujTdTxZPfzsVjaqrtcWSWvm0\nflbRJhwtlj4DfBxARO4A7gB2AR8FvgXcGYZtLjsd2X8m/T3UctMyuDj6u6mFWqqyomVuccL1u+n/\nQ0W66mr4wQ+WOxdKLY4eO1W0CkdgKQ84G3z+fuAJY8yzItIGHAnD9iKCjuw/k/4earlpGVwc/d3U\nQi1VWdEytzjh+t30/6EiXVUVnD8Pbjekpy93bpS6PHrsVNEqHIN3u4Ci4POdwK+CzwWICcP2IoKO\n7D+T/h5quWkZXBz93dRCLVVZ0TK3OOH63fT/oSJddbX1qN3h1Eqkx04VrcIRWPo58KiIPAdkAXuD\ny2uB5jBsLyLoyP4z6e+hlpuWwcXR300t1FKVFS1zixOu303/HyrSVVSAiA7grVYmPXaqaBWOrnD3\nA21YrZa+bIzxBpfnA98Lw/Yigo7sP5P+Hmq5aRlcHP3d1EItVVnRMrc44frd9P+hIl1iIqxbpy2W\n1Mqkx04VrcIRWNoG/J0xZnzW8u8AN4VhexFBR/afSX8Ptdy0DC6O/m5qoZaqrGiZW5xw/W76/1Ar\nQVWVtlhSK5MeO1W0CkdXuOeBudripQXTlFJKKaWUUmpRqqu1xZJSSkWScASWBDBzLM8Chi9rRSIO\nEfmFiNSLyFER2S8iG4JpOSKyV0QaReSEiGwP+VyCiDwqIk3Bz34oJE1E5Dsi0hz87OdnbfNrwbQm\nEXngsr65UkoppZRSKqyqq6GlBXy+5c6JUkopWMKucCLy8+BTA/xYREKr+hjgauDlRaz6n40x+4Lb\n+DzwL8DtwDeBw8aYXSJyLfALESkxxkwAXwLGjDHlIlICHBGRXxtjXMC9QJUxpkxEMoCjwbTTInIr\ncDewCZgEDonIIWPMXpRSSimllFLLrqoKJiehuRmuumq5c6OUUmopWywNBv8E8IS8HgTOAz8A7rmc\nFRpjfFNBpaBXgHXB5x8Bvh983+tAF3BbMO3ukLQ24AXgg8G0jwI/DKa5gMeB3SFpDxtjxowxfuBH\nIWlKKaWUUkqpZbZxo/VYV7e8+VBKKWVZshZLxpjfBhCRNuBBY8xldXtboN8H/kNEMoFYY4wzJK0d\nKA4+Lw6+ntJ2ibQbQtIOzEq7ewny/Y4yxtDU1BScJSCT8vJyRGS5s6WUUmEzV723mulxYHXR/7da\nbbKyoKgIjh2Dj31suXOj1KVpPa2i3ZLPCmeM+fpSrxNARL4CbAB+F0gMxzYiwVJUOk1NTezb14jP\nl43D0QhAhU4ZoNSi6InAyjBXvbeaLfY4oOV9ZVro/1v/vyqabNkCR48udy6UWpiL1dNaN6tosOSB\nJRFZAzwIvAfIxeoaN80YE7OIdX4J+ADwHmPMGDAmIuMikhvSaqkE6Ag+b8fqMtcTkrY/+LwjmHZk\njs9NpTFH2pzuv/9+0tLSZizbvXs3u3cvrAfd7IrEGMP+/U1XFBTq6xvA58umqupG6utfoa9vQKei\nVDPs2bOHPXv2zFjW2dm5TLmJTFP75ptvHuPkSS9padUaqI1gc9V7q1lvbz+dnSNkZ0Nn5wi9vf0L\nOg7ojYmVab7jfjjOMZSKFLW18E//BMaAXoOrSHex67NLHXs18KRWgiUPLAE/xupS9hfAOeaeIW7B\nROQPgI9hBZU8IUlPAp8Fvi4i1wFrgReDaT8DPgO8KiKlWGMvfTbkc58SkZ8B6Vhd3d4XkvZdEfkO\n1uDdnwT+7GL5e+ihh9i6deuCvstclcLsiiQ3dwSfr/iKgkLZ2Zk4HI3U17+Cw9FHdraeNKqZ5gp+\nPvLII9xzz2UNg7YiLfTgPLVvNjQM0dkp7NpVjMcjGqiNUHPVe62tLcudrWXj9Q7R0nKGt96axOFo\npb7eg4hc8oRUb0ysTPMd9xd6jqEXLWolqq2F3l44dw7Wrl3u3Ch1cRe7PrvUsbexsZGHH34BlyuG\njIwJ7r3XUFlZuQzfQqn5hSOwdAuw3Rhz7EpXJCIFWK2fWoDnxTrLGTPGbAP+CHhYRBoBH/Dx4Ixw\nAN8CfiQizcA48HljzNTt64eBa4EmrODRg8aYtwCMMS+KyOPASayA2GPGmGeu9HtMmSsaPbsigQ4c\njr4rCgpNjS1inSBWrPqxRpQKtdAWGVP7Zk1NBZ2d+6mrO0BlZbIGaiPUXPXea6+9tsy5Wj7Jyals\n2LCR7OwKGhtd1NWNMDDAJVup6I2JlWm+4/5CzzG0pZpaibZssR6PHtXAkop8F7s+u9Sx9+jR49TV\n+cnMvI7Oztc4evS4BpZUxAlHYOkss7q/LZYxpot5Zq4LdoHbMU/aCFYrp7nSJoEvBP/mSn8AeGAx\n+Z1nfdN3ATs6OvD5imZEo2dXJLW1mxGRKwoKiQgVFRV6l1mpOSy0RcbUvjk0ZKipsbNpk43a2nKM\nMbz88it6Vz/CrJZ6b6EtS3Jysigs7Mfnc5OcPIzdXrGgVkh6Y2Jlml3+jTE0NjbS0dHB4KCX+nqD\nw9E/7zmGtlRTK9G6dZCRYQWW3ve+S79fqeU0VU+Xl1vH8cOHj0wfxxd27E3E6mwTtUMNqxUuHIGl\n/w38tYh82hjTFob1ryihdwEHB12Al/p6mY5Gz1WRWBXP8uZbqWi10BYZM/fN2+fsugp6V1+9sxZa\nBkPLr8dTQ329f0GtkFZLgC7aTZWTsbEi4ARFRWfZunXLvOcY2lJNrUQiVne4N95Y7pwotXDzHccv\nduytrd3MyZOHcLmOUVAg1NZufgdzrNTChCOw9DhWKLVFREaAQGiiMSYzDNuMKLNbKY2NFVFdfSOn\nTxuKi89SXMysIJKexKuVZ6WOybHQFhlz7Zt6V18tlcXuPwstg6Hl1xhDaWmTtkKKcnOfe2yjvl4o\nLr54EFxbqqmVats2+OEPdQBvFZnmOtYv5lyyoqKC++6TGetRKtKEq8XSqjazlZIXOEF9vRAf38/W\nrVu0hYOKCiu19c6VBHP1rr5aKovdfxZTBvUGxuow37nHQsqJlhG1Ut18M3zjG9DSAmVly50bpWaa\n61ivx3EVrZY8sGSM+belXudKMzMSbSgqmtlKSalosBpb7+hdfbVUFrv/aBlU89FzD7UabdtmtVQ6\ndEgDSyryzHWs37bthuk0rZ9VNAlHiyVEZAPw28AG4PeNMU4R2QV0TM3AFs1mRqK1lZKKTqux9Y7e\nMVJLZbH7j5ZBNR8991CrUXo6XHWVFVj6xCeWOzdKzTTXsV6P4ypaLXlgSURuA/YCh4Bbga8CTmAz\n8L+ADy/1NiOJMQZjDLm5I0AHtbWbNRKtotKlWk6s1DGYlHonLKblke5T6mLKysqorGylre0kJSVF\nlGnzDbVK3HwzvPjicudCqQtpvaxWk3C0WPpr4GvGmG+LiCdk+a+B3wvD9iJKU1MT+/c34fMV43D0\nISJXdOKvFxIqUl3qjstSj8Gk+4KKJou5Y3mxfUr3j9Up9P/u8QxSX+/H799EQ0MfpaXN2mJJrQrv\nfS/88z9DRwcUFy93bpR6W3NzMw0NAXy+mfWyHrNVNLKFYZ01wC/mWO4EssOwvYgS2pfW58umr2/g\nitY3dSFx6BDs29dIU1PTEuVUqfDSfUGppXWxfUr3j9Up9P++d28jXV2jS1bnKrVSvPe9EBMDe/cu\nd06Ummm+47Yes1U0CkdgyQ3kz7G8FugKw/YiitWXtm+6L21WVgaNjY28/PIrNDY2Yoy5rPUt9cW5\nUu+U2ftCdnbmZa/DGDO9/7z55jF8vizdF9SqEroPeDyD2O29c+5TeqxYnUL/73b7Ovz+jgvKR2gZ\nWsx5iFKRLj3dGsRbA0sq0sx3Ltzb209n5yTGpNPZOUlvb/8y51SpKxeOrnCPAd8UkY8ABrCJyM3A\ng8BPwrC9iDJ73AxjDHv3NtDVZejpeZYtW1K5665dVFRULKjJ42ocIFlFh6WYvSq064/bPcDAQDtt\nbe1kZIyQlXXzJT+vTY3VShe6D9jtfior43C7OwCrfE9OTtLc3ExHRweDg17q6w0OR78eK1aJ0HOE\nggKhsnITbncHxhjOnDlDb28/Xu9QsItczpJ0S1YqEu3aBX/1V+DzgcOx3LlRylJeXo4xhqNHjwMw\nOTlJQ0MDr756hGPHeomLGyE+vg2vt3aZc6rUlQtHYOkrwD8CZ4EY4FTw8VHggTBsL6KISPAC2rqY\n7ejooLPTQXu7g7feSuDMGSf9/Ye47z5Z0ImdTi2tVqqlmPUi9G78Sy/1MDLSSlJSOv3953jzzWPT\n+9t8waKlHudJqXfa7KmK3e4OnM5EfL5snM4m2traaGgIMDZWBJygqOgsW7duueSxQoOuK99ck4UA\n7N/fRGfnCC0tx9iwYSN+fyN2ewXbt7893bVWgyrafOAD8NWvWq2WPvCB5c6NUpapsXZ7ehLo6hpl\n376HSUhwAHlMTCSyeXMiIutJTk5d7qwqdcWWPLBkjPEDnxKRvwA2AcnAUWNM1HcenTpRf/PNY5w8\n6SI19WqGhrw4nXV0dmaTnBxPTs52XK7BBZ/Y6ZSUKhot9KI29G58INDBmjXXsH79Fvbu3c/Bg4be\n3osHi2ZflOsFlYp0s/eNrKwMHI6m6VarwIwy3dZ2Ep9vE9XVN1JfLxQXLyx4qkHXlW+uyUKs7hUj\neL1D9PU5uP76cvr7x/D727Xls4pqGzfCli3wyCMaWFKRpa9vgK6uUdzuRBobC4mJOct737uO7m4f\nIyMjVFYmk5OTpTd81IoXjhZLABhjOoCOcK0/Ek2dqDc0TNLZ6WfXrixEqsnKGgK6aGz04nR2s2ZN\nCllZbzd5XKqKRCskFalml01jTPCCaOZF7ez3lZWVsXMnwRmPKqiv91NX9xKQSE3NdjyesxcNFi2k\nK6nuNyrcpsrYVLek5ORUcnKy5ixrswM+O3aUs3NnxYzu1U7n24GmkpIiGhr6FhQ0CC3rHR0d+HxF\nGnRdwabG6MjKSuf48XpcrmOMjY1w7Ngkfn8JbncbTU0vUFNTSFVVBSkpaMtnFdXuucdqtTQ4CGlp\ny50bpSzZ2Zn4/Qfp6iokLS2L3t5u6utfJT9/ktzcQSorr6OsrGzOGz7l5eV6jqpWjCUPLInIt+dJ\nMsAY0Az8pzEm6kYWnWodUVNTS2fnPurqXqKyMo8dO3ZRXd3Ko48eweWCkREvra2t0+MszRxDo4HW\n1lZSUtIuuwLRO9AqUs0um7m5I/h8xRdc1DY2NvLww4dwuRLJyDjFvfeaYBluwhhDVdUQubkpvPXW\nMB5PxyXHkllIV1Ldb1S4TZUxq3vSGTZs2EhhoTVQ5+yTxt7e/hktkvr7Xdx0043TQR9jDCJCX98A\nWVnW2A0u1wmmukJdLGgQWtYHB12Al/p60VYsK5TXO0RLyylefbWbjo4XSEjIIj7eTlxcDlddlU9v\n7xBFRf3s3PnuBY/rqNRKtns3/OEfwk9+Al/4wnLnRilLWVkZNTUZNDT8N93dqcTExNLX10ZaWg2J\nidtpaOintLR5zlb2oOeoauUIR4ul2uBfLNAQXFYBTAD1wOeAvxWRW4wxp8Kw/WVhjMHjGaSrqxG7\n3Ul+fj9r1viprCyivLyc/n4XeXnVxMcn0tXlZd++JtavX09FRcWMiuTAgadoba2joOCWy65AtNuP\nijRTLSSef/4lOjtTueWWG2hoOAJ0YLf3cuDAU/j97Xg8FdODG9bVGTIzt9DZeYijR48jIiEH1QA7\ndmzhmmtkQeOOLaQrqe43Ktymylh2Nrz11iTZ2RX4fC7efPNYsOu0l7S0ahyORior43A4AiEzi5bT\n2Ng4427lVJlubGy8oCvUxYIHoWX99GlDcfFZiou1FctKlZycyvr1pYyNvY7L5WZ09CrS0lKIiWmi\nsTGOzMwEAoG0S5YLpaLF2rXwkY/A3/0dfO5zEBOz3DlSCpqbm/F6c4mLK8fjaWHDhmsZHbXh8aSS\nnFzEwYPHcbmOccMN12K3B2a0QNZzVLWS2MKwzp8D/w2sNcZcY4y5BigEngP2AAXAS8BDl1qRiPy9\niLSKyKSIXB2yPEdE9opIo4icEJHtIWkJIvKoiDSJSL2IfCgkTUTkOyLSHPzs52dt72vBtCYRuayB\nxpuamqiv92O3r8HpPILIGPHx76GhIUBzc3OwGWQHXV1eCgrWY7evm54OOnQqSr+/Hbu9eFFTRi/F\n9O5KLaWpFhItLbm0tJzh4MEncTj6qK3dTFWVPTio7Brq6/00NU0NwzYCuIOPF06j3t/voqKiItiK\n48rvwut+o8Jtqoz19XUQH99GX18jg4OnOXnSxYEDQ9TVGVJSivH5sklOTmXnzgpuvhl27rTOHvft\na+TQIevx7f3kwn3jUseL0LIeH9/P1q1blmw/Uu+8nJwsHA437e3n8PsTGR4eoLe3i4SEDoqLYdeu\nHaSmXn1Z5xFKrXT33w9nzsB//Mdy50QpS1/fAH5/DpWV20hIKMNuFxyOWEZGmvnZz57kxIkWXnpJ\nOHCgi6oq+/Txv7y8XM9R1YoSjhZLXwZ2GGOGphYYYwZF5P8Azxpj/l5E/hx4dgHrehL4JnBw1vK/\nBg4bY3aJyLXAL0SkxBgzAXwJGDPGlItICXBERH5tjHEB9wJVxpgyEckAjgbTTovIrcDdWAOOTwKH\nROSQMWbvQr70VKWxffuN7Ns3CXiprt42HV3etu0Gdu2qARqx2xMpKJDpyiG0u87UODKLGWRTZ5BT\nkWbqwveWW24AYMMGJ7ffvmW6FV9BwS0z7sLU1m7m5MkXcLlOUlBgp7Z2MyJyyXGSroTuNyrcpsqU\nNcZSGsnJqZw9O0ZHRxGFhVl0du6nru5AcADPihmt7F5++ZV571YuZAyxufKhZT06lJeXs2nTMY4c\nWUsgsJZAwBAXV8cdd2wiL68Kj2eA+PiLdxdWKtpcfz28+93wJ38Cv/VbEBu20WSVWpipY7XIJAUF\nA6Sn+ygpKSAra5SDB52kpV1HamoNbvdxUlLSuOmmG6c/q8dttZKEo7rNAHKB2d3ccoCpuRTdgP1S\nKzLGHASrpdGspI8CG4LveV1EuoDbgF9jBYc+GUxrE5EXgA8CPwp+7ofBNJeIPA7sBv40mPawMWYs\nuM0fBdMWFFgKPcHPyBgBJmac7IsId955J6WlpTO6NAS3NX0hYYyhtLRpURWIziCnIs3UftHQcITC\nQhu3337rdNfOuS6Ky8vLue8+uWAfgfAdVHW/UeE2VxlrbMzC6WxkaAhqauxs2mRj69YLy/fFgkeX\ne8KpZT26iAhbt26hrm6AyUkXfn8smzZV84lP/AY2m00vRNSq9Td/A9deC//6r/DpTy93btRqF3pz\n6T3vedf0BB7GGAYGXqCurgeXy0NhoVzQIkmP22olCUdg6T+BH4nIF4HXgsuuAx4EphqmXg80Lmbl\nIpIJxBpjnCGL24Hi4PPi4OspbZdIuyEk7cCstLsXmq+ysjIqK1tpaztJTU0hxcXF7N//LC6XlzNn\nYikrK8Nms12yctAKRK0UC5lNLXS/KCkpoqysbDptrotiEQkub5oetDB0TBmlIt1CZxksLy+fHlcM\nMqYH3haRGevIyspgxw6rhd/sIIEeL1RZWRnbt5/Bbu9jbMxDTc3V0/VoRcXb5U5nv1SryTXXWDPE\nfe1r8MEPQm7ucudIrVZTda/T2UdDw2kCgUlKS4vZtu0GRIR77yV4HsAlJ+BQKtKFI7D0aazxkx4L\nWf848G/A/cHX9cDvhGHby6a5uZn6ej9dXbmcPt1ETs4bvPGGDZ+vjBMnjiEi7Nix46Lr0BM/tZIs\nZDa15uZmGhoC+HybaGjoo7S0efo98wWRZq83dBYs3S9UpFvoLINTAyo7nYn4fNk4nU3TgaK315HF\n4OAhNm1KZuvWLdMnnLMH89b9YfWaqmM7OgqpqzvAyZNv8tZbbu67DyorK6ffp7NfqtXmwQdh715r\nEO8nnwStJtVymJrt+MSJPhobz5CbW0F8/LOcOnWa973vLioqKmbU1UqtZEseWDLGeIFPicj9wPrg\n4jPB5VPvOXYF6x8QkXERyQ1ptVQCdASftwPrgJ6QtP3B5x3BtCNzfG4qjTnS5nX//feTlpbGwICL\n8+d9jIxMkpRUSmamB2PuYOPGLbS1uWltvXBVswNJxpjgDD964qfCa8+ePezZs2fGss7Ozstax3wz\nVYSW646ODsbGiqiuvnB8GGMMzz77LHv31hEXV4TdfoyaGqtqCP3M0aPHpy++db9Qka63t5/Ozkmy\nstI5caIBu/1FgDkDQPPtQ319A4yNZTE6Os6LLzbT2ppIT0/C9Oc0QKCm9Pb2U1c3wLFj7bS0xNHb\n66Cvr5WrrkqfEZDv7e3XmYXUqrJmDXzve3D33fDTn8K99y53jtRqNDXbsdO5ht7eYVJS+ujuhmee\n8dDevp9du1q58847AbRxgVrxljSwJCJxwCiwxRhzEjixlOsP8STwWeDrInIdsBZ4MZj2M+AzwKsi\nUoo19tJnQz73KRH5GZCO1dXtfSFp3xWR72AN3v1J4M8ulZGHHnqIrVu3Ul9fzxe+8A1OnpwkJqYU\nt/sUY2PHGBpKBI7T3p7B/v37p/vVztUyIzd3BJ+vWE/8VNjt3r2b3bt3z1j2yCOPcM899yx4HfON\n/WLdnXkBlyuGyUknmZkD1NfLBePDNDU1sXdvI01NhSQluenvd+J2p5OePszAwHO0t79FRsYERUXp\nl31BtJjWf9piUC0Fr3eIlpZTvPpqLy7XCaAUv3/uAFBWVgZu90Eee+wwsbG9ZGSsxxiD1zvE4GAr\nL73Uw8BABvn5WXR1jfDmm8cYHByiszOXW265gYaGI3qcWOU8nkFOnHiJxsY+xsaSCQQqGRs7w969\nezl1apDU1KuJj2+ksjIOhyMQtkkQlIpEH/0oPP20Nc7S1VfD5s3LnSO12ljH9C6Gh8fx+U7S3JyE\nSBxJSXH4/ckYc4LS0lLg4jeNZp+jlpWV0dzcrOesKqIsaWDJGBMQkQ4gZinWJyLfxwr8rAH2i4jH\nGFMB/BHwsIg0Aj7g48EZ4QC+hTXGUzNWF7zPG2Om5tp9GLgWaMIKHj1ojHkrmPcXg4N5nwQM8Jgx\n5pmF5rW1tZX2dh9ebwUTExNkZSWyYUMeeXlCa2sGbW2J/OAHR9mwYSOFhf3AhXeroWPWlJJ64qci\n13wDB1t3Z/xkZl5Hf//Ato/VAAAgAElEQVSrpKd3kJoae8EYS319A9jt6ygoyKOubj+xsXZqarZz\n5sxBRkYgOTkZGCE9PQ2n8/L2i8V0+9CuImopJCensmFDKQ6Hi8HBZNLT8xkby5o3ADQw0EVHxxjj\n44Zz51rZsiU3OGvoGMXFa8jPL2F42I3TeYKTJ4vx+zNoabHmxigstOlxYpUbGHDj8cQxPl7I+Hgf\nIm8wMmI4cyaHoSE/u3Zl4fEIycmGnTuzdEBvtep8//tQV2eNtfTKKzreknpnZWSkYbMNMjrqIT5e\nWLtWcDoNbncmSUk+hofjg8NBcNGbqLPPUSsrW4NDTeg5q4oc4Rhj6RvAX4rIvSEBnUUxxnxmnuVO\nYM4Bi4wxI8DH5kmbBL4Q/Jsr/QHggcXk9dVX38DnqyY5uYaRkdMkJw+ybdvtuN1JDA8HKCxcw6lT\nk2RnVzA25uLNN60uP273AC+91EMg0MGmTWWkpwvt7RcOdKxUpLn4wMGJQDrDw9DdPc7ERC6nT1sH\nvjvuuIPm5mY6OjqIi/OQng55eb2AnZaW1+npeYOJiRxqarYyNNRPSgqXfUE0Xxejpf6MUjDzTqLX\nO0RcnIfWVjeDgyP86lcvsnlzFps33zI9XtjU+1944QBDQzY2bPgNenvbcbmsAbr9fjdFRaNcf30C\nXV1+/P5e1q3LIRC4mqqqG4En2bDBye2336oBglXu/PlzeL3J2Gw1xMS8it1+nJSUq6mqehe9vX08\n/fS/MD7uYmAgh0984r7pAWOVWi0SEuDnP4cbb4S77oJf/xpSUy/9OaWWQnJyKunpxaSmxjAy0oDX\n20JiYh7p6XbGxydJSgpMzwRntzdw4MBT+P3teDwV0+cMcOE5alvbSXy+TXrOqiJKOAJLvweUAd0i\n0g4MhyYaY7aGYZvLbmxsmJGRs0xMTCByki1b8rnvvls4evQ4J0/aGR2dwOU6wOOPP49IN2Vlm6it\nfT8DA+2MjLSyZs01HDzYjoidtLQLBzpWKhLN1X2stnYzJ08ewuU6RmGhm9jYEtzuPLq6RoA6AOrr\n/XR2OnA663A4XiMlJZu4uLWcP38Ql2sMt3uC8+cf48Ybc8nJefdlz3w1u5teVlb5JQc8vti07kpN\nmSrzvb39eL1DJCen4vUOUV/vx+/PwW73Mzl5hthYyM/fSHd3IwMDHurr/ZSWNlFRUTE9mGdr6zht\nbT3Exz+DMQ7Gxtr41a/62bDBwfvf/35iYmKCZbZqegy+hoYjFBYmcvvtW/T4sMoZY3A6nYyNnQFG\nsNk6sdvHiI9vp6PjEH7/WQYGbIyOVnD2rB+3++fcf/+HtdyoVaekBPbvh9tugw98wOoel5BwyY8p\ndcWGhz309rbhdqciYggENjA+fp5A4AQ2mxO3O4uenpvIzc2msjKO1taT2O3FM84ZwOo6Pzj4Avv2\nnSQjY4KamnU0NmovFxVZwhFY+o8wrDPiZWXlEBd3ikCgnvHx85w/P4kxho9+9MPU1jbxf//vj+nu\nPoPLtQZIprd3gpycYZxOO/HxKdx884d54om/ZWzMzh13FOHxmAsGOtbxX1Skmav7WHl5Odu3t9HW\ndhabLZ+nnz5BU1MrmZnQ3OzjySebMGYzNts1tLeXMDh4irS0LVRUbMXlauXcuVySkzfjdr9OVtbo\ndIuMy9kHZk7lbnVVbWgI4PfnzNtkeL6ufUqFmirznZ2THDq0n8TEAOAmO/satm//Ld544zBO52nG\nx/OJi0sAbOTkVNLVZXj++ZcAOHr0GHV1hvT025iYcJKRcYrMzFROnhQ8HkNLy3na29vZuXPnjGPA\n24Mxa/lU0NDQwIsvHmVoKMDkpA3oQaQftzuFzs5JjBnB7y8jM/Mmxsa66enpoLe3H9BZBdXqs3kz\n/PKXsGMH7NoFTz2lLZdU+CUmJmO3+xka+iXDw1eRlpbH6GgCxnRgTDV793bS0/MTKivLKCmJY+3a\nm6mu3jZPK6Q4rB4BI5SUlLB+vU3PCVRECcescF9f6nWuBCIwPp7EyEgsgUABL7zQy+/+7lepqVlL\nX5+TuroOXK5cYmJ2ER8/wsjIy7z00vNkZ6cSE+Pil7/8Z3p7zzMxkcYzz+yloMBJUVHZ9ABtzz33\nHHv3NgbHpOkFLj6om54sqqVysbIV2jT39OmXefrpZxga8lJfP0Ba2jWcPftrmprO43ZncfZsH4mJ\nSeTl5RAX9zqJiT5EJjl3ro++vkfp7z9KWpoTj2cDNlsAv3+M3t5RDh8+ctmzJs6eyv2VV17Dbl/D\n9u3zNxm+eNc+pSxTZb6//zwNDRPExQ3i8wXIzOzixIlvMjQ0QHLyBjyeVgKBfyYQmGTv3lfJzk7l\nuutuo6Pj1wwOng6OsTDAwEA769dfj9vdid1eQXX1+3nllX/iySd/QWlpKRUVFdPlWcunCvVf//U0\nx4+34/cnYg1tmYrHM87k5HXYbBAba8fnO01/vw2RTtatS8LjGeSNN/p1XA61Km3fDs89Z3WJe+97\nYe9eyMpa7lypaNbQcJrjx0/T358OdDE21gn0IZIEjDI6msaJE2cZG6vF7XaSmPj25DVZWe+aXk9/\nv4u0tI3ccIN1Hjsw4Oamm27UcwIVUcLRYgkRSQc+DGwAvmWMGRCRrUCPMaYrHNtcbiLC+Pggk5Mb\nEClibGySV1/t5vhxP35/PDbbdoxpxud7HGPWk5PTQ3FxJnfd9T84c6YekVfIyLie0tLN7N37fdra\nhklJ2UBPTwNVVa3s3VtHU1MhBQV5wPlLDuoGerKolsbFylZo97EzZ56nrq6b3t4M3O5eyspaaWsL\nYMw2kpJ6GBryEh9fhd2eQ1JSPQkJJ2hocOJy5SKyEa/3FAUFPhyOBOLjnQwMjNHVFcOhQyxq1sTQ\noFdvrxO/X7u5qStnNUc/xGuvHWR0NEBMzPWMjXUAwuDgEB7PGgoL34fT+XN8vmbi4t6FyzWJ3z/E\nuXMe2tu9JCRk4HKdZWLiPIHAJPHx8Xg8qYyMvM5zz51heHiIU6eKePjhQ9x3n2hdrub00ksH8fk2\nAJuARmCQQKAQmGRgIIbY2BbS04uIj59kfDyWuDhwuwfx+dbpuBxq1br5ZnjhBbjzTrjlFnjmGQhO\nyqXUkuvqOo/Pl4PIeox5E2s+qkSMiQVimZjoxuUyxMTEExdXzOhoE0lJ1uQ1oXS4BrUSLHlgSUSu\nBn4FDAIlwA+BAeB/AMXAfUu9zUiQl5ePw+EAUjGmgImJBiYmUpiYyMCY9Tgc64mPt5GZ+SzbtqVx\n662/yfDwGrxeF0VFMVRWvouGhgBtbSfweAS4Ebc7CRghPr4Hu72YgoJEurrOkJjYS3Z21Yzt68DD\nKlzmKlvl5W+PM1NZGUdysqGjw0lPTz6Tk9fg9Qbo7HyRiYkKYmMn6O8fBgqAPAYGnKxd66eoKJXT\np08SE3MLDsd6RIbJz3dTUFCIywXZ2Ynk5m5a9KyJoQfhggKhqqqGlBS0ybBaAgFSUsDhsMZMMMbD\n0FAH8fGGyck19PR4iImJJTY2nZiYNRgjGBNDe/tZsrLKqK3diNdbRErKJA0NnRw92kZKip/SUg8J\nCYLDcTtr19bich3XulzNKy7Ojkg5sA1wAC8C6cAx4uNTSEx0kJxcRnr6B4iJaSIp6Rznzp2jq8tJ\nb68zOPtg5bJ+B6WWQ20tvPyy1SXuxhutMZeuvXa5c6WiUWpqMklJaxgcPA8UAZVAZzA1G5vNhzEn\n8fleIxDIJDf3am699W7q61+hv981vR4drkGtBOFosfRt4MfGmC+LiCdk+TPAo2HYXkQYGfESExNA\n5CwiPUAbxuQxPh4L1OHzDZGaep7f/u0P8ZWvfAUgpHtRBWVlZZSWNvP88y8xMLAFkepgEKmTkpIa\nxsb8wAiJiZ3s2lVzQYWikWwVLnOVrdBWTHa7n6qqIdxuN0NDY9hsBUA3Pp+X1FQHxrhwOPxkZuYz\nMeEjJaWDvLwyRkcLGBp6DZ+vBb8/C7u9lbS0Iu6773b6+gbweIqor/dPb7e2dvNljTEz8yBcqd1D\n1WWZrwuo1Rx9Mx//+G384Af/wsDAGRITRxgZcTAykkZMTCfG7GXjRj9nz0JX10kmJyuYmHCSnu5l\n06ZKbLZRsrJ6iY9PJytrkoSE9UxOxhEfn8jGjfF0d/fjcr1MYaFMzxaj1Gy1tTXs3/8Gw8NxwCkg\nFesutyEQaGXt2lLS0124XE8TFzdBcnI6fX3x2O2Z+P2NVFVdeC6h1GpRXg6HD8Nv/qY1qPfjj8P7\n37/cuVLRZufOHTz33D/S09PExEQm1hhJ7YAf8GCzdZCcnERGxjoSEwW73TXntZx2h1crQTgCS9cB\nn55jeReQF4btRQS/fwK73UZW1iiDgz34/XHExLiZmHAQG9tHVtY4+fnp+P0TNDY2BiuHmRVEeXk5\nra2tnD7diMdziuzsFtaty2LdunWUlFgXNNnZW2ZcIIfOUDTVciQnp2J68GIdd0nNZa6yMd/7jDHk\n5o4AHdTWbqa8vJzDh49Mt2I6cOAJWlvbmJjYTELC6yQkHMKYFhyOTNauTWdsrJ709GQKCwtISvLi\n89lpaXHicIyTmFiEMWk4HEkkJpaQnp42nacbb7ye0tLmGYEk68C6sO8YjoOw7lMr2+X8/+YbmN7j\nGaSrq5G4uGJKSnyMjrYDaUAlIoVkZrawZs0QN9xQiN1+nuFhQ15eFlDJnXfG8rGP/QZHjx4nPz8e\nY0aJjYXe3jQKC1NIS0siP/8c+fmDpKRMsGvXTr3wV/O67bbbeemls7zxxgsMDPQBKcBVQC4OxwE2\nbkwmObmI7u5RJiYGyMyMIzX13WzceBP19a+QksKy1V9al6pIkJMD//3fcM898Fu/Bd/9Lnz2s8ud\nKxVNRASHY5KEhEG83lisDj1O4uKGiYvzkJLiRKQan28AY0rIzh7juusmGR6Om55sYb768WL1qNax\najmEI7Dkw7ptNlsF0BuG7UWEgYFe3G4/Hk8y4+NjQAYxMUlAJ3FxY0Apvb0B9u8/R0/PY7zrXdVs\n3bqFsrIympubgy00Bjl92ofdvobx8TdITMxmfPwGnn22mZ07K7jpphsv2O7Mi58AO3ZYd7cPHz6C\nxzM4PQV26IWRVjRqrovm+d5nDZhdjMPRNz2IcHZ2JnZ7AwcOPEVr62Egj+LiKtLTj+N2n8frjaGv\nr5fz558nNtZGdXUsubmteDxnOXbMh9NZijE9xMb2kJrqICnJRnr6JD09TI+ptHMnEXd3RscyW9kW\n+v8zxvDmm8doaBhi06ZyWlrO89hjT5CSkkxvr4PY2ByamvbS0PAmXV0F+P1rmZg4DryC1xtgaCie\nnp4xbLarEPHi9Xaxfn0M27bdhM1mo7c3ifHxG7Hbe7n1Vid1dV3Y7cXExbkZGEgjLW0bMTF92Gw2\nrZ/VvHJzs8nIyCQQcGDNFpQBuIE3GR2N5eTJOEZG6nE4ckhK2kR3t4eYmDrq6204HH1kZZXT2Lg8\nM8RpXaoiRWIiPPkkfPGL8LnPQVsb/NVfgc223DlT0eDo0eO0tiZis+0AXgeOAx4CgTiMOUd/fzGw\ngYMH2+jpcSGyDniV/v4EUlOvJj5+Zv0YGjCa6zpv6n1ax6rlEI7A0lPAn4rIR4OvjYgUA98E/j0M\n24sI4+MGh6OSkZFsxsdHgFECgSJEMoHXmJw8T3z8Tvr6Wjh4sImYmErq6g4wOfljursnyM3dit/f\ngeP/sXff8W1e58H3fxcAbnCDIkWRFDVIak87Srzt2HGUpGkzGltPbDdNXz9PUjvvGydp3460SVq3\nTZs0TpvRpNl2bMWxE8e1LXnEljVsy0uSNSxxWJwSxQmS4MAgcJ4/DiiDMjUoASIJXt/PBx+A9wHu\n+4A4ODj3dZ+RVsOVV36CJ58cANwsWWKXnDx1ieCxgNS2bTtoa8vhiis2UFv7Mnv3vnFyJaxjx+pO\nroR1+PBLvP76Xp54Ygv79g1QXLxmwtXl1Oww0bxJp39eIdnZ5Rw40MScOftYvHgxxhgikbfo6OjE\n5xuloaGe5uYMRka68fmEQGAVkUiQSKSWUCif+vpeurtHiUSgv38+IotwOsNkZ/dzxRVQUNCIMZCW\nVk1NjS3L03FumQudy0yvIE2tc/386uvrOXDAx5EjQzz//H8yNHQQl6sSp7OQgoIsLrkkh0OHHLS2\npjE6mkMkchxjMnA4IBTKo78/lZGRIjyepSxcGMHlepWNG5dxww03sHv3K+PysGSJhyuuKGDv3jeo\nre2mtbWM7Ow82to66erqmXbfATV9hMNhXn/9yei8jBuAdKAdyMOYJRw7FmFoqB+RagoLU6moyKWw\ncITMzINUVMxjx44d/P73jWRn17BiRT4f+MDFaw/ovJBqOnE64dvfhspK+MIXoLkZfv5zSE+f6pyp\nma69/ThdXRGCwUXAS0AWdp6lEKOjXmABLlcZkUgGDkcTx49n09kZYXQ0yMaNhfh8Mq5+jA0YHTt2\ngNTU6glXPE5UHau9pNSZJCKw9EXgYaATyMDOJlmC/Tb9bQKONy1kZ7vx+1sIBJyAD2jCDo2YSzi8\nFr/fizEuhoYcpKWF8HoNu3YdoL39ZURyqaoaIi/PSUFBPzt2jDA4WE9mpocjR14iLa2HwcEUXn+9\nB7+/kIGBbRQWbqGnJ4NAoISjRw8DD1FWlgkw4UpYAwP72bGjh4MHu+ntnc/y5RnAyMmKRiuD2WWi\neZMaG9+a8Hn9/bvYtetNjBli27Zetm37LM3NQ/T2DtLXV0BGRjbhcBXh8CjhsBu/v5dwOIz98VwL\n+PH5+gkG08jNLWJ09ASh0D5yctzMnVvM+vUVOJ2LaWuLsG/fyxw/fpzcXD/l5YvGBVGnQ9m80LnM\n9ArS1Ir9/FJTu/D5Unnxxd3jhoPW19ezbdsOOjpcpKQU0d5+mIEBPyK5iPhobNzPoUO/JhgsIxCY\nh/2Z6wI8RCKFOJ3zcDhcpKScwO8/hMORy5VXrueDH7wWh8PxjjJUVGQ//87OTFpbC3n11b00NPgp\nLOxjcHDtlP2v1PR333330dKShl2AdwTwA43AcsLhYXy+ERyONNLTg0QiXoaGOunpWUEotJx7732I\nfftqCQSuprg4E/DyrnddvOCOzguppqPPfx4qKuCTn4QbboBHH4UCneZOXYBwOILXuwO//1WgFbgM\nW2e7gX1AB6OjDsLhTrq7vWRlrWHBgvk0Nh5l585f8653rR63yML4FY9bCAabx9WjY+dzLS0t9PcP\ncuSIIS2tJ2517JnasdrGVXEPLBlj+oEbRORyYDX2m7PHGPP7eB9rOsnJcRMM1gLzsYvh+YF9GLMa\np3MAY5oYHHwacDIyEuCJJ35BIJCJyLUY086+fbXU1KzC7Q7Q0PAqGRmLMKaX8vIW1q1bS1dXD4GA\n4Hbn8cgjb+D3e0lPz+eWW65CRFi0qJNrr12DMYbOzvp3rITV0pLPzp0OiooWEwwO0NbWQGnp6MnV\n5bQymF0mWl3i1VdfnfB5K1bsw+vtx+Hw8Nxze+nsdOL3pxAM9mPMKE7nCUpK+vF60/D5mjAmCBRg\nh2b4gCKgk0gkk/5+Bw7HcZzOEC5XKhUVyykpKaG1tZDMzBA9PYMMDjaQlbWA7OwMOjvrqKlppLY2\nNC3K5oWuyqFX6adW7Ofn86VGu5Azbjjok0/W0dqazf792+jsdBIMjhAOLwEOAR6ghFBoAKjHLhs8\nCHRHb0VAPW73SkpKgixYMMrVV1fwgQ9cc/LYE5WhsTnLqqoWUV/vZ9kyF273QtzuiUaVK2XV1x8l\nFPJg5+ww2KDSIDAALCEU2o7DASIpeDwB1qxZRU7OKnJyCjl0KEh//3JyciJ0dBwlP7+NlpaMixa8\n1xWO1HT10Y/Cc8/ZSb0vuwy2bIGFC6c6V2qmqqs7wshIANteqAaOY+voXmw7OR3YgzE+hodddHcf\nwOsNkJMTwOWCJUtSx9WP41c8zmDJkupxKx6Pnc/5/eXAfsrLW1m3bk3c6tgztWO1javiHlgSkduA\nB40xLwAvxGxPBW42xtwb72NOB21t7bhcGdiAUjkwF9iJMU/gclWTkrIqOp62l0gki4GB13A4rsHp\nXImIA4ejhzVrVuH3d9LdHWbx4mtpb38BkOhJdB1paXVs3formpoiuN3XcOzYq9x//79w3XXXcM01\nV1JdbSPVb6+c9fZKWB5PAQcPbqO19QRut4/y8mE2brxqXONOK4PZ41wnthYR1q5dzfbtv2HXrhfo\n7OwnHF5NKBQgGJyHw3GAUMhHd/eLpKbOZ3h4GcFgBBtQCmNPeNqxo2H9OJ2vM2/eakSuICWlhYyM\nIPn5eRw6tJ/t20/g95eRl1dIMJiNx1NNINBHU9NBAoEV06JsXuiE4HqVfmrFfn4vvribYJB3DAcN\nBDwsXFjFzp276evbwdBQDlCFbQQWYOv3BcB+oA4oxTYWfUAmHk8ff/IneaxZs4Z169ZQXV097iR9\nojI0Vi7a2jrxeAK43fMoK8ukqKjwovxf1MyUn5+LDXgWAhXAQuxJSxDoAMrIyMgkI8OwYYOb2267\nlfvv38Hu3U04HC6Kipbi8zWTlvYSubmraWkpp7Pz4gTvdYUjNZ295z12xbiNG+3jxx+HSy+d6lyp\nmai5uQ3bgz8dWAIcwA7qycLOi7cE2+v5KKOj5YRCPYTDx1m27ApqairJzh4/1+LZVjweO59buvTd\nHDkiVFTEtz4/UztW27gqEUPhfgY8if3WxMqOpiVlYCkY9ONwuHE45hCJtABDpKXNIyNjmLKyIrKz\nr6W2doD+/sM4HE5SUhYQiXQRiRwiNbWWsrIwhYXpnDjRz+joAEePPsnQ0FscP74QYwxVVVVEIhG2\nbPkvRkfn4nJ5CIfn4fO9SEvLEXbujNDV1cPQkA+3O4eiosJxlU1VVRW33mrYu/cNoIS1a1ePO+Ep\nLMynv/95nnzyIPn5YQoLrzmn961D6GaH4eFRHI7FpKcfpqvrZUZHlwJhIhE3AIGAH5erkNTUKwkG\nTwD7cLmaEDmOw+EhK2sxIi5EDKFQByInKCtz43Ll4HbnsGJFPo2NhrlzK+nsbEJkP93diygrc1BZ\nWU5tbXdS/FDpVfrpY6IGkDGG/v4XeOmlY5w40YffPwfb8OvEBkkPYzvhrgSWYRuDKYAgUoPbXUhl\n5UrWrl3MzTd/4nSHfoexctDV1cPg4NpxdbhSp1NYWIDDkUIk4gHSsM0sN+AFhgAIBlMoLZ3H+vWF\nOBwOjHExOppPauoABQUN1NREWLRoPfn5H2Lp0vecNnivv/Vqtlm82AaXPvxhuPpq+NWv7GOlJiM9\nPQ2IYIe/lQFHgNTobR72VDwVp7OAcNhJZ2cLWVm5NDZ2UVIygs9XNm7I/tmC8okO7pypHattXJWI\nwJJg+2SfqgzbMk9Kq1atorTUD+Tg83VjzABZWWspK/MwZ46P9vY6YBCXqxGXK52hoX6czjBpaXsp\nKRH+4A9W8qEPlbF9ez179zbj9baRkRGirm6Auro6RIStW5+ko8NDKJRHc/PTpKYeJTNzMUeOZNHS\nUsvixSl4ve0sWrSQsrIe4O0otYhQU1NDTU3N6d8EKUAmMHzO71uH0CW/nh4vxcVrWLQoldbWw0Qi\n+xDpwpaVYkTWEQ4fJBA4QCQyD4ejn0jkGCIRnM4q0tPnEwx24HD4yM0tA9pJSXmW0dEP09Pjpbb2\nMFlZ2VRWphAKBSktDbFy5XqWLCmiqKiQxYsXs2BBQ1L8UOlV+uljogbQkSNHqK/fz+7dz9He3gFc\nie2d9DpQgEgBxjRgA01pwAgpKQ4cjj5SUgKsXLmYwkL/pPOi5UKdj4wMN+np8xkeHsaeuGQBPUAz\ndnHeHMLhVjyeQd7//q/R0+MlFCqiuHglAwN7yMk5xJ/92YeorKzkqafqz3gior/1ajbyeODZZ+HW\nW+EjH4H//E+4446pzpWaSa666iqeeeYZ/P5RbC/nMDagFAT2YofQjxAOOwgEOnA6lxGJ9BKJvE5h\n4dqTQ/ZTU2tpbGwkOzv3jMH9RAd3ztRe0baMiltgSUT2YgNKBnhWREZjkp3Y1vmT8TredLNu3Vqu\nuqqVF18coKMjE4cjA5EWXK4B5sxJJRTykpmZw9Gj6QwN+UhJWQ4MEwr58Xqz2LmzEZHHOHy4G7+/\ngrS0uRQVDfLWW41873v/RXb2Cl555TidnXPxeMrp6NhLMFhHW9t68vJcgH2N35+GMenU1g4yZ86+\nc76q2NPjJTd3GRs2vD0sROTsyxCfOoTudKvXne9VTr1KOrUikQiHDx+iqWkvdXUtjIy4cLluQ6Se\ncPh5jCnCGIMxLiKRdkSeJBLJQGQpkcgywuEG5syJ4PP1At2sXXsnzc17KCqq5frr38Nrrz3GU091\nM3/+BlJTQ6xb52fduhvf8Tmf7odKy4e6UJFIhO3bt/Od73yP11/fy6FDEXy++diriT7s5NyjwDJE\nshHxYkwrxggiQm5uGmlpQ6SlecnPb2XlynmsXbt6St+Tmh02bLiEzMznGB4OAbnYa3eC7blUBPST\nkrIASKGpqYkjR2o5cOAw3d3VzJ2bSk7OItzuHKqqqmhqaqKp6SDz55cRiUTecYU80cPltS5X01VG\nBvz61/AXfwF33gn19fD1r+uKcercLF++lJKSbTQ1NQJHsXPxgq2jG7AXaZcCzYTDzTgcC+nrm0dr\nqx34EwwWsWTJu9m580H27NmL211Nfv6b3HqrmbCzQCKDO1pPq7OJZ4+l30Xv1wBPYWeQHBPELpP2\nmzgeLyFEZDHwC+wsrX3Ap4wxh8/2uqqqKv7wD1ficm1l586jdHW5GBnp5vhxwesdYnj4CFCDw9GH\nw5GDSCnhcCeRyAjDw9m88YaX5ub9pKQUkJZm6O5+A6+3i4yMPFpausjISCc7u5yRkQYGBw+Rnh4A\n3k9aWgCnM0BGhpfOzmG6uo6wa1ceHs8Ctm/vw5hfU1CQN+HwuFhjXScPH36JgYH9vPLKCD09OeTm\nLj3j1clTu1z6fG1AFy4AACAASURBVC62bj2M15tJfv6bXHHFUerqRsdd5RybXO5cKia9Sjq1nnnm\nGR577ASHD0doba0lGCzHmBQiEcGuQjSKvfriIxCAtLQ0IpETiCzC5UonFPLR2RnA4ShEZJDXX38c\np7ONefNS6O5uoatrBFhBXl4WeXlCRUXFOX2+Yz9ue/bs4+BBLzk5q0hP1/Khzo0xhqeeeooHHtjN\nc8/VcuJEE+GwAzs/zVxsMCkN2/tjAJgDdBGJZAIRnM75uFz9pKS4yMnJp6hoGZFIiMzMfq68shLg\nHSfmSsXbDTfcgMfzRbq7+7D18BJs0yUDG2RKx+3+MP39h/jhDx/F56uhubmfoaGtiFyL0ykcPnyI\nl1/ezc6db5KRUUFOzjEKC4+Rl7ectLS6k/M2trQ089ZbR9i79/ekpvpYufLak2mnOp+TD/2tT34z\n+aTU4YB//3dYsAC++EXYuhW+/31473unOmdqusvKymZ4+C1seyIbCGFHiBzCXhAYG8acjTHZhELF\nOJ1CKGQH/6Sl2akgOjv309bmobx8DUeObGVg4L+47LLL3jG1SSJpPa3OJm6BJWPM1wBEpAk7effk\nxwNMDz8EfmCMuU9EPoYNMr3rbC+qr69nx45GXnnlOPX1XoLBSkZH24AIIo5oA6wWkXQcjiwikRaM\nOYIxVYyOliMyTChUT0pKPgUFhxgZaUWkBGPm4HSW0dNzGI8ngxUr8mhsfAm/343DMY9AoIesrMM4\nnem0tRXT15dBKNTMwoWFtLXl8fjjxxkZOUp+/lxGR99izZpCPvCBjScrIWMMdXV17Nmzj3C4HZer\nHmNyaGjIoq3NsHFjBT6fnPbq5KldLvfs2cuBA4aCgjW0tb1ASsprZGZeT03NBnbteoht23bQ2NgY\n7dpZNK5imqjR0dXVQ1vbMB4PtLUN09XVc95R+Mk2amZyIygejDG89NIr7NhxAK83hI0Zn8BecQlg\nJyJ0Y4dcFACGQCAXKMOYVkIhH9COw7GG1NQNhMMOUlJex+O5msJCwe2uZ9Gi1fh8bg4c2Et19SCF\nhWfv6WGM4emnn2br1jq6ulIYHAyxcWPhGcvpqa+fzZ/rbDZW3z3xxBP8+Mf/w+HDhdjJuDOwk3Hn\nYIcTzYnZ9kz01T7scKMyjMlG5DhlZUPk5jYQiXhYufJGRGp5+eXXePTRAzgc5We8qhjP96TleXay\nn/swUIItsx3YlYdKsGU3i1BoB15vP7t2NTMyYohEhnA4+vF40nE6g9x77wscPZpGb+8QGRlHSU/v\nYs2aEW6//VM89tgP2b79PtrbBzCmgL4+LxkZNaSlFbJ58yuICO973/veUd7O5eRj7Lto5320PQdb\nWwWPp5D9+xtITW0H0PKcRJLhpPTOO+G66+D22+H66+3cS5//vJ3kOy1tqnOnpqNnn32Gzs5mYDmw\nFtuObsAGl1ZjA05bsG2PYozJxhg/Q0MNvPjiIDfe6MbjGaSlZQhIY2CgjtbWBvr7s2hu7uDgwee5\n7Ta5KN8lXehJnU3c51gyxvxCRPJE5BbsTGXfMMb0isg6oMMYcyzex4wXESkC1gM3ABhjfiMi3xWR\nhcaYo2d67Wuv7eH++39LS0sbNhq9Ddu9sRBjRoF5GJODMdlEIsPYk5QmYAXgxBgnoVA3odArDA/P\nAYoQGcLvH8XnE1JS/AwO/hKvt5KRkTqGhiowxoMx9bS3D5GS4iYcBqdzfvTE+1cUFa1jwYJiDh4c\nZnj4GMFgkNdeC/Dyyz9nzpwRKioqaGtr4cUX6/H50ikoqGbOHC+LF29k5cqltLU9xYEDO6muzqK/\n38U993ybgYFBNmy4hBtuuIGGhoaTjcK1a1ezePFinnhiC729LTid2RgzRE6OG6ezm127HuKtt44C\nyzh8+ACpqdVceeX4immiRofP18++fW8wONiD293Gdded//Lbk23UJEMj6ELU1dXx0ENb8Hr3Ah/G\n9uTwY5dZL8X+KI6tbtGJPUF/NzbY1EgkcgSRAYLBIYLBTpzOIYaG0qmpySccDpKTk0Jx8QhNTe0E\ngzAwEKaxsfGsV17q6up44IHnqKtzk5c3l0AgwP792ykoiNDSkj/hyXXsybfP1z9hYHOm0EDC+aut\nreVv/ua/eOSRe7FBovlAO3YSbje2YVcGrMPOU9OInQR5MbYx6AXm4HR2kZk5yrx5q6msvIyGhkMM\nDGwnHI7Q0TFAU1MeVVXzaG2tZcuWrSfLXV+fHaoUe4XxQj/P2V5PzWaPP/4E3d2p2HKci52J4A1s\nz7tUoJSBgQMMDESwHccfxdbTpTz99GaczhOMjq4nEikDchgZieBweNiz5zk+97l30dkZYXQ0h0hk\nCJcrgMMxSH5+CcbkcPy4j0jk90QiEfr7fQCsWbMKEeH553fS1jaHK67YQG3ty3R391JVNb6cG2O4\n777nOXAgCGSSmVlLT4+TYNCL19sILCEYnLnlWevpd0qWk9Jly2DXLnjsMbj7bjv3Uk6OXT1u7Voo\nK4PiYsjLs7fc3LfvU1OnOvfqYvvZz+7Fnm7Pxda/6dh6ei32fHEQe064EHvR9lnC4VF6e4fYtm0+\nb7zxCB6PkJpaSXv7Djo6dpKSUk5Z2S3k5wu9vQfYs2ffRalrdNW35DfRb9dkxD2wJCKrgN9j+2FX\nAj/CrtP8Uex6uLfF+5hxVA60G2MiMdtasPk+Y2Dp6aefpqVlN3ZZ6nnYHhzLsN3S38T+O0qwJ+CF\n2Kvhc4BXsMOJBrFxuMPYiiYfYxzAU4TDJYTDAMV0do5EnzcX230yD2PcBIPzgS7C4RDQRXf3MQKB\n+XR2OvF6G4lEbIVWV5dJc/MhcnLAmFF8viMEg06MCeB2B2ht7WNw8FE8Hg8rV6ayYoWD/PxUfvvb\nl9i2rYtQaB5PPfUkr776Knv2HKOlBXJzPbznPb1ceWUjtbVDDA+HaWl5lksuKWXjxptwOBxs27YD\nWMYVV/wBu3Y9RDDY/I6KaaJGR19fP+Gwh/z8Rfj9/uiJ2fmZbKMmWRpB58MYw8MP/4Y339yNvQI+\njD35TseWz1exJ+CLgW5sOc8DjmHL/wi2Z0c6xviIRF4iKyudUCjAW289T2rqB+nuFoqKfJSU5FNY\nWMngoJfNm7fR19dPfv7ph2/u3fsGbW1ZRCKltLS0UV3dQ1XVQnp6cmhtnXi57NiT72PH6khNLX5H\nYHOm0EDC+YlEIvzzP3+dRx55DFt/VmDr5RD2xDyELee92FVb+rD1chFwBbbbegMORyNQSEpKHsYs\nZ/366ykoKABeAtYSiWRz9OgrBALH8Pub2bvXxaFDL7N//xs4nSUUFc3l4EHvySuMF/p5zuZ6arZ7\n4omt2GZWATboXwc4sBes5jI2z5INNOVjg0vLARfhsI9weAgbLJ2LLe8tRCJ+Ojs7iUSKsasfFgNO\nRkffALx0dfVgTBGpqR1s3z7MiROtZGZeDmSyfftj5Oe7qa9vpaHhWRobD3P55UvxeJZQV1fHvffu\noqkphMvVyerV2fT2uikouBTIo7//OEVFReTlLeTQoRSqqpYRCJxbL9Tp4NTGuB1uW6/1dIxkOikV\nsSvEffjD8Oab8Nvf2hXk7r8fTpyAUGji12Vk2ABTZSWsW2cDUevWwYoVGnRKVq2tzUA1ts3Rgz0n\nTMN2PsjGDrdPBVqxbecmoAa4gpGRYdrayjh+PEJWVoBQqIy8vDzy8wfx+Z7DmBxKS70cPOiktZWE\n1zW66lvym6hNOhmJWBXuHuDnxpi/FBFfzPYtwAMJON60sGXLFmwg6TqgFnvlex12zvIB7En5EG93\nVV+PPSGvxVYkc6K3TGxD8QQ2CFUQfX0ptmGYhq2AXNhG4/Hofn3YHiT10X1cTii0iJQUNyJt2Cvv\nTkZHC4lERsjNrWB42BAILMThKCQU6qG/fxhjlnLixD5SU1/ltts+QFVVFS+99DKNje2MjCwjLe29\ntLT8jIcffpWBgaWMjpYSCvXT1NRNWlo37e25zJ9/CV1du6mpyaWmpuZkUCAQqKO29mXmzctgyZJq\nsrMZVzFN1OhoaWnB7XZRUJBDb68LOzHp+ZlsoyaZGkGTVV9fz7/8yzexQ4MqseVxDrbczgWex3bh\nXY4t28exV8xfwQZHS6N/FxMOZwAHcLmWkZa2CqezjfXra8jMdDF3bitFRR3U1/fhdg/Q1pbFY495\n8fsbJ1zdcIzbPY/c3Gq6urq46qqFvOtdG3jxRTntyXXsyXdXVyfB4Mz9XDWQcH6eeeYZHnjgIWz9\nW4O9OtiAvRjgxjbqjmNPtF/F1rOZ2Dr7GPY7MIzLtR6nM4OqqiBut4ODB3dRU+OmpuYaamtDtLYG\nmTdvgLy8BlJSgrhcpXR2jtLRsRK3O8LcuSV4vQMnP7cL/Txncz012/X09GLr4FJs+c0CLsO2GYLY\nsuyL3oqAa7FtATe2Xs/F/qYOMnZBC3KIRLKwF78Mtt5Px/bs8+J0ziESySIcLqC/f5SWliDLl1eT\nmzufzs6naGurpbu7mP7+tTQ0HOH97/dQVfUHPPjgQ+zePcTg4BIGB30MDNRSUlJKb68fyKS01Elh\nYSrBoJ/Cwi56elopK8ucMeX51Mb4nDnDBAIVWk/HSNaT0mXL7G2MMeD1Qn+/vfX1jb/3eu0E4M8/\nDz/4AUQiNqi0ejVccgmsX2/va2p0gvDkYLDtjjxsXXwcezG2HNt+ngNcgu1FXR+9zwYcBAIOMjMr\ncDozCQa7SE0VKiqupKysmerqbmpqijFmDm1tF6eu0VXfkt9EbdL09HOPeicisHQJ8L8n2H4M22Vn\nOmsF5oqII6bXUgW219KE7rrrLnJzc/F6vdjG1/9gK4QI8Bq2kmjDVhzN2AacI7qtFxvFzsP+a7qw\nwagK7MnMFuxy1+3YRl8TtoLyRPdTi62kBrENvmzC4UxE5pGVdQXh8Fs4nS2kpYUYHs4E7ETfaWmV\nDA35MaYJp3MxUILD0YPD4aW8fBUFBVeRmek+eTLv8RSQlRUhFKoD0hBpxeksIidnGV5vPj7fS6Sk\nRMjOngtkkps7n3C4jblzs08GlcY3KGom7Ko5UaPDGMPBg8/j9R5k3rzUC1ptabKNmmRtBAFs3ryZ\nzZs3j9vW1tZ28nF3dy9DQyFsYKkCW3aHsRPEurEn5YPYE/M2bBnuxpbTAcCJywWjo/PJymonFHKT\nklLMqlWrCAZz6eyspaamhLVrV5Of3wQcoKvLj9s9j9LSat588xgeTwWBAO/4kVy7djUHD76A13uM\nZcvm8IEPXI6InPHkOvbke948YcmSle8IbM4UGkg4P01NrSd7fto6Oow9IQ9gFy4dxva2a8Y2/K7H\n/my9ge31MYrT2Utl5TwCgSbKy6tZuND26ly3rprFixezYEEDXV09XH/9+3C7cxgcHGDLlv0MDGRT\nUJCHz9dOV9duli2rweMpAC7880zmekqdWWVlBQcOnMAG+3uwZTsVG2Dai22HhLHldzm23j6CbfqV\nR5/fhu1F/SpQRWrqAsLhXMLhPdj2Rj+QT0pKM9nZo4TDQig0QDjspbTURW5uAV1duwmH2ygtDdLc\n3IPXW0NV1XsJBHYyOvr2BN/BoJdIxI/bnU5mZhlXX13F2MWiNWsuP7n63ODg2nE9VmeCUxvj0HJy\n0l2tp63ZclIqAgUF9nY2Q0Owfz+89pq9bd9ug03GztuMxwPz5kF2tp3DKTXV9oYaGQG/396HQvY2\nOmpvLpftFZWTY19fUWFv5eX2Nm8ezJ17fkGrSOTtYzgck3/97HUc257wYevoMLb97Me2nzdg2yIB\n7EWBdtzuPLKyhsnPz2B4OIVAoJX09GxcrjoWLMhm06ZPUF1dTV1dHV1d2iZU8TFRm3RwcPDsL4wS\nM1Z7xYmIdAI3GmP2RnssrTbGHBWRG4CfGmPK43rAOBOR54BfROeK+jjwl8aYd0zeLSLvB7b+3d/9\nHTU1NXz1q1+loSETe8XvLWxvo0xsA86N7XnUj61UnNG9jF0NHI7+nYrtdZSPvdLYH02PAIOIdGBM\nKPp3KmOTJ2dmDuPxZJOdXYrX28LAQDYuVw0Ox1FWrXKTmprC/v3HGB52k5JSREZGmKysfubOTePE\niVG6u9MIh3swZpT8/CUUFgrXXVfJqlWrTr7fN954g+ee20Mg4CArCzIzc+nocDA8HKawcJj3vncl\nHo+HXbvqGR5OJTMzyJVXVjN37twL/kza29sZHBzC7c6Ky/7UxJ544gk2b97MF7/4RUpKSvjKV/6J\n4eEU7I/e2AlKNrbX3FiQqT/6uBDIITU1QlaWD5crk0Agj+HhPjIy8khLG6G4OI/KyrU4nQOUl6dT\nWTn/5OfZ3t5OU1Mzra0BwuFsOjraKC6eQ0FBKqtWzX3H5z5RmThbOUmmcpRM7yWRYsu00+nkW9/6\nHqOjc7HB/bF6OANbL4ewQft2bMOuGOjD5XKSnl5FWlofpaVpzJlTgzF9LFlSyoIF88/6/9+/fz9v\nvHECvz+dcLib+fMzWLNmzbjX6eepzlVsmRYRvv3tzYyOFmDL8NjqQn3Yk5g0bBtigLcnpj+GbZuU\nA71kZQnp6RGM6cSYcjIyqggEjuNwnCAS8ZORIeTl5TF//nyKi+ewb18jPT1DhMNhFiyoIS8vlZyc\nEHl5+cyfX0FtbS0vvNAOlOJ2D5xsS7S3t7N16yu0tflxuRwsXlzAlVcuS5ry3t7ezv797YRCOaSk\nDLBqlX1f+r0+u9gyvXbt2qnOzpTz+6G5GTo6bO+m3l4IBN4OHrlcNsAUe+902pvDAeGwDTgND8PA\nAPT02NvIyPjjZGbauZ8yMuw+UlLsa0Oht48XCkEw+PZje3HGcjjePvZYXlJSxj+OzWdKytvbYtNi\nt43dnM7xeZ3MqeqpzzXG/t/G3tvo6PhA3NgtHD79Y7ABw4nuAebMgU2b7ONTy/Odd95JX99YACkP\ne+4XxnYucGDPD4uj273AAJWVKVx22bspLS1leHiEvr6+k8fKz88f134GbUOo+Dq1PNXW1vKP//iP\nABuNMU+e6bWJCCz9GHuW+Qnst2YV9hv0O2CHMebzcT1gnIlINfBz7HvoB/7UGHNogud9F7jj4uZO\nKaWUUkoppZRS6qL5njHmzjM9IRGBpVzgYeBSbFed49hxXi8BHzDGDMX1gFNkrMfSL3/5S5YuXXpy\n+1133cU999xz0fOT6OMaY2hpaaGvb4C8vBwqKipOdm+fqvc8lcdOxvf86KOP8g//8A/ElulEv89E\n7j9Z836m72I89n+hptO+p6JMT5Yxhs985jP8+Z/fed6fZyJMt//TmOmYr4uZp+lQpqfiM5hp73Gy\n9fRs/p+eWqana504kelYH01E8xl/51qez/b8qaL5Ob3plBeY+vwcPnyYW265Bc6hx1Lc51gyxvQD\nN4jI5djZfd3AHmPM7+N9rCnWCbB06VLWrVt3cmNubu64vy+WRB+3rq6O1tYUAoEafL5uli/PPjkH\n01S956k8djK+58OHDwPjy3Si32ci95+seT/TdzEe+79Q02nfU1GmJ6uurg6/30F39/l/nokw3f5P\nY6Zjvi5mnqZDmZ6Kz2CmvcfJ1tOz+X96apmernXiRKZjfTQRzWf8nWt5Ptvzp4rm5/SmU15gWuWn\n82xPiOvUayLiEJFPi8jjwA+Bz2LXaS6V6Xq5QZ2T2IkpAwEP3d29U50lpWYl/S4ml+7uXsLhVP08\nlUoiWk+fP60TlVJqZopbYCkaOPof4MfYpXUOAIeA+dg5ix6J17HUxWdniY9d4eQclrtQSsWdfheT\ni8dTgNMZ1M9TqSSi9fT50zpRKaVmpngOhfsUcBXwXmPMttgEEbkO+J2I3GaMuTeOx1QXiS5prdT0\noN/F5FJVVUVRURaXX45+nkolCa2nz5/WiUopNTPFM7C0CfjnU4NKAMaY50Tk68AngaQOLG0aW28y\nyY4rIlRXVzPRMPepes9TeezZ8p4TfaxE7j9Z836m72I89n+hpvu+p/K7OxER4fbbb+eyy9491VkZ\nZ7r9n8ZMx3xNdZ4u9vGn4v3OtPc42Xpa/6dvm6514kSm+rt/rjSf8TfZvE6396b5Ob3plBeYfvk5\nk7itCiciJ4D3G2P2nSZ9LbDVGFMSlwNOMRFZB7z++uuvT5cJtZS6IPfffz+33HILWqZVstAyrZKN\nlmmVbLRMq2Si5Vklmz179rB+/XqA9caYPWd6bjwn7y4AOs6Q3gHkx/F4SimllFJKKaXUtDY0BF//\nOjQ3T3VOlEqMeAaWnMDoGdLDxHfonVJKKaWUUkopNa3dcw/89V/DF7841TlRKjHiGegR4OciEjhN\nelocj6WUUkoppZRSSk17jz9u77dsgVAIUlKmNj9KxVs8eyz9AugE+k9z6yTJJ+5WSimllFJKKaXG\nhMOwbx/cfDOMjMAbb0x1jpSKv7gFlowxfzp2A34JtGOHv5lTbkoppZRSSimlVNJrboZAAD7+cfv3\nm29ObX6USoS4z3kkIl8B/h54DRtc0mCSUkoppZRSSqlZp7bW3q9fD+XlcPjw1OZHqUSI51C4MZ8B\nPmWM2WCM+SNjzEdib+e7UxH5UxGJiMiHo38XichWEakTkf0icmXMczNE5AERqReRIyLysZg0EZHv\niEhD9LV3nHKcL0fT6kXk7vPNr1JKKaWUUkqp2a2hAVJToaICli6FI0emOkdKxV8iAkupwIvx3KGI\nzAf+H+ClmM1fB14yxlQDnwYeEBFnNO1LgN8YUwW8H/i+iORH024FlhhjFgMbgL8QkaXR41wF3ASs\nAJYDN4rIxni+F6WUUkoppZRSs8OxYzBvHjgcsGgRNDZOdY6Uir9EBJZ+DPyveO1MRCS6zzuBYEzS\nJ4AfABhjXgOOAVdH026KSWsCngc+EvO6H0XTvMCDwKaYtPuMMX5jTBD4aUyaUkoppZRSSil1ztrb\nYe5c+7iiAlpapjY/SiVC3OdYAtKB/y0i1wP7gVBsojHmC5Pc3xeAncaYvTbGBCJSALiMMZ0xz2sG\nKqKPK6J/j2k6S9qGmLSdp6TdNMn8KqWUUkoppZRSHD8OpaX2cUUFeL3g80F29tTmS6l4SkRgaRWw\nL/p4xSlpk5rIW0SWAx8Drjzbc5VSSimllFJKqenk+HE7txLYwBJAayssWzZ1eVIq3uIeWDLGXBvH\n3V0JzAfqo0PiSoD/Br4KjIrInJheS5XAWMfC5ujrOmLSnoo+bommvTzB68bSmCBtQnfddRe5ubnj\ntm3atIlNm3QEnZq+Nm/ezObNm8dta2trm6LcKKWUUkoplZza28f3WAI7HE4DSyqZJKLHEgAishhY\nBOwwxoyIiBhjJtVjyRjzA6JzJUX3uQ34ljHmMRF5F/BZ4GsicilQCmyPPvVh7Op0r4jIAuzcS5+N\npj0E3C4iDwN52KFuH4xJ+66IfAeIYCcF/8qZ8njPPfewbt26ybwtpabcRMHP+++/n1tuuWWKcqSU\nUkoppVRyGRmxQ9/GAkulpXYS7+bmM79OqZkm7oElESkEfg1cix36VgUcBX4iIl5jzBcvYPcGkOjj\nvwLuE5E6IAB80hgTjqZ9A/ipiDQAo8AdxpjeaNp9wCVAPTZ49E1jzCEAY8x2EXkQOBg91q+MMVsu\nIL9KKaWUUkoppWahjuj4mZISe+9yQXExnDgxdXlSKhES0WPpHuyE3RXA4ZjtDwLfAs47sGSMuS7m\ncSdw42meNwzcfJq0CPC56G2i9LuBu883j0oppZRSSimlVE+PvS8sfHtbSYkGllTySURg6X3AjcaY\ntrFV3KLqGT9/kVJKKaWUUkoplZQ0sKRmC0cC9pkFDE+wvQA7ZE0ppZRSSimllEpqGlhSs0UiAks7\ngdti/jYi4gD+EtiWgOMppZRSSimllFLTSk8PpKSA2/32Ng0sqWSUiKFwfwk8KyKXAKnAvwHLsT2W\nLk/A8ZRSSimllFJKqWmlp8f2VoqdIWYssGTM+O1KzWRx77FkjDkIVAO7gEexQ+N+C6w1xrwV7+Mp\npZRSSimllFLTTW/v+GFwYANLfj/0909NnpRKhET0WMIY0w/8UyL2rZRSSimllFJKTXdjPZZilZTY\n+xMnIC/v4udJqUSIe48lEXm/iFwR8/cdIrJPRB4Qkfx4H08ppZRSSimllJpuzhZYUipZJGLy7m8A\nOQAishL4FrAFWBB9rJRSSimllFJKJTUNLKnZIhFD4RYAb0Yffwx4zBjzNyKyDhtgUkoppZRSSiml\nklpvLxQUjN+WnQ2ZmRpYUsklET2WgkBm9PH1wNPRx71EezIppZRSSimllFLJbKIeSyJvrwynVLJI\nRI+lXcC3ROQF4F3ATdHt1UBbAo6nlFJKKaWUUkpNG8bAunVQXf3OtJISaG+/+HlSKlESEVi6E/g+\n8HHgs8aYY9HtG4EnE3A8pZRSSimllFJq2hCBZ5+dOK24GDo6Lm5+lEqkuA+FM8a0GGM+ZIxZbYz5\nScz2u4wx/+9k9yciT0VXldsrIttFZE10e5GIbBWROhHZLyJXxrwmI7oKXb2IHBGRj8WkiYh8R0Qa\noq+945TjfTmaVi8id5/ff0EppZRSSimllHqnkhINLKnkEvceS9FJukPGmAPRv/8Q+FPshN5fNcYE\nJ7nLPzbGDET39UfAz4E1wL8CLxljNorIJcAjIlJpjAkDXwL8xpgqEakEXhaR54wxXuBWYIkxZrGI\n5AN7o2mHReQq7NC9FUAEeEFEXjDGbL2Af4lSSimllFJKKQXoHEsq+SRi8u4fYudTQkQWAr8ChoE/\nBv5tsjsbCypF5QHh6OM/Bn4Qfc5rwDHg6mjaTTFpTcDzwEeiaZ8AfhRN8wIPApti0u4zxvijAbCf\nxqQppZRSSimllFIXpLgYOjshHD77c5WaCRIRWKoG9kUf/zGwwxjzv4BPAR873YvORER+ISItwNeA\n20SkAHAZYzpjntYMVEQfV0T/HtMUhzSllFJKKaWUUuqClJRAJGJXjVMqGSQisCQx+70e2BJ93Ap4\nzmeHxpg/bNWe4QAAIABJREFUMcZUAF/m7V5PciGZVEoppZRSSimlLraSEnuvw+FUskjEqnCvAV8W\nkd9jh6Z9Nrp9AXBBU5QZY+4TkR9E/wyJyJyYXkuVQEv0cTMwP+Z4lcBT0cct0bSXJ3jdWBoTpE3o\nrrvuIjc3d9y2TZs2sWmTjqBT09fmzZvZvHnzuG1tbW1TlBullFJKKaVmj+Jie68TeKtkkYjA0ueB\n+4E/Av7JGNMQ3f5x4MXJ7EhEcoFMY0x79O8/AnqMMb0i8hA2aPU1EbkUKAW2R1/6MPAZ4BURWcD4\nANdDwO0i8jB2zqabgA/GpH1XRL6Dnbz708BXzpTHe+65h3Xr1k3mbSk15SYKft5///3ccsstU5Qj\npZRSSimlZoexwJL2WFLJIu6BJWPMfmDlBEl/wdsTb5+rXOAhEUkHDNAJfCia9lfAfSJSBwSAT0ZX\nhAP4BvBTEWkARoE7jDG90bT7gEuAemzw6JvGmEPRvG8XkQeBg9Hj/coYMzaUTymllFJKKaWUuiAZ\nGZCbq4EllTwS0WMJEcnD9lBaBHwjGtRZhh2aduxc92OMaQE2nCatE7jxNGnDwM2nSYsAn4veJkq/\nG7j7XPOolFJKKaWUUkpNRnGxDoVTySPugSURWQU8C/Rh5yj6EdALfBS7wtpt8T6mUkoppZRSSik1\nU5SUaI8llTwSsSrct4CfGWOqAH/M9i3AVQk4nlJKKaWUUkopNWMUF2tgSSWPRASWLgV+OMH2Y0BJ\nAo6nlFJKKaWUUkrNGCUlOhROJY9EBJYCQM4E26uBrgQcTymllFJKKaWUmjF0KJxKJokILP0P8Pci\nkhL924hIBfCvwG8ScDyllFJKKaWUUmrGKC6Gnh4IhaY6J0pduEQElr4IuIFOIAPYDjQAPuBvE3A8\npZRSSimllFJqxigpAWOgS8f0qCQQ91XhjDH9wA0icjmwGhtk2mOM+X28j6WUUkoppZRSSs00JdHZ\nh0+cgNLSqc2LUhcq7oElEbkNeNAY8wLwQsz2VOBmY8y98T6mUkoppZRSSik1UxQX23udwFslg0QM\nhfsZkDvB9uxomlJKKaWUUkopNWvNmWPvdQJvlQwSEVgSwEywvQzoT8DxlFJKKaWUUkqpGSM1FQoL\nNbCkkkPchsKJyF5sQMkAz4rIaEyyE1gAPBmv4ymllFJKKaWUUjNVcbEOhVPJIZ5zLP0uer8GeAoY\njEkLAk3AbyazQxFJA34FLAVGsCvN/bkx5i0RKQLuBRYBfuAOY8zO6OsygJ8AlwJh4G+NMb+Jpgnw\nn8BGIAL8hzHmezHH/DLwKWyA7EFjzJcnk2ellFJKKaWUUupsSkq0x5JKDnELLBljvgYgIk3YgIw/\nTrv+oTHmyei+7wB+DFwL/CvwkjFmo4hcAjwiIpXGmDDwJcBvjKkSkUrgZRF5zhjjBW4FlhhjFotI\nPrA3mnZYRK4CbgJWYINOL4jIC8aYrXF6L0oppZRSSimlFCUlcPz4VOdCqQsX9zmWjDG/iFdQyRgT\nGAsqRe0G5kcf/zHwg+jzXgOOAVdH026KSWsCngc+Ek37BPCjaJoXeBDYFJN2nzHGb4wJAj+NSVNK\nKaWUUkoppeKiuFh7LKnkEPfAkog4ReRLIvKKiJwQkd7Y2wXu/v8DficiBYDLGNMZk9YMVEQfV0T/\nHtMUhzSllFJKKaWUUioudCicShaJWBXuK8AXsD2BcoFvAb/FDi376vnuVET+Bjuf0t9ceBaVUkop\npZRSSqmpU1ICfX3gj9ckMkpNkXhO3j3mk8DtxpgnROSrwOboZNv7gXdjJ86eFBH5EvBHwHujw+z8\nIjIqInNiei1VAi3Rx83YIXMdMWlPRR+3RNNenuB1Y2lMkDahu+66i9zc3HHbNm3axKZNOoJOTV+b\nN29m8+bN47a1tbVNUW6UUkoppZSafebNs/fHjsGiRVObF6UuRCICSyXAgejjQWyvJYDHgX+c7M5E\n5AvAzdigki8m6SHgs8DXRORSoBTYHk17GPgM8IqILMDOvfTZmNfdLiIPA3nY+Zg+GJP2XRH5DraH\n1aexPbBO65577mHdunWTfVtKTamJgp/3338/t9xyyxTlSCmllFJKqdmlvNzet7ZqYEnNbIkILLUB\nc7E9fd4C3gfsAS4FApPZkYjMA74Z3c82ERHsam/vAf4KuE9E6qL7/WR0RTiAbwA/FZEGYBS4wxgz\nNr/TfcAlQD02ePRNY8whAGPMdhF5EDgIGOBXxpgt5/E/UEoppZRSSimlTquszN63tk5tPpS6UIkI\nLD0CvBc71Ow7wC9F5M+wk2DfM5kdGWOOcZp5oKJD4G48TdowtpfTRGkR4HPR20TpdwN3TyafSiml\nlFJKKaXUZGRmQmGhBpbUzBf3wJIx5q9iHj8oIs3AZUC9MeaxeB9PKaWUUkoppZSaicrLNbCkZr5E\n9FgaxxizG9id6OOoMzPGUF9fT3d3Lx5PAVVVVdiRhUqpi0W/h+pMtHyoi0XLmkpmWr7VTKOBJZUM\n4h5YEpG/Bk4YY352yvZPA0XGmH+N9zHV2dXX1/Pkk3UEAh7S0uoAqK6unuJcKTW76PdQnYmWD3Wx\naFlTyUzLt5ppysth166pzoVSF2bC+Ysu0P8B3pxg+yHsSm1qCnR39xIIeFiy5N0EAh66u3vP/iKl\nVFzp91CdiZYPdbFoWVPJTMu3mmm0x5JKBokILJUAnRNs78KuFqemgMdTQFpaN0eO7CYtrRuPp2Cq\ns6TUrKPfQ3UmWj7UxaJlTSUzLd9qpikrA68XhoamOidKnb9EzLHUClwONJ6y/XLgeAKOp85BVVUV\nQHS8efXJv5VSF49+D9WZaPlQF4uWNZXMtHyrmaa83N63tsKSJVObF6XOVyICSz8Cvi0iKcBz0W3v\nBf4N+PcEHG9WmuzEhCJCdXU1iR5irhMmJp9z+Uz1cz83F+t7qOIr0eX71P2/5z0b9PujLhpjDHV1\ndfT0eLX+VtPWudbD2h5RM9H8+fa+qUkDS2rmSkRg6RtAIfB9IDW6zQ/8qzHmXxJwvFlpuk5MOF3z\npc7fuXym+rmrZJbo8q3fH3WxxZa5/v7ngRRyc5dp+VPT1rnWk1qfqpmorAxSUuCtt6Y6J0qdv7jP\nsWSs/x8oAt4NrAYKjDH/EO9jzWbTdWLC6Zovdf7O5TPVz10ls0SXb/3+qIsttsx5vU683kwtf2pa\nO9d6UutTNRO5XLBggQaW1MyWiMm7ATDGDBpjXjXGHDTGBBJ1nNlquk5MOF3zpc7fuXym+rmrZJbo\n8q3fH3WxxZa5/Pww+fnDWv7UtHau9aTWp2qmWrQIGhqmOhdKnb+4DIUTkd8CnzLGDEQfn5Yx5qPx\nOOZsN10nJpyu+VLn71w+U/3cVTJLdPnW74+62GLLXGHhNQDROZa0/Knp6VzrSa1P1Uy1eDE8++xU\n50Kp8xevOZb6ARPzWCXYdJ0EeLrmS52/c/lM9XNXySzR5Vu/P+pi0zKnZppzLbNattVMtWgR/Pd/\nQyQCjoSNKVIqceISWDLG/OlEjy+UiPwH8GFgPrDGGLM/ur0IuBdYhJ0Y/A5jzM5oWgbwE+BSIAz8\nrTHmN9E0Af4T2AhEgP8wxnwv5nhfBj6FDZI9aIz5crzei1JKKaWUUkopdarFiyEQgOPH7WTeSs00\n0z0e+hBwOdB0yvavAy8ZY6qBTwMPiIgzmvYlwG+MqQLeD3xfRPKjabcCS4wxi4ENwF+IyFIAEbkK\nuAlYASwHbhSRjQl7Z0oppZRSSimlZr3Fi+29zrOkZqp4zbG0l7eHwp2RMWbdue7XGLMrun85JekT\n2N5KGGNeE5FjwNXAc9jg0KejaU0i8jzwEeCn0df9KJrmFZEHgU3A30fT7jPG+KPH/Gk0beu55lcp\npZRSSimllJqMykoQsYGla66Z6twoNXnxmmPpd3Haz1mJSAHgMsZ0xmxuBiqijyuif49pOkvahpi0\nnaek3RSPPCullFJKKaWUUhNJS4OFC+Hw4anOiVLnJ15zLH0tHvtRSimllFJKKaVmmxUr4MCBqc6F\nUucnXj2WxhGRPODj2OFq3zDG9IrIOqDDGHPsQvYd3deoiMyJ6bVUCbREHzdjJ/vuiEl7Kvq4JZr2\n8gSvG0tjgrTTuuuuu8jNzR23bdOmTWzatOmc3o9SU2Hz5s1s3rx53La2trYpyo1SSimllFKz28qV\n8JOfTHUulDo/cQ8sicgq4PdAPzY48yOgF/godrjZbXE4zEPAZ4GvicilQCmwPZr2MPAZ4BURWYCd\ne+mzMa+7XUQeBvKwQ90+GJP2XRH5DnbFuE8DXzlbRu655x7WrTvnaaOUmhZuvvlm1q9fT3d3Lx5P\nAVVVVTzwwAPccsstU521ac0YQ319/bj/2zungFPq9LQMKaXfA3XxaFlTM8nKldDeDj09UFg41blR\nanIS0WPpW8DPjTF/KSK+mO1bgAcmsyMR+QE28FMMPCUivuhKcH8F3CcidUAA+KQxJhx92TeAn4pI\nAzAK3GGM6Y2m3QdcAtRjg0ffNMYcAjDGbI9O5n0QOxH5r4wxWyb75s9Ef9zUdFFfX8+TT9YRCHhI\nS6u7KMdMhvI/0f+turp6inOlEine5VbLkLoYpnt9q98DFW+nK/Na1tRMsmKFvT9wQCfwVjNPIgJL\nlwL/Z4Ltx4CSyezIGPOZ02zvBG48TdowcPNp0iLA56K3idLvBu6eTB4nQ3/c1HTR3d1LIOBhyZJ3\nc+TIbrq7e/8ve28eHedxHfj+qjdsjX0jiZ0kAFIkuEmitlCbLYpUEi9x4sRJ7MTJSzLJ5I0zL+/N\neRN7nPdy4pxsk8QzL3McO7HlOLbkOE5sxxIXydZCkZJIEQAJECQaAAFiIfZuAN0AGr3V+6MaEABi\nR3/dXwP1O+c7JLqBureqbt2qul8tq//RJtkK9r9UuSVZFjTrJNZ2q21IEw/M7m91O9DEmuVsXtua\nJpmorgaHA65f14ElTfJhMSDNGSBric9rgGED5CUN8zu3mZmCuEzmpZS4XC4uXXoHl8uFlNJwmRrz\nU1CQR0rKCLduvUNKyggFBXmGy1zO/pPJRhNRbprEsthuh4dHN2Wv2oY08WCl8YYZfK5uB5rl2Kh9\nLmfz2tY0yYTdDocPw5UridZEo1k/RqxY+gHweSHEx6M/SyFEOfBnwHcNkGcKIpEIr7zyCl1dPVRW\nlvHMM89gsSyM26nOzTWvczP+lUmi3lqafRn+dqe6uhogWj81VFdXc8WAXmy+HXi94zgcgXvs3yxv\n1tdis0uV21ZDt92FLPbbPp+dq1dHV7XX5cpxvg3l51cjpeTSpXe2dVlrm9scs+U3PDyKzzeB05mF\nzzexpL+F1X1uPOpjO/hSzcbY6JhgqTG2lBIpJUVFU0A3R48eXretaf+kyyDePPoo/PCHidZCo1k/\nRgSWfh91gPYwkIY6VHsH8DbwWQPkmYJXXnmFL3+5Ab+/ktTUBgCefXbhbr14DKQWDzA7O7vp7S3m\nJ37iIVpb343bEmCzBAs0SyOEoKamZtO2sNpgY74dOBwB9u1z4HRKfD47w8OjgIvh4VFTLFNfi83G\nqtzMzHZuu0vZ82K/rexVLGuvs2nU1zfS3OwjO3v/gnKcb0Mul2vblvV8trPNxYLZ8uvtnaKj4zZ7\n9txHSYmgttbO2Ji63HZ2gi2EWHVr0FL1UV1dHdOJ5XbwpZqNsdg+Z8cKq9neYl+9d+9ezp8/z5kz\nLhyOCkpKBEKIddut9k+6DOLNI4/AF78Ig4NQXJxobTSatRPzwJKUchx4RgjxGHAYcAL1UspXYy3L\nTHR19eD3V3Ls2C9QX/8iXV099/xOPAZSiweYubnZeDwtAJSWWlZdJRWrtxJ6T/v2YLXBxmI7yMxU\nbxXVig9BSoqL2lo7KSnBda3kM+LtmbZZxXYuh+XseaHfdq248tTlcvGNb7xOS0sX4+NOfvZnT+Lz\niSXLcTuX9Xx0OWyO2fIrKIAbNyIUFNQQCIwxNtbN0FA6MzMFDA21zY1BVls9vfQZfHpiqdkca+23\nF9un12vjzJnreDxWcnPDfPKTktra2nv+bvEY2+VyceZME21tpZSU7AAGNuRbtH/SZRBvHn1U/fv2\n2/CRjyRWF41mPcQ0sCSEsAC/CvwMUIm6Xa0TGBBCCGnmw1M2SWVlGampDdTXv0hqaheVlUeB97fI\ndXZ2Y7MJ0tOdWCyWueW4bW1tNDRcQ0pJbm42mZnZFBbmb3iiPDw8Sm9vBJ8vwuhoIQ8++ChudxN7\n9gzx1FOPr7pKKlZvJRKx7U8TXyKRCC+99DIXLgxy+PCTRCK51Nc3Lhg0LmUHiwcoTqfk1Kn8da3k\nW+9Wjj179vDqq6/S1dVDRUUplZWVuN1jCwa3i3XNz6/G5Vr9LelWYzu03eUmOPNt8+bNt6mvb1yw\nvaiwMJ+9e/dy6tTyK08bGq7R1BTAan2EwcE3efnlv2XPnny83rq5FSOzzC9rh2MYr9ex7La49QZT\n5/9+fn4uAKOjHlPa8nawOSPJz89lbOw1rl+/zfDwKJcvD1BSYsHtHmBsrJLiYhsNDQ20t7/KI488\nwtGjh3n22eqoPSgbXm3bsp5YajbLWseXe/fupabmNu+++yo2m5MbNyJcv24jP/9Bbt16Hbv9n3n4\n4eNzPnk5fzYy4sbhKKekJJ2+vtukpw9TULBvWf2W8rEAXu84fX0uhoeHKCkRFBTcG9RKNEtth93M\nXGIx2kfHl7Iy9bz5pg4saZKLmAWWhPJcPwCeA64BTYAA9gPPo4JNW7Z5PPPMMwDRiesRKioquHTp\nHW7evMFLLw3hdufS33+FtLQUMjOrOHjwDh/+cB1vvXWXpiaJz9eH1TrOkSNPUFo6Cqw/oCOl5Nat\nFi5fvsrkZDYzM5O0t9s4dCifp546suI5ILHeOqfPT9h6LJ6oXrhwgRdeuMbAQCENDd/nvvsCHDny\nAN3dZUxMvMbBg41zE5iREffc9rfFZ38UFi5eEbI6693KkZFxgZdfHsbvryQYfIM9e+rZvfvpBYPb\nxTYrpdyWb+i3Q9udbx92+y0yMy8QCkmsVvB4JC++2MjUVAu3b5eSlZVKR0cLe/bsprR0lFOnWIO9\nppOVVUNm5tuEQj4cjke4dStAVVXbAhuaX9Zer4NbtwIEAixpb+sN+s///fHx1wE72dn7GR9/i4MH\nGzl27IhpAkzbweaMYNYnX73awLVrN7hzJ4PJSTcjI/9KT085Vms+kcgAbnc9gUAAh6OEGzdaeeSR\nMT71qad49NGH59Kavy1zdtuyWmE6G3hyMT5+kbNnu8jNnSI//7EE5lyTjKw1OOlyufj6139MS8sU\n6ekpZGS4GRsrxO8/wOBghPfeG+XatXry8nbhdE5w+nQnJ0+evMeXFRTkUVIyDEyRnt7L6dN1K/qW\npXwswK1bARyOYgIBF/v2rZzGUsTjfKL3dytEFvRXEJtxi/bR8efUKXXO0l/9VaI10WjWTixXLP0q\n8DjwASnla/O/EEI8DXxPCPEpKeU/xlCmabBYLJw8eXLubI1/+qdLZGfv5733OhgdLaSq6klcrrvM\nzASw2R6iufkSO3a8h8ezl7y8I4RCjbjdbRQU1DAzM7ahgE5bWxtNTVPAIXbuDJKS0s8DDwR4+unl\nO4HFnVFubuq6ts4thz4/YeuxeKJ69WozIyNHsNns+P1djI7eJBDIJSsrn4sXA3g8EYaG2jh1qobC\nwvy57W9LTVrWy2qrixaf29TbexG//zDHjv0CP/rRIIODEzz33MLB7WKbvXTpnW35hn47tN3ZlZ0F\nBTlcvPgGQ0MDOJ0PEQw2YrcPMjGRy9RUgImJFI4dy8Xvr6SgoJyZGVa1g6NHD9PcfBGPp5HaWgtF\nRc9w4sSHlrSh+WV96dI7BAIsa2/rXTEy//fPnm0G0iktLeett1rweCYYGjJPsHQ72JwRzPrkd9/t\noaXFidVaxsTEJMHgHiIRKzabjf37d+LzCTIyIlitT5GaehePxzdnP7OT3tdee5Pe3qy5l0qZmSwI\nPCmCgA8IJyC3mmRnratezpw5y7vvzjA19QChUDPp6WMUFFgZHHyVzMwgtbWP8N57HkKhPPr7U4Am\nqqqq7vFlC4MhqwfSl94CCoFAISdOvL+d34xnNL2/HTaHGzem1txfrRXto+PPT/80fOUr0NoKS+z8\n1GhMSSwDS58A/mRxUAlASvljIcSfAr8EbMnAEqjO48yZVi5fvkN3N3zwgylkZtYwMPAuLS1BQqEG\nQiGYnLRgt/vIzKwiGJyKTnr7yMwcZ2TEtWxAZ6W3HlLK6LYNP0VFO/H5guzePcPTTz+xYge2uDOq\nrq5gdLRnzVvnjEbfRJFYZq/9bWi4hsvlwuut5sSJn+TcuWbs9jLS0zMZGhojO3uYtLRihobqmZyc\nQMo0iopKaG1tpahoirKysnvOWrp30rK8DqsdqLx4ddHic5tqa/fS0dFFff2LOJ39pKQEOHv278nN\nDZOf/+SScvXS762LzzdBe/sNLl8exuV6FSEqePzxarq6+nE43Ozd+3HGxz0MD1/m7t0bpKaOMTJi\noaQk7Z7tasAC+9y7dy8nTnTR1dWDzbYbr5c12dBq9rZee5z/+7m5YWCKpqYLwBR1dc/i9bq3TbB0\nqzLbf+/ceZBQ6IdMTLzB5GQWKSk7sNudhMNXECKbXbum8HpnGB09C3gpLy8kP/8E8P64panJTnv7\n27jdd6mr23PPdp/RUQ/Z2Yc5fvwh3nrrO7z++gWEEOzdu5f29nbdR2tWZa2rXiYmfExP2/H7rfh8\nEXy+Hvbuzaa4OBuHw4Myr1YmJuzU1BTjcJTfEyhdOF5Qdv722++u62ynWR+72XFAPLaRzure2ztE\namoXIyMWSkvT9bglifnAByAjA158Ef7wDxOtjUazNmIZWDoE/JcVvj8D/KcYyjMdw8OjNDW5uXs3\nje7u2/zrv36H/fth374IN2++x44dNoaGZoAImZnp7N+/j927d9PQ0Mjdu5mAEyk7CIXg6lUft2/f\nJjMzm4KCPKSUnDlzlsbGUYqKHqCkZHBu+0ZlZRkVFRU0N/vw+fLw+dooLZ3i9OmfYO/evSueE1NQ\nkIfD0UpTUwPDw5d5660dHDq0lyee+AmAVTtio1EH4V7E40knN7dl2UMbNcbgcrn4m7/5Ac3NEArN\n4HReRghBbm6YrKxcPJ42BgYu4vNJIpEPMTPjwelsor//Js8/b0cIO9eu2SgpcZCSsoehoUFKSy3k\n59fcY5fAkkHElQ5Urq5Wg8jXX79Ab2/R3Nv2xec27dlzmtJSdcaS1bqX27dhfNwJTC2b91md1Pa9\n92+xM+vESQdh14aUErd7jGAwgMfTjs+XSzA4zSuvfJuiok4cjkHOn/897HYn991XwnPP1TA9baOn\n5xYtLX1cvZpNcfExHI4bHDzYwOSklwsX+vB40sjN9XPixC4mJ4sJBA4wNtZCQcFtysr8q15zvZq9\nrXcrwvzfnw2eNjRco7nZwcTEKKmpo+t+gaGJH2uph/z8XDyeC1y4cImJiXb8fjvhsBspR3C7Jygq\nmqCsLJcdO4q4dauXUMhHUdEh3O5pXnzxOzz88INkZDhpanIzNJTH1NRuJiY62bdv/z32NTtW+MEP\nvkh7+x3c7iP4/a3s29dJa2swZqsxtP1tXda66mXXrmJCoYt4vWNEIm7C4XLefbePxx8PcuRIOV7v\nRYqKBpmYGCYcvh+bLZPu7m4KCvKIRCL80z9dwuNJJyfnBidO3GZsbILmZg9ZWYdITV1oo4u3+M+e\nPZafr84dGxlxU1trx+mUFBZubIV1fn4u4+Ovc/Zs84ovszbDwv7jKBkZmUxOek0/bkl2ljuXKxak\np8Mv/ZJatfTZz4LNiHvcNZoYE0szzQMGV/h+EMiNoTxTEYlEeP31H/Pmmy1MTBzEYhlnaKiPsTEP\nRUWleDwFOJ35OBxujhzZS0aGna6uHiwWS9QxTTM2lsP1628RDAYJhdKx26epqsqlqCibQMBKU9MM\no6NTVFd3kJ4+ycBAA5FIIVbryxw/XsTu3b9MWdkkly9fJRKZory8nLa2Ns6da5sb9M2/bnj27fq+\nfZ3U1w9jte7G45nC7e6jq6sLlyu05sORjeq0GhoaefvtcVJTS7l1q5+DBxs3HFjSA9b1oyaiYSYn\nH2Zy8jw+n4upqSDp6Xl897v/QkdHH6GQHSEOEg5f5s4dQUrKIN3daYRCtUQiTdy5I7HZ8ikpaeXR\nR/3U1u7jpZfauXbNS3HxEez2G9TVNZKbm83NmzPcvesnEHiL06frOHny5Ipv+97fyplFR8f7WziX\nOrfp2WefBdSWI48HHnlEpTc66lky77ODYHAtuMUOzLF9aDH6OuC14XK5eOONW7hcN+jrCxGJZJKW\nlkUgUI/b3cX0dDk+331Yrb2Ew7f5zne+TWdnCI/HSTicQSQSIiPjVaT0U1rqoKenk/HxWhyOgzgc\nXlpb/42yssepqHiEhoYJiosnKSrqJjc3+576WOyT9u7dS2dn57zrsUfu8dmPPPLQmvzWUpO4mpoa\njh1rWzE4pe3IHKylHqSUNDZeoLn5KlNTxUABMEQoFGJmJozHk4nHM0pVlSAYTGdq6hD9/dDZeZEf\n/3iC73+/mY9+9ABtbW56enaSkTGOlFk4nVlzNjb/AhKfb4jx8RHgIELsp69vgLGxKwwN7aWu7ihe\nr9zwaoxZOe+8c4WBAQtVVU/eEwQwM3p8ERtCoRDf+c6/MDp6Gyn7UO+sx5ma8vHmm9e5du0JAoFi\nMjIKyM6eYWTkPLm5mQQCH+X69Tfp6XmLmzcrKC//ILduvUlvbx+hUBHd3d188IOVSJm34JIRKSXn\nzrXh9+czMfE6Bw/mcuzYkbnPVfsL8uyzecDaX7bOt4eJiTGktAEZrPQyazMsdSPe2bNu049bkp3l\nzuWKFb/zO/DlL8PXvw6//usxT16jiTmxDCxZgdAK34djLM9UvPLKK5w718PERCFeby/B4AThcBtQ\nyPBDa1mrAAAgAElEQVRwC0IcIC+vhvHxfl577XkyM7Po7i5jZuYmQjjp6xsiFOqkt3ecSGSCSMSG\nxQL9/W6ys9MIBtMJBEoJBHJ5770LpKZ6gEKk9CBlIX7/KC7Xl+joCDE9nYLHs4svfvHfqa110N6+\ng7q6o4yPh3n++a/T0eElK2sPBw5Ucd99nXR19RAKZVJbewohxrFYmrlzp5eZmYPRyfzb99z2td6V\nRBsddPX39zM0dJfU1J34/Xfp79/4QE1PmNaPlJJAYIienr/B44lgt2fT3v42wWAb4XAp8DQwjJTd\nDA9bgXKEaEHKciAfyARsBAInGRysp7fXw7e//SqdndMEArWUl7vxeNp4/fUJLJZxAoEpMjKqCYd3\nIGUrVVVVc0u8b958m4mJ63R3587Z0GzQ6Sd+4iHgO2vawrneLUVGLmOP5WRE39q0OlJKXn75DJcv\nD+PxFDE5eQkYZXp6F5DB9PQhQiE/0EEkAr29N+jtrcBqfQIhprHZ/IRCfkZGPEQi3QwO+piedgKX\nEWIEu93K9HQWd+/eoLm5F5+vn0BgJ729lbS2fpuWlps899zpuRtBX375DI2NExQXH6GkZJh9+zrv\nuR67oeHa3JXxK/mttdjSWlYMmNGOtuOkfS310Nh4nZaWSaamKoBewIWavFYCVqTMYnAwwOSki+Li\nUmZmbtLe3k0wWIDD8TAtLdexWs+Qn19HWlonk5PFDA358PkmAFXuX/va1/jGN5qRsoapqQ6czghF\nRSH6+joIBNpIT4e7d4fp7T1LXZ0gL+9Rzp07R1dXD5WVZTzzzDPzXqAtX4evvPIKX/5yA/39mXi9\nQ+zYEUaIAlPY31rQ44vY8Kd/+qe8+uokUu4HOoDvAdVAHVNTWfj9aQixC5+vg7GxfsLhaVJSbLjd\nr+DxDOD13sXvH2FgoBvoZmRkH7m5e2hvn+bOnb+gtDSFurpH2LOnjNRUF0VFU8zMlJOVlcfFiwE6\nO9288845KirChEIPzbW/tfphUO3m/Pnzcy8IZmZaSUmp5dSpDy37MivWPi6Rfnw7+evlzuWKFYcP\nq1VL//W/wunTsGtXTJPXaGJOLAM9AnheCDGzzPcpMZRlOjo6uujuDuLzRZia8qEuxssD8pieloAX\nGGB62ofXO8XgYDq9vU1YrXuB2wSDFoRIJxQCqAK8RCJuvN5qgsEJIJNgcAirdYZAoAe/fxAhPEj5\nM2RnT+P3T9DdPcjUVCmZmUdISang9u1m/P5R3G4Lt249j8XSxMCAk2DwfvLyxhkff4fGxjQ8nlQ6\nO1uwWDrJzMygri6NiorjuFwj3Lr1DmNjLXR09OL1urDbvfzCLzzF2Ng4TU2SvLwj9PZepKHhGjU1\nNct2JvMHXQ5HK52dnXPb/FbqdHbs2ElR0SSpqeD357Bjx84N15EZJ0xmJycni7GxVkZG2oEHCYfL\ngQpUwMgHtABZwMPRn68gZRh1yOttoAcoASaZmhrk3Xdfw2Y7isXyGIHAXUZG3iASmcBiyQaCWCwZ\n2GxhsrNvYbGk8O//HmLnzl2EwwPY7W1ImUVPT9ncwcOzQaLW1ncpLU1fcPvhcoObxVuK1rJd1Kiz\nlmI5GdFnQq1OW1sb164N09/vYHjYB5QDNcAEkEIolIWamI+h7DkbOEo4nAOMEAoNAoWoBbiCyckc\noBTVHloIh3MJh/OxWrsQopiZmd3cvNlJWlqISKSE7u5OXn75z9ixI0wwmEVPj42xsUoOHEhDyinG\nxq7Q0TGB3x/G5fJx5Mg0UhbNHTTe2zvE8PDokn4rVra0HjuK1wRiO07a11IPoVCIvr5B1FhjP8pm\n7YAn+q8XyMLnCxIIzBCJdBEK3QEeIBCoA+7S3t7IyEgzU1Ol5OeXUlhYSlpaBv/wD//ApUuXuXat\nG6/3pygsLGRoKIeZGRvT0y5SUtrJy8shPf0jnDp1H83NFzh4MJOuri6+/OUG3O5c4Cy9vb382q/9\n2qp12NXVg99fyZEjJ3jjjW9x7drrPPnk0aTxY3p8ERu+//2XkHIHKjh6CHgT9c66CggQibwHdBEO\nlzAzM40QaQQCJVy/fgMpg0AJUqYxOdmDw2FjcNCFzdZHOBzBYqnA5/MjpZtdu0LcuePj7t1r9PW1\ncPVqM263lfz8Imw2QU7OHfbvn0RKSE0dBeSa/DDMnlumXhDs2lXM2Fg9Fss7AJSUiAXnl8360Pr6\nRpqbfWRn74+Jj4v1eGA9vn47+eulyrmzsyOmMv7yL+HBB+HZZ+EHP4Cqqpgmr9HElFgGlr6+ht8x\n/cHdQoi9qLwUoGYXvyqlvLna3926dYPu7nqklKhJxy7gKWAccABepqYagW5UZ2nF7/ejBn45gAXV\neZagJjlO1KRmhkCgHIcjTCQyRDjcBewDnkbKeuBFZmZ2MDzsIS3tMJGIhbGxRkKh2+TlTSBEHVlZ\nE9TXv0YoNEI4fJysLElHhxe3+3VSUp4mEDjA6GgPNttF8vIeJTd3D5WVlezebWFkxM2773p5++0g\nk5N5+HwpRCLvUlIyg9sNVmshPt8gLlc/58+fj16XXXhPZzJ/0HXhwj/T2dlFScmDq3Y6x44d4ZFH\nJvF4IDd3J8eOHVlfhc5jvR3tdnrrshxut4fOzluoCUsTyj4LgDqgHdiNmsDkAJNAWfSzTtTbxhGU\n/X8PkPj9dUARQtiQEuBd1KQoDEgyMg4SChUyMtLOzEwnY2N3yc09hBA2UlLa2bXrSY4ff4iLF3/I\na6+9yZNPnpg7E2Hx1p7ZQ2n7+iSBwJUFVxLfu2R8+UHQwrNq1LkL8w9vNstbxe1+HfBqZx1IKbl6\ntYHR0QijoxdRPrYWNYEZBC6jtilEUDZZgvLfI6iu8iKwE7US7wRwN/q4UcGmNOAOoVAaoVAlIyPZ\n5OZmMDo6ydhYhNTU/UxPZ9DbO0F6ugObbZiysn04nRn09raTmtpHS8sILS0QDt+luDhMXd0Hyc3N\npqOjkRs3pkhN7WJi4vDcipCKilIqKiq4dq2J1lYXk5OH5s4Zmz1bY73+az12FK8JxEbbSTL78LXU\nw9mzLxMKuVFjglSULaeh7LY1+lu9QC2BQAhl1y3AOyh/3cnEhJ2JiVyk9DE+3kQoNMNf//UbNDXl\nMzlZxdTUECkpZxkZySMtLZ/Kyp20tt7EZsvDaq1kaOgtrFYrtbU7OHq0mhdf/A6dnQ4yMmoZGZGc\nO3eDEyfaojcxTlFQAL29UwwNjczLXx4VFaWkpjZy5w6UlLg5caKYU6eSx4/pwH5s6OhoA6aBwyi7\ndgP/hjqmNQ04iLJ1N5CJlKUEg/cBbaixyX6gH/AxM7MDaIoGUz+AzbYf8DAw0MkPfvBNIEwo5GFw\ncJiRkSBSljM8fJe0tAzS0goIBq/z+ON7uP/+o1y4cIHLl99AynYcjl527iynsDB/SZ8yMuLG4Shn\n1640rl17lUDgLtXVe5iZaWXfvkMLXmZ5vePcuhXA5Zqgt1dw+nQ5Xq9Yk49byb/FetyyHl+f7EHW\n9fQbS/npK1euxFSfHTvg3Dn4qZ9SK5g+9zn4zGcgZUsv19AkKzELLEkpPx2rtBLM3wFfklJ+Qwjx\nMVSQ6fhqf9TScgsprajB2g7URCMXCKA6yeOoybkLNemuAoZRE/Qs1OqOUVSAKR81aZ8B7EQi7czM\nlETfxgygAlNBVPWN4PfnA4P4/Z1IWYLNdgO7fQKPp4YLF27j8WQwObkHKCQcDjExcYXUVD8+n4Wx\nsW6ghOnpaez2wwSDBQwN+Rgd9fDYY49QUwPd3d0Eg0NEIhU4nal4PG8DKTgcNu7cOYPXexOv97c5\nc6YJh6OG3bvLaGrqoqiocc4hzx90BQLdOBw193Q6SznzmpoaPvUpsexk8YUXXuATn/jEmip2vRPv\nlTrS9ciNNfGSHQgE+Mxn/hPBYC7KTvuBV4C9gB+1smP2aLXbgAQ+gBoQhoBXUW0gAzW5KUUFnQZR\nsdppVOy2CBV8GmR6+h2s1l1YLONMT8PwcIDMzEzGxqaYnrbS0XGWmzdvMj09Rl9fLT09F/nkJx9b\n8oa5b33rBXp7ixgedjA2FkLK60teSbzaIGh+IGp+EKq5+St89rO/YchbxY3U8XquAzbShhKV9mpn\nHbS1tfHjH9/gRz/6N4LBduB+lB+dBO6ggkQzqMW16SjbPoJ6Y96LsulhlB3noIJQN1E2HYk+AilL\nsNsLgS6mpsYIhwVSWpiebsbvHyMtLYvCwmfp63uBzs5zpKZm4PffJhAoYHr6AdLTH0PKdjIyOujt\nvUtPz11yc53RGzst3Lx5i7Nnh/D5diDEv1NWls709D58vhms1rcBdc6Yz2ePng22vnPyZu3o6tUX\nVr25MV4TiPntpLn5u3z4w7+xpr+LV+DLCJtfS3u+ePEdVID0AmpMIVH2KVF23IcaJ9xGjUtABf+b\nUfaeSyRSDTwGdDIz8y69vUFGRkKEw/djsYSZmBjCYhknK2uclJQBOjpmGBzspbj4MNnZtaSnt89t\nQZZSMjAQYXz8FnfvCnbtEmRlqS3L6ibGDi5f9gK3yM5uw+k8NPci6uTJvfzmb4roFron57bQGVnG\nK7FeeZsN7CdiTGHGMvV4RlEna3wP+ElgCGXDEdRLrNmzigZQY5IZVCB1AOWX81Dj6NZ5nx0HJJFI\nG4HACOFwDwMDdsLhbNzuFoJBJ+plQSpwF78/Fyikvf0KTU3Xuf/+ozQ3TwOHmJlpZ2RkiB/9qJjG\nxheJRNr53Oc+S01NzVzwoaAgj5KSYUZHe/B6XycQKGdkJIOsLCcZGZm88sorvPzydSYn7YyPt5Od\n/SD333+C3t7zNDVdoLbWuabA5Er+bfG45Qtf+AoHD35sw35wPb5+M0HWRI6tZ1lrvzGrazzGXffd\nB/X18PnPwx/8AXzpS/Dnfw4f+xhs9F2JGcp6PmbSx0y6gPn0WQnL6r+yfRBCFKJmG98EkFJ+FygT\nQuxe7W8bGxtRk+1x4D7UJOQc8CPUAC4HNdCrQHWUt6K/cwMVUBrk/Y5wHNV52lBvaCLRQwwnUSuh\nplBvZ9JRE/4IAJFIGVLuJBi8D7e7mu7uEoaH8/H7dwHphEL7iESsWCxw3337cDjqkPImUr5EJDKJ\nxbKPu3dzaG93zZ2xAHD06GEOHMhAyjcIhy9itQ6xY8dRfvZnf4X8/BI8nk527z6CzVZKW9urfPOb\nf8utWzdoanLjcrlwuVwMD49SW2vn0Uclp0/XUVIi5nU66lDEWWd+8SKcPeuira1trnN89NGHF3Tc\ns7zwwgtrrd5V01rM/I50ZqZgwd7p9ciNNfGQLaXkZ37mZxgdHQeKUZORJ1EDvnPAW6g338PR7yMo\nG+4D3kAFUCOowVoJ7wePdqKCSdexWIpRg8JyVJspwmK5TjDYTDCYidc7w9hYC319P2JoaIxg8AjD\nwxHa29+kqyuAy1XG22/7aGhoXDIPZ8+eob39Nq2tAYLBGSYn7Uvuf1eDoJF77HEp5tvElSub309f\nXV3NqVM1PPYYC97OG13HRqafqLRXaq+gbst5440fMz3difKtTpTPPouamFtQQfsS1OR8hPeD/Zko\nW74PFYQ6j/LXKSj7L0a9ELAC1wkGRwkE2hkf/wGhUAkWywkikUGkvEoo5KG//7tIaSccfoT+fjtD\nQ+PcvFlKdzeEQkF8Pjfd3Z2cPTvG2bNw/Xo7bW2N7NqVSkNDI21tXqCGvr48OjqGsVp3kZJSTkrK\nNLt3D3LqVA1OZ9aK5bGUv11rWc+ynrazGea3k56eq2uetK9mE7EiUf3B2JgbNR64i/KrAVSwsx1l\nn13R79NQtj67peghlN+VKBufXU2dQjB4mKmpQiYnX2Rs7F3gPiKRE0QiRdjtAaam7MzM9DM6Cnfu\nnKeqqpCnnnqcmpoaRkc9VFZ+kJ/8ycfYseMGpaWTHDxYQkFBHk5nFnl5u8jKygX2cO2aWsGUmZlH\na+sAjY3XOXnyJL/1W/8bzz777IKgEsS/jNcrb73ji83KiwXmLdMAaox7DjVGnh2D7EaNGfpR440I\nKhjUgbLzJuAqagv+7AvbPahxd4RI5AwOxw283hGGhvIZGSmLvjgrQ/l5P2ps3orV2s/U1E7OnGnl\npZdexufLxGpNpacnzPBwOk1NDs6f9/D977/G3/zNd3G53n+ZUV1dzenTtVRUuElJ2U0otJsbN3po\narpAa+tNzpxxce1aJi0tfrq6Mmlvb+b27VvU1Tk4ccLCs8++v8LI5XJFd0IopJS4XC4uXXqH+vpG\n/P78Vf3byIibK1fe2ZQfXI+vX25csxYSObaeZa39xnp13WzecnLgf/wPaG6G/fvh534OnngC3ntv\nY+mZoaznYyZ9zKQLmE+fldiyh2lvkDKgX0oZmfdZN2oEdnulPxwdHQYOoLb0PAx8C3Xs1AOoQd/3\nUJ2jFXg8+lc+VGf4Nmp5bzpqoHcc9YZ8OJrWMKoj7Yn+nIKaFA2hlv7eRHWuBUABQsye13QAp7Mf\nv/8OgcAEUg5jsWRitfbR1xfEYinBbq8iJSUd8JKTM0ltbR5FRXU4nVlzeaupqeEjH7mf6emLhEJO\nMjMt2O3DdHbWo1adpHP27Hl27nQDDsLhYvLzMwkEMhYdeBjk1Kl8Hn30Yaqq7r2ZyGzLZ7fz0va2\ntjbOn38dZcMe1MqOLJTtZqLs1o+yw/2ooNEZoD76/xKU7U+jJtzXUEHRFNSb82GEGENNdILMHsFm\ntRYgZR2RSAUWyw4slhl27pxkejqbSKSQqan7KCrKpLMzg6GhYfz+Qfr75zfX97HZ7Ozde5CsrEwm\nJgQZGd4lB0PredM83yas1sCmJ9LrWWWkWZnVzjpQKybqUbb2MMoO21Hd4BHUm+421KS7BhU4vRn9\nfzpq9V0ZKuh0EbWNuQw1ob+LsuVngUaEuEg4vBspfVgsPYTDduz2NA4d+kUmJ/ux2eoR4hMEg8fw\neFKQsgGL5QRSXgNewem0IeXjTE5mAwVYrYKJiRYyMx34fAVMTzvp7W3EYunDbvfQ1vYWkUgOJSVp\nVFWVz91muJL/ioW/jdf2y/ntxOl0rnnSvtV9uNfrA46iJtvHUBPom8Al1CT8MdQEfA/Kz95EDWec\nqMBpO8ovp0W/yycUepBQSES/S0G9vCrC5/s+Y2OjpKSEsdstpKWNc+BAmE9+8sm5ei8oyCMtzUVZ\n2X389E+Hojds7Zv73umcoL8/hZqaUiIRyfBwPS7XEJBOc7OPY8fatuxZLJr18DBqm7wT5ZuVjaiV\nSmGU7ZZEP6tE+fIi1BilHTUW3o0Kms4GfFzYbJk4HA8xNnYtmlY1KvhaFE3vCjCB1dpJOFyKxbIP\nt7uMl1++jMWyG7e7gHB4CLvdiscziJRuIpFsmpuDNDRcm7vA5n1/VYPTaSMU2o/T2UVxsSQYjOBw\nVJCVFcLlktTUFFJUFGDv3mGeeuqpuYsdllsxM/+78XEfcJ1bt8SK/q2gIA+rNbApP7geX5/s4xqz\n9xv79sFLL8H58/D7v6/OX/rkJ+FP/gRKSxOtnWa7owNLm+Q//+f/THZ2dvSnNtQk/Dxq0nEKNSm5\ngZp0j6H2jJ9CdWBh1EBwP6pzbGb2raFa8utDTdQj0b/Nif6NJSrHipqwe1EDy2as1l6EmMZud2K3\n11NcXIbTGeL2bQnsIS1NkJY2TGFhAdXVj9LeXs3+/RmMjHQjRA+VlQcoKUmjsDB/Lo9CCLKycjh4\n8CfZt+9hbt58m/LyHsbHh4BDDAxcprS0kKKicbKyHqewcAd9fbcJBnuA8iUmL0t3OmZz5lv5zJoX\nXnjhngh4b2/v3P9HRtxEIlaUi7CjzjMoQ604cqNsLoiyzT5U8DMj+tezKz58qGCoDTXgmwJc2O0z\npKbuJitrkL4+CWRgsfgBCykp6dhsffj9paSn55OTc5SjRwNkZ5dw/fodpqe7CQatpKUNUlycR2am\nZdkD3R0OO3V1edEzloKcPn1oyTpczyBovk2cOZOxpWwi2VntrAOnMwspLajA50OoFwH/ivKpaagJ\ndifqjDsvysfaUBPxAMpnP4KapKejVubloAJKrcCj0TSnsFh6EeIANtturFYXQpwjP7+CwsIPUVGR\nwbFjVbzyyhAdHfXY7d2EQhCJjJOTE+LQoTDZ2SeZmCiK6l/Pgw8eo7KyhlBogurqJ/D7/fT0tLJ3\nr4MTJ56gvj6dXbsOIIRn7qXAav4rFv7W7BOIrezDAcJhC2pyfBflp+tRtpqGOuOxGHgd5YdBrYgu\nBzIRogOrtQCowWbbid8/RUrKBDBJKBQmN/cUIyMDwFWEyCI728+OHbuwWsHvD1NTk89zzz2x4DbY\nheX91D1nvpw+3Qk0Rc+fKUHKGdrbC6mrO4HX253wl0kas7AXuI7ytY+hxsbNqDGvRAWcOklJcRAK\nTREOj6MCoAUo/z2NCrRmA1/FavWSnn4fdvv9COHFZhvE4RjB779KODyJenGbzuyLr127QlitYSyW\nTHJzcxBikMLCAg4f3sOPf3yXyUk3QjTh86mgrMORu2Qujh49TF3dHZqbXTgcIQ4d2k1VVTkzMwHc\nbi8TE7cpKtpNXV0pTz1Vu+SZpIuD/gu/k5SV9VBezor+rbq6msLCDB57bOXfWwmz+/pYkiz9xsmT\n0NAA//AP8N/+G/zLv8CnPw0f/zgcPw5paYnWULMd0YGlhfQAO4UQlnmrlspR0Z4l+eu//muOHTuG\n0+lkcrIG9dZvADW4u4bavjZ7M5YX9ablImrp7uwE3Y8aGPahOsXrqDc0LjIy7EQiEiFyCQbTgR6k\nDGKzpRAMDuB0BkhJcTIz08uTT2aSk5PL9LSN/PwisrOdHDp0mJycJ/j+95u4cUPgcISorj5GQUEB\ngYAgP3+EzMws9u27j337jiy4qW0+8ychqamjc4doz8y4CIX81NY6qa19kFu3AsAA6enDnD5dR2Vl\nJUNDbWuavJjNmW/ljvQTn/jEPft1v/nNb/LLv/zLANHDVCu5fduFmjhPouw5F2WrPtQKj5uoSbUf\nZfNO1CAtgMUSIRLpRU3YM4AOLJY+srPLyMvLoa7uGGfO3EDKHoRIwemc5MCBEgIBC21tl3A6D7J7\ndwrPPfc0e/bsYWhohNbWfLq7+3C5xsjN3Ulenlz2QHen08np07VRe9oXk4N7N7pyQmM8q7XXwsJ8\ndu4spr9/BLUaaYL3z07KRr25lqitECMo35yNcv89KDsXqEnLKDabD/AiZQ3hcAsWSwupqXbs9juk\npHjx+28jhI3MzDQeffSneOaZg4TDU1RWHuUDH/gAO3Z8nXPnGrh710l9PdTWtnP8+D4+/OH7cblC\n9PUFozeCzlBRkUFJSRqVldn4/QEgldraHE6fPk5lZSV2exszM3ZSUixzLwVWKw+z+Vsj2Mo+HKC0\ntJDe3laUP76K2kYfiD6NqID+LVSQVKAmzpOkp7uorc3F65WMjnYRiUwjxCgZGSBlPaHQCOnpD5Ob\n24bV2kx6ei1VVUeorXVgsThwu+GRR0rv8b0rlbcQgpMnT1JVVTV3rpeUtZw714bX20NKymjCXyZp\nEo/NZiMUakS9LO1ABXxGUOOKUdRY4i55eU5KSorw+ToIBh34fL0Eg33MzIwRCkVQ2+Lu4HAUUlKy\nD6u1gmDQRXq6g+LiTLKzIRLxkJGRSkuLh/7+mwghyc2V/OqvfoqBAUFzcysORz579hRTUJBNdnYh\nx48XMTkpmJoq4s6dYXp6Jnn44QyOHj18T15qamr4vd/7EA0N1wAVaKqurqaqqp0HHhjF59uB05k1\ndwj4LCsF/Rd+p8biq63yE0LgdDpXPTNPo0imfsNmg9/6LfjEJ+Av/gK+9jX4X/9LfV5bq26Qq6x8\n/99du6CwUD3zdljeQzgMoRAEAjA8DL29cPcuDAyoZ2ICUlNV8CozE7Ky1L+Zmeqz2e9SUyEjY+Fj\n2QaH8Cwu2/k/L/f/lb6LRGBmZnNprPR7kQhMToLXCz6fevLyoK6OdaMDS/OQUg4LIeqBTwJfF0L8\nLNAjpVxqG1wqwM2b6sK4H/7whzz33HNMT08DAwhhIzW1n5SURlJT7VgsVgKBAKFQEJutnfz8HLxe\nL+PjbQghcTqzyczMIBCYYXr6DcrKSjl16leorNyN3z/F2NgEHR1tTE5OEw4Hyc8vwGarIDs7j5KS\nHfzzP/8zn//855fLFydP7qWiwgUIamr2IYRgbMxNebmT9PQpcnPtFBTsQgiBz+ejoaHhnjTKyoKM\njbWSk5OF1+sFoKwsSEqKj7KyIPn5Oygv7yEra4KcnFIKCgrw+Xz3/F19ff2K9ZCa6lhSh6UYHx9f\nNT0jSJRcI2XPnhFw8+ZN9u3bx5/8yR/w6U9/munpGwt+z2azY7XacTgcOBw2pLSQkZGK0+kkNRVq\na6twOBx4POOMj+fT09OJ3z/Nzp07KSsro6ioiOLiQioqKmht3cEDD+zC7R6gru4IR48eZWxsgjt3\nOgmFIuzatYPCwkJ8Ph/p6akcPXqUI0eO0N3dzdjYBDk5Wfh8viXLY3x8HJ/Pty57Wg9G2oDR9pWs\nuq837cU2/d//+x/z6U9/mpmZf73ndy0WGykpqWRlZWK3D5Obm0tp6U5sNhvT08VIWcydO51MTZ0n\nPz+Lxx//IKOjw/T2XiYlJZ+SklJSU0MUFh4hNTWN9vZ2pqenKCnZxWOPPUplZeVcIPL69escOXKE\nvLy8aDu5xO/+rroBrrCwEL9f+dGHH340mm8vOTkO8vN3xsTHzme59pFIH7cSZtQrnjrNt+lvfetb\nfPjDH8bj8aCCpO/jcPQTCkksFonTmUlVVSUVFeUUFeVRVFRDRUUVU1Oq3t1uF+npWWRmZpORkcHM\nTC4+Xw8VFY9x+PDv0NbWDkBNjQrOv/OO4P77i5b1vasxa3NLjSuWSy/e9b7V5SVC5nLy5tv0+fPn\nOXnyJKFQCLUq9A0ALBYrGRmZFBUVcv/9x6irO4TFYiUz8yATEz7c7hEiERgdjXDjRgvDw/9Obqfj\nBJwAACAASURBVG4ODz/8GGVl5bjdbiCDgoICsrJqSE93kpubTVlZGXfu3OGHP3wJj2ecurr7OH36\nNL29vZSXz25DU3Y/Pu5iz549wB7GxiaYmirh7//+Kg88kLdiW6ip2QvA5ORk9DxWSEtLIS2tEOAe\n/7tSu1hPm1lL2ZuNZNET1mbPa/n9WPHRj8KHPwytrXDjBnR0qGDQyy+rf/3+xX8xjsVSj9WqAlGg\ngkmh0PIyUlNVwMHpVEEnvx+mptSz0t/Nx25fGFyafT8bCIyTlla/4LP5LBcI22hgZaU0wuFxrNb6\ne75bKQ1jGSc1Nb7t4tQp+MIX1P/n2XLqan8nZOJKyZQIIWqA51EHw4wDn5ZS3lji936R6CHfGo1G\no9FoNBqNRqPRaDRbkF+SUn5rpV/QgaUNIoTIR53U2oXaB6TRJDtFwE8BP0TtxdRokh1t05qthrZp\nzVZD27RmK6HtWbPVSEUdBn1OSjm60i/qwJJGo9FoNBqNRqPRaDQajWZDbIMjtDQajUaj0Wg0Go1G\no9FoNEagA0sajUaj0Wg0Go1Go9FoNJoNoQNLGo1Go9FoNBqNRqPRaDSaDaEDSxqNRqPRaDQajUaj\n0Wg0mg1hS7QCyY4QYjdQHv2xW0p5O5H6aDSbRdu0ZquhbVqz1dA2rdlqaJvWbCW0PWu2I/pWuA0i\nhNgPfB0oA7qjH5cDPcCnpZQ3DJZ/GvgE85wW8KKU8mUj5SZS9nbMczxJtE1vFiPryOj617obk7ZZ\nbdqM/kTrlBw6mdWmY0kiyjjeMre6vPXI3A42HW8S7afWylbUU9vz6pit3rU+sUMHljaIEOJd4M+l\nlN9d9PnPAv9FSnncQNl/DDwLfBXoin5cCfwacE5K+bmtJns75jkq2wr8Jks4GODvpJThGMoy3KaN\ncpZG1pHR9a91Ny7tRPrpFXRKmD/ROiW/Tomw6XgOchNRxvGWudXlrVemGf30ciTDhM8MfmotbFU9\nzWrPZrFds9W71ie26MDSBhFCtEopa9f7XYxktwEHpJSBRZ+nADeklHu3muztmOeojL8DdgBfYqGD\n+Q/AoJTyN2Moy1CbNjgIYVgdGV3/Wnfj0k6kn15Bp4T5E61T8usUb5tOQBAk7mUcb5lbXd56ZZrR\nTy9Fskz4zOCn1sJW1dOM9mwm2zVbvWt9Yos+Y2njjAghPgl8U0oZARBCWIBPAqMGyxYsffC6Jfrd\nVpS9HfMM8LSUsnrRZzeFEGcBV4xlGW3TP8/SzvKrwA1gMx2bkXVkdP1r3Y1LO5F+ejkS6U+WQ+u0\nNsygU7xt2ki/vRSJKON4y9zq8tYr04x+eini3RY2ihn81FrYqnqa0Z7NZLtmq3etTwzRgaWN8yvA\n3wH/UwjRH/1sJ1AP/KrBsp8HrgghvgHciX5WgXJaX9uishMlN9GypRCiUEo5vOjzQmLvYIy2aSOd\n5fMYV0dGpm10+kambXT6sUg7kX56OZ4ncf5E65T8OsXbpuM9yH2e+JdxvGVudXnrlWlGP70UyTLh\ne57E+6m18DxbU08z2rOZbPd5zFXvWp8YorfCbRIhRCHqgDaAniUCAEbJfRz4OAv3yn5HSvnGVpW9\nTfP868AfAd9noYP5EPCHUsp/MECmITYthPgc6q3JUs7y21LKP95k+obVkdH1r3U3Nu1E+ekV9EmY\nL9M6bQ2d4mXTRvvtZWTGvYzjLXOry9uITLP56cUkoi1sFLP4qdXYynqayZ7NZrtmq3etT+zQgSWN\nxuQIIaqAj7HQwXxXStmZOK02RjI7S41Go9mOaL+t0Sh0W9AkK9p2NfFAB5aSFKGus1x8uv+3ZRyu\nsUyU7O2YZ83aMbKOjK5/rXv8004kZsyX1il5ddpqJKKM4y1zq8tLlEyNIlnKXuu5PTFbeWp9YsdS\n+y01JkcI8R+BM0AK8G70SQFeEkL87laUvR3zPE/+aSHEPwohXo8+/yiEeM5ouUYghNgvhPgjIcTz\n0eePhBAHYpCuYXVkdP1r3eOfdiIxY760TsmrUzwwym8vIyvuZRxvmVtdXqJkxoN4toWNkixlr/WM\nL2axXbOVp9YntugVS0mIEMIFPCSl9Cz6PA94d4lbxJJe9nbMc1SGaa4I3SxRZ/l/Ad9mYV5+HvhL\nKeX/t4m0Dasjo+tf6x7/tBOJGfOldUpenYzGSL+9jLy4l3G8ZW51eYmSaTTxbgsbJVnKXusZP8xk\nu2YrT61PbNG3wiUnlsUGF2UM41ehJUr2dswzmOuK0M3yGeDoEs7yz1AR+c10bEbWkdH1r3WPf9qJ\nxIz50jqtDTPqZDRG+u2lSEQZx1vmVpeXKJlGE++2sFGSpey1nvHDTLZrtvLU+sQQHVhKTs4IIV4B\nvsLC0/1/A3h5i8rejnkGTHVF6GYx0lkaWUdG17/WPf5pJxIz5kvrlLw6GU28B7mJKON4y9zq8hIl\n02iSZcKXLGWv9YwfZrJds5Wn1ieG6K1wSYgQQqCuiLzndH/gG1LKyFaTvR3zHJVtqitCN4MQ4n8C\n+1jaWd6SUv7vm0jbsDoyuv617vFPO5GYMV9ap+TVyWiM9NvLyIt7Gcdb5laXlyiZRhPvtrBRkqXs\ntZ7xw0y2a7by1PrEFh1Y0mhMjtgiV4Qmu7PUaDSa7Yb22xqNQrcFTbKibVcTL3RgKUkRQuQCH2Wh\ng/ielNK9VWVvxzxr1o6RdWR0/Wvd4592IjFjvrROyavTViMRZRxvmVtdXqJkahTJUvZaz+2J2cpT\n6xM7zLQnWLNGhBAfA26hbgtLiz7PAi3R77ac7O2Y53nyTXFFaCwQQuQKIX5NCPH/RJ9fE+qmg82m\na1gdGV3/Wvf4p51IzJgvrVPy6hQPjPLby8iKexnHW+ZWl5comfEgnm1hoyRL2Ws944tZbNds5an1\niTFSSv0k2YMyuMolPq9C7ZXdcrK3Y56jMv4j6mrQPwN+O/r8WfSz3zVStgF5+RgwiLru9M+iz7eB\nAeBjZq0jo+tf654Y3RP1mDFfWqfk1SkOeTbMb5uljOMtc6vLS5RMo594t4WtXvZaz7jmwTS2a7by\n1PrE9tG3wiUnVill1+IPpZSdQgij6zRRsrdjnsFcV4Ruli8ADy0uSyFEFXAG+O4m0jayjoyuf617\n/NNOJGbMl9ZpbZhRJ6Mx0m8vRSLKON4yt7q8RMk0mni3hY2SLGWv9YwfZrJds5Wn1ieG6K1wyckV\nIcRXhRDHhRDF0ee4EOKrwHtbVPZ2zDOY64rQzbKss4RNB7mNrCOj61/rnhjdE4UZ86V1Sl6djMZI\nv70UiSjjeMvc6vISJdNo4t0WNkqylL3WM36YyXbNVp5anxiiD+9OQoQQacD/ibqGfvZgrzvAvwB/\nIaWc2mqyt2Oeo7JNc0XoZhFCfAvwA19iYV7+A5AupfyFTaRtWB0ZXf9a9/innUjMmC+tU/LqZDRG\n+u1l5MW9jOMtc6vLS5RMo4l3W9goyVL2Ws/4YSbbNVt5an1iiw4saTQmRoitc0VosjtLjUaj2W5o\nv63RKHRb0CQr2nY18UIHlpIUIYQVeIKFwYY3pJThrSp7O+ZZs3aMrCOj61/rHv+0E4kZ86V1Sl6d\nthqJKON4y9zq8hIlU6NIlrLXem5PzFaeWp/YoQNLSYgQ4gTwLaCP95c0VgK7gF+SUr651WRvxzzP\nk58LfJSFDuZ7Ukq3kXKNwChnaWQdGV3/Wvf4p51IzJgvrVPy6hQP4jnITUQZx1vmVpeXKJnxIBkm\nfMlS9lrP+GIW2zVbeWp9Yow0wdV0+lnfA1wHHlji8weBpq0oezvmOSrDNFeExiAvJ4Ae4J1oHr6N\nutmuB3jcrHVkdP1r3ROje6IeM+ZL65S8OsUhz4b5bbOUcbxlbnV5iZJp9BPvtrDVy17rGdc8mMZ2\nzVaeWp/YPma6xUCzdlKllPecDC+lvCKESNmisrdjnsFcV4Rulr8FPrq4LIUQDwJfBeo2kbaRdWR0\n/Wvd4592IjFjvrROa8OMOhmNkX57KRJRxvGWudXlJUqm0cS7LWyUZCl7rWf8MJPtmq08tT4xJNmu\nK9coOoQQnxdCFM1+IIQoEkL8IdC5RWVvxzyDua4I3SzLOktgs87SyDoyuv617vFPO5GYMV9ap+TV\nyWiM9NtLkYgyjrfMrS4vUTKNJt5tYaMkS9lrPeOHmWzXbOWp9YkhOrCUnHwKtd+yQwgxLYSYBjpQ\nV0d+Mg6yKxIge7Fcf5zkzsquTJDsK0KIrwohjgshiqPPcSHEV4F7OgmTY6SzNLJNGF3/RrappdrN\n7RilvVz6RpV7PP2ckZgxX4ny6+vRKZ5+dyWdKk2mk9HEe5CbiPYR73qNd3szuh9Yq8xkbyvJMuEz\nYx+zFMniT83YP64XM9mu2ezTbHaY1PamD+9OcoQQeQAyAQc5z8oGPi6l/FKc5dpQSzdbpJT9cZCZ\nAQSAzKjsQ8AtKWWvwXK3zBWhQohC4E+Bj/P+aqsQ8B3g/5ZSDsVIjmFtYp7NG51+zNuU0b4i1u1S\nCJEjpRybl3ZC/JyRmDFfifLrK5EIn7+CLgnpCxJFvPz2MrLj3j6M9vEryItLe0tgmZqi/W6GRLaF\njWLGPmYp4t3uNooZ+8e1YFbbNZt9ms0Ok9LeEnnAk3429gB7gNdQb5z+CrXEcfa7tw2W/aElngHg\np4EPGSj3H4Gi6P+fBoaAy9F/P2Jwnj8FTKMOuXsauBuVPQL8fKLtIRkfIA/Ii2F6hrUJ4AjQCFwF\nDgAvAZOoGzUOxUB3w9oU8HPz/p8P/BAYB14HymOgu2HtEjV5/360HCzxtlGjnkT67xV0SohfT5Rt\nbUKnbd0XxNpvLyMj7u3DaB+/hLy4tjej+4FlZJqu/cY4f4a3hU3oZro+Zhk949ruNqGn6frHTeYn\nobZrNvs0mx0mu73pFUtJiBDiHPAD1On+n0E10lNSSq8QokFKedRA2RHgbdSkb5aHo7pIKeXTBsm9\nJqU8HP3/G8BnpJSNQh1i/a8G5/k6qkFnA28CH5RSvieE2At8d1YvA+Wb4opQIxFCuKSUNZv4e8Pa\nRNTe/hrIAf5f4HNSym8IIT4C/I6U8uRG046mb1ibEkLUSymPRf//FWAU+BvgF4ETUsqPblhxjG2X\nQohW4MvAr6PK/h+Br0opXZvROdEk0n+voFNC/PoqOiXM56+gU0L7ArOxWb+9TJpxbx9G+/gl5MW1\nvRndDywj03Tt10iMaAsbxYx9zFLEu91tFDP2j7Ek3rZrNvs0mx0mvb0lOrKln/U/QMOin/8A9SYo\nG6g3WPangYvA0XmfdcYhz655/7+y6Lvr8SpvoGulujBAtmmuCI1BXg6t8PTHqo6iP8esTSyq/+5F\n3zXGoFwMa1OLdL+GOgx+7ucYpG9Yu5xfb8CjwN8DE6gJ/adiUT6JeBLpv1fQKSF+fRWdEubz11J3\n8e4LElgPhvnt1co4+rPh7cNoH7+EvLi2N6P7gWVkmq79xiBPcW0Lsajv6M8J72NW0zMe7W4Tepqu\nf9xAHkxju2azT7PZYbLbW7LdKqVRpM3/QUr5J0KIAPAj1LkPhiGl/JoQ4sfA3wshLgBfAOKx7O2c\nEOKLwGeBV4UQvwR8CziF2oZgJBEhxAEgF8gQQjwmpbwohNgHWA2WbaYrQjdLI9AFiCW+y99k2ka2\nifn6vrbCdxvC4DaVKoSoI6qnXLjKLRYy4tIupZSXgEtCiM8AvwD8JmoFUzKSMP+9HAn06yuRSJ+/\nHInsCxKFkX57KRLRPgz18YtJQHszuh9YCjO2380S77awUUzXxyxDXNvdRjFp/7hezGS7ZrNPU9lh\n0ttboiNb+ln/A/wbatng4s//DyASJx0E8PvAJaAvDvIcqKWK46gbDCJAEDgLVBks+znU0vFh4AMo\nx3Mrqouh52ow763fer4z4xOtt13LfNezybQNaxPAOSBric93Au/GsHxi3qZQA4nb0bLvBEqjn8fk\nzZCR7ZKtuwIk4f57Bd3i6tdX0SVhPn8FnRLWFySwHgzz28ukGff2ES8fv0T6cWlvRvcDy8g0XfuN\nQZ7i2hY2oadp+5hF+iSk3W1CX9P0jxvQ3TS2azb7NKsdJqu96TOWkhAhRAqAlHJmie9KpJR9cdTl\nAGqPflxOqxdCpKP249pQSxZH4yF3kQ5W1GFvPdLgmxSEEGdQe22/NCtLqOtCf/v/b+/Oo+YqyjyO\nf3+yqWQGBDSRYXNhOyJhFQTGoCJERodN2RQQkHMQFA8wg6KDgKOIDoIIwRkXgmHYDRJ2CBjXYQ8I\nyhaEyBaHMGwJWyB55o+nGm4u3e/Sb+ftd/l9zumTt2/dpbpTde/tulVPAVtFxA5L8vidVJ5eXhQR\nv2+S9p8RcfAA9j3odULSCsAKEfFwh/e7xOtUqUdjI+KhDu6vo/VS0koxBGbl6LShdP5uZbDP673k\npevn/FYG81rQLUvyvN3ieEOmfiypc3yT43SlvnX6OtDDMYZk/e2vwa4L7RpKdagdg1Xv2jWUro99\nNZTK7nApn0OlHA638uaGJbMhTEN0ilAzMzMzMzMzcMOS2bAhaSWAkdiLw8zMzMzMzIanN3U7A2bW\nNxHxVLVRSdKwnnbdzMzMzMzMhj/PCmc2hEnasIfkoTS7h5mZmZmZmY1CHgpnNoRJWkTrKUL/ISKW\nHdwcmZmZmZmZmb3OPZbMhra/AttExOP1BEmPdCE/ZmZmZmZmZq9xjCWzoe1S4N0t0q4YzIxYZ0ia\nIenkyvuHJB1Web9I0j93J3dmZmZmZgMj6VhJt1feT5Z0cTfzZEuWG5bMhrCI+HJE/L5F2sGDnR9r\nTtJZpUHojCZpk0ramWXRLsAxg5tDG+0kjZV0qqRZkl6UNEfS7yQdLOkt3c6fWbvKj5VFkhaWfxt/\nt3ooY1YvNwsk/U3StZL2l9Qs/ECr/Sz243m46PSPfEmzK/VvvqTbJH2qU/u3wdOpulFUY+4cBnyu\ng/kclnVvJHPDkpnZwAXwMLCnpOUaC8vfe5FDGnPFiGci4vnBz6KNVpLeBdwBbAd8FdgI+CDwPeCf\ngI+22K4rw+UlLdON49qwdhUwrvJ6J/BQfSWXLatplJs1gYnAr4BTgcsk9ec30oAD1o6AshnAv5Hf\n50bALcAFkrbsZqZGwPfaLZ2qG6+JiHkR8Vznspi77fD+bADcsGRm1hm3A48Au1aW7Uo2KlW7Ai82\nFK43ko6X9JikDTqWUxttfgQsADaNiKkRcV9EzI6IyyLikxFxObw2DPNgSdMkzQe+VpZPkHSTpJck\nPS7pO9UbS6WjSm+ol8qT66Mr6atJukDS05L+T9IlktaspE+W9EtJX5P0GHCvpGMk3VX/IJLukHT8\nkvuqbJh6OSLmRsQTlVeUXnk/KL31ngQaZX1NSZeWnhXPSDpP0iqNnUl6pNIDqvHvgkr6GpIuKmX6\nyVJ+V6+kn13Sjyq9A+eWPPi+e2hplJs5EXFHRJwI7ATsSOlZIWkFST+V9ISkZyVdrzJjr6T9gGOB\n8ZWysm+L7a5TZabfRm8LSQdKehB4sSwfI+mcUjYfkfSl+n2DpGUlnSTp0bLeDZImVNL3K2Vze0l3\nS5on6SpJYxvHBvYDdqrk+0OSlpF0ejnPv6gcqv+Vfnyf80vdewA4tHymT5Zjbqbs9TK31LlfS9q4\nunHlGnSlpBck/UXSbrV1+n096Uf+7XXt1I3Fynidar3klHq6dzhR0n2Sni9l4ZuSlippA6l7G0r6\nlaTnSvotkjYpaWsorw1Plbp1l6SJlW03KOVznrIn1xRJK1fSZ5Rz/XdL+ZxT6tuo4AucmVlnBHAm\ncEBl2QHAZJrP6tcrSacBnyUDuP9pwDm0UUfSSsDHgNMj4qU+bHIscDGwAXCmpFXJeG43ARsCBwMH\nkk+mG04EjgKOB9YH9gD+Vo6/NHAN8CywNbAVMA+4Wov3iPoosA7Zq+oTZF1aT9Kmlc+ycSNfff8G\nzNgfmA9sCXxRkoDLgDFkmdweWBc4t7LNRmSvp3HA6sDNwG/gtR4Q1wJPlu23IX9AX6XFG44+BqwG\nTCh5OAjYZ4l8QuuYiJgB/JHXHxL9AlgZ2AHYBLgNuE7SisAFwPeBPwNjyTJzQYvtZla2a3hvOc4u\nZJkDOIXsUfqJsu22wGINMMAkYAtgd+D9wEVk+XtPZZ23AkcCnwH+EVgDOKmknQRcCFxdyff/AF8u\nx/0UeT7+DDkzcb9FxELgFaAxe/HfAWeR14AtgPuBKyUtX9v0m+XzbAicA5wvaV0Y0PXEOqAPdaNZ\nGe9Jy3uH4jlg35J2GPB54PCS1t+6d30lX+eQD4I3LeknkmUV4AyyzG5D3m98hbx+IGkF4HryHLBJ\n2f87yLpUtW/Z5gPl831DUtOe4SNORPjll19++TWAF9l4dDGwCvkDY3Wy+/DzwErAL4Ezy7ozgJMr\n2z4EHFZ5vwjYjbzw/QkY1+3P59fwfZE3NouAnWrL55I35POA75Rli4CTaut9G7i7tuwLwLPl7zGl\nzO/f4vifabL9sqVubFfeTwYeB5aurXcF2SDWeP9D4Ppuf6d+Da1XKT+vVMrzPOCCkvY74Kba+h8H\nXgbGVpa9v5T/8U32Pwl4AFixvN8PuLO2znKlHmxb3p8NzKqtMxWY0u3vy6/Fys3FLdLOK9ffrYFn\ngGVq6bOAz5e/jwVm1tK3Bp7uw3YvAStV0seUsrlLZdnfkz9STy7v1yjlfVxt39OBb5W/9wMWAmtV\n0r8APN7T5yeHOk1v8/t87V6mnOOPLnmY2GL9N5ENRDtWli2qnvPLshsay8gHbW1dT/zqft2o7pde\n7h1aHPtI4ObK+3br3rPAPi2O8UfgmBZpXweuqi1brZTb95b3M4Df1Na5CTih2/+vg/HqSvwEM7OR\nKCKelHQ5+XRawBUR8ZT6HeuQU8gbzi0j4qkOZ9MMYHPyxv5c8kdxw2219dYjb+yr/gCMkbQa+ZRw\nWTL+QjPjgbUlzastXw54D3BdeX9XRLxaW+cnwM8kHUH2CNyLfKJuVvcrsjdd42RbjWN3a23d9YDZ\nEfG/jQURcZdy+Of65A8LACQdSjaOfjAinimLxwPrNynTy5Bl+tflfb2X6Ryyh4oNfSLPOePJH8D1\n6/ibyf/rVsaTPXR62+6vtWv8u4GlyfhEAETEc5Luq6yzAbAUcL8W3/myZC+6hhciYnbl/Ryyd0VP\nzgKml+NdDVweEdN72abqu5K+TX7OecBXIuJqAEnvIB9UTCj5WAp4C9lQVnVj7f0N5PcJ2Yup3euJ\ndcZA60bD+vR874CkPYAvlf2NIevGs73sty9172Ty3mJfssxcFBEPlrQfAj+StENJmxoRjWH544GP\nNCl/Ufb9QHl/Zy29L3VvRHDDko0okg4EToyIt3c7LzZqTQZOJy80h7S5j2vJH9ETWXx4hll/PUCW\nxXWrCxs/OCS9WFu/v4Hl69vXjSF/2O/NG4eEzu3luJdRnt6TT+iXJnt9mNU9HxFvCNbdSGtnh5K2\nI4da7BYR91SSxpA/fvel5zL9Si0tcAiK4WJ9sgfOGLL3ywTe+H/9TH2jir5u107ZHAO8Sg7FWVRL\nm1/5u1n56/EpV0TcLmktslffdsCFkqZHxO59zNt/kI1T8yPiiVraFOBtZEPBw+S5/UZeHyrXFwO5\nnlhnDLRuNPR476AM+v7f5CzK15INSnsBR/Sy317zFRHHSzqHnLxkR+A4SXtGxLSI+Jmkq0va9sDR\nko6IiEll35eSw9vq+55T+XvUnvvdsGRLlKTJZJfc6gUtgLUrrcOd5hkCrJuuJm+UFpIXw3ZcSv6o\nPk/Swoi4oLcNzJopPeamk7FlTouI3hqC6u5h8YD0kLEH5kXEo5Lmkr3rPkrz2EczyTggcyNifpP0\nnvK+UNIUMlbZAuD8iHi5n/k3q7sHWEvSuIhoxALbEFgeuLu8X4eMm3FcRFxR234mGcT2ifAMnyOO\npI+QQyO/T/5AHQcsjIiHW2yygOx9UzWzD9s18yDZaLQ58GjJzwpkvKDflHVuL8cbGxF/6Me++5Jv\nynn6IuAiSVPJ2E0rVnrs9eTJHu7ttwK+EBHXACiD3a/SZL1Gg0L1/czyd9vXExu4NupGT2bR873D\nVmTP0hMrx1+rtk7bdS8ywPypwKmSziVHGkwraY8BPwZ+LOkEMj7epLLvXcmehvVGXWOUtJ5Z13ka\nYBs1ysVmPeB9UQZXt7mfaWSg1zNVmxXFrJ8OIR8k3Sppd0nrSVpH0mfJstrTkIEzgNUlnSZpXUk7\nAceRN5aUhp7vAt+TtI+kd0vaQlIjiP055PCMaZK2kbSWpG3LrCmr9iHvPwU+QgbJdNBu64RryJmi\nzpG0UXkyPhm4LiLulPRWcva4m4DJksaWV2Mow9nk0/NLJG1dyvSHSx0Z240PZG1brvzfrippY0lf\nAy4hH+6cHRHXkUOxLpH0MeVsgltJ+pbKLFJkcOt3SRovaWVJy/ZxuzcojSU/B04q58n3kefAhZSH\nphExi+zJPEXSLqX8fUDSVyV9vB+ffTawYbkWrCxpaUmHS9qznOvXIRtx/tbHRqXezAL2KdefLcjG\noxearPdpSftLWls5A+jmZC9wGPj1xPquE3WjpT7cO8wC1pC0R0k7DNi5tpvZ9LPuSXpzOVdPUM4A\ntzVZxhoPFU5Rzqa4VvkcH26kkY1LK5EB5Tcr+dpB0plS/2NejERuWLLB0N9pgN9WKmljStLpqky1\nXm4EZ+j1aSJvljS+ekBJEyXdo5wO8gpJHhpngyYi5jd5mtaqkam+/LX3ETGVnNZ1iqT6BdWsT8oT\n5I3JeAEnAHeQMTwOJYcufKOxapNtHye7im9etjuDjH307co63yQbmo4nb8DOB95e0l4EPkQOfZha\n0n9CxsR4rg95f4CcrejeiLilt/XNapqV6SCnQJ9PBve+imxo2rus8k4yXsb25FP5x8lhDo+W7Z8n\nZ9l6jJy04W7gv8gn5+5FMbxMJP9/HyLLwQTgixGxc+XB0I7Ab8mG7fvIRp01gEaMrqlksqCMCwAA\nA19JREFUT+UZwBPAnn3crpXDyXPeZWSv59+T5bM6q+fnyKFlJ5W0i4HNyPNsX/2k5OvWku/GDGtH\nkdeHm0p+d+zj/np7kHYAORTuNrLx7NRy3Lpjye/wj2Sw7j0j4l4Y+PXE+qUTdaNHvdw7XEbGGz2N\n7KW3JTljYFU7dW8hOWPcz0va+eREIceVbZciGzLvBq4k69ehJU9zyODgbyIfUNxJxmt6uvKdjOpR\nMxrAA3WzXimHwq0QEfWhFEj6HRmI73TKlOwRMUvSDOAp4N/Jm7RDyOCZa5cghveQF93vkBV4Y+Ce\niPizMsbSJPIkczQ5/O484IaI2H/JflozM+s0SbPIWYFO7XZezMwGU+lB9xhwRERM7nZ+liRJi4Cd\nI+LSbufFzPrPMZZsMHxSi0fQvzIi9ih/3xsRX28kSJpAjt8d15jRQdKRZPfHXcmggKuTXdYb0ff/\nUjveMsBBEdEYnz4J+NfOfiQzM1uSJK1CBuscS577zcxGNEkbkUOUbwZWJHuUBiX+i5nZUOWGJRsM\n/ZkGeDx5IX1araeJPAX4uaT9yaEdF9amVH2u0ahUjJppHs3MRpAnyJl+DoqI3qYYNjMbKf6FDNi9\ngBw6tk1EPNWtzEjamxzu2czsiHh/hw7lYTRmw5gblmww9Gca4DHAI2Sw1nogtKcBIuIYSWeTY2h3\nBI6X9OmIuLysN2qneTQzGykiwudtMxtVIuIOMl7SUDINuLFFWv2eu20R8YZZ6sxs+HDDkg01M4FV\ngQVlusemIuJ+4H7gB5IuJAMZXt5qfTMzMzMz658SsP7BbufDzIY2Pw20oeYacjaKaZK2K9M9bi3p\nhDKd5PJlFrkPlWkitwE25fWpIM3MzMzMzMxskLjHknVT02mAJU0kp8Q+C1iFjJH0WzLexqtkvKQp\nZEDXucAvyBnkzMzMzMzMzGwQKcJx0szMzMzMzMzMrP88FM7MzMzMzMzMzNrihiUzMzMzMzMzM2uL\nG5bMzMzMzMzMzKwtblgyMzMzMzMzM7O2uGHJzMzMzMzMzMza4oYlMzMzMzMzMzNrixuWzMzMzMzM\nzMysLW5YMjMzMzMzMzOztrhhyczMzMzMzMzM2uKGJTMzMzMzMzMza4sblszMzMzMzMzMrC1uWDIz\nMzMzMzMzs7b8P6YbhZeIVDkmAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Produce a scatter matrix for each pair of features in the data\n", + "pd.scatter_matrix(data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 3\n", + "*Are there any pairs of features which exhibit some degree of correlation? Does this confirm or deny your suspicions about the relevance of the feature you attempted to predict? How is the data for those features distributed?* \n", + "**Hint:** Is the data normally distributed? Where do most of the data points lie? " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** From the scatter matrix, it can be observed that that the pair **(Grocery, Detergents_Paper)** seems to have the strongest correlation between the features. The pair **(Grocery, Milk)** also seem to exhibit some degree of correlation. This scatter matrix also confirms my initial suspicions that the \"Fresh\" product category does not have significant correlations to any of the remaining features and therefore, its information is necessary to accurately predict customers' behavior. Additionally, this scater matrix also show us that the data for these features is highly skewed and not normaly distributed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data Preprocessing\n", + "In this section, you will preprocess the data to create a better representation of customers by performing a scaling on the data and detecting (and optionally removing) outliers. Preprocessing data is often times a critical step in assuring that results you obtain from your analysis are significant and meaningful." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Feature Scaling\n", + "If data is not normally distributed, especially if the mean and median vary significantly (indicating a large skew), it is most [often appropriate](http://econbrowser.com/archives/2014/02/use-of-logarithms-in-economics) to apply a non-linear scaling — particularly for financial data. One way to achieve this scaling is by using a [Box-Cox test](http://scipy.github.io/devdocs/generated/scipy.stats.boxcox.html), which calculates the best power transformation of the data that reduces skewness. A simpler approach which can work in most cases would be applying the natural logarithm.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign a copy of the data to `log_data` after applying logarithmic scaling. Use the `np.log` function for this.\n", + " - Assign a copy of the sample data to `log_samples` after applying logarithmic scaling. Again, use `np.log`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHkAAAKoCAYAAADj3iNoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXlwXNd54Pu7vXejG+gVIFZiB0gCXCDJpCRStnbKlrON\n4yVxlKSSN5mp1MwkNTU1qZmaenmpmal59WrGlVQmlcmM4zxLtizr2bFsy9zGFhdQ3CQsBEA0Gnuj\nG0vv+973vj8ggAAJkAABiCB9f/+oBN6+99xzv/Od73znO98nSJKEjIyMjIyMjIyMjIyMjIyMjMyj\njeJhN0BGRkZGRkZGRkZGRkZGRkZGZuvITh4ZGRkZGRkZGRkZGRkZGRmZxwDZySMjIyMjIyMjIyMj\nIyMjIyPzGCA7eWRkZGRkZGRkZGRkZGRkZGQeA2Qnj4yMjIyMjIyMjIyMjIyMjMxjgOzkkZGRkZGR\nkZGRkZGRkZGRkXkMkJ08MjIyMjIyMjIyMjIyMjIyMo8BqofdgO1CEAQb8CowBWQebmtkZLaFcuB1\n4KeA7yG3RUZmq8jyLPO4Icu0zOOGLNMyjxuyTMs8buiAeuCMJEnB9S4SJEn61Fq0kwiC8FvAdx52\nO2RkZGRkZGRkZGRkZGRkZGR2iN+WJOm76/3jYxPJw2IED2+99Rb79u17yE2Rkdk67733Hn/xF38h\ny7TMjiFJEm63m0gkhtlcSl1dHYIg7MizZHmW2W4+TfldC1mmZbaLhy3LS8gyLXM/dousbhRZpmW2\nym6T+eHhYb7+9a/DJ76P9XicnDwZgH379tHV1fWw2yKzC/H54C//Eq5fh/Jy+IM/gBdeeNitWp/h\n4WFAlmmZncPlcjEzoyabbSMeD3DggInW1tYdeZYszzLbzacpv2shy7TMdvGwZXkJWaZl7sdukdWN\nIsu0zFbZxTJ/z/Q0cuJlmV8Kurth3z747/8djEYYHIQXX4R//a/hMTmxKCOzaQKBENmsnfb2Y2Sz\ndgKB0MNukozMhpHlV+ZxQZZlmUcFWVZlftl4VGX+cYrkkZFZk54eeOUVOHoU3n0X7PZFx85f/RX8\nyZ9ASQn8xV887FbKPCpIksTo6CiBQAi73UpLS8uuDlW+F3a7Fa3WhdN5Fa02gN2+K3YmZH5J2OpY\nkuVX5nHBZrMQjV7m9OkpLJYUNtuzD7tJMruQ3WB/yHpXZrvZDXJ9Lx5VmZedPDKPNdEo/NqvQUcH\n/OxnoNcv/l0Q4F/9K0gk4D/8h8VjW5/73ENtqswjwujoKKdPu8hm7Wi1LgBaW1t3/SS1Fi0tLQCf\ntLl1+f9lZD4N1htLd7Le2JLlV2a3sbV5IA8kgOIOtlDmUUWSJM6ePcupUwNoNHVUV/uBtXXmTiLr\nXZntZqO2wL3YSRv8UZV52ckj81jzb/4NRCJw+fJtB89K/uzP4OxZ+Kf/dPEIl0bz6bdR5tFiZdim\n03mVQCBEa+v2TFKfNoIg0Nrayi5vpsxjynpj6U7WG1uy/MrsNh50HggGw5SVHeLo0cWxEAyGd7qp\nMo8Yo6OjnDrlYnS0hupqA5BaV2fuJLLeldluNmoL3IudtMEfVZmXnTwyjy1Xr8L//J/wN38DtbVr\nX6NUwl//NRw+DH/7t/Av/+Wn20aZ3R+meSfrhdUvTlI2TKZaBgamKC/v2/XvIvPLyYOOue0eq3eG\nQNtsLbhcrrvuvx0GoIzMdnGvcbBaVq/Q09O3ofFyeyxcIRodxu02PhLzocxqdtKe8fuDJBKlKJUa\nXC4Phw7FsdsPP7T2yMhsF9txHOpuG7wXSZIIBEIkEjGMxlIcDtsv1RiQnTwyjyWSBP/u30FnJ/zR\nH9372s5OeOMN+C//ZfFarfbTaaPMIo9iBMxSWL0kFZicnCQYDBOPR4lEPHR330KSUly4EAbepavr\n8C/VpCKz+3nQMbfZ391vgdHS0oIkSfT29gMwOTnJyEieXM6x6v6P6nl4md3HVha9S7/t6eljcDBM\naelBdLrV42ClrEajw0SjeWZm6u47XpbC/3t6+ohG87jdtfh8j8p8KLPETtoziUSMUGiWWKwcGOfg\nwXaam5sZGRlZ1qFHjhxajnLc6fbIyGyVJZ3q9wdpa1NjNEo4HHcfh9qI3rbbrUSj3XR33wJSXLgQ\nZ3AwQi5nYXx8gqam/dTUBIFfnjEgO3lkHkt+/nP44AN47z1QbKCG3L/9t/AP/wBvvw2/93s73TqZ\nlezGXfp7TSgrw+ovXfo+p0+PUl39FBpNDrs9Tk2NkfLyVj7+eIRLl8Q1DfXHYXftcXiHX1YedMxt\n9HerF8MJysr23bXAWLqmt7d/+ZqrVz9Co6ngxInV99/p8/CyLP/y8CCL3jvlORw24PHkeO01G/E4\n9PT00tPTB8Dhwwd59dUWgsEwbrcRt7t2Q+Ns6ThAIBBiZqZuV82HMhtnJ+0Zo7GU5uYmbLZaRkdz\n5PMi586d4+LFSQYH84CBwcHLvPGGsCzTfn8QjyeF3Q4eTwq/P/hIypOsox8eO9n3q/VxnpMnbWvq\n4/vpbUmSkCQJjWYWoxGOH/9NBgZ6CIeT7N1bx9CQiN3eSjYbue+YfJxkTXbyyDyW/Pmfw7Fj8MUv\nbuz69vbFa//rf4Xf/d3FxMwyG2O7K+Ssd2Rju563kfbfa0JZ2d5MZoq5OYlcbopcLsyLL+5BqTQy\nMuImmQSDoRqPJ3yXYfU47K49Du/wOLGZcXG/yJj17rXydxqNn3hcw4cfXl11zcrkoH5/hnh8D6+9\nVsvk5AwffHARSZIAlp074XARj0dBV5cWv1+NWt2P01mLVhtcbtdOn4eXZXn72Y6ImUAghM1mARad\n61armampKaanPdTX1/Lyyy8jCMKmnvMgi/Al+RgZieHxCBw50oLT6ePs2XeoqNAxPp5jbm4PkGJw\n8AJvvPE8zzxzDLvdis+3uQg0OWrtwdgtC7PNfj9JknC5XKsicVpaWhgbG7vrXRwOGzU1QTweP+Fw\nlImJRpzOAfx+Cav1ONGoguHhq/T03D4qnkjEGBsb5/r1OOCkrS3OM88cu6tvdkv/rcfjoqPv7Ofm\n5uY1v/VuYif7ftEJKWK3m/F4fHfZykv99cEHF/F4yjl+/CgjI9fw+4PA7XWCKIq89dYFJie1+P3z\nTEz0YbWmgSKBgBudbopAwEBNjeK+Y/JB33c3jiHZySPz2HH9+mKi5R/9aHPOmn/xLxZLrV+7tugg\nktkYW50A7tyllyTpnvfbzPPWWyysVMBr3e/OhYDfH0SSlkKiJVpbyzCZJM6fz3P+/AIDA6VotU6O\nHevk5MkuisUxRkcXuHWrHJ1uikTiyKp23W9i2w3cr+92YwTWLzMb2ela+T2Xog3WioxxuVy8+eZ5\nwmElFkuR3/kdiba2tlVjNR7XMDycZXbWTTZ7iYMHrbS37yeRiC0nBy0pSZFMTtLd/S6ZTBbYz8zM\nZSBPOKzE4xHo6mrH6ezm3LmzaLU5Skt9qFTXePXV1zYcsbNV42pJltvajtLd/S4ffHARYFcYaY8q\nW5kXVsqfKPqwWq2YzYeZmPg+4+NZ1OpOdLpeABoaGjb1nJU51URxhpqaurtkZkmefL4AIyPDOJ2j\nhMN76ep6Ho/nHC7XDZTKOfT6ElKpAPl8PVbrs0CEcHhwSxFoW41a240Lje3gfu+13QtRUVyMkpma\nmll2KCo2EBbe3NxMW9skU1OD7N1bgyiKdznCVzI6Osqbb55nYCAHGBgY6KaxsZuBgRQazd5VFbSW\nZGFRPzVy/Phv0t39LirVAG73eXw+ifLyAoODOrq6RmltbcVoLMVqraJQMBGLNXHzZojR0dG7+ma3\nO1G2S0c/7PFxZz+3tS0eUd6t/Q47G52WSMQYH7/F0FDqLlt55YZRIqEiFFocCxpNgGvXooyOphEE\nO5IUQKVaYGiogrKyRoLBCbLZK/zBH/yz5Zx+iUTZqpw8O/G+OzGGtiqvspNH5rHjG9+ApiZ4/fXN\n/e6FFxYTNH/rW7KTZzNsdQK4c5f+ww+v3vN+m3ne4mLhMuGwAVG8hNVqwmw+vEoBr3W/O3fjEgk1\np07dXDbEOjuTvPFGIzZbOVarjfr6zzE1JVAoSLS2tuL3B5mbm8FuryMQUGA0lq5q1+Lu2hDXro0j\nCKO0tT2x5u7aZthu42XlhBWNngfUlJXtX+47ecd5d3G/cbHaABnl5MlWnnlmbUXX29vPwEAOq/VJ\nnM5zaDTv8tWvfpmWlpblsfrhh1eZnXUTiRhwuUz09zv5zGdM5HJuEgkH1dWNeL0T1NbmaGhIkkwe\n5PjxL3LmzDtAgs7O5/B4zrCw4KGmJkUwGKNYtDE/X0tfX5DPf54NR/Bt1bhakuXu7ncZH58A9pPN\n7k6D+1FhI3p6vW96W/6eYmzsDHV1Ab761WNcufIeiUQdL774VXp6vsfU1AwmU9mmnhOLRZCkHJFI\nEL9/HqOxDr9/9bdekqebN4PcuHETrdZKNutEkiQ6OzWo1X5qao4sL7IXFpyEQpeBFNXVGux2K/Bg\nEWhbjVp70E2Qpf7frdzvvbZ7IXru3Dn+7u96yWTq0Wp78Hg87Nt34L5z69jY2CeL9g66u2/R3T1N\nWdmhdb9FIBAiHFZitT4FmJmaOs/o6BDJ5LNUV+8B5pffZUk2ALJZFyMj16iu1vPCC89y/fpHjIzA\n8eNfIRYLLif8TiRilJREKRQ0lJcLBALZVZE+O9V/28126eiH7cy6s5+npgbJZjt2bb/Dztp6RmMp\nTU2Na9rKK6vJVVYaUCqvEgy+j0ZTzfi4wOBghsrKVubmpiktXcDvVxIIlFIsthONRpmensZkKsPh\nsN3Xvl6pC+PxKBpNbtPvuxNjaKvyKjt5ZB4rZmbg3Xfhv/23xcpZm0GpXDyq9Vd/tegoMhh2po2P\nGw8yAdxrwXa/+23meYuLBQmr9TBjYzPLi4Wl6Bxw4Xa7iUYTOJ0SGk2AeFyDJEmrksD5/cFVhlg4\nvGhANTTUYbP14vf3YbWGUavLuXz5Ck7nLXK5FIGAjupqPQ6HbVW7jMZSLBYd0WicUKiSn/70FgbD\n93niiSPrGpBLO4uTk27UagVtbfsoL7cvX79e9MWDsnLCOn16EDAsl/cNBEI8/fTR5et2Ik+KzOa4\n37jYnAEikUgUiETczM1lcDrNnD5997HFXK4br7eG0tJyYjH1J4YaGI0LaDTzGAx+Ojtb0etLuHjR\nydtve5ievoBSmSedznLggIqDBxUkk/V8//sXcTpFSkqacblm6enpo62tbc38PhrNCBMTE0QiscXW\nShKZTB379j2YcbV6h3w/x49/kZGRa7vS4P602Ug05Fr6fCN6+t4GrAEwo9FYUKu9OJ1XqajQk0h4\n6On5HjrdFPX1R9atdrjec7zeUdTqcior9zI05MHrHQVaVkVTLo0VrVZDNtvOkSOHmZrqx2ab5nd+\n5/eYnJzk9OlRurt/QlWVjhde+MwnsmhaPm5zrznufn261OYHcdhvZpyv1f+7lfu910bkbTMbIVNT\nM2Qy9XR1fZVLl77JD35wnoYGad25dfWxklKOHz/KmTNTQGLVvLnUZlEUOXv2LO+/f5qRkQWKxUkE\nQY9WO43R6KCqqgSvdwKDwY/d3r7qOZIk4XAkmZ8fo7y8koaGwzQ0NHDmzCiJRJh4fIDBQTUzM6DR\n5Dh4sIRIpA+PpwSjsZrBwcRypM9Su1faQSuPym6233aK7dLRD9uZdaec1tfXMjIS+FQ3yzb7Pbcr\nJ95az106gpjNQk2NAYfDtnyE8Z133mV8PIvBsIf+/mESiX6s1ha0WomGBhOiqCOR0CCKZlpbP0Mk\ncpVEQktb2xFUqlK++90LFAp1qFQ+vva1z/Dqq6+u0sErj0mazaXLRR80mhzt7RpMJjb1vjvhDNuq\nvD50J48gCH8J/AqwFzgsSdLNT/7uAL4NNAEZ4I8lSbr00Boq80jwN38DJSXw+7//YL//3d+F//gf\n4Sc/ga98ZXvb9rjyIBPAvYz7+93vzoo8S0bPWmfMZ2e9eL1uolEl+XwMpTLL8PAVYrGbXL+eJhjU\nYzJ1AgPU1s5gsZThdObI5QS02jyvvrq4IzszM4MozhIMphCEEqqqJG7dGsTjmcNu91BZmaemppJ4\n3MGPfuSjr+8WOl0Rq9XDCy88v+odJEkiHo8yOnqe8fFGjMb9DA7mMRjc+P0lq/piJUs7i8GgmXB4\nkKeeynHwYO3y9St3vz2eG/T29j+Qk2cto89iKQKpVZPXTudJkdkc9xs3mzFAzOYylMqb+HwFIEFr\n63NkMqX85Cc/ZXraDcDJk69w4EAZc3M3EcUKrNYUgYCJ6mo9bW0thMNRbt6c4+LFAkplJcPDo3i9\nc8RiKvT6OjKZXp555hhmcxlXrriJRGIkEha02kbi8QRzc7O4XC4+/riXixdHWFhIE40a+dKXXmFy\ncoaenl4ikWogRVVVHKs1zKVLfnK5aeLx1jV1wnqstUP+yxiddr/8ZGtF9LW2tq6pz++Ux+bm5rty\nrQUCITIZG6WlVgYGBikvT9HS0sKRI4cYHLxMONzHsWMlnDjxPKWl8Prrv8nly5dxufppa2vmpZde\nYmxsjKVqh1C8631cLhff+967uFx2jh8/TCLhZHb2p8zO6pift5JIJGhsvM6LL5Ytty8WixCJeJmZ\nWTymOzQUpKQkSlvb4mJ7ZCSPRlNBLudi375OXnnllbtkzeVycfq0i0zGRiz2AR0dfcuVFu8XYQo8\n8O7tZsb5WguIT4MHcRrc7702YodsdFdckiRUKoFk8hqXLkVIJgfIZk1UVHTg8dygp6dv+RjInePE\n4ymnr+8aXq+X0tICVqtpVQ6zy5evkEjEGBq6xQ9+MEA4XEc+b8LhcFFRUYvN9iyh0BySNE5TUw6H\nI88vfnGByclJXn75ZcbGxjhzZhSPR8/4eIbGRhgaOk9Hh5m2NjNGo8TMjIWZmdsJv9vb7ZSUmLh0\nSaSz8wTxuHt5sbjU7kymFrhJbe3Mspyu7LdTp0bweFL4fD+kqkrFoUOHOHLk8KpKXjvJdunohx2B\nvJZebGgY27IDZTNsNjpkpa23lZxCaz135fHG+vpampqaOHPmDP/jf/wAl6tAImFBrf4ZkcgIhUI1\n2awWhSKMwRCmqkpHsXiJfH4Br1ePQiGh16cJh8dJJl3EYmVoNI0kk3EE4QMaGxtXRWuuPCZpsfRT\nXn50ueiDycS6kc7rsfTt/P4giYR6eSN5K07RrcrrQ3fyAO8C/zfQfcff/wtwRZKk1wRBeBL4R0EQ\n6iVJKt51BxkZIJ9fPGr1xhtgMj3YPZqboasLfvAD2cmzUR5ksX8v7/T97icIAoIg4PMZyGbt+Hyj\nqwyAJVwuF9ev+1lYiDM3d5a9e7U899yzlJS4uXgxyK1bRaLRIF/60udQKA5RV7f4u1yO5Xb19vZ/\n8pxarNY4ra1xKitNJBIx3nlngslJC6Ko4jOfCVFaamR8HDIZCY/HSHm5mUhkhuFhJ6+++uqqdv3o\nR9eYmRFIJHwoFCVotWmqqp4mm7XclVCuubmZ0dFRvv/9HzIxUUt9/QHm50U0GgvZrP0Oz/7i7vfi\nfx+MtYy+X/mVzwGsm8NF5uFzv3GzGWesyVTG4cOHOHhQx+XLs/T3n0enyzEy4mF21gFU0t39Hq2t\nBlSqOlSqBU6caGTfvlocDhuiKPLee9/n8uUYyaSNkpJhvN5bZDIaRPE5dLoaCoUFvN55BgfTjI3V\nUlLSgtGYw2YLARkmJ/18+9vdTE5GuXFjAbN5L5HINN3d7+JwFCkUypfzoCgUA9jtSaanXWg0dTid\nORoa7s47cT92uorXp8mDLKTXy0+25Ii5cmUKvX4vX/nK0VW76Gvr89XyuOT0WHlvu91KLPYBly8v\nGtqDgwmOHFn8t44OIwBHjhxfXki6XC5SqT04HB0kkwHGx8dXVTt0Oq8SDIaX3//s2bN897vXcLnS\nxONRJia+hcmUQattRhTjNDXtQ6XSAH0MDw8v7+RGIl5CIS81NXsoFlXEYtcxmRoZH89hMPSRy+1d\ntRhY61jhz39+nkuXplCpDExN+QiFnl6utLg6wnSKurr4coTpkqPlQXdvNyPDay0gJifHN/agLfAg\nRxDu914bsUM2uis+OjpKPO6gubmVWMyFxVJgdvZJlubW+fk5Tp8uWTOPX0NDDR9/PE467aO+fi8n\nTtRTWgqxmJqLFz1MTcXw+wOAHq9XwGyuIJ1Os7CQQhBUNDU1AvDkk3nUahM//ekCoVACQXgPj8dD\ne/t+slk7druZoaEUIDAwkCMcljCbPdjtcQAikThOJ2i1QRyOVhwOGz6fi3h8ZlWkzlK7F6MgBerq\n1j5S5vWmmZ5O0tMDohjl+vVZWlvdfPaze5edQp+Gs2erOvph6/i15PTT3izbSnTIksPP602Ty3XT\n2WkhkSgnl3Pcdyyv5dQXRZFLl6YIh5W43ZO43X/Pm2+eZ3g4iyS1IAgOJAmSSS1K5T5CoRx2+wxP\nPXWYmpoqbt5MMjtbw+DgJaATu91KKjWGUlkkGs1hMMyiVBbweiOrjineeUwyl4uRy01z6dKPyeWm\nicVaGBkZuStq9V7cXoe4+PjjINmssOUjgVuV14fu5JEkqRtAuLv3vsxiFA+SJH0kCIIX+Czwi0+3\nhTKPCqdPw8IC/MEfbO0+/+SfwH/+z5BOg16/PW3bjTzMENyteqfXmqRaWiRGRkY4deo0sVgCj2eG\noaFy9PrXUalG0WqHKBQk5ufnmJ01oVC04Hb/I2+99X/S3LyXzs7naWhoQKsdXW4XrDS2obJyhrq6\nOs6d+994PEay2WfI50vo7b1ENptGFJ/C4/mYdFokHLZQLO7l4sUZ9uz5PhZLGZFIlMuXr/DRRwIG\nw6+RTDrJ5wexWBSEQvPk82M4nQZu3HAwO5tZnkQnJuDWLQfz8x5CoffR6/3kck+i1RqX+27l7nd1\ntcCRI4ce6NusZfRtNiLoUcr1sBvZibG5GWes3W5Fre7n5k0niYSbSKSRdHqGYFDCaDyBJHUwO/tt\n/P4eGhs7yGYTNDbO89xzz9HS0sI777zL4GAEUXyKWCzM7OwA2ayIJFkRhEmi0SgOh49MZi/9/UFi\nsSjZrIDDEUan6yOZDDM5WUo6HUcUw4RCNqCWXG6ObPYqDsdBQqEkbvdZjEaB6moNlZVVFAp3l55e\n6svF3bXYquSLd/bppxmdttP690EW0nfq1aXEw+fPnyccNqHTVZJIzNDd/ZNVVUo2os/X0tlPP32U\njo4+wmERh6MFl+sGf/3Xf0M+X45C0YjVmubIkdtOlPXyp2k0I1y69H2y2Wlu3bLgdk8zNzfL+fOD\nDA2VIIrV7NkjoVYP43AcpqnpOMPD38Tv///QastpbKyir28OtdqCxWKmv38Oh0PPV77yf/DOOyKx\nWAl2+5cZGrqBwzGHVluy7rsu9fulS2EuX55DkioAiSef1OLxiHzwwUVSqQSgBCJoNDlUqvxd93vQ\n+XEzMrzWAuLGjRsbftZmWa9SzkYWmdsxNjdqdwQCIfL5cn7lV75Id/dPKCm5iULhRxB66ewUqKys\nZGZmdWGGRCKG1+vC7++jpETFyy//HpOT/UxPe3j++Uamp6cZHIRCoRKPR0FdnYpMZoCxsQtIUj2C\nIBIOT7GwcIHGxhRf+tJnuXbtI6amCpSUNBII6DhzZgwAjyfE7GySeHyejz4qkM+3UVdn5erVBXI5\nHxZLJVVViw6f8vIqJEmipaWFV1+9OwJ68bjjeU6dGkCS5qitbVvzCH0u143Ho0atrqZYVBMKKbh+\n3YsgRJedl0sRTRvRaRvRf+tdsxU5kCOQt2Z/Lzn8IhEDXm8Nc3M32bvXxIkTxxgevsLHH/fS09MH\nLNqkS0cCz507x9WrN7h+fZxIpA6dzobZDP3936a7W4vDcZSenrNEIi4WFprI5VIUizNoNCpsNpFC\n4SA6nZF0epaSkhBHjz6F0VjKyEgAtTpNMtmA0QgeTxyDIUt9/UFmZj4kFPp/0WjKsdk6GBiIY7Gc\nxWQqIxaLUCx6GRu7hUZjo7lZhV7vw+kcwWBo4kc/+hibzYvZfGDTjprtPBK4VXl96E6etRAEwQqo\nJEnyrfjzNFD3kJok8wjw938PR47A4cNbu89v/Ab8+38PZ8/Cr/7q9rRtN/IwE9Bt1Tu9Vtn1s2fP\n8rd/e+4Toz5PNOokn59DpVKhVvsoKckyMVGBz3eZeLySTGYEn2+BaNRKsajm4sVJGhoaOHmydbld\noigyMHCZt9/uw+/vxWhU0tz8KjMzSRYWeojHE6hUM2g0EfT6/Tz33EkuXYoxM/MRhYIWlcrI9LSf\n7373CtmsjmKxinA4xsJCCUplnnxeTXm5mtpaHYXCKBrNYW7enCeZjKNQNOP11jA7ex21upW2tt/G\naPyQXO4azzxTwRe+cGg5Jw8sfrs33hC27FjZjnDmjeR62A3n/Hcr2zE2t9q/oVCI6WkVgcA+0uk8\nglBGJHKVbPa7KJXNqFRjxGJlxOPDKBRT2GzV5PMfcOBALzdv9pNKCSgUYQqFfiRJwGg8STqdQaMZ\nobTUQ0NDKf39cZxOI7lcGINhgieeKMXnSxCJ1BONSszPj5HLFSgUwkAOSYoyN2ciGg1SW1tLba2X\nQ4cq+fznPweAzzd6l9zePkaRYnx8gqam/dTUBB+oT7eTndS/kiTR09PHyIhIZ+cR4nFpQ4bmnWN/\nZGSB99/3MTfXRTQ6xhe+0Iher6Kpycfzzz+3rGM2os/X0iuCINDVdZjBwW4uXbqIzzeLJBXJ5UJ0\ndHTh9ab42c9OLSeQDYUiRKPJVXlDWlpamJycZHJyimTSyDvvjJJIWAiHvYTDYSTJTDI5Ryp1i44O\nM8XiLD/60VssLCwgilp0uiD7979AOh3j5s3LJJN+8vkFAoEY/+t//T9EIsPk82YikRyhUBJJ0q5Z\nma5YLPIP//AP/PznFwmFWtDpSlAq22loaGd2dhCn8yqlpVagEbW6QFVVCIVikGPHypejPe7su52O\nNrjfAmKnkvl7PKWMj98C2FBJ43uxmTZu1O64neT3J4yP36KpqQWbLUlHh5KuruNIkrRK1yQSapzO\nHBpNBWpDtFPjAAAgAElEQVR1P9XVWiYm+piYmGQpQXCxOAco0WpNFArDzMxYUCrTqFQ69Ho1kvQM\nSmUclWqacDjID38YZGGhSCAQZXa2hMrKCubm4DvfOU0+byIWU1Ba6iAen0WtXqC3t4dMJkJd3Wcp\nK7MQj/9vpqeVFAp1y9HOKyOgFxZcTE1NEQpFCAZjxGIqpqbCRKNhBge7V+Udamlp4bXXOgmHr9Hf\nH2JhIUEyWYFa7SWbteHxpD6JQN74McON6L+HnST5ceV+4+BeGyMrc/FVVzciillyOTdO51VisZtc\nvBhjdtYKpLh58xc0NXXT1zdAT08RtfoQk5O3UKmm2Lu3gZGRCAsLQ0xMtDI5OUk0Oko+b0KS2hGE\nKbTai5SW+nA4mpGkBApFGq02RkvLq4yM5DEahxkf9zMxoSCXC2E2lyAIQxQKAW7cKCEcrkShiKNS\npTlwYD+5XJ5Tp1xUVz9FJOIFVNTVtZJKjSEIJqanSxgbM9HS8gxu93vU1eVXRVhuVPQe9pHAlexK\nJ89W+NM//VPKyspW/e1rX/saX/va1x5Si2Q+DRYW4Kc/XUyYvFXa22H/fvjhDz89J8/bb7/N22+/\nvepvHo9nR5/5MBPQ3cu43IjRdmeZ0omJCb71rZ8xOKglkehEkgJEo+MolRFyuX70+hkMhk4aGtoQ\nxRRe71nGxiJkMo3k83UsLGQZGJjkgw8u0tBQtyrDfzDoob/fid+fQqstR6XKEQioKBazwHVyuQCJ\nRJ5w2Mr582/i9/ehVgcJhd4jkShHobBhNmsIBg1IUppIJEEy6cZoLGI0xnnllV+jWEwhCCZOnPgy\nly79mLm5cySTez6ZRMPk8z7C4Q8xGFIcPfoEb7zx/F3GznbtUG1HOPNGcj3IBtz6bMfYfND+Xcp3\ntbBQQKWqI5MRSSTclJSMk0rtARQUi6fRaCxI0pdJJGaAUSYm/Ph8Gc6cSeLzTaNUVmE2K6iqmmBu\nroF8Xocg+NHrg1RW2ikpOczQUAqT6SBqdZJEYpLpaS/hcBPxeJKpqUnUah8VFV3kchCJnEWtrkGp\n/DKzs+McPlxNefnTHD26+F4ul4vy8hTgXk5+u7Iv7XYYGhKx21vJZiMPPanyTurf0dFRBgfDeDw5\nPJ7TdHYK2O3H7/u7O8f+L34xRzbbwNNPv8yFC2/h9Q7yuc89y/PPH1klSxvRPevlK2hububAgV6u\nXbuG1VpLMllPLOZldPRHRCJu3O4U16/HCASi1NY2Uiy6sdlivPrqa8tzg9FYikazF40mhde7ADST\nTBqIRiMYDEoMhhDZbI75eQep1Bw+3zjwPGp1J7ncRa5d+zHV1TZUqhg2m0ShsJfZ2WukUhcwmzvJ\nZkO4XD9Ar9fjcpn4whdu52tYyvvz93//Ld56y0kiYSKXu055eSXFYpZwOIHNNk9FRRatthKbrZZA\nQOK55yzs3bt33TluN0QbbLeOXpL548ePAu/e5Szc6TZudI5cq1S503mFubnr/OIXUVQqAbvdiEKR\n4siRQ/j9QbzeAHb7QUDHnj3jzM/3YbG0YTBUc+FCNy0tCxw4UEckEmFubha3e4ZcTkUulyGfn0Kj\nUSGKMdJpFel0O2fOzGK376WiIoff340k1XwS3dtKPh8EJETRAuSpqCgQifRhsRgoFLyEQmNYLHE0\nmoOr9IskSXg8Kex2GBgYZ2JCgd+fweUKYDLlmZ83oFQ6mJmZwGr9GZIk0dfXz9zcHOXlFRw/XolS\nOcPkpBKLxcjgoI5bt6CqaoJEogxBEDas0zai/x52kuRHjY06PO83Dm47Y8VPnJyN1NQEkSQJgL17\nVYTDQ5SV6amutrBv3x5MJnC7LVy6VIZSWU026+XKldN0d9uYm4sQDKqorxdJJhtQKrsZHR0ErgAm\n0mk3sdgIxeIEgtAJzKPRTFNWlqK83Ixer6apSaS0NIJSuZ8nnjjBzZvXCIevsrBQSkNDI6lUlmTy\nOpWVJRQKDQwP68jn6wEtoZCHs2d/xt69WcrLD9HebmVy0oBSWcFXv/qHnD79PSBBdXUp/f3DZLML\naDRKVCrfAxWU8fuDqwq3PMxI9l3p5JEkKSQIQkEQhPIV0Tz1gPt+v/3GN75BV1fXjrZPZvfx1lug\nUMBv/db23O/Xf30xiXOxuPkqXQ/CWo7I73znO3z961/fsWdu1du83bt8q6vohDGZOonHVyesXLr/\n7TKlB3jvvW6mp8cIBKoQxQkikQsUi0mKxTQKRRtarQ5BiBOPV3H69Fk6OtS0t5u4dauASgXZbICZ\nmY9Ip0W02ipEsYfm5iaqqwOI4jjj47Nks80oFHvJ54cYHe1Grw+i05UiSTVkMvsoFsHpdFMoXCAW\nUyIIrRSLRZRKD2VlSXw+G7HYx/h8avJ5UCoj7N+fRq+vp1hUYLWKLCU2rq4WaGs7zMCAH7Vaj1oN\ndrsJQYhTUbEHq9W8LQnd1mM9A2Az33sjuR5kA259tmMnaDP9u9I4cTpvceHCCBMTc8zMqCgUqlGp\n5giHnRSLX0ev/wrZ7Juk0z8HhpCkAKLYwtiYBkG4jEJRD7yISjVMPv8R9fUSyWSRSCSIRjOFw2Gh\nrKwTu72SYvEC0egcqdSiAZlO7yGfjyIIGtJpE6LoJxJJYzbXEYtZyefTFItpBEHF7KyL2lrDchTf\nqVMDaDR1VFfrl3etV/alx5NCp5siEDA8UPTAdh9B3MndvkAgRGnpQV57zcbAwEU6Okz3bO+d7/b0\n00cRBIHJyUl0ul6mp89RXe3jxIkKTp7cuNG6Xp+tzFfwyisi4+OjTEzMEYkoUaungH6mpuooFPYR\nCExTKIRIp5UUi2H0+iNMTfmYmppazpcQj0cZGxvC4xEJBgeQpBggIUk+0mkRURxFktqZnd3P7OxN\nBCGLUqmkWPQDKQoFEbc7TTarI5G4TjZrIpcrR5KgtrYTpXIAUZynru4ks7PeVUntlxZE778/gs9X\nh0bzDNnsj1EqnXR2dpLLTWO3HyCRWGBycoT5+Up0uileeunIphN7ftpst45ekvmRkWvU1Bh4/vnD\nW3bs78Q8slaS34mJbgYGJkil9pBOz9PZuY/qagVm8yQej4fr14eAWTSaKZqaSjGZDtPTc44zZwbR\narXEYjm++lUNBoORvr4ioZBILleLUulFqXTS3FxNOBwlm91PS8txxsdHyWQGSCY1mEw29PopJKkL\nq/V1XK6zKJUX8Pv1ZLNeYrEGTKZGamvTHD2aoLKyCrO5Baczt5xjZCkZ/djYONevh4hGe6mocAC1\neDxJikUtuZyTfN6HRqPj4sU0o6MFXC4tPp8fo3EGhSKJ1VqDWp1BpytQW7ufrq4jCEKYkhIT8XgU\nj+cmIyNXKSnJE48fXDcB/kb033ZVbn3cWasC5VacsktjymYr49q1ccrLo9y8OUso1MvCgg6FohaD\nIU9XV2ZVRVi73cqFC+8xOjqBKOYRRT9qdSWlpYeZnZ3F6byCKLoQBA1mc4FMpoJ8Xg1YUCoNFIsJ\nlEoVkjSKIAySTgvMzT2HSmVFp3Oj119HoZjH77+J232dbFZDsVjB6OgtJGkGu72TQCBMKjVKPB6n\nWExTLHrRaMYIBACqKBbVnDp15pNiDTaczqtYLCmgSDYrUV0dw2weob6+et0Iy/VY7XDOc/Kk7aFv\nXO5KJ88nvAv8c+D/EgThKaAKuPBwmySzG5GkxaNav/7rYLVuzz0//3n4T/8JbtyAY7vbDntgthqx\nsVKhaTQjTE5OYjKVbTrj/p33GxkR8XhydHXFP0koKLKwcPv+NpuF3t4+RkYkysurGBgokkza0On2\no1ZPYzYPo9dbiMUkMhkjBkMGpbKJ6upSjMYCHR3lJJOdvPfeOfL5LMXiIOAlGDzO4GAGvV5HU5MO\nr1fC5/MTCglEInk0GjVqtYHKSjfPPtvO9753lenpMDrdMQyGEqJREVH0kstVotc/gSQZUCguk8up\nUKkilJb68PkOYzA8QyZzlVhsjkOHGqioGOfo0Sepr68nFIpgt7fR3PwFxsbGPpm0tRSLh9Fqg9hs\n6k+cW7cTum3mHPxW2MyO6UZyPeymkNbdxoOOzZUGbjweRaPJbah/l77tzEyS8+cvEwwqEEUfarUD\nszlMJGJCFA3ALNALLKBQZCkUhhBFgJdQKg1ks0NABwrFfrLZDIVCiExGwGIxcehQI6Oj0NRkI50u\n0Ns7TkXFEfL590mnc2g0v0GxWEAUveh0NiyWdmw2M5nMEIJwFLu9lUjEQyLRT2dnGa+/fpAnnlhc\nuJw65WJ0tIbqagOQWpWPR5IkystTOBwSL7xwGJOpbDn0fDNsd7npnUwAardb0elcxOMCbW176Opq\nXbfUuSAI647tl19+GVgsJ11f/xwvv/wyCoVizWeuFeKfSMQYHs4yOwsLC2c5dGixIsL4eOXyMbJT\np07z4x+P4fM9QT6vRKcbQa+Po1C0YrG8SDB4mVhsGqXSxtycn5aW/czOppfD7rVaF3Z7AqUyi0aT\npbRURyJxHlEsobKyEUHQsLBgQBRLyWYjCEIOi0WPVjtBMjmC0ainoeEAIyMK7PZmUql/BIoolS0E\ng7M4nedob9ei09VSVmYhFBpDkkzLlbjcbjeZTC022x4gTT4fAMxks/NUVpagUj2FQrGPgYEPyeUm\n2b+/GkEwrIoW3a1st47eCZm/XxtFUeTcuXOfyHAtL730EuPj4xuaL1dGDCeTQ4TDRzAYGvH7hxgf\nF/H5RFyu76DRmBHFBiyWBKKYQRAOUV//DOHwu8RiOfbseZVIJEA+LyIIAtFoKZJkBQ4iintQq8tI\npVKUllaTSOiYmuoBbpHNSuTzBzCZlJSVLRZoSKevYzQOUVJiw+EwMD/fisnUhNmsQ6n08pnPHOXZ\nZ59GFEW83m8xNdWLJNl5/30n9fUiVmslhYKNVOpJFhauIUl5KiqaKRYl5ubSZLNFbDYjhYICn0+D\nTncYnS5CJtNLJCJiNrdRLPqw2ydobKymrEyFVqsgmYzjdOZIJo2MjU3Q3NxxzwT4K2XBZlusmPrh\nh1dXfZPtqtz6uHPbdo7h8Qi89lod8biwnKvyQSvZ3bzZSyQyxccfW8lmQ4yPKwgEHLS0VFMsJpe/\n0dL9bTYLJ07UEovNoNPVMzERZ35+mESiAo1GSSaTQaXSkM8fIpmEYrEOmCaXs6DTFQATSmWeQsGP\nQlFKLteJWh0hFMqhVrvRaveiUqkoK8uSz5ehVrdTWqrF7b6FWl2O2fwUk5M/IZfLAT4UigCimKJY\n3IMo1hGNihw6pKG83MqJE+UcOXKYYDCMzfYssChnL71kvmfevnuxGzcuH7qTRxCEvwW+AFQAZwRB\niEuS1Ar8GfCmIAguIAv8tlxZS2Ytrl+HW7e256jWEp/5DJjNi8mcH1cnz0ZDl9dbGKxUaJcu/ZjJ\nyQGqq4+j1bpoa5v8xBlxf4fAnckYOzqO4/Gcob//PNBMZ+cJJiY+ZnJygKqqZ5mcfIe5uVkWFjQk\nk30oFGGamw/hds9jsSTYs6eWfH4fJtMwoujCYNARiZQQj9vQaPxYrWZqa2s5etTD+fMfEQgYgROI\nopGpqWkcjgw9PSlqaoqUl3fyzDMaEokzlJT0UFen4rnnunjttZNUVFTw1lsXCAYnyWSUZDI+BMFI\nsegmm82jVhvQ6RK0tx+lsVHHyMgkCkUNKtURNBo3Wu0w8/MxotFmcjkvDQ0NPPPMseXw/97eflwu\nF5lMB9XVVgYHhwiH50kmD2K3m/F4fJs+B78VNjOBbeb4xuNQyWi7Weq/JQPtww+v3jdpMNzpeM3R\n3q7BZLr/TtTSt4UUXm8Z8biDYrGISjWPQiEgSXoslmeIRGaA97BYQthsR5mbM1IoSEjSFIVCDCgB\nBhHFFDCB1foEyWQQn6+XcFiiWEwQCKjYsydKScle2tqeIpMZJxpNo9Goicd9GAwT6PVJRHEBu72M\nkpIKgsFJRNHMU09Vk81GaG/Xc+TIISRJ4vz5SyQSpVRVNeL1TmAweLDbDy9XVzp1yoVGs5fqaoEn\nnmh84LGxkSOIm2EnE4CuN7bWc+YsvpsNk6mWgYEpyssXq5AoFIpVlQHX4s5d5FzOvhzin8u5SSQc\nxGJVDA2VMTjYhyTlUChqcTp9HDtmIBabwuczI4p6CoU4uZwPk8mIUukmlbqKJPWgUgm0tRnw+1PM\nzw8Tj18hGNxHW9uvE4+LDAx8yNhYkGi0Ha02hEZTj0JhR61Wo1YnMJsPkU4bSKdnqKjI8cQTX8Bg\nGMHtXmzv5OQc+XwlNlszyWQjiYQfpXIP2ewcFRUFXnvtEMGgnkhkkOpqDWZzKd/+dvcnJdBnsFpD\nNDY2MzR0hlwODAaB2toDVFYqSaWijI1NUFtbSjBYSirlpa3NiMNh2/4Pv83cWd64ubl5S/fbisyv\nV7r5fkcjzp07x9/9XS+ZTD06XS8ej4dksmJD8+XtiOEOEolrFAoTZLMSMEQkYkKSDMzOGtBqs+zb\nV0sqVcRu92O1prl8+X1yOQWgxuudIZMZQq3+HAB6fSkmk454fAyFIklzs5Xy8jIcjnZaWw9w+fJP\nUSiihMP7CIeteDwpUqkgL7xQQWurBperkpkZCUHQIElhAoEx8nktGk2MRCIGLI71ixe9jI42AXl8\nviIzM8NkMjrS6cMcPLiXaDRFIjFAJKImmVRQVlbEbK5DpTJgtc5TUpLD5eojk1lAkvyo1UW0WgUq\nlcCxY8ew2SxMTQ1RX1+LwWDE6/Wi0aiBJlpajpLLbexY7NTUFE5n7q4KTdtVufVxZ+mdOztb8XjO\nMDBwiba2xaIcW6lkp9HMAV2o1VqGh5NUVoLP5yGb9aJSpQDTHfcfpa3NQn19kqtXJ8nliqhUQSKR\n9xHFSiRJQhT3oFSGKBS0FAqLx6IEwYlSaaCyMo1GoyeV0qLTfYFYTCSVGkGSplAoarDbO1lY6GFi\nQkIUw0SjFygUtIiiHbU6y+Dge+TzUazWL6JSJchmBykWZ9DpngCayOe9TEyM0dbWQVfX8bv6YZP1\nRe5iN25cPnQnjyRJ/2ydv/uAe1sXMjIsRvHU1sKLL27fPVUqePnlRSfPn//59t33UWS9SWKlQsvl\nptFoble2mZoaJJvt2JBD4Pb5XxN9fdfweGapqorT0lJOKCQQj7vJ5aZJJFT4/TNcv+4jlXJQKMxT\nLM5jMOQJBnuAFFVV7cRiCUymWZqaHDz33LPk8yIff6ylpeUzuFzXuHr1BqWlRlpaKhgbsxKNTiJJ\n5YjiAsWiE7PZQSq1GL7sdsfwetVYLEpKSmZJJk188EE5fX3f58SJKv7oj15nYWGe8fFJPvqoGpVq\nP/PzZ2lo8GKxlBGNaqmpESkvz+P1VqPVjpDPv43N5kGjqaCvz4pGo6W//xbx+AB//Mf/HIA337zM\nwIBEIiESDr/JBx+UYzbXEAxGCYWuoFYvHj2Jxw8zMzOz6QSrsPnjdts9gclVLu7PZpMGLxl7bW1H\n6e5+F51ugeefb9jwt52ddSFJAiqVHq22FFEcJpdzoVYfxmB4mdLSs9TWxmlt7WRwMILHI6LXF8lm\n/QjCKEplM5JUiiR1Iwh+/P4KFIockCeTGUet9jM93Y/BUI5SWcqNGy5mZ93kcklEUYNON0ZNjQaz\nWY8kBWlszJFON1Es5pmf/4hEohSDoZ5k8gBvvfUhkCebNTM9fR2dbgy7HU6efJbm5mbOnj3LN7/5\nU3y+A7S07AHmH3hnc2Uffdrlph+E9cbWeo5au91KNNpNd/ctIMXgoIauro2VoL9zF9lul5iYAK3W\ni06nZ27uBuPjZkRRhSBoSCSq2bt3H7ncYhRYPm8hnXaSyfiRpAjFYjkaTQlm8yRu9yRabQnpdJ5M\nJo7BsJdMJkYi0cHo6Bzf/OY3aGnRoVYXUKvbUKkgFEqh0+3HZjMQi/Vjscxz4MAxpqejzMyMUlFR\nicMhkk43olBUI0keMpkrlJZG0en28MQTNqLRPF7vTQqFNE1NVezb144gCExNzaBWq7h27SM+/LCE\nsrJKAoGbHD8e5vd//ws0NqY4e/YWoZAZvd6GIJRz8KAGQfCgVtfS0lJNZ6eCrq7bzojtPPa83Ueo\nVzo5RkYCNDSMPbTjB3faIas3ktY/GjE1NUMmU09X11fp6fkeIyP9OBwHaG+/XQ3o4497uHnzJjqd\ngaNHn+SVV15BoVCwsuSzTleL3X4dpTKM1RpHFJPMzbVhMBwjGu1ldvYMTU21HD/ejMlUQjR6k/Ly\nMgwGO7ncLcrKoty65cJiMVFdrSadjlFWFsRgkGhpOYrBkKCkJEEqFaG01IpCcZixsRliMYFicQG9\nXk0goKKuLo3B0EZDQyW53DRNTVkGB5OUlhrQ62soKVmMluvt7cfjMZHN7iEYnEajcTE3V4pSmSSf\n7yYabaOqyoDD0c7oaBa3O0Q2m0apVKPXz9DaaqOxsZaWljnAjs9XxOkMoNON0NDgwGIp49IlL+Gw\nkZkZL3v3Funrc+LzFchkwrhcWiorJdxuIzabBWBVOeqV39PrHUCjaeXEidXVUh93Pb1Vlsa72+0m\nGg0jip10dmro6LitY65cubamzl+pK9b6PktjKZdz4fEk0WgmiMVMaLXD5POz1NVVc/jwy8sbBEZj\nDZcufcjo6DThcIRIxITV+jRzcwXU6jEMhgKFQpZcrhaVaoqSkgSxmI9crhydrg2VKkJDg4myMh1T\nU7FPnPnjlJYWqK7WEInE8fn6iceHKRQasdvrSKXOUyx2odF0kMm4KBb7USoPkkolyGbDKBQhlEoH\n+bwLrVbD/v1l1NZKdHQYd2RTcTduXD50J4+MzFZIpeDtt+FP/mT7c+ecPAl/+IcQDIJt92+67Rjr\nLQxWKrR4vBWn8/bRkPr6WkZGAhtyCCzdv6HhMB9/PEYmM01jYz2f//xnlw2t4WED77/vY2hohGBQ\njSRZicdLMRh60GqtiKIDhSJFJpPH7y/y0kvPUF5ex/79wifVAEYYGLjOwMB5hoZsGAwGysrGefJJ\nHdGoAp+vl1wujVpdicdTh1ptIJ3OIIoelMoO9uyxMj0dIharQ6l0IEk3GRmZ47Of/Tw1Nc28/no7\nZvMs4bCBz33u8xw/XsXISB6vVyKXm0aSPKTT+ygvTxGLDVFa6iMSeZJ0WoPPNw2M8YtfVGMyXcJu\nTzA8LKBUdlFW5sDrHUStbsRmq0Sh0ONwpDh0qJ5AQEE4HGVoKLKcYLWjA+LxmlVhz8Cmjmisx26c\nwB53Nps0+HZVmHcZH59gqbIL3DuSbulI0xNPlODxOBkcjFEomCgUKoEqRFFHJnOaw4eNtLZ2EY8b\n8Hi+RT6/B5XqRRQKPxpNFqWylkymDJXKTrE4jEKxgMNRjc93iGJxiGSygXS6kVzORXl5iLKyOXK5\nZgShB6t1Gq1WQKP5LDU1v4rbfQan8xfE43VAAxpNBbncFWpqKjEYqjl//gYmU5aTJ3+fnp4RNJoy\namtNNDQ0MDY2xqlTLhYWGsnnI4yO9nD4cB67vf2Bk8l+2uWmd4K1qhK6XC78/iA2W4z/n703DY7j\nvNM8f5l13zeuKtwnQYAgQJGUeElUyzxkW+6JllvTMe1ud8d0z8zOp92I+baxX3q3t2NiIqanY2M3\nYnf6mLY9tuy2Rz7apiRaIglSFEkRAHEQQAFg4S6g7rsqs6oy9wNACJBIibYlWbT5fGKAVfm+lfnm\nezz///95/H4LBw6cJZOJPzJZHI3GWV1VMJv9RCKXmJ9fIJHIks1CTU0Ovb5MsVigWFTQaNYwmfR4\nPB7SaRvR6CJO53lOnNBw8eJP0GiO4nL10NOToVq9zMZGDaJ4mFRqnLGxFSwWBVXVYzbXUS4LxOPT\nmM0iHR2/w8BAE++9N48gqOh0G8zNaYFmVNWFw7FOQ0MNovgcGk2Bzc1FSqUW1tfLRCIVBEFPXZ2B\nVOomzz9/nOPHX+JnP7vA8HCKSsXLD394E48nQLlcy8LCXWS5wOrqIrGYRLXqYn29SG2tj5dffpnb\nt/9vEgkNBoMOWXbR09PMyZOe7XEz+KHD6icpbvxpCSV/HsoPPtiXRw0ktbQ0YjSOMjLyHYzGRbq7\nO8jnY3vcgMbGEiwuRrFYWrh2bRhBEDh79ixer5tM5m2uXZPJ5WwIQidNTU20tNipVue5ds2N0Rgg\nk7lFuRynXDYTCvlxuZqx23N0d48xN5cinVbIZNy8+aZCMnmb+noLnZ0WTp48gd1u4+rVEOWyF1Ut\nYrGM097ehdsdYGbmv1EoLFKtdqIoCebnVQoFgUqlzLlzPYRCEoXCAsmkRDzuxmZb28nkAbBYtPj9\nCtnsFMnkAqr6LH19L7Ox8c/k81MYDF8mGpWorT1Ab28nP/3pBfbvtyHLBqJREb2+mUwmjcdTRKPp\npKvrGLK8xKlTrSSTKSYmVNzug6yuXiOTmaRarcPhaKJcfgdJehtVPcbyciOTk5cAHQ5H78643P08\no9GtQN7u/eJv8zz9cfhg9qTd3gPkaG5eZWjo9J455mHBud33N52+xP3ns1t6weNxcfZsJyMjY2Sz\nBlKpMiaTB6+3H49HD0A2m2Zq6gqzswVisSKC4ENRYkiSHo1GRBRrcLlSLC9XEYQAZrMBRfFQKGSB\nfShKHYqioNHoaWt7GoPBSSp1gXgctNoXMBo3cTgKWK15kknI5Z5FlqtsbmoAHRaLjVJJoFpdR683\no6oSxeI6qrqKTmdHUc4gim9hMFzC4XiOlpY2BgcH9szBnxQ5/nkMXD4heZ7gscb3vw/ZLHz965/8\ntc+e3dL7uXgRXnnlk7/+44KHLRK7JzRVVWltndtZWDs6OmhtnX8kQsDrdaPXz3L16nVkOc7AwFlM\nJjuJRIpjx57euf70tAdRnGR1dRFJqgA6CgUBQTDQ3FzH0tI8y8thVLWO4eEbtLVdo1is4ciRQ5jN\nG9y79xaZjB6droFUykok4iCTWaK1tRuLRUcksoqiyJTL9Yiin3J5CUXR0dzcSzy+gqLoMBgE8vkY\nsLS7UywAACAASURBVEYm042i6JidXcPns/G1rx3fru91MTIyRjCYpb//FJmMj2Lx51SrBmy2Uzid\n7Wi1b5BKiahqHFkew2x2US4f4fLlaXy+JJlMM5HIMAZDGJerncbGASKRFUymaVpaWhEElUDAjCAU\n9giser257bRn9tSjP0g7aWlpiZUVIz7f+6VfH7U4fR4XsN90/KKiwXtdYXo5ceLLzM6+y8jI2IeE\nKHdr90xPS6ytKczPz2A0JggEWtHpvKyvi6iqA61WpVB4nVxug7ffzpLLuUgkOlEUEY1mk2rVg9HY\niM1mJJ0WMJnMCMKzFApJcrkFqlWZcrkB0KAoBSoVE5KUIZdTsdlswGFKJQeiOI6iRIAUqVSYdLpC\npRInm4WBASttbUeJxye4cmWBfD6JKC6TSPwfGI37eOGF3yOXWyUeTwKg1zfT1VVLMPgOZvM1mpsP\noarqL31w/U0Y/x88AKmqumujb8ftLpPNJjAa4w8cYw/aDOdyGRYW7lIsNpPPBxFFO21tR7HZnEQi\n36JQ6KCx8QgaTZpc7idotYtsbPwToEFVuwmFZnA6A/T19SJJCg5HicbGCgsLjVSrLnK5GSqVUYzG\ndkwmB6XSOsXiKrJswuncx/r6XVT159TWdlNXF0YQtMzPx1CUNhyO4+j1SXK5t/F4GqmvP0ShsML0\n9P9HIhGkVOpCVXMYDHoKBR/hcC2Tk0VOnhS3S5KN+HwtLC+/S1NTLX6/i3DYwb59dayvJ5GkAvv3\nH992QIpz8+YNlpe1iGIfS0sxamtH8fmGPnLc7B2P1z/0rv46NSE+T+UHH+zLowaS9upKDe7R5Lnv\nBgR6tNomnM795HJTLC6uAFvvS1/fGMnkFol59249AwMtCAIEAla02jw3b15Crxfw+7/O+PhrTE29\nxeHDWlKpTTY3x8nnC8hymVJpEEGwk0gcQaOJY7O58PsDgMrqqo9yuZ54/DIdHRs4nRni8TVcLgHo\no1QCWU4hST76+09w5cplvvnN/41y2YjZ7CMS0dDQYCCbNXLjxnu0tbVx8OABJicvEwqFyOfNFIsd\nxGILbG5eI58v4vXWc+LEV7l69XvI8hLxOHi9ElarH1lOodd3Ybd7uHZNRqPJUq3aOH/+ENmsj2Ry\nhWBwjlxOg9udBAqoqgBYKJV8qGoLy8tXUVU4ebKJpaVJwMzRo++PS4/HRTp9iQsXJnE6Kzz/fOce\nkdt33nmX1VVlT2n6b8s8/XH4sAZPM4Ig0ti45X51/fqNnfnjYcG53Vm/r756kWJR5cyZEywsbO6S\nXpjj3LkumpubaWtrRlUhk1nk4MGDQIJ/+If/xp07YTY3FWKxMFptK/k8lMtlKpVpKpUYdXUCNpsB\nq3UcRclQrfai1aZIpzXYbAcoFPSo6gywzOioka4uO9VqEkkawGTaTzoNojiF0aijUBARRRPV6iJa\n7Rp6vYhOl0MQRpFlLfAU5XIUkylMtWrd3rt4sdtbsNkc6PV+BEH/ofsZDAb5xjeukUyacbnu8rWv\nqTvC+o87npA8T/BY4+/+Dk6fhra2T/7afj/09cHrr/92kzyPksHxoIX1URfazs5OQqEQIyNZ9PpG\nbt8OcuCAHq/39M5nfD4Pudwb3LmzSbHoIJ+/i8XSgNlcpVpdZ2XFT7Wawu9vweU6SS73XRYWtGQy\nHVy7dgWLJY+ivIDJtMTa2g0kyYndrrCxsYnLtQ+Ho5ZSqYokhalUZigUFlEUCYulTDT6Dnp9nJqa\nKqHQTbLZFCaTj3T6Nq+9tozB4GV9XcDlcnD27Nlt++IcMzOb3Lnz/9DYWOWpp1rx+9cJBl+nWFzH\nbs+i16sYDBb0+ih6vY14fBxVDaPX7+PUqePMzd3A7dYgy07C4TGKxTna2npxu000Nq4wNLSlOxKJ\nzO0IrNbUFFhZ8X2oHv1B2kn37i2zsLCBTlfEaFwklxv81QbKE3zi2Gs77dijyfMgPMgVJp2eJp0u\ns7LS9EDib20tSDZbYW4uyuSkiKI4EYQoNTVeRHGTbDZEuVwDeJifXyWXmwdOoygdwCq53DparYTR\naEYQVnA6U4iij3LZR1vbliZFLudlbS1CLpdDVa1kswmcznU0mjCZjIqqHsLlMuFy9eBwRJDlYQQh\niCTVIwg6ZPkShUIzvb1f5vLly2SzdpzOo0QiBjKZGBZLgVDoGoGAZeew5/dHgU1aWrKYzfuoVI7y\n+utzdHfrMBjKH3k4/KTLXj4Kv2pbH/X9B/3f7nn5nXfe3UUKqDQ2rtDU9HANpwdF161WO+3tbagq\nJJP1yLKNTCZFPn+HTEZHtaphc3OC2to4Fks7ilJDLreCxWJmaOhlRkf/GZdrlj/5k2OYzdZtYWcV\nm62PZHKZqalxwEGx6GZjI4nPV0IQFgE/kmQnlwtQLIZJp+c4fPh5KpUYhcI81WqGWOwqpdIEgpAl\nk0mSSKyTywXJ5cyIYj2VSghRLCLLZqpVJ2azm3v3Evz0pz9jbCxDItGMLGeQpASrqzcIhaJksxlC\nISd1daAoKVR1FkkSmJmJMjaWoVSqR6OJYzavMDDQ/sD7+DCB9Ae9q79IJs7jIJT8SfXlUQNJD9KV\n2vrsVpmLoqwACSqVKKlUnNbWAlpt+0427ODgAJHIHKuryW2iXSQQMDM0dJBDhwR0unWqVS+5HITD\nBqrVrbLAcvkWUIuqtqDTzSPL82QyPrRaBzpdPbK8BnQSDodZXp4llVokm10lEvHS3u6iuzvL2bON\nzM4WmZsTSKdryecXuXz5NdLpZfJ5M9VqL7KcoViMUCjMUiwqBIN+LlwIcuZMBydPtiDLi8hyPara\nRiKxwOLiezgcZcJhC9/4xn+koUHkwAE33d1ecrmDJJNpNja0xGLrjI9voihGbDYzExMXefXVMQIB\nD/fuiVgsXWg0t5Dlq/T32zl+/CyZzC3Gx29it6dIp80oygbZ7M+wWKbR650MD/8Iv1/A6+3etuPW\nAVvBqtbW1j0H6/vk8dRU4ZH2J5/lnP3rxsM0eHI53bZz4d7spwftxXdn/UajObJZJ9/61rfxeuN0\ndh7fs4d0u53cu/cD5uc3iMdzjI0lUZQVRkbmiMX6UdVlJClCtQqVSh5FyWMw6DCZJEymCuVyGVVt\np1yuIkljGI0VymUthUIEjUbE4UjQ3HwYWa5nefk20WiMYjG0beowhsFgplptIJ2+iiStU6k4EMV6\nXK4sHk8KRdkSxtdofMTjCjU1RjKZTQQhilZrwmZLU1c3xBe+8DLZ7MpOIOg+RkbGuH49jNHYzsxM\nmP37x56QPE/wBL9u3LsHly7BP/7jp9fG88/Dj3706V3/ccAnHRl5kIBiMpnGau3i1KkuIpEgHs/G\nHpvwzs5O9PoklUoTtbVDrK1dweNZx2j0k8tNYLdPUyptUiwWsNt1OBwSxeIRmpu/wJUrczidGXp6\n+pibUykWXyeVMlAu95JOZyiXg8TjaUSxiNs9RDx+F0WZQRD2Uy7LFApRBMFDsbiIVmvGah2ktrZA\nOj1LJtOIVtvMxESE73xnmLa2NmKxBLJsQa93s7KSJp3O4ve3AluH12LRh6IcwG4vc/iwjffeU6lW\nBQThHkeODJHJ2IlG1zl6dB9dXf1cvbpENBrBaq3jqafOs7g4Tjq9lZK9WwT7fmQ+Epn70Cb/QdpJ\ni4uL+HzSTunX4+D28tuGX/bd6+zccisZHb1DsbhONtuP1RpgcnJLVLexsXFXqnyEubm/ZXLSTLF4\nfyM9j6ouU1NjxmRKUy7Xkc83Uiq9i6LkgTxQQRByaLUKBoOJfF7CaKzH77eg15tJJFxotUXq6hzU\n1XVy8eISxWIAvX6ISiVNudyIojxPPv8uev0suZwFkymFKCaJRK4jSQYkKY7V6sbtfgqXK4/DEUcU\nG1FVPfF4GJDo6jqA0ahgtc5x9uxX9xz2tqL1PSwvN9LT8wwzM+9itaqcO+f5yMPhJ1328lH4Vdv6\nqO9/3LX3kgJxhoY+2tL6QZkiPp8Hvz/GzZt30GgcHDvWRzy+RjYbIZ3+Ir29J7lx4+8IBGLYbGco\nlfqIx6eIxd7iBz/4G5LJEB6Pl2zWyFe+cgSHw0U2m8bvL1FfXyQaLWIwPE25XEM6fQedTqBY7ESr\nrZLLxZDlOqpVI4XCLE89JVFTM4CqZpEkCUm6Q6FgJJ0+Q7l8h1JpDFWtUK22YLMdJpdrxGZ7E6Ox\nFbu9gCTFWVsL88YbaazWg+zfv4+5uTF0OrDbW0ilkpw+vZ9YbJ1CQUs6DYuLbwL9qKoLna6J/fvr\nWF2dpbPTxL59PXui6vcPnQ8TSF9etm6P1V8uE+eTJmU+T1kRv0ogabeZAYDTad/W82nE5Ypz4kQM\ns3mJSmWRhgY/4+O1zM5G8PujnDvXxblzXdtE++CHxO9feeVlNjZ+zLvvvoVWK9PY+AU2NorIsgur\n9TiFQiOlUhGjMYoghNFoYthsZvbv9+F02pmZmUWSVigUTEAL1WovBkMLVmua555rpr19hR//OEE8\n3svc3CgrKyMYDDU0Nb1AJKInGr2LKG6RmG63n+PHX2Zx8Trf/e4/IcsNwDNEo2+jqnHa2/exsSFT\nV1clk9EwNzcDHGRrPp/GbLYyNZXHbj8CTGO3zxOP32VszECl0sDm5iqp1AouVx8vv3wQURRpb89w\n+vQpOjo6WF9fZ2npNum0i3K5mZYWG5HILURRTyDQhSwH6enp39GKcTh6d7J7Pnjwvk8ee71Nj7Q/\n+Szn7F837mdBhUIiDQ1JTp6sYWhoa4xKkvBI88f9PcKrr34Pg0GHRuMhlcoDq+h0uT0lvcPDw9y+\nPUs67SCfD2M0XiOTuUc0egI4TqkUo1p1YTQeQ1Fi29kyAaxWH6XSGJFIjFKpiXJ5HZ3Ohc1mQZbd\nOBwStbUl3G4bgjBINpthasqCLLeh0dSg072HLJdIpfqxWvOIoopW24RG04/BsIQorqHXa9BqC9TX\nl7HbHczOzlAqqXi9fdTXpzl82IbP1048biebXcZg+HCW6sZGmEgkhdEIpVKKjY3wp/0IPzM8IXme\n4LHF3/892O3we7/36bVx+jT8zd/A4iK0tHx67fw24UECipOTyW1dmTwNDQnicTvvvCPsWaxbWprR\n6UIUi3r0+lX8fh+CEGdzM8fsrJZqVaK7u4dAoEpnZwdXrtzj8uVvUi6vUSjkiEQu09JS4umnn+fy\nZRuzszoqFRfF4iaieB2TqUQuJwJWBMFNLldFq9XQ3HwMp7OWxcWf0Nw8RLHoJ58fxmRqQKczk8tJ\nVCpZ4nEzkUiMfD7L1NTrzM21o9P5KBa9pFICc3Nm4vFOdLoO9HoX1eoaqirR0TFEa2szodA9bDYL\nLS0qfX0CLpeOUGgZWa7nC1/4IhcuvM7Vq/9ELJZnba2ZlZWrO2ml9xdyVVX3kD4fPPDu1k5yuQq4\nXL7t1HPzY+H28gSPBkEQEASBSMRMLtfFnTs3GRm5h9WqZXJSj8vl2Mlm0em2MskUJU65fA1VtaHX\nZ8nlarHbbdTUCKRSBUolBUUxASUgAmRR1RQWSyuCkKJaFdHpGonFggwMHOTEiae5ePHnmEw+UqlV\nNJp1tNpmRLEeVTVQLtswmU6g0Wiw2cbQaMKYzU2sr7tZX1/GaKwhm30Hnc7BsWOv0NpaplKJ0NHx\nO5RKCebnryGKYVKpBqzWWiRpy6Vlr3jkliZXJPJ+doPP9+DI5m58llokv2pbH/X9j7v2L0oKPChT\npLOzk4WFBX7yk3tEo1ree2+E06c7aG//Ej/9aZSVlTHa2ty8+OKXeO+9BBMTwxSLMRRFYWNjhWjU\niiwfYWlphI2NH9HVdRpJWqKmRsbtTtPQYCebraKqS2g0efJ5Hbmcjr4+FwsLC6TTCqpag6p28OMf\nX+D55/fR1mYil7Pj8RiZmKjF53uezc0K2ewwotgMmMjlbmEybdDT04XX20qlUmZ9fZGamn3k8xUK\nhUU6O510daWw2Y5y6NCXuXDhdRRFxWDIsbjoJJNxkkg0EY+XgRSCkMRuFzhyRKS/v5vZ2fKe0tmu\nri0ifmRkbI9Yvs0mcOzY0x8aq79oJs7niZT5PGFubo5vfOMSExMyYMbpnKG2toeTJ59heHiF+flp\nIpEjFItlQqEgdXUiBw9uibXH48mdsvEHQRAEPB47gYBAOp0gl1tBqy1gMMQplW5SqSwiCIuIopHe\nXgc6XQmPJ4rTaePKla3MnXJZQhBcaLUFVHWSXC6Gy+XH63WTzaZJJN5kYUGH2Rygru53SSbHKRbn\n0Gqhvj7OM898iXg8jV6/yuLiOywshDAaDeRyKufODZFIJMlk7mC3u6lUimSzJkwmgXS6jlKplTt3\noty5cxu/v4Fcrp7z55uJxWLMzd1kbU1LJtOH220hndagKBVWV2O89tp/5siRIZ577rkdMqWnp5cj\nR3woipOLF7/N+HgCna6WatVEe/sQ2WwLNtvWPfu4rDOfz0MgEEeSHm1/8nnSj/psoEMQzLjdGgYH\n75PzwUfO5Lu/R5DlBlKpOInEOvv319Hc/AL9/cJORqeqqrz55j0ymacxGOLEYlWKxWZisQTl8hqi\neANVncFi8WM0OpHlBBrNMhqNDkGIkctFSCRAklQEoRmt9iaKEsdgAFX10t3t5dlnA1y5Msf09Aal\nUhWoUCyWEAQNWm0bilJGUUT0eicaTR2y7ECWIRpdpFDYjyAE2L8/yUsvuRkf9zM8bKOm5gTVapCB\nARuvvPLVXYHlD69z9fX11NSoGI1uSqUG6uvrP91H9xniCcnzBI8lqlX4h3+AP/gDMJs/vXZOnQJB\n2MoY+jR0f34T8XFpsw8SULTZ+hkaynLnziW02iJ2+/FdGgWjjIyMsbm5idW6gSQVcTqzfPGLBxgd\njTA21gN0IUmTmM0G9u9/gUBgmUjkXVQ1SG1tO3fvzlEqLRAIDHLiRDPB4M+Zno6g1RYRRS3gxm63\nUq1mKZUKlEoN+HwaJKlENruA0RjD6awgipuIYhS3ex1B0LK2tkipFEGv91EqCczOTpPL1aDRtKAo\ny5hMPiQpysxMElAwmdrI5xWq1TH27bNw4kSAubkcgrBJZ2eBzk5oaPBvR/hk1tYczM9PkUgkcDrX\nUJR7VKuD6PXPMTFxjdHRsV2kzofLMe5jK2oTZGlpCUUJ09hY4MtfPoYgCNuH4idCyr8puP/+vf32\nFVZXazh27PeYnh4lkxljcPAPyOVShELLdHU1kkotUSyGsdt7cTjmKBZFRDGKw1HG65X44hf/FSsr\nt8lkbpBO67lzp0qhUEQQ6lBVLVptHoNhFkFIkMn0EomIyPI9RDEBiLhcRrxeM5cuxalWfwetdh2d\n7i30+gLVapLFxTfQ6TYRBCuFQohwuIly2YAkmVHVHKrajSQtAzeorx9EqxWQ5SB+v5XOzn7MZh8r\nK27q67sIBkeYm/sxLS2ntku12Lahfz+r6f79uU+GPgyfpRbJr9rWR31/K+J7jQsXFnG5Cng8x/d8\n9xclBR5ECgmCwMzMDEtLbiqVHlZXR1DVZb7+9f+dQOAii4srNDcfpLm5mdXV79PSksFqDbC+3otO\nFyQW86Gq+0ilprl79zY63VMUCo2Ew3ewWutoaJCYnHwLkymGKHZSKNSjKCLhcAqDIYogJBHFAOWy\njWKxzOjoJPF4G6paQ6EQoVK5xcpKhHJ5Ap1OxeU6SLlcwWZb4OTJAH/4h39IsZgnkUjy6qsxFhfj\nuFzg9Rp56imZ1tZnmZmRyWaXaWjYpKZGoVTSMDeXR5bdCILK0lKCSiVHV9cAVmuU8+f7sVrtXLsG\ndrubiYlJamoKO65C7wc1LtDfL+D1nnjo/X2CXx6758JQKIrL9TsIggtZvoQsL29nty6TzxsxGo9i\nMBRYXpYplSIEgxMcPFjA6+35yDbi8SQOxwD/+l//GT/84V+ztnaReLwCuMlmF7bJ6x6i0TqWlq4D\nEisrfu7dS+B0Wmht7cPh6MHlylKtqthsczzzjJYTJw6jqirDw6uEw7Wk00EKhTW83lMcOlSL213Y\n1vvxEgi00NERp7u7lZs338NoNNDZ2c/IyByTk1fp73fT3X2GVCqNRlNkZERGkjooFCbY3Jygrq6W\ndLqThgY/weAmExPDBINvMzs7S6l0CEWxkUgk0GhCWCxDFIspwMlWudX7uE/MrKysU62mkKT9OJ3N\nqGqUiYkrdHfX7cxPHR0ddHeHWFycpKWlkY6Ojj3P7b4ZACwzODjwSxHQv6nYGnMfzoL6Rde6WCyB\nw7GPF14wcPHiG+h0UQKBBoaGuneIu3feeRebrRu320IoNAOAVutFozmM1XoNSZqntjZPXZ2XeHwV\nVS1itXrQaicxmSrk8xoEwY0gmNHrbeh0TlQ1gyjqSKXeYXXVxDPP/BfM5gnm5xfI5YpkMkUUJYVG\no0UUdUhSiaamCI2NTu7dW0dRksjyDJWKiiw3oNG0MTFxmx/84DU6Olpxuy04HDoSiS2b9/vr3H3H\ntuvXb+xxFHM47HR2LhGNTtPUVOHgwYGde/S4lwE+IXme4LHExYuwugp/+qefbjtuNwwMPCF5fhH8\nYiUCWwKKw8MT21G2DiqVTTKZGWZmBO7du8o77wTJZBopldwYDAUGB3splYo0NDSwuLiEILhRlCFU\nNcbS0jShkJtMxo7ReAy4wdjYGvl8gNpaO+WyC7vdyalTAYLBKOGwQC4nYjAcxOczk04nMRjKQAyr\n1UdHh5WnnhI5cKANp/Mg09MzjI/H0GiOMT09isEQwuu1curUEB6Ph3I5gyz7OH/+T1lZ+U+k0zex\n2/14PAkqFUinBbTaTTyeKF/84u9y7Ngxbt36FuFwEas1hcu1j2q1ievXb5LPK3R2HiUUGiOTidLc\nfJS5uWU2NkJks1dRlHnu3BHY2DCxvg6yfIvz50OcOXPmQ84Bb7zxBv/9v19lddWM1VpDf3+eoSHx\nNzad+bcZ79uu21lYuEsisYYkiWi1BxkevolGk0YUn2V1dQnQIctdrKy8hiw34XLtRxBm6OycY//+\nborFDdJpmfb2f0UmM0Mk8s+kUnnK5U00mh48Hisul55U6m1E0Y0sS0hSF7FYnkjkBh0dLayurqEo\nAbq7D5NO/yMGwya9vcdYXr5NufwOer0HUZQwmTRks7PIsh5RDAGdiGIARbEQDL7HwIAWQejHYPAh\nCEv091vJZGoYGVlidVVlcfEGWm098fg6iYSB2trCzsYMIBIxI0leIpG5PdpFD8Knedh+ULnquXO/\nXFuPdhgqAzmg+sh9ethG9mGkUCi0RCbjwGbrp1BYIZ9Po9FoOHPmzI4LzJaw/gH0+rtYLCJebwxR\nNGOx3CUcXkOS5pGkMjdvLnDkyAkyGZHbt6+TSLRSqTRgs/kxGKIoigm3uwZJUrDZujCbUxSLd4Am\nTKYy6bSVjY0Oenv7MBolUqnrxONraLVmTCYbFssStbWtPP30Yf7oj07skOSqqmI0QiazQi7Xhk5X\nobW1iTNnztDauvUbMpk6zOZ9yPJdnM5LhMN5DIZG9PowtbUHeOmlf8vs7A1sNvY4M4GZyckcQ0Nb\n93i3WH5fn23nmT3JxPlk8f5cWEM0ukC1+lOs1hb6+nScOtWPzQaZTB8bGz9nfv7nlEoSqpoGTMBt\n+vsPPTK5MDt7A4MhR6lkJJXqwu0ewu2ewOlcRBRPYjaXmZx8F0lqR6frQ1GWkaQpNjcTSJKMw2Gk\ntRXq6r5AU9MJgsE4qdQ4oVAFVT2AxeIG3qavb5kvfvH8dpaYl3R6ettVaUuj7+rVdXI5lZGRIH5/\nipMnaxka2tLAef31OTSap7Dbc7S0tHHvXgqjcY6aGjdabQlQ6e/XU62Os7mZI50+gCRtIAhhzOZV\nGhpUNJpFPJ4Wfvd3/5jFxVEuXdpyI9st8vvtb79KpWJDkiQWF0N0dq5SW9tEd/f7ZM7c3NyOBfvY\n2DiJRIpDhwZ3iNDXX59DkpowGGI7WScfhd8mgvSjzFDuZ/A+ylp3/zrg4dlna+jrszI4uJW9c1+T\nyuNx0dfnAhJkMvMUClvGHoJwD0nyoygBKpUFTCY99fUGDh58kZs3rzE3t4FW+xzF4hQazTJG4yKi\n6MZiyaDRWCgUapDlOiYnJ/gP/+H/5PnnhwgEXKyvr1GtujGbbRQK3RiNKQRhjZYWeOaZY1y6lGV9\nvcLysplCIUi1mqVaXSeVUrh+vcraWoLm5jxmsxm/X8/g4PuEzV5HsWtAGbv9APfu3WRzM47Z3Lhd\nOvbpuB/+OvCE5HmCxxJ/93ewfz8cPvzpt/Xcc/A//sen385vCn7REoEtTZ5/IpGoUlsbYHOziseT\noa5umcnJDOFwI6rqx+GoJ5HIEwwu43bXMzWV4sCBPt544zLRaBGXa5G6Oh3Z7CRwlgMHjjE9fY1y\nWcBg8DEzs47ROIPX+z/z4ovniUatXL78LuvrBgKBXqrVHHZ7mNOnX2JpKUhLywYvvPAcX/jCF7bF\nQMHhcFGtQiRSJp3O4/U2k0ikkSSRxkYLra1OZmaijIyMIklr6HTd1NU1YbFIeDwxBKGIzdZOuVxH\nuazwjW98k4kJC0bjSZaXX0cQgvz5n/9PzM6OMj8fJByuI58v0tHRRXv7IMPDl4jHlwiHc9jtCtPT\nOqLRJKK4j7W1AjBBa2vrnkUoGAzy7W+/xe3bMhpNOw7HPpLJ0G9BOvNvJ+6/fydOHAW+B4zidj9D\na+sQFy9+H4PBSGtrN2++eZ1yGY4f/zJWqw6fr0xdnYliUc+/+BfP8OKLL3Lp0jD3XbpefXUdUezG\n50sRjS4iilPo9b3U1fmoVnupVldIpfKIoh+D4RSl0hrd3VtuGUtLE9y9G0OvT+BylTAYSnR0HKe1\n1cr4+A3K5Som03EWF4NUqxFstiySNEO16kSWVRYXTbz22mVOn+7n1KmXGB7+ERMTQWTZT7WawGab\npVy2Uir1MDkZJxK5ik43RFtbE+n0VXS6dfL5A5w4cZTZ2RsfO/Y/zcP2BzeN5849urbIg671KZ3q\nuwAAIABJREFUUYeh+1kGD9O9eFif4OM3sruJIYvFhM22gUbzLnb7Ji0t3Xuue98F5ty5IQDa2jZp\nbd2H2Wzlm9/8R37601uI4n5giGJxiZWVtygWVykWPaiqC5PJjUYTR6/PYrVG8XgaiUYdHD06xLVr\nt1lb+2cqlTDZbAN6vQ23WySfj5PNzpLLNSCKpymVNFitczQ2xjhzpoUXX9zKnrlwIUip5GFq6m3i\ncYWOjmfRautwuUJ7dEBSqTQbG3psNhflso/Dh7twOq00NLSTSFgplzO8/vqrOxlTu52Z+vtPks0u\n75BoRmNwRyx/aKjrU7HzfYIPzoVgsYzT3W1jcHCArq6t+z47O0tbWxv5fIhodAmHI8Dp018mkVil\np6fxI+/9bpI1HJ4nl1PY3LSRyymIYpWaGjsHDwZYXw8SjWbQagVMpi7y+QDF4hIeT4pq1UhDwwDF\n4hKNjSqBwHFstiYmJpaoVjcoFlfY3DSi1+sxGmtoa2vFbnciy9DdfZSrV1d2NPq2CMQehoaMjI8P\n09Vl5/d//2VEUdwRWT9woIvZ2e8QDAZxuXz4/VqefdaNy9W2rTc0yFtvXcbtbkdRGrl377+i0y3i\n8ezDYDDjcNSSTK7ys5/9vyQSEVZXA6ysvL2rdLyLUqlIMlkFNJRK1ygWrRiNf8LsbJzW1nm6uroY\nHb3DxISKRtPK5OQ0CwvvMDWV52tfU4nHk79w6dVvE0G6ew/t8XTuIWW2dHke7d7t3Yuf2CHYdq8F\nZ8928uKLPWxu/gPlshtVbSMavYnZnMNqfQmtdpBs9gr19TKRiMLMzBSh0B1yuQaczg6ggs+3gtdb\nJp2epKmpleXlMLmciF5fjyRluXXrFoLQhyxbaGnZRzZboVgMs7DwI4rFOnQ6AVUdIpm04HbnyGb9\n+P3rbGy4kaQglUoUg6GFQOB5CoXrmM0lTp607wQ9gsEgsVhij6NsKCTjcGgIBDxMTaWpVvfR13eI\ncnljzzr5uJcBPiF5nuCxQzwOr70Gf/VXW6VUnzZOn4a//msIhaC19dNv73HHx6XNPmgxHho6yOTk\n24yMjAFm3G479fUCtbWHKRZlpqam0OmiNDbmMZkcdHd3sbGxRKWyQGNjGVkeR1FMKEoHoVABo3Ga\n9fUiWq2Ey2WnWCxTKhXJ5WRGRsYYGjrIH//xSQ4csDMxkaVcdrK5uYjZXE9NjZOmpnbOnTv/oYPO\n/d+2vr6KKKZwu0+g1Y7Q1RXj3Lnnt6NUb3Lt2jJa7SDpdJDR0ZsEAs10dlqQZYlw2EsyGcXprLK2\nFqZUqqWuTk8qBZlMiAsX/iuyHKK9fYDu7oPMzpaQ5bu88cbfk80mcDjslMtuAoEDVCrzhELXyGbj\n1NXZyeUsH7IaHR29w8qKHlHUs7l5B612hd5e/06GwxP8ZmF3ZDkQMNPd/Ryzs2VyuVX27bMRj6e5\ncOENIhEzyeQamcwN9HoPvb0iGs0MGk0em81PLJagpaWRUklmdvYGWm0EjaaMzdaPIJzB7S4C0xQK\n41QqOvR6IxrNNBqNgKJ4qVaT1NUN4XTasVqvk81W6eo6gN9vprm5wMZGmqUlAVluIpGIkU6/hSw/\nhdFowuGoI5e7iixfBA5RrbYTDt9hcvKHCIKEJG2Qz1twuQLABpIUwWg0otEo6PVpdLoCGxsV6uoq\njI8r2GxQKt0F+EgL+l8VDzug7/778vIykvTLi+vuxsdtQD9uLt5b2md/ZBIM9hJDotjOU0/lkaQN\namsbePHF83v6d98FZnLyKt3dVp5//tmduXV1dZWrV9NIkgVRrMNi2QRm0ev7cDhk8vkFcrkCilKD\n1+ulp8eAKMbQ6zMIQhmHQ6ZUOkEuJyCKGkRRxm7P0dGxSiymsLbWBwhks3lMJgm3u4f6+ga6urq4\nfv0GhYKLycm3uHz5+nZmkYH6+gQtLXZyuQyvvvo9JidzbGxUuHVrkvn5Ih5PihdfbMDtrt0WT46S\nSGSBHKpaIRQKEY8ncbkcdHXJZLMrO4KfH5dx8LhHjj9P2DsXipw79/sfupdbz2mQP//zf8fw8I+Q\n5SAajfhIOjBb1suXSCY15HJxikURo7GZcjlDLvcuhw5ZOXXqFNeuLZNIlIlGNVQqQWy2VXp6ihw6\ndJCbNy3o9XUoSp6WFjOJxAzXrk0DBZxOIz09epaXc1itA2g0Nurr6/c4Iy0s3AN6kaQg3d06Mpk1\nJiZUVFXg5s0F/uIv/pKnnz5Mc3MzBsM8mYxKIJCnUjFx8uRZMpk4jY1bpVb33ThbWhpxu0eJx0OI\nYg6N5hlUVUEQaunpOcTo6C02NzOkUgI1NV1MTEQYHb1DZ2cnb7zxBu++e5Ny2U5NzWmy2UUslnb2\n7XvmAXNUgURigUwmTzJp5vLleTyeDC++eB6D4cMGEk+whd176GAw+AGNy493j3zQde5ja872YLM1\nMjGxSE3NHV555atUqyqCcIwjR/4dt279R6zWN6lU7pHNxoFpEgkromilUEhTqRhQ1SZSqUkMhru8\n8MJhhoYOs7Bg5/jxl/nmN/9XMpn3SKf3IQgSpZKbRCKMVtvE4cN9jIxcIBrNotH0IgglVDWFqtqI\nxwWMxjW83g2Mxiq1teB0uojFjCwtSayt/QRRlMhkTrC5aUIQBObn53fuz25H2XJ5BbvdwMTEFfR6\nDx6PjbW1e5jN0T0lmo97GeDnnuQRBOFF4C8AEdAA/0lV1U/RT+kJPu/41rdAUeAP//Czae/kyfd1\neZ6QPB+PvbbPuj0uWQ+Lij0o6gkr+P0CqqrDZKpw8KCDffteYHh4kZGRILlchWw2i8n0NG1tAolE\nivb2OtJpJ729IoVChvb2bsbGwszNpWlo6EGS8ly9miUanePcuS5eeeWrDA3NEY3GyWaPkEymEYSV\nB5Y97I7aHTpUxGo1kc1O43AUOHr05M7vs9kc2O09iGKSWExCUeqpqTEgil58vipOZxtTUzo6O3tR\nVZV4/Cb5/JvU1sapr28DrFgsPtzuEoKQora2SCikY3NTIZ0WEUUb5XKGTGYUg0GHTmcnkbiBqrah\n1W4dTHb3ORxeR5Js1NS0oNf/nGPHVL72td/f+X1PIse/Wfgoq2GP5/h26YxKV9dBbt0K0ttrwWJp\no77+HsvLWnK5AK++GsRgWEOjSVNXl6ehoZETJ+oxGhVu315FUVL4fE3U1LhIJrOo6gA6nRuz+T1s\nthTV6gqdnTZcLgcXLswhimfx+UqUSjJ2e5V/+S+/yujoHX784wRG4xFKJS2yfBePx0YmU0GnM6PX\nH6NanaBScaDXq5TLdWQyNczN3cTny7K05CIcdqHRxBgacuP1VlldXaJSyQMNhEJVJia+hdVa5c/+\n7H9haWmC9vYIp0+f+tRS+R92QN+bJp4EcszMCL/ypvHjNqAfpXuxu7+rqzUsLNwFvkcgYH5onx5O\nVql85St2mpqaduaQ3f3LZLbKQPr6RIaG9hIbLpcDh8NHLKYiyxfxehP4/adwuV5kbu4dFOUdoI2+\nvkFaWx089ZREY2MTuVyGUGgZQehjYcHI3bsruN0iTmeSw4e1vPLKl/je94pcu3YFSTKi06WQpDY2\nNmxMTGQZGprD63Vz587/xRtvJJCkF7FY5qmrW+PUKTdHj+5jZkYmGNzKQurs3I/TWaK3V4vV2kZ3\nd4CaGu/2vbCxvPwF9u17huHhH3HhwiR+/4k9zlm7NYw+KuPgcY8cf57wKCU8u98hv1+gu7uPVGoZ\n+HhNk61sFBm3+zCrq1H0+ikcjudwuytYLGu89FIfVqudjQ2FQGA/slzF74/R39/C+fPnCIVC3L49\nzPr6DDrdEjbbMerrLSSTWfr7twiYpiYXGs0WCeJyweDgwZ33enV1FJerh+PHv0QweBOrVaWvL00y\nmUEULbz9tp6lJQ/j46P82Z+pnDvXRSyWYGDg+W2dqQRGY/xD1ttnznTwb/6NwHe/+wMqlX4E4Sj5\n/Chwl3DYgNXqp7V1gOvXF5FlFY3GRDi8zl//9X/hm9+cZW3tMMXiLInEW3g8JazW1B77dIDBwQEm\nJy9x8+YYRuMqpVIHhYKDsbEM58+rdHfrHjpvPcH7+OB88SjukffxoL2f1+smlRrmwoW3kOU4iuJk\ncDBId3cHev0dbt36z4jiNM8+24vZrGVsbB6rtRMo4XA043T6WV4ep1JRKJdX8HgyfOUrX6GjowNJ\nChIM3uTYsaPAPFev3kNV65CkJpJJEVUd4+c/nyWTMZHNHkSjacRi0VMoXGRsbBKXqxWj0URDg5NS\nKU9HxzH6+lx0d+u4cmWYS5dkqtWTOBxHWVvb3CnDXV1V8HqdpNO2XY6yAoPbZqKVygbr6+MoSpS+\nvuN7xtvjXgb4uSd5gG8Ap1RVnRIEoRmYEQTh+6qq5n/dHXuCzx6qCn/7t/DSS+DzfTZtbi2s8Pbb\n8Cd/8tm0+Tjj/Rrg4PbGQfjYiKQgCAwNHSQSCe5EPQcHB3aJCn9tZ3JNpb7L4mISi6WGbFbF4bCT\nyajodDfJZguUy1XgCN3ddZw9e5L9+xf52c+CRKMVcjmR/v5TZLOJ7c3z3r6WSk1kMuPAnZ06c2BH\nV2JyMondfgCDwcSRIxEmJgro9UeZnS3T1jZHV1cXXq8bqzVDLjexLTjXxdJSGJvtXU6ffp5yectd\nIx5fob8/wLFjBioVlULBhiwfYd++Z7h69bvo9XM0Ni6j0ZSYmmrD6QywuTlOT4+KKILPt4Db/Twe\nzwFKpcvbhw/7nhKDrQXciMGQQZLucfhwB//+379Ed3f3ns88iRz/5uKDh0pBEIhGg6yuJvF4olit\nNgIBDTU1fqrVJiKRMpcuRQGJVKqAySTT1WXn6FGBxkYtlQpotTmcznVisRTlcoBAoIP5+Sj19To6\nO5/Caq3siM/q9c10dtYxNzdBTc0C58+f3SmVePfd15mbS9DZWUMslsdqVVhZWaJa7cRiacRutyII\nFSCBKNqR5QGmpmZobi6jKDp6e0UEYYAvfSmAz+dhdPQOwWCQ8XEr8/M2CoUqsjzCyMjbDAw0cfr0\nR1uE/6p42AF999+np1WamlZ23Et+lU3jx21A5+fnt62i+5idje2USnywv/fLWbZIsIMP7dPDyaoH\n26/v7d/pDxHIqqqSSqXxeBopFCxEox5UNUQ4HEaWf4DbXaK+/ikKhS4qlQoGQxyn08/KygrATqYZ\nJIjF5rHbFfr7O3nllZdZWlpieLiIopwCpjCbl7FaO/B4uimXZWKxBM88cxSzWcJgOEBt7e8Ri/0Q\ni+XdHRIyGFSoqelmdXWMcPguXq+E1eonEDBTU+Pdea92u2LJ8hJ6fdPOGLDZ4Nixpx/5mT7ukePP\nEx6lhGfvGH1fu+ZR9bvATDotkEpVCATy+HyL1NYeJhDwc+hQN1euXOHq1esUCnWYTGFOnuzm6NGn\nEUURm81Bc3MjJpOOTKaRqakC58830d1t2SFgBgcPMjS011xhbm6O2dkyMEgyeY9r135CICDi823t\nPyYnLzE8/A6lUicnT36V5eWLLC2tcu7cObq6tt671tb33YY+aL2dSKQ4e/YsyWSaWGwTjcZCNKrl\nxIkWDhxoYmoqjywL+P0RnE4Fm63A7KyOkZEJFhaacTq/hKq+hcXyY7q69tPefniPfTps7TH+6I8E\n+vqcvPpqko0NL42NPdTWyoyNjW/ryjx43nqC9/HB+eJR3CPv40F7vy2i56fIch6f7znW1pYYHb3D\n17/+dTY2/oqf//wmHk83LS2D1NdLuFwvYbd7GB7+IeXyIoLgor4+jM1mp76+kZaWXhwO157g78xM\nDFm2YzBIlEoWzOY8zzzzNJHIDJFIEY+nG1leIJmco1yO43QmMJnasFr3EY1u4HKtkU57KBaNrK/D\n4cNOvvzll6hWl0mlzKythbBatzJyQqEQCwt3mZoqUC4v0d5u23aUtXDo0Jb+0JUry6RSbvR6K6FQ\nhfn598fb414G+DiQPArg2v63A4gB0q+vO0/w68ToKIyPw1/+5Wfb7nPPwT/902fb5uOOXzQi+TDn\nlg9+x+VyUiqFiMd1lEqLGAxumptFSqUG8nkzpdIcWu0YZ8788fbk3EVra+sOSZPJxDEa4zv2kLvL\nFVpbO7l2TSaZVIhEgjttbulKKKysSBw6lGFpaZPa2g0aGn6Hnp6nGR7+Ed/5znfp6upiYKCfvj4T\nb7wxjSB0YzJpKJfXkeUolcoSxeIMnZ0mDhxQOHSom87OLzE/P8/t26NcuXKRO3feIhZLMjBwikhE\ns30oKmAwSJhMERyOBlpbHbjdOubmlllbS6LXL2GxHPxQivmWe8IAX/3qlsjnyZP2D22WnkSOf7Pw\ncaTd3ky7wW0dBg+qqrK5GWR2dppCYQyNxoMglNFqD5LJ2Pn+99+kXI7S2HiecnkJiFKp9JFIjNLR\n8c8MDHRw4EAfPT29+HyencOI3x9DVcM0Ny9y8GATLS0tO/04e3aBpaUfkkzq8flEDh92EY83MTYW\nIx6vo73dg6KUkaQgqRSEw8v/P3vvHtzmfd57fl6QBHgBCOJGigRJ8QaAkkld6NiyLEqWbMui3Fya\npknjs7HT7bQ9bbfbmWxntnv2bOfMzs7p2Z6dbbI7J2nTy7Z1mjiJ07SJ00iyE8syKUuyLIoSKYkE\neAdIigCICwGCBEDi3T9AgAAJkOBNJCV8ZzyyKOJ9f3jf5/f8nt/ze57vl+lpCzqdDKlUx8DAbQ4e\nrEGnOxz/jhMT49hsnzA9fYimpmfxePLQaKy0tb287adw6TboiT/Pz0+dENkINlsVsryd5cyZUzQ0\nNPDuu+8yPGylpqaKl19+mYGBgXj1ztxcFQcOZJasWkqUWxZPVaP2GJO5F0WRnh4PHo8Hr3cejUZF\nWVk5Ltd98vIUKBRydDojDQ0t3L17hUhkiO99b4ixsSLk8lKamqaprYWCgm727ctFq30GjUYKwPXr\nNxkasqNQPI1E0oREEqG6uoSZGQ+hUHQDIAgCzz//LDdv3sHv/xkFBXcwGFQMDg7ywQcPuHfPS16e\nGqNR4NSpOoaGpvB4blNU1EB9/fn490xcu3w+I729oQ0nafb6yfFex3rWw6NHD3Plyk+5efNn+HwO\nfL6nqaiQ0dIyh0ql5NatTt5++8e4XIUUF5fidrv413+9wvh4GWp1hNbW/cjlM0xMVGI01iGVPkQu\nL15RiRGLgxLjFatVR23tIcbGzMjldzl37otx/hHIo7i4jslJGw8evI1UaiMQ0GE2mxOul+g3Uktv\nx6pt3O5RysryOHSokaNHD6NSDTM8bMVkqsNkOsDNmx/zwQcKRLGRUMiMx/MueXk2KivLMRjOUl9/\nlLt3fdy//yC+3sSUQA0GAypVCRcumJFKQ+j10SRwNiaJYq1K6834i9S2LlBeXoFarUCpNOJyRZUq\nc3JyOHPmJaTSl+LKt+Pj17l27QNGR0WUSj2lpTnI5f187nMV2O1SZLL96PUF6HSapMPft98OMDq6\nH1G0U1jooqAgh/x8CVVVebjdHqzWEXy+AYqKxlGrJVRUyIhE5ITDUzidV/B4fCwsmPD5wtTVBThz\n5hTj4+MMD99DFIupry+kre0QoigyNDSKSpWPwbAfp1OgpQX2719as65du4FEUkVDwxHAg8fT81jZ\n215I8nwZ+BdBEGaIavb9miiK8zs8pix2CH/7t1BeDufOPdr7njwJf/EXMDoK1dWP9t57FZmcSKZa\nwIzG1VuF5PJi6uvrePbZKiyWEJ/6VC4lJUree8+J1SricpVx7ZqZ06dHaGyM9tbGgomjR81J8pJm\ns5lLlyzxdoWxMTNQTmmpkb4+M6WlXVRVVTE3p0GnK+aDD35OX9/HVFY+zcKCFK32Lh0dDu7c+ZCF\nBSW3bvm4cuVnqNUKDhz4DJOTl1lYmKO0dIFw2MB77xXgcgWQySbp7v4FggDDw8OLcukwMBAEClhY\n0FJX14jP5yI310JJiZ1weJYTJ+QYjeByhRkfr2VgoB2dLkh9vYKWFnj66eRFfi2Sz0zfUxZ7B5lu\nUgRBoLa2Nok3Znh4mM5OD6WlpTidTqRSB8HgHAMDMkKhOUTxaVSqEny+CSKREGVl1czMWPF6h2lr\n+1Xq6uqSSAsbGhpobBzC672Jz6dgYqKOv/zLdzl/fjiuAjczU4LTKefhwwcIQh5HjnwOieTbCMJD\nSkr2YzSWUlh4hAsXrNhsd5mfV3D//gBy+UMaGp5BFHOAaHLrO9/5gLt3JczNaZmf/wi3201VVTEv\nvfTcIzkJThdwbyYQ30w75VpzO9W43n33Xf76r28zN1dDfv5tbDYbMzNli9U7fuBuvNVMpVIuBtJD\nOBxT8c1bOnWSmKKJUnkYmcxMaWmA4uJDvPxyDT/96Y+YmytkcjKXoiKBs2e/xNBQH6GQGZ+vBrU6\ngtUK3d0hgsFqKitrGB62MDY2xMBADi7XYVSqBsLhWbq67tLbO4vXW0IgYEYqHaa0dBaf7xMKCiI0\nNb0QL8n/6le/ysOHf861a5fx+SQIwnH++q8v4PEUo9OdxuG4jslUikpVwj/8QwC/v5o7dwbR69+j\nra0NSE62La+SWG+SZq+fHO81LE+Kr4fTxGg08sIL+5mcvA28SHFxMxJJtAq4o2Oca9cmuHdPic9X\nxdych0hkGputhOrqMsbGRnjqKS/nzzcDZqTSQioqwO+fRhCElHPdYrFw4UIfd+/6uHnzXSKRCsrK\nalEogty+fSde+axUHuS3f/s3eeedbyOKXUileoLBZ3jzzcs0NUU5CROvnc4/xaptOju76O5eoLMz\nn4sXv0soFEGtbkalCnDiRJTbb2qqn1BIRBDuIIrdqNVaXn65lWDQzYULl/D75+nvdzIxYaWycip+\nfUEQFhXsauM+ThRF7PYsJw+sfmiz2Vb7dOtDNLl3Fbe7C71eiCtUJf6+1/sAp3MaqzUHl6ucoiIp\nDoeARlOG0VjGpz4lRaFQxhUkY+THo6Oj+P3RtuzJSR8SiZOamiANDQ8pLzcRCimYne3F7xdYWCjB\n5SpFIpHg813A55MBOhYWyikrA6UygEw2y/37vVy9OofLZWR29hYNDdE2j4sXzYyNleF232dqykpV\nVbR6Z7nar0p1H5vtKhBAr5c+VnyVuzrJIwhCDvC/Ab8qiuJVQRA+BfxUEIQmURRdOzy8LB4xvF54\n80344z+G3EdsuSdORP+8ejWb5MkUmWxs1tsqJIoifv80odAkU1P5NDdX8uKL0dajH//4r3j4cD9a\n7QECgVmGhkaTPptKXrK0NEAwWM2JE8/ico0BXUQis9y6BYIQoLs7j5kZH/fvm+nrm8frzQPKkEr1\nKBQyNJohJiauIZPNk5f3DMFgEf39VygtDVJT00Bp6QNCIZH8/AVycnSEw/V4PKUIwj0cDg+BwH10\nujCiKEOr1RMKVfGpTz2FxWKmp6cdlWoBUSymrExPKDTK+fPPIZcX89FHAsXFJeTlzXH4cA2CANXV\nIgDXrt2IL/iZvIPsyfHjhbU29unmXIxPqqnpMzz3XBXt7e+Qk3Mdq3WcoSEFBQWnePhQhs32EKXy\nHsGggwcP3kcmK2V6WrPYljCOx1OESnWfr3wlwsjIyGKrpIyJCSkyWQCvN4Lb/UtEUeT996/g8ajR\n6U7T1yfy4MEkOt0ow8OlRCISQiEbJ0+q+LVfe4Ourj/Dbq+koKCUqSkvOTlVzM01MzkZiCeW3O4c\nNJpnUavP4nK9Q2Ojm5deauHs2bOPhHsq3QZ9Mxv3zbRTrja30z2P4WErc3M1tLR8mc7O79PXdwed\n7qk4905VVbR6x+eTLianHQwM3Ke+vo7KyilEMeqHYsl0EAkGo+1LFy8OA/642heMkp8/BWj41Kf0\nDA72EgiAKBbQ33+f/PxJystzKS8fpbKyhIcPA4ANp3OAubkRioqCFBaWoNMZCYWmsdn6qaiYZ2Ji\ngWBQi8FQTyAwjiB4UamkBIO1SCQqPvnEhVz+o7jstEJxGKVSZGRkFru9Fqt1GHBQU2NkYcFBebmC\njz++xdhYKcXFL2Kx/Avf/e73USiUKxJbsXdtMESfb6I/znKd7T6k4zTJhFMw1mbe0+Omu3sSt9tH\nZaUAyHG7C8nPr0ejUQNzhEIO1Op5oIVgMJ/c3MIVCQ6fz8uDB0HGx+2EQjdpbm5Pqox0Ol2MjQWw\n2UJYrbOIokh+fi5dXR7s9tv09Lhpbd2PTDaP2fwxhw5VUVqqwWqtRqFQc+1acpVypi0pXu/0IpFt\nOXfvLuD1znPkiB6bzcw//uObjI3J8PtdjI/byM09SmlpPRqNh4YGIxKJBI8nQkFBBTdv3sLvn8Zm\ni1aSxuZIzAcdP34sfuCw1Kq/tTHJXuMgXO3QZmlt0OD1dqRM4KVDIsckjCbxUMaSe4nPCJLXk9FR\nOR9+WEF19VFycgTc7l5KSqZobv4iPp8LuVxEq1XjdLoYGnqP3t4QoZAOr9fN1JQZjycHmEIiiQAK\nyssraGk5wqVLd5mbq0EUywkEguTmSpmeDuH1ShDFF5DLS5ib68HhGCAYfAq/f4T33rMwN/cZDhz4\nNB9+6KOvb47Z2R6kUiMnTnwal8sN3MZkOr2C38lgMPD66+LieqVIyce5l7GrkzzAEaBcFMWrAKIo\nfiIIgg04Cvwy1Qe+9rWvoVQqk3722muv8dprr233WLPYZrz5JgSD8O///aO/t04HJhN0dMB2mNJb\nb73FW2+9lfQzm8229Td6hMhkY7PeViGLxUJvbwiptGxFj/fhwxo6O2/hdAaRy23k5R1e834wikzm\n5OrVH+F2e6mre5Vw+BMkkglOnvwSAwO36e62Ew7XEgj0U119kIUFKV7vBHa7F5msDDiOy/VzHI6f\nk5dXjUw2QCCQz+CgSE6OifPnP8XIyAd4veNYrT5CoQD5+VMEgzrGxgSczlw8nlvI5T5E0YfHk09z\ns0BTkwJRFLl9G7TaapxO4qXOMpkZm81Ofv4wTmdUCWQ5eSLEpJlXfwfZk+PHC2sl7Vb2vcw4AAAg\nAElEQVSbc7EEkd8vUFcnA55HJsvn4cNfEg6PUlIiotWO0NBwiMnJWe7dC5OfH5W5vnr1Y/Ly5FRX\nfwGrtYN//Mc3GRjwYbc/RWlpOZOTlwkEpigt1WE2L/DWW5fJy6vB5foYpxPUasjPl3H37gcEg9Uo\nlQex23v4l3+5wsSEHYlkirw8gUAAJBIoKyvB7Xbi81nRao8DoFItYLPdBAo5dEjLG2/8anwjs1yF\nBHYf91SqDchm2ilXm9vpkkc1NVXk59+ms/P75OcPYzI1MDPjXEwaLrWaffTRdUIh0GpLuHcvgFZb\nTTAYTe709Pjp7haBABUVbjSaGXp7BVSqALBAb+91pFIHJSXFwDQQICdHSX//QZRKI273J4RCV8jP\nb2ZiooKRkRGamwspLAyjUFRQVzdGTs44jY2VCIKGnp6HyOU+qqoCNDfXMTgYxuu1Mz3dQ2mpQGWl\nnvl5GVLpy3i9Ye7du05OzjR2uzme6K+oMNLVNUIwWIBSWU5xsYfCwqWT7ImJccLhAWy2y8zODnLn\njpOf/MSRVJWQyfPNYnchHadJppyCyZtE4lUPPT1X6e2dQBDc7NuXh0zmpLrahNc7S0nJILW10jjv\nYGyOfvTRdcbH7Xg8+zCbHXR13eLZZxVxG4tyP71DT4+X+fmjCIKEwcEhioomqaj4DN3dkzz1lJe2\ntqNx/x9rw21v/wUuV4CWliPMzeWuS0HPZiumv/8mgcAkodBDZmZmcDp7CIX6mZzsRSZ7GZlMQm5u\nmIKCpygpeYbc3I+QSCRxrsW7d+/h8Qxz//4BNJpB/H7lqgcO2xWT7LV5udqhTWxtUCiq6Oi4j9s9\nvSKBlw4Wi2WRe6oamcwZPwSFzA4rotxPl7HZRpDL56momGTfvpI4HYLfn8cnnzgZGxMZGbmOQlHF\nZz/7aXp7ReTyj8jJcZKbG22ZnZuz8fDhBKJ4mIICGbm5Q0gkEgoKIuTmVhMIWJFKVeTlhfF6J8nL\nmyE3V0QQHExPN7GwMMHc3BXGx/uBIIcOfZFA4CGh0AhXr/4Mt3sCtfoofX3hFfxOgiBgMpmSeCof\nJ2woySMIgg74r8BLQClR5as4RFGUbn5oAFiBckEQGkVR7BUEoQGoA/rSfeDrX/86LS0tW3T7LHYL\nRBG+9S34/OehomJnxnDyJLS3b8+1UyUiv/vd7/KVRyUhtkNIXMCkUgc+n5SPPrqe9oTF6XQRCuk4\neXKJ1DJ28lNbW8+BA34UCoHCwlpMpgNJnxVFEZ/Py9iYGYfDHg/eBUHg8uUPgYO0tn6Gjg5hsUXA\nRThsRSo1cvLk00xM/AiP5x7B4BRa7Tzl5QeYm1Oi0+lQqfZRWDjOkSP7sdnmAA2FhXncuXOf4eHr\n5OUpMBqrCYcv4/ePMj9fRSQyyfS0DoXCw/y8ipKSU8BNqqpsvPZaVP3q0qVLdHW14/e7kMttvPhi\ncZzEczmnynLyxMeprziLKDI5hVwrQF4taEzk67lxw8snn4SpqKjmqaeOUlLSS1PTAfbtO4bVWk0g\nMM/ExNtEImM89dRTBAIGJif7sds7cLk66eqSEAjUEw57mJwU0Wgc5Ofnotcfx26fJRwOcezYGQYG\nepidvcLBg6+yb58WUbTys5/1YbNFEMVhLBYFExMqpNIyiooWqK9fYHCwgNxcPzrdGC+/fJTBwcFF\nDpkcDh7UIZFIVpzI7QXuqVQbkO1qp0z3PF5++WVsNht9fXcwmRr46le/yuDgYFLSMNGX+v3FyGTj\n8WQzgNtdiFp9BFF04/X+gvLycaqq5HzmM88jCAJTU+54JVAoFN1kOJ0O7HY5MlkFwaAaQbATDusY\nHpZitS4wPHyNxkYdGo0Xj0ePIKjp7bViMsHp06WUlzfQ0nIEp9PF1BT8+q+r6eh4G5MJnn32BO3t\nw/T03MTlmkEqFeME/LFEP4jo9S6UyvtUVQUxmUyUl0s4evQERmOMoPP/xWzuRK/PJS/vDFqtkWDQ\nk9KW9oK9ZZFegW6t95foizUaFUePHmZqyo0gCDQ0NPCVr4io1RcYGnJQU6Pn4MFTKBRKZmZ8yOXF\n8ZaQxHhHq1UTCt1kbCxAcbGI12uIJ09jROGHD+u4dm2E+fkSBGEOQbiFUllPcXEzbrdvhf9fasON\nIJXuo7Ozi+ZmKVrtmZTPY7mC3txcFa2tv8LQ0BA9Pb/E769hYaGY8fGfU1hYgEz2ItPTTqamJsnN\nDSKRDCOKAZqa8pN8sFQ6AbRgMBxjasqM2+1hePhDbLZSWluP0dd3A6fTtaK6Z6srbfbavFzt0Ca2\nNnR3DwMBmpvPJYiKrH7dZDGAa3R2dq3rmRsMBr7ylQgXLlxkenqGZ599idraWqam3Pj9eQwNjdLd\nLUUQDjA5Wc3k5F06Ot6hslLC0aNHsFgmGRlxMj09iSAU43DI6eq6S23tWfbtm+YnP/k+oVAYqXSK\n/PwZZmaKsVrvIIrzFBaWMT+vxOfTkJ/fTElJJXb7u+TkTFBQkIffP0ZVlZzGRiPDw1agjtbWL8Zt\nLJHfaq9UdG0UG63k+QegHvi/gAlA3KoBJUIURbsgCL8L/FAQhAWiyaT/QRTFvV3ikMW68f770NsL\nf/VXOzeG1taospfbHVXcymLzSGbct/Pzn7sWydqiZG/LTyO0WjVSaR/t7T8lFBrB51siT75/34tE\nEiVfrqsT0Ok08T7gWJ/38iqg2KkRQDAYJSDV6wUaG5tRKMDna16UGh3FaPQzMCDgch0hNzeX4eEp\nrNZ3iURqkUge0tysp7S0GpnMzdTUFGNjcpRKLZFIPxrNaT772TeQSkvIz+9gYUGF1fqQ8vIIbnce\n+fkSysvzWVgow2Qqi39vj8fLwoIWlaqeubk5PB7vKpv41OSJWTw+yPQUcrUAZrWgMZEc0WKZp7t7\nnjt3Pkavn+Z3f/fXOHfuHH19fXz44U/p7o62IebljQL55OVNEYlEGB9/SDDoRKmswmA4jsVyjbKy\n+5w9e5Zbt9w4HGaqqrwoFHlcuvQexcUtNDbW8MILOlpajlBfXw/8KT//uZ1gUMrkZAsqVVQhKSfn\nOgcOtNDYOMS+fRGee+40kUiEv/mbrkUOmWF+93erOJeCtG0vcE+l2oAcP34s/m9b2bqQ7nkMDAww\nM1OGTvcUMzNOBgcHV/gbs9kc96VFRSMcP15KY2NVnMC7u7uD3t5/xuvtRyYrpLLyHHa7BIlEErfX\nWCVQ7Lvm5xdSWgoLC4OAg6KiAsbHu+jpKWBhwYnN5mN+3kheXohQyEpOzj7M5gqczkJeeEHJpz99\ndNGfm8nPj1ajHTt2hLa26DOrrY3ysU1MjON05sdPnGOJfodjipdeUvLgwQPu3JlifLwFiaQgfsJt\nMpn4vd/7HBcudOP35+JyzeJ0mqmslKS0pb1gb1uFvbxhSqdAt562V6/3AyAPpfIgMpmZtjaQSCTk\n5hqorj5Obq4DiSRq/zEetFStNkePHqatzQD04PcXkZs7h9M5SmVlIVptNFZ59dXz9PXN8Mkno4hi\nmIaGJlSqKnJy7lBZKXDkyKGkuMdgMCy24Z7l+PFqurvbaWqSZKigF+Xg6usT0OsLmZs7zMJCK+Fw\nIR7PPyGTlVNefoD+/luUlIQ5depVXK4hTCb48pc/m1SVAxAKmQkGPUilTnp6woRCKgYG7gPE59F2\nV9rstXm52qFN7B2WlnbR0yNNEhVZC4nPYXr6Lj09eVitJD3zteb1yMgIIyPz5OUZ6OgYwev1oVIp\nF9t4lfT33wRmMRj0iOLconrjKSKRBszmf8bjmUEiOYJen8PIyEN0Oj8yWQGg5fz5Y2i1c5SXV3Do\nUBPf+Mb/g93uA44SDM6Tk9NNeXkpfr8Fl2sIiWQ/Bw58Hq/3ExSKAc6f/1J8nsVi+8T3vdcqujaK\njSZ5ThGVNb+9lYNJBVEUfwD8YLvvk8Xuxje/CU89BadO7dwYWlujFUXXrsGrr+7cOB4nLGfc7++v\nQq8vBAIpTyMMBgNDQ0MMDXUjlVbT2xuKk1wWFx/i/PmoilRTkwIgyYmXlgYIhapXVAHFrgtLMqqJ\nZLSx61dVGcjJqWdiopa5uUnM5n9lZmae8vJ6cnJyMZnyOXYMNJrT3L7dRXu7SHPzFxgc7CAUstPX\ndwNRtJGXl08kUoNUOoJM5qCxsRCZTIVGM4pKJY2Xey8+IeTyXNTqYlyuXCB94Jzl1nn8kekp5GoB\nTKZtlBJJFQaDnmBwjJKSfuTy4vi/BwJOFhbkGI0vEonYEIQBiorKkErLKCxswOmU8fBhFwrFFY4e\nLeT8+U+zf/9+RkaukJOTQ0lJFRrNLLm5OpqbT+LzjVJdvbQZ+M3f/Co5OVe5c8dCKNTP3FwugmCj\npiaEwTDJq69+Ib6B+Pa3/zaJQ2Z42JoyON0L8yPVBmS7WhfSPY9MbGx5ReWBA0sy4aIocvLkEDbb\nGDk5OhYW9NTWtuD321K2Bvb2XsPjuc/CwgwSiQ2Px0pJSSWCUEZFxSAFBVN4PDKCwadxOouBOTye\nPrzeMErlM+h0R3G7h+LXTqfSGCvJT7aNZPWiaEufBYfjKFJpEYKwtA4l8qdEqyink5SCMn2+jyP2\n8oYpnb2vp+314sUeoDDONeV0RilDY//e3v5Thoa60etb488ndauNhXPnDPzBH9SltTGj0cjXvvbr\n8fawI0cOxavjtFo1kUiEN9/swO0uRKW6z+uvi/G5FhVgkKcUYEj9PBI5uIxcuZLLjRv38HrdRCIg\nkxXjcvVTU+Nl3z4T+/fXYTQqaWszrnj/y/lcRkeraGx8Dnib+no7p0+fRBRFPvigHZutOKm6ZytN\naS/Oy3TJliX+LwMtLesje09+Hyqs1qoVc2C1eR0lATdjsVRSVORhasqOx1NCXp4ZqbSM1tYv4nJN\nMT19D5VKjV5fz5kzpnjy6PRpAz6fBperhJERK6LopqamnFOnpCgUAlrti/HvaTabCYW05OeXAnXk\n5o4hk6nRaqG21kpRUYj+foG5uTHAh9Foio9zM+vc44CNJnlsbFP1ThZZLMfoKPzkJ/Df/hvs5OFQ\nXR3s2xfl5ckmebYWTqcLqXQ/ev0+xsYGKSy0odUeWfF7MXJYvb41yTmnUpFKx7+TuIFavnjGiP8S\n75fYg3zlyk+wWAaZnZ1mZmYcQagjJ0eKUhmVnYxtdKIEz2Z8Pit6fSGNjUbkcpHc3Fy83gYKCgoJ\nhWpQqTQcOKCgtbUCr9cXv2+MeHBJwrQHvX55Amhj6mRZ7F1kegq52QBmSXHCTG5ugNpaHTqdJn7t\nvLwadLo87HYvpaWT1NScpK7uCKOj/4DbPUFRUSELC0YEwcb585/mlVde4dq1GyiVh3n22WN0dLyN\n32+mpGSGwcFbSVV5sTn3+utw8GAhd+/CgwfXcbkiVFW9gCDUJfEHLOeQqak5mjY43e3cU1u9AVnt\nJDZd8ihdtWSiX1xuhxqNIal6IFo58ArHj6u5cOESPT0dmEzypN/TaFScO2fg9u07DA5OYrPV4XJN\nIghaTp06T2FhkMpKBePjfdy9G6G4eIZgECSSMUpLD+L3O5mZ6cHrDXLwoAKNRpU0huW+PIbVkmZr\nrUPrSbg9SVxne3nDlM6nrqftVaVaAAIrrhH791BoBKm0ekXMsrLVZorbt+9QXV2NTqfh+eefS9mO\nuxqHyPe//0O6u0XU6iPYbFe5ffsOv/EbXwTS+5VEP+HzeZFKQ4st9EsKeqIootHMUVw8iEQisLBw\niJMnP4XDYaa19Zl4q2Q6surlsZTdHq2uqKws5MyZ6ByL8v+ULlb3vB2vYNpK7MV5uVYSdSPfKdX7\nWG6/q83rRF/Z3X2J3FwpTU2t3Lr1S6anrwP5NDXpOXCgLq6yFbO7GGH55GQfH388hsMxhdF4iHBY\njlxenHRgYDabuXz5Q3JzK2lsDNLba6Ww0IVSWUxBQQ7FxYU0NOiZnPTgdltQKLyoVMoV33M5Eb5G\no0Ime/wV3Daa5Pka8F8EQfidbOtUFtuNb38b5HJ4/fWdHYcgRKt5Ojp2dhyPI7Ra9WKL1kMKCx2c\nP9+cdoOTKihLvTmyJP1erCw/8XfWcwJpMBg4ebIKm+06c3OzDA9rEEUJMzMPkMvHKCk5kvS7S+Mx\nxe81NVXIzEwIq7WHwsJ9vPLKF/D5rHi9o0mqX4knNCdPDi/yjdSseCaJ45dK+xgaGkpaUPdKyXwW\nmSHTJMBmS9JTKU7EZFA//vgGIyMPCYXKEAQLhw/rkcsLmJ6eoqkpn+Hh+wQCBzEaW1CpZlEolMQk\ngWUyMx0dbzMwMEhdXTN+/z1mZ82Ulj4dr8qLVehE56qcSOQoXu8cOTlN5OaWMT4eiG8inE4X+/fv\n53d+R2RkxEZNzVHOnj3L9esfEwxqMZmO0dHxziLnFrt+Tmz1BmQjFRbpqiUTP7fcDkVRXCFDLZWG\nGBiYpKTETkPDAufOnUcURb7znasJVQYnqK6uRiKJoNUeIS9PicPRhd1uXqw4OIJaXUJJyV1mZvII\nh+1MT0cIBo9y/HguTudlamvv09r6eURRXCQS3Xg1yXrWoSyWsNdaYBKx0cRq4uc0mtMAi9U0ydeI\ntqIXcvfuQ9rbf4peL8RjAkhutZmefoDXG8Zqrd5wO24UAcCz+KdiTb+SHEeEaGyULrarxxT0rAwM\nDJKfX0IkcojWViOdnWYcjnFMpn0JstR9XLjwALfbjUr1gNdfF1Mmo1I982vXbhAMamltjbanRlt7\njmz5/NuLrYXbnURNNwdWm9eJvtJoDFFYmM/QUCcu1zhqdTWhkJkDB5p55ZVXUj7f2D0ikQEcjjAT\nEwIez338/qPx30kk/na5BqioUFJWNoNCAX7/ASYmZrl1y8ngYDcm06sYjc/hdJpRKJQr7rd8LTx3\nzkBbm3FPVXRtBBkneQRBcJBcvVMMjAiCMA2EE39XFMXSrRleFk86gkH4m7+Br341mujZabS2wp/8\nSXRcMtlOj+bxQfIi07jqwpuuHH95EJP+95Z+J93iuTwQaGhooL+/n8nJhwSDOczNGZmb+wVSqYyG\nBgk1NYeSFpZU40lsKWtv/yG5uR58vlFksqhyRuI4YpvYzs4uenrcFBcfoq9vaoUyQOL4U5WE75WS\n+SwyQ6ZJgM1WhKQ6LY6pU1ksZUQiUzz7rB5B0HPqlJ5AwM/w8D0+97lnEcVnuHTpHlLpLHp9QZxg\nNDaGy5c/RBQPUFfXyHvv3aWgQEFr6xfp7b2eRP4YJRLXotUCuCguLmVszE9hoQ2/X5mgJNdPW5uR\nc+fOYbFYuH794/hpdEfHO4unwnUEg0/enNjI5iBdtWTi5xLtUBRFfvCDt+nrm6a52cj0tIhcDo2N\n0wwNdVNW1hzntrl9+86KKoOWliOLVWNXEcUZnnpKRkPDQ0pLowoLZ8+ejUtMazQqhoaGuHjRgt9f\nzMJCFSpVHR0dI9y48Ql+v4G6OgM9PT2UlgbWvYFbzzqUxRL2YgtMDBtNrGbyuVgr+ieflCKTza5Q\nBAWoqqpCpVIil4PVutTGtNp8NZvNfOc7H+B256BSLSQlU9aq/k2F5X5CoYi2X8Z4szQakRs3xtDr\nwe+f5uHDEZqbpTQ1SWhpWXrfqeZ3qiSPIAjxg7hoa5slXlkRre6RcObMqW3x1XuxtXC7k6jpbHm1\ned3Q0EBj4xD5+VZefPEENTU1XLnSAdTHSY4TKRHS3dPhmGJiogKtthqHQ4LL5YmTkcdigGji723q\n66c5ffq3GBoa4s/+7C+5f19Ffv5p/H4vWm0PgtBIZaUkXnUMS7H85csfJrUBTk25ef755/ZURddG\nsJ5Knv9l20aRRRZp8KMfgcMBf/AHOz2SKFpbowmeTz6BEyd2ejSPD7ajDD6T30u3eC4PBEymIfr6\nwvT372NhYRaDoRifrw5RVAMS9u1LXljS3SvWUvbss4cXT8uE+Em43b5UOurz5XLhwgMePPDh8Xj5\nwhdUDA9bV1QkJI4/VUn4476AZZEa21GSHtsIHDp0lLGxAIHANCbTPgIBf5y41Gx2LnJK1CedlCaO\nCcBqvczFi6P4/Ur8/gk6Ot5GKnUnkT+aTHnIZGFstgBqtRu1ugC5fJq2tiZcLg99fb54UiG2Ubhw\noY+xMZFQKCq5XVcXIZWyxl7AVpw4b3RzsJ7PWSwWenr82GwCNtslmpul6HRnEARhRaIoiuQqg8Sq\nMVGUMzNTSE/PLBMT+UxOmlfYstFopK6ujsuXP2RgoJ7a2sNcvPgucrkWh+NjOjv7kMv19PT4aWmx\nrGsDtxdbOXYDss8tPZbzV8U2vrGkeTTGCNPWpkGn06Rsm1mOaDIlhFr9DDbbzaRkitFo5I03hBX+\ndzWkm++xn9+924/HM4wgHEIqDWA0BviVX3k1ibvQbDbT12fG7w+iUh0kNr8htS/bqcqKvdhauFNJ\n1NXmdSJhudnspK4umphLRXK8HIn24PdPo9cXEAqBTObh3r08bLalGCB6WPM2odAoNTXNAPT1hYlE\nDhKJTKPVKgmFGqmsHOfECVY8n6VqoO1tA9ytyDjJI4ri323nQLLIIhW++U146SVobNzpkURx+HC0\noqijI5vkeRyQKSnb8HAPwWATzc1Hsdlm8Hj62b+/hZaWo9jtZpqbk9UqYotYInmiVqvm3DnDYkm3\nKWnTJorRIskYmeL9+2N0dxeTk/McdvsvuXDhr5BK9wEHkyoSEsfr8xnp7Q3tyZL5LHY/lsg7RZqb\nBZqaFLS0GBdP24R4a9QHH7Rz5syptJwoBoOBpqYu3O4IOp0Bs/kmRUVmTCYDVutSklIuF2lr02C3\nO+nr8xEOh6itNbJ//346Oj5KSipotWdwOl2MjYl4PPsYGwsANs6fbyYUCq8ZdO5GbMWJc0zuPOZX\nYtwamcjjQupNxfINm8MxhVJ5gPPnlyv3WFZsHDUa1Yoqg8Sqsb6+Pv7Lf/n/MJsrqKyUAqG0VUQQ\nVUTs6WkHCmltPUdHx1vMzUk5e7YNn290T2zgsni8kS6BEosxEltKT58+mRAjrLWZLwRKFv9cwkYS\nbokqp4mcOg0NDbS1LZc/11FePhtPrCcmbGZmDpGTc41w+Jc0N+viVUSpfNnyGOtRVVZspipmp1q9\ndmMSdTNKkNFKtGjbbknJDCdP6ikuJk4AHZsTUukocrmEUCiAVBqNb93uO4RC1bz88q9jt/8r8/Mf\nUlmZz6/8SlucyyfVOLe7DXC3YkOcPIIgHAbmRVG8t/j3TwO/CdwH/g9RFMOrfDyLLDJCZ2dUyerH\nP97pkSwhNxeOH48mef7kT3Z6NFmsF6mJilOTjyYGAjU1VfT1OeMbXI2mjKkpgcLCYEq1iqXTgwgD\nA/epr6+jsnKKtjZjyoUoxkES4+Xp6bmF3z9HdXWE0lKBsrJZ1OqDtLZ+JqkiYXnbREwJLLbA7sX+\n8yx2H2LJgdLSABDgs589EefOAfMi105mrVEx0sWeng5u3+4CwoTDOlSqEuz2qfic0+mWFFo6O8uY\nm9PQ3n6X69dvEgoZaGs7QU9PR1JSIRS6ydhYAL1ejlRajVxeTFubZk+2kWzFifNyv5LI97XW59Jt\nKlZWOUYrrpYr96RLFL3xhhBPfjudLgRhiaD19u07WK1SFhYk3LvXTUHBLFrtl5Pun5hAN5ny0OkU\n3Ls3g99vpba2GMjD57Mik2UmJZxFFtuJtfhOkv2mJW2MEIMoipSUFFNS0kso9AFNTXkZtWSthkSV\n02gbrBCXgk8nf2617l+RsDlx4llcrjHU6lFOnnxmVSWjneJx2kxVzF5s9doubEYJMrGtz2rtQKvt\n5dix51CplExOOunoeIf+/nu4XAVMTw9QXHyQz342GvvGBFREUc1LLxVTXi7j2LFnOHv27Krj3O42\nwN2KjRIv/w3wX4F7giDUAG8D7wD/HSAH/qetGFwWTza++U2oqoLPfGanR5KM1lb4xjcgEgGJZKdH\nk8V6kOkivTwQaGhooLa2f/HvrXGOnrXkVbXaEu7dC6DRVGGzrWy3SvWZxsbnsNtHgB4KC+9x/Lia\nEyeOcPXqBJcu/QCVKoBGs7KMLJWKgM/npbc3RCike+KDkizWj9iGOsYNpVA04/N1A3fiG/lErp1M\nW6OWqnmmaW4+x/T0FHI5KxIyoijS2dlFX980paV53L0bQqHQMjc3BKxMKpw/PwRECYP1+gJ0Os2u\nOwHNFFu1Cdpssmh5othud2KzBdBqwWYL0NJSSVubdoUvTBfwp9pMLv0cior2o1TqcTjaOXKkdFWy\neZkszLlzR3j6aWFNAtytQjZxnkUmWEu5czW/GVvDU9mYxWKhry9MWVkjodAop041b9mans5XJFYE\nzs6O4/MZMJmWJM5jvurq1R/hdntRq4/T1xeOcwhmLpax/dhMVcxebPXaLmz+/QUQRTcORyfvvhtm\nYqKCiop8DhyQkZ9vxeUqQBDqsdvzsdsH6OiItlklCqh87nOfBaL+vr+/P6UvTjXOJ8mHbzTJYwJu\nL/7/l4B2URS/JAhCK/A9skmeLDYJlwu+9z340z+NVs/sJrS2wn/6T3D/PjQ17fRossgUiRvGRC6P\nVIt0qkAg8e+x9qp0iAU1NpudcLibjo47BIMS4FjaKgeNRoXX+wEXL/ZQUjLPa6+doLi4BK1WTSQS\n4erVUcAPLKx678RN0NiYGam0LM4H8CQHJXsJuyUIidlSX18Emy1ES4uP7u4QbncEuz1ZmhzIqB8f\novMrShB6le7uTlSqAFrtiRVz7NKlS/zgBx8zOloA3KCk5CDnz3+eoaHOFWXXgiDwyiuvxEl6M+Wj\n2K3Yqk3QZpNFyxPjRUWTDAw4uHcvQn7+MDMzSozG51dI1K5ms8mbpWvcunWbzs4uxsfHqKgIIJEU\ncfBgA6++emLVZPijbPOIIdVBQaxlZafnaxZbh8364Exlr2Gl30xsZ4mq0C0RK6fj+NkKrCYnLwgC\nk5MFjI5W0d9/Hbd7gubm+iSlsPffv4LLVY5GY8RmMy9KY2culrHbsZdV5DLBenWCfxUAACAASURB\nVGx++fuL8TLFCPIhlmxfeZ0YOfjQ0C+JRMLMzj6H212Ay2WjoCCPmpoq7t+/S3//DAZDC6JYQH39\ndHy9jwmoJPNapY6rU9lZJp97XLDR7bOw+B/Ay8DPF/9/FNBtdlBZZPH3fx+tlPnt397pkazEsWOQ\nkxNt2XpUSZ7dsunbrcjk+aQiCNVqz2zofmsFcLGgprPzNj6fjMnJWQIBLbW1Lfj9thXJFlEUGRoa\nwmYbJRzWUlJSTG1tLSaTKa5e43YraW4+ic83ytSUO+3YEjdBDoedUOjxDUr2Ktay191QFr6UFI1Q\nWmrEZpvhzp0PgIZFO7Qm2fHGkhJh0iUuLRYL3/9+O2ZzFbm5FczPeyguHsPvt8bLrpdvrhsaGrbo\n2+88UgWn610HktvsRjl69PC6k0XLkypS6QT19QfRao04nYXI5cXA+mx2abN0jYGBdt599xNcLiVK\nZQ1GYx6nTuXQ0tKacqw7vdFKdZoPOz9fdyP2atwiiiLvvvsuFy7EqgIdwPreaaZVH6n85g9+8HZa\nlarttP/VfHiM80wQDgDzTE/fo7HxQFLCZnBwkB//+D3u3RtFofDw4oupW2j2KhKfj0YTrQiJKUHt\nJtve6LxL9OFSaR9DQ0MoFMqMrpH4Wa/3KhBGqTyc0h/GyMHff/8KoVAewSDcuXOXggIbavUZ5uZC\nHDqkRhAcSKWF6PVqzpwxrZh/G62sepIqsjaa5LkF/AdBEH4BnAb+cPHnNcDk5oeVxZOMSAS+9S34\n4hehtHSnR7MSRUXQ0hJN8vze7z2ae+6GTd+jxHoXqUyej9PpSkMQun6stUjEgh6n00Vd3X4OH1Zz\n4cIleno6MJnkKwKz6PgtOBzN6PVyQqEZbt++w9SUG5/PS3e3C5stjM12keZmAa22Ne3YEoNAvV6g\nsbEZhWKl6kAWO4e17HU3BCHRpKgbmy2EzTZDRYULo7EMpxMGB28RCo3g8xnjRL7rPZmdmnKjVB7m\n2LGlioxEOJ0uwmEtcnkRkcgCCoWcU6fKOHZMiNvy8qBULm+nu9u94Y3Zbsd61wGLxcKlSxaCwWpk\nMmf8Pa0HyzeVtbXVhEJhgkFPklyt0+libk5DcbGa7u7VJcyXkuBdfPTRMBaLjoUFI+GwSHm5SHV1\nddrvlWkycbsSDKk22bthvu5G7NW4xWKxcOGCGYulEr2+EAis+51mmoxJ7zeTVehiSNVKHqug2Kyd\nr+bDtVo1odBNxscDGAyliKKP4WErFoslfk+328vCghK12sDcnBm32wvsXTtYjsTns9FqkEeR+Nzo\n8070Y+3tP2RoaBi9/pmMrpH42YsXhwF/fG1PFx8PDQ2xsOBkehrC4VH279fE2xYbG7WcPKlJek7L\nkWqOZfJ8d/qg4FFio0merwFvAb8B/LkoiubFn38BuLYVA4tBEAQp8H8D54BZ4I4oim9s5T2y2F24\neBEGB+Gf/mmnR5IeJ0/CP//zo7vfVgSRe+lUbbVFKtX3yOT5LKkDCSnJkteD5YuERmNIGWjFfm96\nWqS5WUpTk4SWlqWNSey7vP/+FcbGIkgkUsxmG/v3D9LdbaKz087IyHXkch1tba/S09NOU5Ni1WRN\nchBo2tXv+UnFWva6HUHIeue/0+miuLiZlpYF7tz5AKNRwR/90f/IL37xi/gJd29viNraZJnqTO+j\n1aqRSvtob/8hodAoPl9zkvKTVqtm/34Fg4MDzM1N0NBQzPnzbTQmSC1Gn6MGhaKK9vYuXK5bSCQv\nbXhjttux3nVgK9aN1fnJljgOfD4v9++/j9UqpahoP93dPlSqd5NOgoEk1UGPx8v8vBylsh6XS8HU\nVB9Waz83bghoNKoEcu8lZJpM3K6NZeok00olsSx2R7J6OTLxT1H7VDA3F+bmzfscOuRBrT60rmTK\nZtotY+0siSp0MSy3/0fVepLIeeb35+JyzTIwUMfc3FLFx8OHE8jletTqI7hcM/Hns54E8F7BRm37\nUSS81jO2xPng83mRSqMKraHQKFKpMd5S29nZlXHiRKUKAAuLlZ8OfD5pvOIpxmfpcExx79598vNV\nPPOMEbc7h6IiB72915mevovVqkKn06RV6YTUcyyT57tTfFA7gQ0leURR7AIOpPin/xWY39SIVuLP\ngYgoikYAQRB2YW1HFluJb34zWinzXHqBgR1Hayv8xV+A1Rolh95ubMWmby+dpqRbpJbKqM1Ipfvj\np/WZPJ+tdOzLryWKYspnm/x7Z9K25dy9O0Nf3yD5+RIKC0epqMgjHNbh8exjcrKeyclbaDR3MJn2\nrZmc2ou97k8a1rLX7QhC1jv/tVo109MddHeLQAlTU1L6+/txu72EwyU0Nh5henpqRQC5HnLzoaEh\nhoaG4/KoiQkjg8HAqVODjI8PEQ4fpqamOGVg6fV20NFxH5drlPn5MqqqShgb81BYaEOrPbLJp7a7\nsN51YLPrRroNcSqOg97eEOFwLaHQJKdOmZiZGefCBXPSSTCQpDqoUimZm1ugoGCA4mIIh4cJh7Vc\nvixnauoqb7yxthJYOmxXgiHV93+SNg3rwW48Mc/EP/n904yOWhgZURKJDBAKyRgeHsZsns/Yf67G\nWbJWkijWzpIJt9ijSqQlcp5dvvwhAwN1tLZ+ho6Odxga6kavb8XjyaeiwoVE0oVeL8STU9G15DJX\nr4aAQnp6/LS0WHZt/JkJNmrbj+J9rWdsydWwIRobpSgU4PM109sbTfh4vQ/wesNYrdVp27iSW9mi\nwiDRSnTpovgHi2qMQ/T1hbHZInR12VhYUDIzk0dTE5w6dQi320pPTx5Wa1US718qpPLFmTzfJylG\n3jClrSAIxcCvAfXAX4ii6AYaADswsRWDEwShEPgtQB/7mSiK9q24dha7E4ODcOEC/O3fwm5O8p9Y\nFDdqb4d/9++2/35bEURu5eKy3VVB6RapaBl192IZ9T7gIU6ni+PHjwGrP5+tdOzLr/XRR9dTPtu1\n7hl7JwaDBotF5KmndMjlZRw6JHLjxghjY7HS6OYk4rks9jbWms9bYavL56jDMbWu+Z9KAev27Ttr\n8lpl6mcEQUChUKLXP5PydwVBoLi4hKee+kwSyW66Mba0vMCtW33k5Q1jMIQ5f775sZsr610HNrtu\nZJqwWyKDbeHChYvY7X3k5XkSToJj3DUkqQ6WlAgEAmUcODCORqPFbD5EXt5LCIIKt7trU2vUo0ww\nPEmbhvVgNya/HI4pbLYIWm0JNps9Tg6cCLm8GJ1OS15eOTJZDSqVl5ERG8Fg04bjp/Uk2ddjTzth\n57BEFh0KjSCVVtPY+BwPHog0N1uprq5OSk4t+elInFdwN1R1bQYbte3tel+J671Go+LcOUNGKoPL\n12uFAp5//jlEUaS2Nnq90VE5o6NVq7ZxpbPZjz66TihE/PrDwz0Eg01otSXk5s5w+HAOgcA0zc3F\nvPLKK1y7dgOrlQ3Ps92YWN5JbCjJIwhCE/BLYAaoAv4ecBNt39IDX92i8dUDLuA/CoLwMtHm1P9d\nFMX3t+j6Wewy/OVfQkkJfPnLOz2S1VFaCo2NcOXKo0nybEUQuZXOb7urgtItoE6na5Fvo5CxsUEK\nCx1otY07GmTHWhXGxsw4HHb0egGt1pTRZ5dUuAJotUHk8kIqKyW0tBhQq4dZkoOuTEk8l8XexKOw\n1+Vz1GTKQyYLZzz/BUGgpeUIdrsZn89Ffv4UwJq8VuvxM2v11CeWj6e6VuIY5+aKOXRIRlOTipaW\nI1ueeN4NWK/dbNbO1krYxd7V6OgoXq8bUYzQ3CzQ1KRApaqKnwQnvrsl1cE73L6di1xeQ12dluee\n0xMOD9Pd/QlQuOhH1RsbOLszwfCkYTcmv/z+aQYG7nPvXoD8/GH8/qMrfken01Bbq6S7e4aFhQBq\ntZSamhr6+pwbjp+2q4JjJ+w88Z4+nzE+z/Pzp5IkrmGJr2dpLbEik03t+c33Rm17u95X8npvoa3N\nyPPPr90OsZqiWuz7abVq7HZzijaute14+fVraqro63Nis9kpKBhBEOqSKtQ3yrMTQ9bvJ2OjlTxf\nB74L/DEwnfDzfwO2kkklF9gP9Iii+B8EQTgCvCcIwkFRFB2pPvC1r30NpVKZ9LPXXnuN1157bQuH\nlcV2IBCAv/s7+K3fgsLCnR7N2njhBfjgg6251ltvvcVbb72V9DObzbY1F1/EVjq/7S45TbeAarVq\nKirsuFxWioosNDc/teOKOhaLhd7eEFJpGaGQmcbGzCsIGhoaMJmGkEq9mEw6TCYtpaVaDAYDRqPx\nsZGDzuLRY/kclctF2to065r/qdoS7XbLqrxW6yEGXaunPrF8PN211mqJfJzwqHnV1krYRSsr+xgb\ny2dycpIjR2Z5/fXz8WR07CR4ub05HFOUl5dhsZRx6NApfL5R5HJ4/fXT3L59B2BDSmCJ2I0Jhix2\nHnJ5MfX1dWi11Tidkrg6XCIMBgOvvy4u2qIibovLuajWg8S5tJynZLvIkrcLifdMrPhIbl3X4PV2\n0NTURUvLERoaGmhre7w335n45+16XxuNyTPZFyQn9WJtXNfweh8wOipf1YbTcbpFea+OLlbNaZKq\nvpaPZ7uq4J4EbDTJ8wzw+6Ioiste6hhQvulRLWGUqLbq9yDKBSQIwhDQDKSs5vn6179OS0vLFg4h\ni0eF738fPB74/d/f6ZFkhhdegG9/Gx4+hH37NnetVInI7373u3zlK1/Z3IUTsJXOb6dKIg0GAwcO\nDDE8PINa/Rx+fwH9/f07WuGy1KqwVO6aacDW399PX1+YYLAZmcxJaak26btkF6ssNorlc1SnM67b\nnlLxSsROaTNti1yNGDSTnvpY+fhq13pS5smj5lVbawPgdEZllT2efTidRkZGbEkKXqneS+xnOp2G\nixeXTvZj9hmTis4ii+2ATqehsnKKYBAqKwvj6nCJEAQBk8m0whY342eSN8rJPCWxa+9FpGtdVyiq\n6Oi4j9s9jd1upq3t8Y9ndpL3cqMxeSb7glRJvc7OLrzeMKOjq3PnpLr+avfbKM9OFqmx0SRPGJCn\n+HkD4Nz4cJIhiuKUIAi/BNqAC4Ig1BKVaX+wVffIYndAFKOEy+fPQ339To8mM7zwQvTPDz+EL31p\nZ8fyqLFTJZFLPB6tKR3+TiiIbSbhlbh4PXiwtoJBFllkiu2YoxtJFMds3GQ6RkfHO1y+/GF8fOlU\nt1LNJ1EU6ezsoq9vmuZmI9PT4hMX7D3qYHet9x2TVR4bC6DXy5FKq7fsBHmrfPleUpXMYvuxlX5x\nPbaVOJeW85Q8Tn5Mo1Hh9V7l+vUb+P1empp+A7/f/Vh9x3TYyWTEo4rJY3Yc5eqporhYQ3f3vW1V\nTFtS4vwpodAIPp8xSYkzi/TYaJLnHeBPBUH4jcW/i4Ig6IH/E/jxloxsCb8P/J0gCH9OtKrnd0VR\n3BJi5yx2D27cgM5O+Ld/2+mRZI6KCmhoeDKTPDtZErlaUmUnTlI2s1lJ/C7T03cXVQVWP93Lblqy\nyAS7pWw5ZuMdHe8wMHAfUazFar0cL+NPtF9RFBFFkdLSADCa1LJjsVjWJH1+3LFbSCVjPsjhmKK5\nuRBRtCKT7UevL8iYR2dJkcWygr8Dts6X7yVVySy2H1vpFzdqW7tlHmeK5aS+wCKpb7r4I0x+foic\nHC+Dg11UVRXt+u+4FdjJ97pd6326ePNRKqY1NDQgl7czPNxFcXE9Dx4Ek5Q4s0iPjSZ5/phoMuch\nUEC0daoCuElURn3LIIriEPDiVl4zi92Hb34T6uqgrW2nR7I+vPBClHw5i0eH1ZIqO3GSstbiulog\nmPhdRkdVWK1Va1Y8ZDctWewlxGw8as911NYe5uLFd3G7IyvKvC0WC5cuWQgGq5HJnEmtP06ni+Li\nRlpa8rl7tx2NZnbH+bgeNXaigjJVkJ/Mm1TKq69WJknqZorVfNlW+fJsqX8W24Xt5EHZTUicp17v\nB0AeSuXBlPHH1JQbpfIwX/rSs7zzzncQhC5MptNPhK/ea+91Odby9Ynv+1EqpvX399PdHWBm5gQl\nJXLGxwNZP54hNpTkWZRLPyMIwgvAYaKtW53AJVEUxS0cXxZPAOx2+OEP4T//Z5BIdno068MLL0TJ\nop1O0Gp3ejSPH9KdIqRLquzGE7LVAsFUCgaxigeoIxhcGURtdtOSrQTKYiPYqN0sl93t6WkHChcD\nQ2uS/a5m29GTww66u0VAwtSUlP7+/ngg+iTY86OqzlqucBblD9HFg/zVeJMyva5Wq8bhmFr1fW+F\nL9+Na0IWjwc2Sqa8W6osM0XifL94sQco5Nix1PFH7Jlcvfoz3O4JVKojtLcP43b/6LFVPYxhr73X\n5f5YFMXFQxZtWl8fe9+PUjEtqqq7H71+36Kqrg2t9si23Otxi4/XneQRBCEP+Bnwh6IoXgGydQxZ\nbArf/jbk5ERVtfYaYrw87e3w+c/v7FgeR6y3auVRnKSsdxHIdJOxvOKhtfWL9PXdSBtEbXTTkq0E\nymIj2KzdxOy7tDRAT48fn290RWC4mm0vnRxO09x8junpqXibT1ThaZZQqIPz55t55ZVX9nRgttNI\nfNdjY2ak0rI4sXzM723EBy23IZMpD5ksHL+ORmOIq6dpNCrOnTMstoVs3Jfv9dP1LHYvHlcy5eVI\nnO8q1QIQSDlntVp1XEUrk8rNLHYWy/1xaWmAYLA6KaGz1poM6/OtG0miaLVq9HoH8JDCQgfnz2eu\nYLtePG7x8bqTPKIohgVBeBrIVuxksWmEQvCtb8Ebb4A6s1b+XYXqaqipibZsZZM8W4/1Vq08ipOU\nrUo8pVrsEise+vpupNxAbXbTkm1fyGIj2KzdxOamwWCgpSW1tPZqtp18cugiPz+aIIoqPM3i8RQy\nNlaJKPYBJLUPZRM+60Piu3Y47IRCyUH+en1QzNddvvwhNlsxra3H6Ou7gVwu0tamSSG/rEUms9DW\nZsyoQmg17LXT9Sz2Dp4UMuXE+a7RnAaIJ1+T5+ySihakr9w0GB6vaom9iuVrOowikzkz9vUb8a0b\nSaIkj6Exrb1sRRXO4xYfb5ST57vAfw/8xy0cSxZPIH74w6gE+R/90U6PZOPI8vJsH3Zjqf1WJZ6W\nL3YxtQCHYwqTKQ+5XESnW7mB2uymZTc+0yx2P9ZjN6sFW6vZ71q2nTrgtBAKdTA2VoleX8fMjJsL\nF8zo9c88FidxW4HNVB/q9QKNjc0oFMSf+Xp9UMzX2Wyli62oby/KVxtTyi8/LgF2Fk8Odnpd3c42\nk9Xme7o5u1rl5k5WSzxu7TibwXKbPXr0MIIgJK2vW50k30gSJdMxbIVd7fQ83mpsNMkjAn8oCMLL\nwCfATNI/iuL/vNmBZfH4QxTh61+Hc+fg4MGdHs3G8cIL8Oab4HaDSrXTo3m8sBtL7bdqEVi+2N2+\nfQe7vXBxgQrT1qbZlsBnNz7TLHY/1mM32xXEpwr2DAYD5883A2ak0kKCQT9SqSmbKEjA5qoPTZve\nCMV8XWvrMQDq6+2cOXNkhQ09bgF2Fk8Odnpd3anESbo5u1rl5rVrN3Ysmfu4teNsBqlsNvretu+e\n2+njt6IKZ6fn8VZjo0mep4G7i/9/aNm/Zdu4ssgIV69GZdN//vOdHsnmcPp0NGF15Qr86q/u9Gge\nL+zGUvuNLgLLT5A0GhUymSW+2AGPJPDZjc80i92P9djNoyx5FgSBs2fPAjA8bCU3V43PRzZRkIBM\n38dyH3X8+LEtOeWOBfZ9fTeorJRw5syplBurxy3AzuLJwU6vqzvVZrKRObuTydzHrR1nM9gJm83E\nXjZabbUVdrXT83irsa4kjyAIdcCQKIont2k8WTxB+MY3wGSKVvLsZdTWQkMDvPdeNsnzJGCji8Dy\nE6Rz5wy0tRmT+Cjsdkt2c5rFnsejDuL7+/vp6wsTDDYhlTo4cECa1F70pCPT97Fdp9yZbgT/f/be\nPKyt80zYv48AsYlNCLwANpjdhtgmae04jts0iZd00iQzTTKepkuu6XT5pjNtOp2rezvtLO3XTpuZ\n6UzXmel8TVynSadL0sYk/jVOjNc4NtiAAQkQILELLUgsEqDz++NYmEWAhAUS4r2vy5dtIc55zjnv\n87zved5nibYFtkCwWoTLcbKUzvqzKeF05opowfASiI1f7jwkNgnmE2wkjwHYBAwASJL0C+CvZVnu\nD7VgguimtRV+/Wv4939fe23T/XHwILzySrilEKwWy9lpmLuDNDRkY9++vdOTna8mj5igBGudUC62\nAtG15bb0jhaWukeBPo+V2uUWzhuBYGUJlc0Ndc0a/zYlfPYgWh0B0VRraLnzkJhn5hOsk2fuiHkA\n+HyIZBGsI775TcjKgg99KNyShIaDB5UuYW1tUFgYbmkEK81ydhqW2kFaiQkqmiZ+wdohlGM5EF1b\nzu5sOHRjpc651D0K9HmIXW6BYG0SKpsb6mi+UNmUUNnOaHUERFOtIX9jRqxll8dya/IIBMvGZFIK\nFf/TP0FiYrilCQ333AMxMUrKlnDyRD/L2WkIxw5SNE38gvVJILq2HN0Kh26s1DlDFYETrbvcAoEg\nMEIdzRcqmyLWMosTTbWG/I0Z8fyXR7CJMjLzCyuvSqFlSZKelCTJK0nSe1bjfIKV49vfhpQU+NjH\nwi1J6EhNhTvvhFdfDbckgtVA2WmwzNhp0C75O74dJCVFq2RVdiFmTvxutw6Lxbri5xQIQkkgurYc\n3QqHbqzUOZdjj/wRDhslEAgih1DZEh+hsiliLbM4oX5u4cTfmBHPf3ksJ13rfyRJct/4fwLwQ0mS\n5rZQ/+NQCDd9UknaCnwYOB/K4wpWn54e+MlP4AtfAI0m3NKEloMH4Z//GSYnIVbEyEU1a2XHW6Rf\nCNY6K6Vr4dCNlTrnWrFHAoEgsolUWyLWMosTqc8tVIjnvzyCfRX9f3P+/2yoBFkISXH7/ifwCeC7\nK30+wcryla8ozp2//utwSxJ6Dh5Uru/NN2HfvnBLI1hJ1kped7RP/ILoZ6V0LRy6sVLnXCv2SCAQ\nRDaRakvEWmZxIvW5hQrx/JdHUE4eWZafXClBFuHTQI0sy7UidHht09AAP/2p0jo9LS3c0oSeO+6A\njAw4cUI4eQSRQbRP/ALBcgmHbgh9FAgEguARtnN9I57/8ojopBJJknYAfwLcHejvPPXUU6TN8SAc\nPXqUo0ePhlg6QTDIMnzmM7BtG3z0o+GWZmWIiYEHHoAXX4S///vgfvf48eMcP3581mdmszmE0gkE\nAoFAIBAIBAKBINqJaCcPinNnK2C4kba1EfixJEmbZFn+kb9fePrpp6mqqlpNGQUBcPw4vPKK4gBR\nq8Mtzcrx0ENw7BgYjVBQEPjv+XNEHjt2jCeeeCLEEgoEAoFAIBAIBAKBIFqJaCePLMs/BH7o+78k\nSaeAp2VZfjF8UgmCxWKBT34SHnsMHnww3NKsLIcPK06s3/4WPvWpcEuzPpFlGYPBcCN3V0txcbHo\nEiMQRDlC7/0j7otAIFgNhK2JfMQzWl9EtJPHD6vSrl0QOrxe+OAHlb//9V/DLc3Kk5IC994rnDzh\nxGAwUF2tx+3WER+vB6BEJPIKBFGN0Hv/iPsiEAhWA2FrIh/xjNYXqnALEAyyLL9LRPGsLf7xH5VC\nxMeOwcaN4ZZmdXj4YaipgaGhcEuyPrFYrLjdOsrK9uJ267BYrOEWSSAQrDBC7/0j7otAIFgNhK2J\nfMQzWl+sKSePYG3x058qLcW/+lUljWm98OCDMDUFL70UbknWJzqdlvh4C83NF4iPt6DTacMtkkAg\nWGGE3vtH3BeBQLAaCFsT+YhntL5Ya+lagjXCj34E/+f/KJ20vvKVcEuzumzaBAcOKMWmP/ShcEuz\n/iguLga4kXNcMv3/YBB5ywLB6hEKfQuF3kcjxcXFyLJMbe1VQLnXsiwLeyYQCAIiUPssbHDkE+wz\nEmvhtY1w8ghCyvg4fO5zSv2dT3wC/uVfYD3ag/e9Dz7+cejrWz9papGCJEmUlJRwK2nGIm9ZIFg9\nQqFvodD7aESSJCRJYmAgCbdbx8CAYfpeCQQCwVIEap+FDY58gn1GYi28thHpWoKQIMvwhz/A7bfD\nD36gOHn+7d8gJibckoWH975XufZf/CLckgiWw2rlLcuyjF6v59y5C+j1emRZ1JYXrD+C0TehM8ET\nDXUYxHMXCMLDXPsxODgkdHGdEA1zR7BE01wjInkEt4Qsw6lT8Hd/pxQbfvvb4fJlqKgIt2ThRauF\nBx6AZ59V2scL1hZK3rJ+Rt7yyuxciF0SgSA4fRM6EzyrZc9WEvHcBYLwMNd+uFxxXL48JHRxHRAN\nc0ewRNNcI5w8gmXjc+6cPq1E8Lz0Erz73eszPcsfTzwBjz4K16/D9u3hlkYQDKuVWz5zl6S5+QIW\ni1WEOgvWHcHom9CZ4ImGWhniuQsE4WGu/RgcHMLtloQurgOiYe4Ilmiaa4STRxA058/DF7+oOHmE\nc2dhHnwQsrPhhz9UUtcEa4fVyi1fj7skAsFcgtE3oTPBEw21MsRzFwjCw3z7oRe6uE6IhrkjWKJp\nrhFOHkHAtLcrqUe/+x1UVsJvfgPveY9w7ixEfDz8+Z/Df/wHfOMbkJwcbokEkcZ63CURCG4FoTPr\nE/HcBYLIQOiiIJqJpvEtnDyCJfF44J//Gf7+7yErC37+c3j8cVCJst1L8tGPwje/qbRT//CHwy2N\nINJYj7skAsGtIHRmfSKeu0AQGQhdFEQz0TS+I/o1XZKkeEmSfi1JUrMkSbWSJL0iSVJhuOVaT5w9\nC7t3w1e+orREv34djh4VDp5A2bpVSdt6+mnwesMtjUAgEAgEAoFAIBAIopm1EMnzI1mWqwEkSfpL\n4D+Be8IrUvTjdMIXvqCkGvk6Zu3cGW6p1iaf+xzs26ekt/3xH4dbmvWJLMsYDIYb4ZdaiouLkUSe\noUAQdoRuhgdx3wUCwWIIG7G6iPstCDUR7eSRZdkNVM/46ALwN2ESZ93wAfIJoQAAIABJREFUyivw\nkY+AxaJEoHziExATE26p1i533gn33gv/8A/wyCOihlE4iKaWiAJBNCF0MzyI+y4QCBZD2IjVRdxv\nQahZa0k3nwR+E24hopX2dviTP4HDh6G4GOrrlULLwsFz63zpS1BbC//7v+GWZH0ysyWi263DYrGG\nWySBQIDQzXAh7rtAIFgMYSNWF3G/BaFmzTh5JEn6AlAIfCHcskQbPT3wN38D5eVw8SI88wycPAnb\ntoVbsujhne9U2sz/7d/C2Fi4pVl/KC0RLTNaImrDLZJAIEDoZrgQ910gECyGsBGri7jfglAT0ela\nPiRJ+gzwMHCvLMvji333qaeeIi0tbdZnR48e5ejRoyso4dqkrk6pufOzn0FCglKD5zOfEa2+V4rv\nfhd27FA6lX35y7N/dvz4cY4fPz7rM7PZvIrSRTfR1BJRIIgmhG6GB3HfBQLBYggbsbqI+y0INRHv\n5JEk6dPAn6I4eJxLff/pp5+mqqpq5QVbo1gsSgv0n/5UcfJs3Ahf/zp87GMwxzcmCDElJfDpTyu1\neR56CG677ebP/Dkijx07xhNPPLHKUkYn0dQSUSCIJoRuhgdx3wUCwWIIG7G6iPstCDURna4lSVIO\n8M9AGnDqRhv182EWa80xPg6/+pVSb2fzZiU1q6AAXnwRurrgs58VDp7V4mtfg9JSeN/7YHQ03NII\nBAKBQCAQCAQCgSCaiOhIHlmWu4lwR1SkMjUFp0/DsWPwy1+CwwG7d8O3vw1/9meQlRVuCdcnCQlK\nJNWePfCBD8Dzz4NKjHCBQCAQCAQCgUAgEISAiHbyCIJDlpUUrGPH4LnnoLtbKZ78V3+lOHbKy8Mt\noQCgokJx9DzyiPJsvvc94egRCAQCgUAgEAgEAsGtI5w8UYDBAL/4heI4aGpSonQef1xx7OzdC5IU\nbgkFc3noIfjxj+EjH1GirH78Y0hKCrdUAoFAIBAIBAKBQCBYywgnzxpEluHqVaXOzq9/DQ0NSkes\nhx+G73wH7rsP4uLCLaVgKT78YUhJgSefVJ7nsWOzizGvVWRZxmAw3OgQoKW4uBhpDXsao+16BIJw\n49OpwcEhXK5hNJpUsrIyhW6tYYSdXD7i3s1mrd+PtS6/QBBK5upDUVERra2tQj9WAeHkWQNMTirR\nOufOwWuvwalT0NsL6enw4INKd6xDh0QkyFrk8ceV9K0//VO46y4wmZTnupYxGAxUV+txu3XEx+sB\nKFnD7QKi7XoEgnDj0ymzeZS2tnYKC7eTmzsECN1aqwg7uXzEvZvNWr8fa11+gSCUzNWH0lIjLS0T\nQj9Wgah18pw5o3SOUqtv/klKUiJeZv6dlASJiQunNE1NgdsNY2PKn9HRm/+e+2exn01MQGxsYH8k\nCQYGwGwGo1GJ1BkfVz6//XZ4//uVaJ13vEO5LsHaZscOuHwZLl1a+w4eAIvFituto6xsL83NF7BY\nrGu6JWS0XY9AEG58OqXTQWOjF52uBLfbLnRrDSPs5PIR9242a/1+rHX5BYJQMlcfOjoacLsrhH6s\nAlHr5PnBD5QaNYHic/jExipOHd+fqangzpuY6P9PXJxyrMnJm38v9GdqSqmrk5sLlZVKbZ1du5Tu\nWNHgBBDMR61WInmiAZ1OS3y8nubmC8THW9Dp1rb1jrbrEQjCjU+nzOZREhI6sFiSyM1VCd1awwg7\nuXzEvZvNWr8fa11+gSCUzNWH/Pw8WlosQj9WgWhy8mQD/OY3v6GpqYnDh+Hee286VCYmwONRHDe+\nv2f+8X02NaU4ZGJjlb99/54ZETT3T1zczX+vFD09yh/B+uH3v/89AD//+c9pamoKszTB4fH0MjIy\ngiQlc+mSg0uXLoVbpFsi2q4nHKzl8SwIPR5PL4mJLoqKxkhIuILHo1lzuiXG9GyEnVw+kXLvImVM\nR8r9WC5rXf5oIlLG9Hpmpj4MDm7E4+kT+nELtLS0+P6Zvdj3JFmWV16aVUCSpH8H/jLccggEAoFA\nIBAIBAKBQCAQrBD/IcvyJxb6YdgjeSRJ+lfgPcBWYJcsy9dufP554INAMfCILMsvLnGo3wF/+eyz\nz1JeXr6SIgvWCZ2dnZw714nHk4FabWPfvq1s3bp11c7/29/+lq9//euIMR3ZyDL87Gfw/e/Dxo3w\nF38BBw/Ojuzr7YV/+zd49VX44Afhr/5q4Tpg0YoYz4JwsJJ2XIzp0BPueXe9I8a0IFIIlS0QYzry\nEXY/OJqamnjiiSdA8X0sSNidPMALwP8Fzsz5/CRwHPjvAI8zAFBeXk5VVVXopBOsW8bHPWRnb5ou\nDrZhA6s6tnxhpWJMRy7j4/Dkk/Dcc/CZzyid7hIT/X/3gQfg6afhb/4GiorgS19aXVnDjRjPgnCw\nknZcjOnQE+55d70jxrQgUgiVLRBjOvIRdn/ZDCz2w7A7eWRZPgMgSbP3tWVZfsvf5wLBaiGK5wkW\nY3wcHn4Y3ngDnn8eHn108e9LEnz60+B0wle+onTKO3JkdWQVCNYrwo6vLcTzEggEIGzBekI865Uh\n7E4egSBSKS4uBpT2fzpdyfT//SHLMgaD4cZ3tRQXFyP8k9GL2w2PPAKnT8PvfqcUeQ+UL38Z3nxT\niQBqaoKMjJWTUyBY7wRix4X9jhyCmXcjBTF+BILQM9MWZGYWI8sy585dEDoWhUSS3Y8mex51Tp6n\nnnqKtLS0WZ8dPXqUo0ePhkkiwVpFkiRKSkooCcChbDAYqK7W43briI/XA1ASyC/e4Pjx4xw/fnzW\nZ2azOSh5BauDLMNHPgKnTsHvfx+cgwdApYKf/ATKyuBzn4Mf/Whl5BQIBIHZ8Vu134LQEcy8GymI\n8SMQhJ6ZtkCv1wsdi2Iiye5Hkz2POifP008/LfL4BEFzq55bi8WK262bzie1WKxBGSt/jshjx475\nCmsJIohvfEMptHzsWPAOHh+bN8M//iN88pNKEeaKitDKKBAIAicQ++1vjhCsDGttJ/VW53+BQLA4\ngeqYsNMCH8udR6LJnkedk0cgWA7L8dzONCBOpwO12iPySaOcX/4SvvhF+OpX4c/+7NaO9dGPKoWY\nv/xl+PWvQyOfQLAeuVWnQCD1APzNEYKVYa3tpEZSPYm15iCLZsSzCB2B6piw0wIfy51Hosmeh93J\nI0nSD4F3AxuAVyRJcsqyXCJJ0heBjwE64D8lSRoHdsuyPBRGcQVRynI8tzMNiFrtoaxMTUoKYc8n\nFawMly/DBz4AR48qTp5bRa2Gv/s7paX6W2/BHXfc+jEFgvXIrToFAqkH4G+OEKwMa20nNZLqSaw1\nB1k0I55F6AhUx4SdFvhY7jwSTfZctVKCBYosyx+TZTlPlmW1LMubZFkuufH5P974PFGW5WxZlrcI\nB49gpVA8t5YZnlvtkr8zODiE2exFltPp7pbRaFLZt28vJSUlYrcmyujrUzppVVbCf/+30ikrFLzv\nfVBYCN/5TmiOJxCsR2Yu5txuXdALe189gDvv3APA+fMX0ev1yLI8/Z3lzBGC5bEa91qWZfR6PefO\nXZj3rIPFN34iYf6/VV0QhA7xLEJHIDYahJ1ebyxmx5c7FqLJnoc9kkcgiASW8tz6C5lzuYZpa7tO\nY+MoCQkduFy7wyG6YIVxu+GP/ximppS0qoSE0B07Jgb++q+V1urf+hbk5YXu2ALBekGn06JWt1BT\n8yIeTydOZwmyLAe9OFts18zfHHHp0qXQXogAWJ2d1EB3SNdayk0kpRqsd6LtWUSCLiylt8JOry+C\nnbNXg1Dqya3aEOHkEQhYurK7P0Oi0aRSWLgNnW4LFosKjSZ1FSUWrAayDB//OFy5Am+8oRRMDjVP\nPqnU5fmP/4BvfjP0xxcIop3i4mKMRiNGYz1q9Raamz0UFBiCTo1YLLw7krp/RDurca8DDeVfayk3\nkZRqsN6JtmcRCbqwlN4KO72+iMQ5O5R6cqs2RDh5BGuGcO4i+DMkWVmZ5OYO4XZDbm4SWVmZyzp2\nJOyOCPzz7W/DT3+qdNPas2dlzpGSAh/+sNJW/Wtfg/j4lTmPQBBtzLSdNpuDzZvvorz8TpqaznPl\nSl3QNjXadt4FCv7m2ECf9WrVBwrVOkC85EYO0fYsfLpQWrqHM2de4NSp0wAhX7MupgvCRq8/ImE8\nBGOfQzln3KoNEU4ewZrhVjtgzWynGOxiyp8hCdUuTSTsjgjm8z//A5/9LHzpS/D+96/suf7iL+C7\n34UXX4RHH13ZcwkE0cJM2+lwuIBrNDdLDA9fo6EhDpMJ1OoWjEYjKSlp6HRaioqKaG1t9Wv/o23n\nXaDgb44tKiqitNRIR0cD+fl5FBUVzfod39qhq6sLh8NGU5NMQsLQir1EiHWAINLxrYPPnHmBtrZ2\nYDtud+jHqsFg4OWXm2loaGd4uI1Dh3bx5JNPolKphI1ehywnJSsYp0wg3w3GPkeSIzLsTh5Jkv4V\neA+wFdgly/K1G59nAT8DCoFx4C9lWa4Jm6BrnGiIFrnVDlgz2ykGu5jyZ0hCtUuz1jqJrAd+9Ssl\nuuYjH4Gvf33lz1dWBvv2KUWdhZNHIAgMxXZmkpKSR0dHB0VFfbz97TImUwYmUx5lZXupqXkeo7GD\nnJy3ER+vp7TUSEvLhF/7H20775FGuNYh/jvutN4YBxW0tFgoKGidtQ64uXbIA1xs2WKiqmrXir1U\ninWAINLxjX0lgmc7+/c/SEvLxUXH6nJ03mKx0tDQzvXr41it2xkYaCY39ySHDh0SNnodspyUrGCc\nMrM7Jc/eFPKN12DscyQ5IsPu5AFeAP4vcGbO598EzsuyfESSpDuAX0uSlC/L8tSqSxgFRMMu0XK8\noxaLlfHxTFJTtdTXN5CdPUpeXl7Qi6mVnFgiyesrgGefhQ99CN77Xvj+90PXSWspnnxScSqZTKIA\ns0CwFLIs43Q6aGw8jcmURHJyChkZiWRlZZKVlcnAgGJTPZ4u1OqSaXvf0dGA210hXqbDQLDrkFA5\nhfzNsUst2mf/XGLLlpVdM4l1gCDS8a2DAdxuPS0tF5ccqwvp/FIpOMPDbVit29m69V7cbjUdHaaV\nv0BBRDLTNqrVgzidas6du7DonBCMU2bmd+duCoEyXoOxz5HkiAy7k0eW5TMA0vyn9BhKFA+yLL8l\nSVI38A7gtdWVMDqIhl2ixcLy9Ho9tbVXAdi9e+d02ztlsjjF2bMeIImGBhcZGcPEx09EzGIqkry+\n6xlZVmrwfO5zisPlxz9Wul+tFo89Bp/8pFL/54tfXL3zCgRrgbkvBbIs09zsYWIiD4+niwMH7iAx\nMRWLxTrdZtdiseJ0VtLU5Kam5nk8ni602gzU6sGIsf/riWDXIaHanPI/xxoWXbQvtagPxAEVjJNK\nrAMEgRLuyPxgxupCOr+YbhcVFbFz50YMhrPYbFZyciTy829f+QsTRCQzx5vTqaa52YPHw6Jzgj/7\nvZDeZGZm4HC8TnV1Ay6XgezsffPG61q1z2F38vhDkiQtECvL8sCMjzuBLWESKWJYrnFfjV2ilZ54\nZnpHZzp2ent7aGnx0NubCYzS0PA6H/iA8t3i4mIqKuqw2bxUVOzHaDyL0dhFaekWNBqZrKzwK2sk\neX3XKyMjSnrWc8/B5z8P//APoFKtrgypqfDII3D8uHDyCARz0ev1PPPM61itKmS5l40bVYyMlLB/\n/x9RXf0KAwNdZGTE0NWlmZ5/iouV37t+/QT9/cNs2LALpxPKy9VoNDIuVxyDg0OAflVelML9chZu\ngl2H+HtBLC6efQ+LioowGAx+N3l8+JtjZy7aMzOLkWV51u7wUov6QBxQwTipxDogugml7oc7Mn+h\nseq7xsHBIVyuYTSaVFyuYdRqzzydn13E+aVZRZxbW1tJTq7k9ttzcTpbOHiwkPvuuw+9Xr9ubWe0\nspBezP1cqZnWSn19A93d2ezfv2fRVEF/9tuf3hQXF9Pe3k5jYyMjIwlotTJxcT3zxutatc8R6eQR\nLMxyjftqeCFXeuKZqfROp4PTp800NIDV2sXYWDJbtryDtDQZm61hWvElSaKqahcDA3qMxnO0tRmB\n7Xg8Exw+nLnmUtYEoefMGSU9q7cXfvELJaImXDz+OBw7Bo2NsGNH+OQQCCKN2tqr1Nd7iInZgMGg\np6Agi7i4dkCmslIiM3OEoaFEurry6O9X8uptNgcNDS5stmTs9hTuvPN2nE4TKSmKw+Hy5SHcbmnV\nXpTC/XIWboJdhyg7rGepru4gI2OUzMy75t3D0lIjNTUd1Nf7onXPTm/yLMbMRbter/f7XBZb1AcS\nlRQNEdSC0BBK3Y/UceW7RrPZS1vbdQoLC4iLc6HTOcnLG2P37p3TOn+ziPNLtLVdB7ZNF3G2WKxM\nTGTz0EPvobn5AuXl0NbWtq5tZ7SykF74s/MtLROYzak3xgvk5qoW3Cjw55TxX5vNwPHjp6ivT0Gt\n3obT2cGePePs2cOaithZiIh08siybJUkaVKSpOwZ0Tz5QNdSv/vUU0+RlpY267OjR49y9OjR0Asa\nBpZr3FfKCznT8dLV1cX4eB7l5Ssz8cxU+u7uegYHNWi17yQmJoWurhoGB08zNZVATo4anU47/XvF\nxcou3XPPvUBCgo6CgipcLlPETIwAx48f5/jx47M+M5vNYZJmfTA2pkTM/Mu/wN698PLLhH08HDwI\naWmKs2k1Cj4LBIsRit3n0EavJOF2e/F6cykpqUKlslFYOMA99xxgcHCIc+ekG3n1L2I01jMxkY7Z\nLFFVVYbZXEd9fQ2lpZqAarKsBJH6crZaLG8dMgG4AKUc49x72NHRgM0Wg1b7NiAdm60u6PsaSMTQ\n3B3mQLpuiTo7Ah/B6P5SNjOYcbWa0YO+a9Tp0mlsHEWWE2locJGbqyEmJglJkuZ1MlQieLaxf/+j\n05EZy6mhJVibLPRc/dl5t7uC/fv3AC9Mz/uBOGFm22wXTU1ehofr6erKoKurC6tVZmJCy/j4JsbH\nWwGJffv2rvi1rwYR6eS5wQvAx4GvSZL0NmAz8MZSv/T0009TVVW10rKFjUhbNCzUwnaubKHIX5+p\n9IODXcTGNmO1nkWWR7jjDh2lpXFs2rRh1m4BMD2xTExk4XJ5qK5+hcpKCZ1uf9DXu1j9n1vBnyPy\n2LFjPPHEE7d0XIF/LlyAD34QOjvhW9+Cp55a3fo7CxEfr6RsPfccfO1rq1f0WSDwRyh2nwPpXBEI\nu3bdxhtv/IrW1n7S072oVAXk5qq4554DN2TST8+NHk8navUWSkt30tz8LHV13WzaJFNYOEl2dg6y\nLJOZmUF8vGFV59JImr/DkToW7DmHhmykpe1kzx5loT80ZJt3D/Pz8zCZOjCbLwFJ5ORIszZ5AsHf\nc1l6h3nprluBRC6FM4XP37kFK0MwNZ6cTseNuiNZfu1uUVERpaVGOjoayM/Pu5HKsrxjrcQ1ms0D\nJCR00NMTD8RSWXkIp9M6rytScXExRqORpqZ6zpx5gZycRHS60mXV0AqU9Z4yGwnMHZ/+0vlm1snJ\nyJiisnIrer2FlpaL5OYmcc89uwIexz6bPT6eB1wjLu5NIBWTKQ+Ho4nYWBexsd3ExdmJj+9DlrOR\nZTkqxkXYnTySJP0QeDewAXhFkiSnLMslwOeAZyRJ0gNu4H2is1bkFX+a7W2VycszsWXL/DC3UOSv\n+yaQpqbzxMVZ2bkzBRgGYPPmMnbv3rWgw8VisZKaehtHjmRSX3+aioqU6QifYAy+wWDgmWfOUl8v\nM7f+jyDycbvhq19VCizffjvU1kJ5ebilms3jj8P//A/U1cHu3eGWRrCeCcXuaSCdKwJBKZC4EUkq\nwOttZ+PGtmmHjSzLs+bG4eFiamo6OH36eWw2PSrVVhISJrFYcpia2sLAgIFDh4o5fLhkVebSmbUq\nSkvjIqIeXKhTxwKZS4M9p78X47lroKKiIvLzZ9fkmdmUIZD53d+66vz5iwHsMC/edSuQyKVwpvD5\nO7dgZQimxlN3tx61egN33+3f7ra2ttLSMoHbXUFLi4WCgtZZYyaYY4X6GmVZpra2jk2bEpBlmaGh\nOIaHh/xGuxkMBpqa3DidOnp7/0BMTCZer3JfFquhdSv2er2nzK4GXq+XkydP0tFhIj8/j/vvvx/V\njCKXszd+PJSVqW+kUM99rnFAEjBKfn4+27apZj3/QO27z2YrWSYSSUkNTE5uv2HD4cABB5J0na4u\nJ+npRQwNpWIwGKJiXITdySPL8scW+HwAOLTK4kQ8kVb8afYibIiqKv/e1cHBIczmUXQ6MJtHGRwc\nCjp/3af8ly/XYjRasduz8Hp7ycjYTF+fxIULL3HkSCUHDx6cp+g6nZaEBD3Dw5CRofgKDQYDsizz\nyiuGgA2+xWLFZktCq90F2GfV/xFENnV18P73Q0uLUlj5b/8WYsNuAedz772g1SopW8LJIwgnoYg8\nmXmMue3MA7GdvoXc66/X4PFkc/jwg5w58xJdXfpphw0oc6NSRDcDu93K9et1tLUN4HCkk5+/H7P5\nAiqVkzvvvBkVsm/f3lWx3bNfLCKjHlyo0x8CeXkKZB0wE9+crxRy9RXJVj4vKbk5x5eWllJaWjo9\nVs6fvzjdgW2p+X2hF4WFxn6oo7HCmYbiv0aFYCVYau0+O1J9AI9n4TG21JgJ5liBEOjLtC9qfmAg\nmcnJvajVgxw4oEajYV6Re4ArV+q4dKkTqzUegyGd7u4p7PaX+NSnJEpLS4O6f4Ei0r5WnldffZXv\nfvckTmc6KSlNyLLM4cOHp38+9xmkpDArPUpxFF7FZkuisvJunM4urFb79HztG49XrtTR0OAiLa18\nyU5banXLAh02hzh06AE2b86hpsY7fb5oGRcR+IojWEsE6l13uYZpa2unsdFLQkIHLlfavO/MXDyp\n1YMMD8fx3HPPAzfTokpKSrhypY6enhQyMipoaHiL+PhWcnLeychILqCnoKBgnqLPnFQaGuIwmfIY\nGNCTnT2K270lYIOfmZmB11tDa6sJtXqSvXszgg4NF6w+P/0pfPzjStTO5ctQWRluiRYmLk5J2frV\nr+Ab3xApW4LwEYrd05kv6s3NGdTXd1JT8+KNtJrSJX57ZjHPmwUXfelYPrvtW+x1dEwwMFCLzdaL\n3b4dWdYwMhLD0NAYanUWcXGWsKRKReKLxXKcFYu97AVyjYGsA2bie7EDvd8i2XO7+VitdhobR6YX\n/YHM7zedU5k4HGeoqKijqmoXRUVFHD48f+yHOpo6nCl8/s5tNLat2vlXm0hO1Zn5LHJyJMrKKheI\nblh6zARzrEAINPpFlmWuXKmjpWWYysoShoflGw6eYU6c0ONypaLRDHPkiJH8/HwaGlx0dUF7+1vI\nci4JCXtoaFDKIcx18oSKSEqZjURCoSNvvvkW3d2pbNp0P93dr/Dmm2/NcvLcdLq8iMfTidNZMis9\nymAw0NBgw2z2YDZXU1kpodXu45VXXqGjw0RsrITTmYXBMIzZLHHkyBacTmnRTltGoxGjsQO1umS6\nw+ZMnVCck3qcThPx8f5rrK1FhJNnHRLKiS5Q77pGk0ph4fYbBdSS0GhS531n5uLJ6VRPd8/ynxaV\nxPCwHYcjmclJFz09HZSWluNypfDaa29gNBrRaFLJysqcvr6SEiU032SSSUnZQn19J1NTfcTFJSxo\nbPyRkaEhPd3I5OQgBQV3zcuHFkQOXi986lPwve8pLdK/9z1ISAi3VEvz0EPwX/8Fzc2Rl04mWD+E\nYvd05ov6W29lo1aP4fHoKSurnPfC4W9uUqI/vGRmVmK1DrFtWz/5+Uo61okTP8Hr7eHatXYuX05j\ndHQHQ0NewIZGk0t8vIRKdZmpqTr27y/k7rvLSU1d/a4ZkfhiEaizItD6HoFc49x1QHJyCnq9noEB\nCy0tTUxMeCko2DIvvH8hB5Lv5dNkGuHq1TcBN1NThbz3vXm4XBLQRXz8TcdeZmbxvDbMvmOnpORx\n5sx1bLZh+vtbKCvzXzsq1NHU4UzB93fuS5curdr5V5tITtWZ/SxKF12XLzVmgjlWIAwMWLh2bYj4\neDVu9xBVVRa/981gMFBf76SpqY8LF/4JrXYUq7WQnp4pOjtLmJhIRq0eA+rZs8dGX5+KtLR0JMkD\n9JKUNI5aPblsOQMh0kpeRBpzdcT3PhTM+2JKigaVahS73YNKFYdGkzjL7hYVFVFWZsRorCcuLo/T\np43YbC9MO9evXKnDak2lqiqXgYFmKirS6Ojo4Mc/rmVoKIHh4TMUFb2dd73rYczmV6cbKsy170VF\nRbS2tt7IwHCQk3MHZWV3+o0eitZxIZw865DVyMX3ncf3mU6nJTd3CLfbTm6uiqyszHnHmbl4Onfu\nAna7zW9alK8A5/XrF0lKSiI29jZ6evpoazuP16sBsjl5spbCwu3k5g7NMlJOpwO73cyZM9eBUdLT\nE9i2bRCPx4ZavYXmZg8FBbNzMWdeX2dnJ/39MipVKaOjm6ivt9Ha2hoxCwXBTSYmlNbozz0HP/gB\nfMxvYmhkct99kJQEv/2tcPIIogOLxYrHkzVdGyIlBb81W15+uZmGhm6Ghw3cf385fX19nDzZSlzc\nDnJzp8jP340sy1y/fp2BgVHGxiYYH9fS3W1lcvIaXq+amBgVY2NnkeUsNm+GwsIpDhzI85vKuxpE\n4gJy5ny72MaPXq/nmWdex2aLweUykJ29jwMH5kfGBHKNWVmZs9YBIyNOqqutXLs2xKVL10hPzyc+\n/nWuX2/i3e9+YMnUKZ+DBkbp7k5Fp8vGam3nzJnfsWdPLrt375yRxqfs5lZXG+ZFFMTHG6iv7wBG\nqaw8RHt7M0ZjPTk5+2+pWPhC+LvfM9PPVotIS/9faVYyom6pzdOlfh7Ms1jqu6F6rj6Zf//731FT\nY8Lj2U1MTD0FBWb27ds7/QI902E6MaFBrVZjNsuYTGn09EikpEwhSe309GRQVDRGXFwp165d5dKl\nEdzuMuLi1GzaZKWgoIv8/Ax27955a4Ivwnob88EyV0dqa68yMJA+mKqdAAAgAElEQVQ0L9JxMTt4\n5Mhh9PqXGBioJTs7jvLyslnvnIcOydhsDiYm0snISOfy5QHsdi8DA0qr9IYGG93dHrq7R6moUJGR\nkcYf/vA6ZnMC6ekVOBwTtLa2kZ9fy+bNTrKzHRQX387p06c5efIaqamFVFRso7zceKN2lQ6Hwwa4\n/DYGgvnjwtdkJxKj/oJBOHnWIbc60c2drPzlvQOzlPrgwSJKS+NmdQOYeZzMzAxA6aaRmZnB8LCd\nkZF6TKY2kpNTyMmJJzMzg5aWFl5++QR9fT2kpOQwNNSFy5VEamoKY2OXmJysoKjo7dTUdKHTleB2\n23j55RN0dk6iVm9h06Z4vN5Wxsas5OWV43ZnMTHhJCdn/4L3Y+Yi12q9TmvrKE7nTrRaNyMjCRER\nei+YjdcLTz4JL7ygOHkefTTcEgVHYiIcOgS/+Q187nPhlkYgCA5/tj2QltODg0OcPdtEU5OXkZEt\n1NW9zOSkHY9nBwkJtSQlxfH66w7Onm1Er9ciy1m43cOkpqqJjdUwNtaJSlWO13sHavU5ysvVPPbY\nF3A6raSkSGFbpIXjxSKYiN3FOqBduVJHfb0HrfZtmM09wFs0N2+Yt1AO5BrnOoL6+we5etXAtWst\n9PZOkJzsoLNzGFkeRaVqmd6g8RWsTk724nLFcvlyLVeu1OJyOTGbbbS3dyNJWWi1u4mNtVJSYqG0\ntGD62jMzM6itvUp19VU6Orbh8dyMKPj4x/M5fLiE7Ow6GhrUDA8PzUoHvJVi4QsRyREl0cxKRtQt\n9UyX+8xDEXk/9xgzIxwWO6ZP5paWbMbHHaSljeFybaWuzsLJkydpaZlgfDwTh+M1dLrf09fXz2uv\nvYnJlMDoaCaxsW/H6YzB7b7K2JiRiYkYhoZSiI3V4XKNoFJp2L49h6Gh3dxzj4uDB+8WXd5CQLBj\nZrFuV4DfSMfFHN+lpaU89ZRqOo3WaOzCbN7A/v17aGm5SG3tVerrnTQ393PmzB9ISsrnyJFHcDpN\nXLz4B6zWDVRVldDf34VON0Jzs4ehoTx6e0/Q0TFJeno2GzbkMT5+ntHRVFyuO/j3f/8lDQ3DeDw7\n0WrNOBwDJCQU4HZXUla2l6YmmS1b/DcG8ke02Gjh5FmHBDPR+TMWcwe/v7x3gPHxTFJTtdTXNzA1\n1YpKVYjHc7MbANx0BDkcrwNxpKVtx+E4iyx7yM7egyzXsWuXlwceeCcAzzzzOm+8MYjVWsz27Vqy\nslx0dNQzOfl2ZDkXp9NGa+tVEhIcWCxJqNUWTKYhLJYd5OQkYbW2MjQ0QW/vVrq7HeTkmCgrK8fh\nuE51dQcZGaNkZt416x4oBsm3yL2ORpPNpk0bGB6WSE52ipo8EcjnPw8///nadPD4ePhhpc17by9s\n2hRuaQSCwJk5R9y07eUs1XLa5RqmtbWOgYG3odEk0d+vxevdQGJiBg6HA48njt7eTiyWCUZGNjM1\nlY7Xa2dszEB8fDyxsT1IUhJa7QYyMu5gy5YUXC7bgk6lcLBadUGCWaQu1gFtaqoXSAHS0Why2LXL\nyZ49y0t58zmCiovlG1Fbv+fUqVas1ixGR71cvVpPYuImYmML6O4em7GLrBSsLi11cuZMJ/X1Hlwu\nmZiYHvLythAT42bjRgOTk5Pk5EBOTs6NtDIJh+MsMIHNFoPJlERMjBOr1UNJibLx4yvAXVxcTFWV\n70WnhOZmz7KLhS9FJNZoWg+sZERdMMWQg3nmoXjZnHuM0tKbEQ6LHdMn886dm6mr68dud5Cbu5W0\ntA10dJhwuytIScng1782YLN5sNlGcLkymJzUMDlpJy7uFFNTmSQltRATsxmtdgcxMQ7AjMeTxciI\nmdraV9m8eYK9ex+ZlT4jWD7BjpnFul3Jskx/v56amjqs1n6qqt5Fd3fPoo7vubXUzOa06Xp6ublK\nGq7iaNcyNlaC19tNe/sZ4uMdDA3F09OjortbT2Wlmo0bN1FbK5Oeno9aLTM62ozbrWJ42I7ZPIrH\ncycDA24uXx5gZGQHklTJ6GgTavUlDh8uRK0enC64vHNnJXfeuSeg+TZabHTEO3kkSToM/D1KL7VR\n4GOyLF8Lr1Rrk+W0cfW3w9fRYcJsTp32yvrLe+/o6KCx8TXM5mQ0mhxcrmE2bBib1cYRmFai6uoG\nIIk9e/ZSXd0BeDl8+D00N2exaZOJoSEbXV1d2GwqsrL24vFIdHebyc4eJSUlHrvdSWZmClu3xpOb\na2HHjhQ2bRpDlpNxu+9Ard6EXn8Fleocycl3UFR0gO7us9jtrbS2qlGptgBeYGrW/dLr9Zw7dw6z\nOZOYGAm1OpPc3Ck2bIjF45ngyJHbxK5DhPHCC/Ctb8F3vwuPPRZuaZbPu98NMTHw0kvwkY+EWxqB\n4CZLOSpmLpBu2vY7/bacnnksq9VOYWE+Llcbg4NjuN0qJEmL1ToMjJCSspXe3g7cbidTU+3AZtTq\nQTQaNVptKnb7JiYmUklKikerjWfXrqxlOyRWimCKmN6KMyiYRerMQpgdHRdITd1Jaakyv+fkuNi0\nqYv29l+SnGynrOzegBfKC+GLjj1zZgC7fZiMjN3ExrpRqTRs25aOSrURj6cL2DLrGjo6GrDZYtBq\n38bkpAebTUar1TE4WM7UlAWzuZOEhC1cu2YlPj6LwkIt5893k5gosX//o5hMryDLNlJSjDid8fT3\n9zI8nDodMTQzfa2gwOfwqZx2+IQq+iMSazStB1Yyoi6QYsiLFZtdiFC8bM49RkdHA253xaxj+hyv\nM6N9hoftNDS8ycREFuXlLrxeFzk5BWRlxWI0tnL58uv09joZHIxFknZjs1lQqbYQF5fK1FQtcXGN\nSNIUycn5ZGbehSynkJBgIzExidTUIgoLNZhMSrpNfn5+kHdcsBDBjhnf90tL93DmzEskJJi4556C\n6Tmzo6OD2lojarWay5db0GqNZGfvWfL4vuPu378HeIHCwgHuuecAsixTXf0zurqySU+/g5iYWDSa\nVkpLS+jqqmTnzq3U19dQUaEiLS2F2tr/j46OIRyOOPLyqkhLS2B0tAOrNYaYmFb0+jY8nhHi4wcY\nGakjLk6PWh1PYmISOTlx0wWX/ZXjmMliEU1r1UZHtJNHkqR04FlgvyzLzZIk7QeOARHcGye8LLYw\nnO+tHb7xM8OCC0h/O3xq9VZaWxuxWv8VjWaSysoKdu8uuJFqdTPv3WpV4/EkUlW1m5GRLL9tHH2T\notLWfPTGv0eBKZqazmM0nqKx0UF2NsTFWfF6rUxOjqFSDZOW1k95eSpa7XYslgT6+vpwuYz0928h\nKWkPAwOKMys314PN1gS0kZm5HYfDisn0Av39IyQnF/Laa93cdtsWHnrow9OtdX3365lnztLQoMPp\nNNPV9TvuuCOFhx++ndTUdHS6sjWbpxmtGI1KgeVHH1UKLq9lMjPh7ruVlC3h5BFEEks5KjIzM3A4\nzlJd3YHXO4BWK/ldLCmpvq/w3HOnmJhIISVlCq02DZ1uHKfzCuPjCUACslwPeBgaGsXjGQcKkKRx\n4uIukJKiIS0th9jYERITbyMjYydu93UyMnp54IEPrFiXluUS6AL8Vnfwb750nsduv87Fi066urqm\nO1XOnLdudh+pJzV1C1ZrD2fOvERurgqtNh1JamdsbJSpqUTOnOmksHD+QjkYp5QvOnZqqgCPZxCr\ntYf4eBW5ueNUVBSi0Qxy+HAFABcunGFwsIucnETy8/MwmTowmy8xPi6j0fTR0+NkZCQVSdrG2Ngm\nPB41o6MeHI630Ou7GBiIY2qqg4SEP1BZqSYzM5VLl1IxmZIxm7Ooqelm2zbDvJ1o5QXHgCzLlJUN\nk5zsZWRkdhvo5c79kVijSXBrBFIM2adjC9V/9EegDsHF9G/uMfLz82hpmb0x++qrr3LihCJbTs4g\nZWVGTp82otdbGB3to7w8mQ9+8AHsdgfPPvsKjY1WbLYkVKpNTEwYUamu4vVqkeUuvF41KlUPyck5\nxMVtIzHRSUxMO7Gxbioq0nn72++guroBlSqXffv2kZ7eh9VqD8FTWJpI7rAWKoJ1Ivu+X1PzIlev\nnqa7OwOT6RTvf79MaWkpKSlpbN/+MHv3ZlJff5qioixUKonm5vM4HE10dWn83kvfcVtaLpKbm8Q9\n9+ya7oq4c2cWbW39ZGUVMDmZTmnpBqqqdt3ocCXdeA/U0NTUjMsVi9dbiNt9AaPx1yQm5pGWls/g\noBGvt4vxcRVebzJgxuu9jCRtxeV6OzU1Zt7xjhhyct4WkMPLX0STRiPjcoXG7oeDiHbyAIWARZbl\nZgBZls9IkrRFkqRdsizXhVm2iGSxheFiIdkzvzeTm7sPz9PRUUNq6nb+6I/ejdHYRHv7RbZtO0Bz\ns4dt2yT27duLXq+nuroBgyGX5ORNjI4aGBjQU1KSTGlpBXZ7F6AY2uLi4ukWpZmZ70SWZerqrpGb\nm0xGRhpWayfnz1vp69vG6KiHrVvTOXAgg76+Xq5edZKVtR+VysWmTROoVLEMD1uIi8uiuzudnTsz\ncTolNBqZw4e12O0vMDa2mbvuei/t7We4fPm/GB3dxe23P0hPz5sMDxvmGcTBwSGMRgcJCYVs3apB\no+mjtFQd0gKMgtAhy/Dnfw5aLfzkJ9HRevyhh+CznwWnE1JSwi2NQKAQmKNiAnCh1Wq5++4cUlLm\nL5ZaWlr4zneep6FhipSUUdLTPWzd6qCgYAcaTSXnz3cyOTkC6FCpavF4ZCRpPzExuSQl9ZOdrSI/\n30lSUi/j4+M4HBvYvDmNwcEYDhzYsWDEUDjtt2/h29R0nuHha3R1ZSwZDbWcHfzi4mJkWebll09w\n/XojDscGNBoNDQ1n53SqVJwaKSlp5OTsp7R0DzU1z5OcfI3s7BJsNhlJKqCoaDdgx25vmCeLLMvz\nXhL9dWWRZZmTJ09y8uQfGBjIIi1tO1qtm9xc0Gpl7rknn717d5GVlYnX6+WZZ15ncFAmNraed73r\nLu6//37y8w3U1l4FZNLTS7DZHFRXt9DZqUardWC3x5OfH0N+fiZvvRVHfPxOBgbScTobeeyxP0Kj\nSaWtLYWEhAogHbu9bonW6jdTxZQUF+mWizGL4q+RT7D2IpBiyD4dU2qEnOfKlboljz/TeZSZqejQ\nuXMXFt3Enbum9x1DqZESR3JyCqWlzulofq/Xy89/fhGDIY3cXBeyLJOQ0E9Hh4WRkQ14PFpaW43Y\n7cP09fXR1KTGbi/B40kjO3szIyNTqFRDqNUOnM5OwINavQFJymLHjp3k5rrJyxuitHQ3u3fvnJbH\nZnuTkRE7WVlxZGaujjN+Zo3NjIypaUdGpLKceStYJ7Lv58899zxTU2mo1fdSX//WdCt7nU5LQoLi\nfCkt3cihQ4oMV67U4XBM0NWVx8DA/PfIxeQoLy+joKAHm+01tFo16enFFBUVceiQMmeZTL2Mj+++\nEVCQyuSkGknS4XYnEBOTRXr6ZoaHx0lPLyEubgODgy1kZZnp7s4kK+sAmzdXoFJ1A8zKNPG93/m7\nr3PnXCVlTcvly0O43dKarM0T6U4eA5ApSdJeWZYvSJL0HkAD5AMR5eSJlAXk7LC7Fzh16jSgKNtM\n766/PPO54ZrFxcUUFxfT3t7OlSu1jI/nYbeb+d3v/o3BQQvwDlSqXHp6RqcXSRaL9cYiLwmz2Ulu\n7ih3362iqqp0VoHmgQHDvPDoV199lQsX+lGrt5KTM4HX28fwcA5ebx6Nje0kJQ1w++0fxGLZyuQk\nNxajv2B8/AKyPIpOl8nWrXupq2vg6tXXycyUMZkycLmG8Xh0OJ0T/PKXLxATU4vbnYkse7l06SW0\nWjM7dxawb9/s9DWXa5jBQQvd3SpUqm4qKtwMDaVy7tytL/IEoefYMTh1CqqrIS0t3NKEhocegqee\nUq5prdYWEkQfM53/Hk8XTmflrNSDoSEbaWk72bNHmV+UtuXzF0snTlTT3JzE2NhuhocvMjhYz/h4\nDrGxdYyOJiNJWYARSbKiUrlRqfKJiYlnaqoXj6cerxeGh8vp7EwhLs5OfHwXCQlvUVEhsXHjJgyG\nm1GqkVJI0Te/XLlSR0NDHCbTzQWyr+ZdoOHii607JEkpNN3ZGUN/fwVTUyrS03Ow2RzT87W/8PSW\nlovEx9uZmNiMybQFh+M6styH1ToKjJKTo55Vh843d//3f79Bf38hxcWJwOx6Or758vr1Jk6cMOF2\n78JmqyUhwUFZWSq7du0hN1c1/fJgsVi5ePEC9fUxZGbup6vrJBcvvoUkSWg0qbO6u8iyjFb7Ki+/\nfI2RkQSSkyd44IHt5Ofn09n5KgaDg6Kizdjtnbzwwq/IyspkclLN0NAoIyNT5OY6cToz5qXOLJbi\nUlPzIrW1r5GcXLwmXhQFwbMS9mLmGnx4+NoN/WfR489cJyubqEtv4jY3X5h2ps9MvzIajTMcsYkc\nOZJJSUkJzz33PGZzOlNTZTQ2XiUxsZmyslLM5rfo6dEQG3sbTmcPv/lNJyMjHsbGclCrdYyMtOF0\ndpKf7yEzMxmjUWJ09DZUKi1JSXZUqkGs1hPk51fw2GOPERMTc6NUgxIhByOABdDd0n0Nhtk1Ni9N\nOzIiFX/jcOY8caud2mZ/v4TLl51ABpA0/fPi4mK8Xi8nTlRjs7kwGmO5//77uXKlDpstjdzcLTid\nzBtzStfA+XIYDAaamz2MjWViNreTkFBwI1igdXrOslh2MzY2Sl+fGq93GIvFzMTEJuLidhAbO4zF\n0oha3Y8sJ+DxOEhN7SUrS4fTacVmOwm0kJWlo6cnGUmSyM0dmVUL0N999bcB09XVxfh4HuXla7M2\nT0Q7eWRZHpYk6b3ANyVJSgbOA9eByYV+56mnniJtzhve0aNHOXr06IrKGikLSN8gPXPmBdra2oHt\nuN03DQOwYJ75Qtdgtw9jt+eg1d6FyXQCWW6mqGgfklROd3c7SUlmdLpd0+fPyRkERklK6ubIkf3T\nbWvPnbuwoANKadN4lQsXJoiLayYlZYDNm4eBXHJyZAYH+9m5M3s6hNp3jVevXmJqagOjoyPYbANY\nLL2o1aOkp3cARZhMeVy48BZO5yQ6HVy/Xs34uAxsR63uYWxMT15eOUlJFWRlZU4/M1mWsdnsZGXl\nsWXLJkZG1Oh0LVitk8TFTVBba+DKFRcbNuzC47nEkSNG7r///oA6Fvjj+PHjHD9+fNZnZrP5FkbC\n+sLhgE9/Gh5/XOlKFS0UFMBttyl1eYSTRxAp3Ew98J/rPrP+hNvdQWNjIteuNdLSMsa+fY8wNZXB\n5cu1nDt3AY8nmeTkVIaG7IyNpeNy3c3o6Bni4jqYmtqA230HcBUASRpApfLi9ZqQZTt2ex6JiRsZ\nHy9DpbIhSVfIzBwiNbWS2lq4ePFFjhyp5ODBgxFTSNG3oLZYrJhMzGlYsHABTH+7sUutO5RNl63k\n5qppbKxncLCG7duLpp00CxXc7OrKwGTKuyGbTEVFMiABKbN24n3HOHGinv7+LXg8aRgMA+zaZQPy\nMJu96HTp1NfXYjROYjJJdHencuDAu5AkiTvu6OC++w6QnJzCyIiTK1fqaGwcIS2tnIaGAQYGZIzG\nE/T3d+B0JnD1agyFhduIj7823cq3qKiI/Px87rzTATCdjgZw5EgHUE93t5Vr1/oYH9+ILHeh1fax\ndauGlJSNZGe/02/qjL8Ul+bmQWpqXqSh4SQ2m5qysh2YzW/x8ssnGBqyrWiL9fW+ieT1ejl58iQd\nHSby8/O4//77UalUK3a+pZwmy3kmM9fgs3UsMHtksVgZH9cyNjbB+fO1TE21UlRUhEqlmjdeXa64\nG051pfV1ZubL1NUNY7GUkJOTBCibs0VFXq5ercNi6UajmSA93cXmzbE4nVmkpd1FbKwetXqCyclU\nzp+3kpCQj8PRgNfbT2KilYKCOD72sT9Bo0nhW996FUnahNu9Gbf7IhpNHxMTD9De7uHs2bOMjm6c\nLsZvMvVjsewmJ0fDxIQiiyStRstqGZdrksnJYcbHJwF5Bc4ROpRnfrOJTXb2qN+Oxr40qFuxG7t3\n76Sh4Sw2Wx05OdKsVvZnz57lt7/tBEq5erWW7u5ujMZJzGYPZnM1lZUSTudmTpxowmZLIiPj+oLO\nb4vFSk8PeDw6xsZScbs30NOjfC7LMi5XLDExI9TXXyI2dpTbbtuG293GyMgYsjzG1FQ9anUMO3bc\nz9SUHq93HLV6I319V/F4UklMvA2r9Tw1Na2cOrWNpKRJKisH0WrTF3SKWixW7rxzDzB7A8bhaAKu\nLdh6PdKJaCcPgCzLbwDvBJAkSQ30oTh6/PL0009TVVW1OsLNIFIWkL5JRHGgbGf//gdpabl4Qx7/\nhQV9C8jz5y8ucg2jSJIdjSaWiopyVCot3d19JCcPcuRI5fR5Z4fn7ZplZGY6oFpb27BaN9PU9ApH\njhhJTk5BrzdhMtkZHU1CpRoiLy8bWb6O19tFQYGW8vKy6XPIsswvfvEC4CYtbQfx8aOMj/eyY8c2\nkpM3s2VLH0ajDlnOoLvby8CAnuFhLTabloQEHS7XMJOTScTHbyEhoYreXmnW7qYSet5Ab28ikjRE\nSoqJ9nbo6zPjdNaj0biIjy9kbEzNyEgWUA8QUMcCf/hzRB47downnnhieQNhnfHd7yopTd/5Trgl\nCT3veQ98//swOQmxEW+xBWuR5aQmKKkHb5su1jjTaV9UVIRGU0NHRx2ynMKbb/bS2xvP+HgeHR0v\ncfvtMXR25mEyVeDxNDE+/r/ExDQB9zI5eRtOZx2Tk7V4PDtQ9nSyiYkpJC6uA5XqMklJ96DR3IXD\n8TJW6yW8Xgfp6RrS01PR6eIZGUnBbk+iuzsX0FNQUBBxxW79yeMvXHyxjjNLrTtubrp4SEwcY9eu\nbB544K5Z87S/8+l0WgYGfLINUVW1e9HOXGr1FoqLEzEYutmwoYsjR96BLMu0tdXR2DjKyEg9RUV7\nuO22SvT6aurqnmfz5jjuu+8eDh06hF6v5+WXLfzhD+fp7PRw221gt8v097disWxjclKirW2Unh4r\nQ0M9jIzE0t5eSn9/C2Vlvk5BW4iPt8xKX9FoUjlypJKTJ09x5UoWHk8RTmcCdruK8fEYcnOzKCys\nwum0zrt3c1MNioqKgJMYjfXExMTgdGpxOFS4XDJXr/YyOalEZPhLUwv2ZTVSNg0jiZMnT/LjH9cy\nPp5PQkItAIeWuaMTiL1b2Gmy/GcyM8JCp9PS379wNKQ/dDotRuMvOXNmBK83HZern+3bT3Lo0KF5\nKVm+ttUFBUrr65iYfhyOTWRmptPdbZ/enD158iSXL0uMjBTjdDayZ4+GnTvvwmTK5oEHqujp+Snj\n4w5k2UZ3dyxOp5PxcTUqlReNZhPx8VqcThe5ubnIci9e7xQJCRo8HicJCVre/e6vUlv7C/T6q2Rl\nVUwX45+czCYnZ9v0RrHLlXbL9zcQ0tPTiIm5hs3WhkZjIT29POTnCCU6nZbh4VOcPesBkmhocAFX\n53U0Lim5dbtRUlLCBz4w23aBctxXXmmkr68YnS4fo9HCuXMXych4FyUlKnp69OzYUYzd7qC+Xkar\n3YXZfHbBKCmdTovHcwm7fZKEhEEaGw0MDg5QUvJOcnJysFrt9PXFMzo6RlJS4v/P3psGyXVdd56/\nl8vLfa3M2vcdQBVR2EERRYILSICyZVleKNstq93d9nR/cEz7Q0dHdEzYETPdH9rtaPd4omeslsNS\nk56hZMmySZoLaErCvhBLrQCqMrP2zFpy35eXme/Nh6wqoIACCAIgUSLxj0CQVZXLee/ed8+5557z\n/zM7G0arjaLRVAM3MJuzNDfvY9++o4yOFlEUNaWSCb9/mGKxicHBX+FnP/OQTBbRaA6gUg2Tz/tx\nOiuaTRaLbdNK2c0PYKCp6f6l17catvyWQRCEWkVRlld//GPgp4qiTD9OmzbD4wwgN3NYAIWCZ7X0\n+k57Nivnu9s1VLK7J4jFxmloEDl27DlUKtXq920kH75bmaCiKCiKQnV1lljMg9PZiCBsw+udBsbo\n73ewspKhUNiORuMjl6tnedlAsRgkHr9OW9vvMzlZpL29Un4/OzvL9HSOVErL4uIpNJoSolikUHDS\n3e1ErYaPPvoJ8bgZjWaZvr5t1NfXs7ycIJeLUyjoEEUNNpvC0tIIFkuBn/3MyYcf/hNLS35mZnIs\nLjYhy9NIkkR1dT3JpBqDoYliEdrbLSwvl/D7J+nr60AUm9clJR93ou/LhlCokuT5wz+EhobHbc2j\nxy//MvzH/wjnzsGzzz5ua57gi4j7CQ5v9zNVVQ50Oi9nzrzD8PBFAgEXCwtn+Na3KhuVsbEsmcwz\nqNUhgkEvKlUnVVUdZDKzJBIhUiknpZIFtdqEJHlRqSQKhXMsL09RLAYACZgF6gArpZIJUXSjVi+Q\nyxkAFSZTLXv3LqBSrVAqZaiqEmloaGFsbI5AoImGhnZE0bjhlG6rkN1uzlfgfSDCzLu9vrOzk97e\nGfT6BV588cAd1Q+3v7+qqsKTNDQ0TLm8dEeJ+2aoqnKg1Q6TzYZpbU3xzW8+z8svv8y5cxfo6Gin\nqqqJy5ftJJMTZDIOnnlGQ329zIEDuzhy5AiyLPPuu+/x4x8PsbwsEIvVEQh8TG1tAkFwYjK5yOUg\nkVgmkThLMKhCrz+EwSABN/D5AoTDLoxGC7lcGrc7Q7lc5i/+4u9ZWSlTU6Omvt5EqTRKIlFCltWY\nTP2IYpFweJHTp99i//5eXK6eTWOp7u6bm+6bvEUOfvzjHyIIF2hsTKBW16IosLCQ4d1332N+XrPa\ndh4CPv1mdascGm4lzM4ukM+3snv3N7l69QfMzi488Gfdz3p3+/MZDIbx+/24XOD3ZwmFIg81JrdS\nIZRK1Zw65ae11XPP1qGuri5qa2Uslmp27vw1rl//ER99dAIAs9mK21213hbr91sZHr7IyMgopZLM\n4OBzDA150WhmEMUpyuUS09PTzMzMo9X289JLL3Ly5J+yvJ0pfAoAACAASURBVDzMyIgJQUghy2W6\nupJMTQ0xNxcnlapDUdSADTASi5W5ds1PPh9k3z4Ju70VlSqMSrWMyWTE6VS4cuVNksmPWFqSSaU+\nRJZlHI4ydruWYnEZo7FyUGw2WykUhM98zlssNgYGduJyNRMOV2GxbO3e/q6uLvr6honFZPr7B0ml\n5oGFTXlmQqEIfn/2gefo3fZv4XAUq7ULgyGM1xvGZIqwvCwzPz+MJNUgCItks3UYjWYqItjx1f9u\nJJK8VeG5v99INDrBpUvTxGJqisU6fvhDL3v3TqHXN1NdnSeVqsJmM5DPO4EbOBxadLpaJElgZuYS\nf/3XWbLZq6hUSfL5HgShiUJhjsuXX0eWg6jVWopFD8XiOJHIElevllEUkaamA2i1BSyWEKXSCq2t\nTatJ/Ao2+sUIu3cP/MIm2bd8kgf43wVBGATUVNq1/uVjtmdTPE61hLv1bN7Lns2Cmbu9Z7PsbmUx\nuP8T4Eom2Euh0EyxGKNYnCcc1tPQYEYUm5GkODU1dcTjSRKJEooyQjbbj6L0kExqEYQSkuReL2l/\n/30PwWAfNtsChcJlzOY8nZ2HMZmC9PbW8vOfz7CwIFAuWygWZ3C5LrFt28sYDClyORFFiQHNSJKH\nctlMMrmNN96YJ5czkckoKEqEcllGlm2IopnOziYSiSxGYwazuYwoGujvV5PLLWK3160qf9g2KBY8\n7pPiLwv+9E8rJMv//t8/bks+G+zdC7W18PbbT5I8T/DZ4H42lZW2nEkCgRySdIajR/t45ZUufvCD\nH1EuG9FqjzI2do6hoRGam5tXN7m1eDxx1OowsZiHaHQJ8DM/LxMOXyKdrkeSwmg0dQhCD+XyPLJs\nBOqp8DQ4AD+QR602YTRaqa//Kj7fFKJ4grY2I//m3/wvqFQq3n/fgyi2kE7DU08JCEIIUTTS0CDg\ncjm3HNntZvY8KGHm3V7v8/lWq1z6mJwM09bmuycxpqIovPHGWcbGFEBNf3+cPXuEDT5dURQ8Hg9X\nrw6zvLyELCtEIllstg6czhxtbW0IgoDbXUVjYwS/f4Fy2YLTaUeSPPzqr+7k5ZdfBlht036PH//4\nBlNTZtJpLW63g0JBS1ubg3BYYm5uHiggimGKRSvQSbEYwuvNks06UZQE0WiOfN6N1ZrEZlMxOjrC\nmTMCev0BvN6LHD6cZt++Tm7cmGJlBdTqAvm8gsulQqMJ09srrreN32vzvxb8p1IKTz9dQ1+fg0zG\nzLvvBjl5cpZi8RI+XwFJOkRDQy2wvOmz9Elx01arOtsKaG1tQq8f4urVH6DXz9LauuuBP+t+1rvb\nn8+ZmRmmpqa5dk1Gr58lnb53cuCTxlgQhA1UCOPjd698uPU9Bw/uY3R0iOvXf0Q8PsvsbDv/438M\n0dHRTmNjhOrqLIVCM62tOzl9+gLlsget1kIq1UV/v0i5PMeVKwpTUwf47neH2b27jF4f5erV/5tI\nZJls9iChUI7+/lH27UsBkEy2k80uoVa7KJfl1ZYZGxBAo7GysqJjelqiv/8Io6PvAWVsNnjppRYU\n5WOuXLERiexnZWWc7u6P+da3jgGstjj2rj97n8ecX1uXCgVobDTidld9Jt/zqCAIwi2qUwvodBF2\n7dp5S7XgRh7RTzNH7xcul5O+vgZWVmaQ5SzPPvsipVIQv38Zg8FCMrmHsbEsR4820N8fXy8IuLXd\nC25vD65mYCDJxESYQuEpamr2Eg6fYXj4OoWCmunpRbLZIpmMlo4OPbK8nVJpmfn5COVygVJJQKVK\nUSrVIMu1gAa9voRen6a9/QqRSIHr1w0UixeRZYlU6nlu3AhgMi1w5Mj/yunTbyNJMRoaDt3hG79I\n6odbPsmjKMovhHjw4wwgN3dY97bnbsHMZu/Z7NrWHFildzGNzbbtnmTEt9p444bCwMBF5ub86wRw\nopjCaDTjdpvR6QIkk0ukUv2YzZ3k8zA6egqtNoZKpWV2dpaxMZlcbplIJInR2I5Wa6SlZQfB4AKx\nWIJQKIosW9DrO5AkI9nsMM3NWfr6dhAMVhOJBDCZEoiik87O/SiKg8uXc2i1ZgTBRqkUQpLK2O1m\nZDlBMrlAQwO43Wa2bzfx7LMd7N5d4SFa68Xv7Oykrc33hVgYflEQj8Nf/mWliqdqa/vqB4ZKVanm\neest+C//5YuhGvYEWwv3s6kMh6MEArn1NqhY7GOOHk2Qz2cpFBSSSS+KUjm9u9kmtMzAQJEDBw5y\n8WKJ+fkiicQB4vFpZNmNTldAUbIUi3YEwY1W66ZQMAMR4Orqv05gG3AeRUlTLO7Dao2za5eRbdue\nxmq1IwjCBpnU3l43g4NVd1S3ftZ4WE6EByfM3PzvwWCY0dEFRDGNJMXYvdt5h6rWre8/d+4CsZgR\np3MAqATrt26A1yTvv/Odj/B4imQyBfR6Mw4H/O7v7iadjhGJxICNbdUGg449e14glYpisVSSRmsk\nsqdPw8qKg7o6J9PTAWTZi8tloKaml6eeEgiHR5iYyDI1pScWc6DT1SFJY4iinl27dnHtmhqHw0wu\n10Nt7RIqlUwwOIcsd2KzdZPNTiIIGQYHv0Jb2wArK1dQlCDlcieDg7+xbhNUuBgmJ2X6+gaYmQlu\naEG8Kau+Fvw/T1dXF+fOXWBy0o3T2cXx46fx+xUMBj/j4zG6ukJUVb12x7h8UjLpi7TJeFQ4cuQI\nwConz671nx8ED5JEM5utdHRsX22rNGI2W+/5+ruN8a1rxNLS4mplzJ2VD3dbS1566SUWFhZ46613\nUan6aWkZ4MaNJVyuZgoFgHl0ujBnz54nEilTV/dVJGkKq3WKb37zN/jBD35EOt3EwMDLzM39E05n\nkj/4gxZef/3/I5Xqwmb7BvH4aebnT2I0FvD5HGi1L6LVnkeSPGi1MsViNWp1FeVygWKxhFpdJJMZ\n4/z5ALLsoba2Do3GTk/PdtRqNVNT5vUKLKMxvWki6/Oa87+Iz9ZmNq8dtN+KTztH74bb+a9eeukl\nXn0Vamvzq/u9WhKJILmcRChkpru7HVFcxmKx8bu/+/xqy2BynWeps7MTr9fLD37wIyYnoatrD17v\nMCqVj1IJstkAMzNh3O4F6ut3AwLT03lqalrJZLxkMiPk83qi0Qy5nB6rtY9oNAzk0GqbEQQzgpBF\npZLQ6ay8/PIA6XSabFYhkfATDNbhdu+iVBpBkiZWxYfmEMW1lrc7le620oHQw2DLJ3me4JPxIA7r\nYcuB1xzY5GQSv1/g2LFmpqdDd1WcuNVGvT7CK68cQxCE9cVgerqM01nPgQMH8HotzM6WmZyEbPYa\nojiBIGgYHZ1geLiB5eU8mUwOWS6iVku0tNQQi+V4++0f0tDwFcbGUlgsBtTq6yQSFkRRh17fhtls\nor4+SyAwhCCkcTrb6OmxA2nOnfOTzQ5TKqlQqTTodBE0Ghe5XB6rNYbBEKa11UV9vYnGxmqamprW\ng741hY81h1xVVVHqOH/+4hPSxM8Y3/0uFAqVJM8XGV/7WuVaJyeht/dxW/MEXzRsFkRu1p5VKJzG\n47GgVuuZnFQRiYwTDEaQpAKK8nOamkosLpZQFIWeHht799pwu3uRZZnJyf+LsTEThUKZfN6K1Qq5\nXJlyOYairJDPBxEELRXp9RCVloB6oBmt1gHsoFAo4/dfx2SSyGZr0OniuN2VE/1bfaDbvfmBxf3i\nQZM1W41LZWLiOmfOXCaXa8VgmOXgQS2HDn3lrq+vqnIgyz/D5xtFFNUcPNiwQUnL4/Hwne/8HRcu\n6MhmHSiKHavVhiRVuPb2799JKiWuSzwDSFI96bTCBx98SH+/iMv1PHAzBmloEDlzZp5k0ovZHGLn\nTti+fRtud4H6+jrs9l8hHk9w4sTPOXs2Q7kcRavNs327DadTQKUKIElqZDmOWq3G4aihtXUfCwtT\npNPHaWiIcuzYK3R0dKz65wFmZmb44INxZmZGaGgw4HL14PV6GR+P4fdL3LjxtxQKHgKBRhYWfr4e\ny6z5fEWpVDJdvTqM3W6loUFgbOwES0spstkqcjkPbncaSXIxNDS8IVa49do3i7++DKTLD3KNKpXq\ngTl4bseDbPRvVoDEaWysEB17PHcnCt44xjc3kalUgokJCUlyMTUlIQiTzM5eQa8vkU4fRpZlVCrV\nLWtJhTh5jWhclmWuXFlkaamaRCJNNPohsjzLqVNuGhsdNDb20NOjxeudBcyk020UCgHy+QxDQyNM\nTARJJuOcPPk3NDQEaW9/dv2+zs5+wNTUP1AqzVMo5CgWVfj9RbRaH3p9CVEMIssShUINer2ObFZD\ndbUek8mGwTCF379ANtvC3FwzFouPWCzM3r1776sC62EPyu93Tj3M9zyuZ/N+bb59jj5oldLd+K+6\nurrYvXttn3N4dR31kk4XKBQSTEyEgO2k08nVOV5R0uzunuatt8a4dKlIOLzE2bNj6HQOzGYnWq2T\nnTt1xGJTtLTkKRQCzMwsAE04HG2o1SEMhmtI0gAqVRPpdJZUqowsl1EUL+XyImq1Ga3WhcnUgMmU\nZ2ZmFovFREMDlMtqIpFxkkkBk2mWnTtreeYZSKW618WHEokbJBJFFhaaH8pvb8W1+0mS5wuAB3FY\nD1sOvObA+vu78fuPMzZ2mnTag98v0tzcd4c04d0y0eBZ7R+2E41O4fVeJJXy0NLyDNu21fL++2+h\n1Tqprt6D3z+N0diJTldHuRxGlnWUy3Gmp/0YjWr0ehMtLUZmZwMIgobubgfXrl1Gq91JKgWXLs1j\nt7vo7d1GNutjcNDEq68eY2hoBJ9vgXi8h3g8jSSNUlWlZufO5/F4pti2rYNoVMeNG0ampkqo1TcY\nGLDS2BgFKovBrcF9InECRdFQLLrXlbfWFMae4NGhWIS/+Av4nd+BurrHbc1nixdfBIOhorL1JMnz\nBI8amwWRk5OTvPHGCWIxNQ5HmX/2z56jv9/B+fNDxON1SNIcitJAMjlAff0KJlOBfF7i3XezSNJF\n+vrs/Nt/+xpdXV0cP34cn89DJuNAEOpRlDkUJYVGU4VavY9s1o+ixFCrsyiKCkHoRVEMqFQJBCGG\n0ZimVKqlqamOVCpNf79Mc3M3fX3qDf7uUZ3OPmiyZqtxqQQCy5RKrbjdzxGPV37+JDidNTQ3O9Fo\nggwOtm64l0NDIywsqAAdpVKAcnkBvb4Tt1ugpwd6e8XV4L6SdKuuzmKzbePYsWbGxk7T16da/7y1\nGCQSWcBoTGC3V6EoJVQqMwsLJk6fnsbpLFIoJBgYeIpt277K/v0hSiWFlpYjtLa2Mjw8QjJZRyKh\nIp+fZ3BwO1/96mE6Oztpavpo9ST68DoXUXd3ZV6fPh0gFDKj0Uzwwgv714UnrNanOHrUyRtv/DHR\nqJqami5GR1c2xDJer5fXX/85Fy4EkKQyO3aY+PrX9xAIzFNT8zRO53auXHmX9nYjmUw777wT48KF\n4xvigHvFX1stUfhZ4HFf44Ns9Ddrbfyk1r6KwuDfEgyOMD2to62ticXFMUSxm/b2ZpaWqkgmBRYW\nNDide3jvvRBNTRUi5bW1xGKpECfHYklWViZZXj7PuXOLlEqHEAQ/4fAQOp2d6ekMsVgeq3UXjY1F\n2tpaaWpKodcvEY3GCAT0JJMy6XQnzz9vIhDwcehQNS0tLZw7d4GWlha+8Y1mjh+fQqdrZWlpB4Iw\nQ6mURJZT1NTk+MpX9pBINLC4mGZxcQG7PUpXVx+yHEGtrqe+3kk2W4vJVIfJpMXpdD/SCqx74fOY\nU4973n4SPs1e8F4JibvxX93+3HR3V8iK339/jHTaxLvvBpmctCBJK4hiDYODB7lx4zzvvvtDzp0r\nUS4/jVptpFC4Sm1tDzqdmYWFn1MuN2K1thAIFJFlFeGwlWzWt5pgTONwtFIuO6mqqicQOIUsixgM\nIRTFiSjuQK2+jlY7gVqtIZ3OcPlyPdXVDlwuH42NJdxuA3p9jHJZw969+9f5+dbEh+bnzczPfzql\nu82wFefHkyTPFwCPwmF92sVgLUhJJhX6+0X6+lQsLVmJxcyAHTDel41rjuzQoQNEo39JMnkJRXHh\n801jtaZwu10YDFUEg3G02iCK4kNRMsAKBsNTuFw68nkde/b0MjMTYXh4HHAgilYOHvwGmcwoen0j\ndXVVFAoTqNU1fPOb/4qJiQscOKCgUqkQBAGTqUwupyKX60BR3IRC58lmZ+npqaFQWCESKVNTcwiN\nJs3S0lnS6SR+P+vEZrcG9x98ME48XsRkqiUQyKIoNxndt0p294uAv/s78Psr0ulfdBgMcORIhZfn\n3/27x23NE3wZMDQ0wtiYhNO5D7//EsPDo5hMFiyWegyGWqan/SQSSzidbsrlykluOGxgedlIsWgm\nkbhGd/f7KIrCm2/+jFCoAdiGTichyzNotTF0usMkkwZkWYtW24hGo6BSSWi1zZRKGVSqLCbTMlVV\nZVKpFKWSCoMhRHX1bpzOJODA6/U+8vLqB03WbDUuFavVjMEQQhDiGAx5rFbXptUHaz7+xInTFIvV\nvPZaRZXTauUOX2W19iBJBkqlD9HrV+jtdbNzZwevvfY8kUgMSbopCw/ziGKY6ekFtFo/dnsfHo+H\nSCRGVZWDV17pIhYbZmWlnaambzA+/t/w+02YTGampopkMiaKRR07dxooFqvZtq16g9pYNBqnvb0Z\nq7WKsbFT1Ndb6erqwufzYTZbaW1twmy24vP51q91aGiE8XFwOg8TjZ4lHk+uJ170eg8zMwuUy1ZK\npW4CgRRmcwqoXf/OcDjK7GyYdLoaWW7h2rUhDh9O8uKLh5maGiIc9mI0LhOLFchkDDidOwkEMijK\nKG1tbXR3d98z/tpqicLPAl+Ea/yka+jq6mJqaooTJ84QCBRQq0309ztWOSjnGBvLAlnq6lpZWqpi\n+/ZfJhQ6s76hXltLxsZmgSz9/a8wNTXExYs+IhEjkjRBLjeDSlWHVvsCudwYipJEURxMTgbo6ICD\nB6uJx9O4XGqqq/fR0bEXv/8DZFnh8OFn6OnR8uGHvtVNqY++vu1otV34/TKp1GliMYWGhn7s9noa\nGmL09OQYHo5QLJapra3CZpNxubJotduZm/OSz8+i1YbQakM0NhZob295pBVYDzMevyjf8SC4fY/2\n9NMHPnGPca+ExP3yX91U2TyEotg5eXJ4ldBajyRV/GAyOYrfryGTcVMsTiHLAUymKJHIGSSpHlGs\nB4q0tbm5fr2ELJsplXqAa5jNC+j1fezevY/h4cuUSj46OtTodFXMzsaQpGqam5+lWBSRpFF0OoGV\nFR3ZrJN83opGY2L//nbq6nRcvBinVNJw5oyfvXsrBOdrYgfz8/Mkk6Ncv66QSo0xP+94oL3aVpwf\nT5I8X1LcSwXr9oTOJxM7V3rTK8HbWWKxYRoahDtItzbDmiObnLyI2VwCdiAIuwkGz5FMnkClaiad\nNlMsjvPcczXs37+d5eVlQiEdi4sJtNomolEdVVVOymU/ktRMVVU7Q0NXmZg4h9GYI5/PkUgs0tWl\nx+Eo3yGJmc83odNpyedPUioNIIpuSqV2JGmU3/iN1zh5Ms3CQhyf7yN0ujSyHOfatTpcrjCplJXJ\nyUkuXrzA+HiElZVlyuUA0agfvz9Hd3cnmYyW99/30NCwb8tkd78I+M534LnnoL//cVvy+eBrX4M/\n+IOKmpjb/biteYKtjkdTOmzk1qS9IAiYzVaczu1I0ix2+wwNDSpMJjXV1XW89dYkKys6ZLkOq7WZ\n4eEgweDrXLrkI5+XkCQvxWIBUYxSLDqoqcmQSi0iy9MIQhWStIjNBqJYJJeL0dTkpKvrBfr6ing8\naQoFEzqdzI4dErGYgYWFJoLBR7+mPmiyZqvxPRw7dhSP5yesrIxQU2Oit7d308B+zcf7/VZ8vmtE\nozHM5iSpVPcGWeddu3by9NMpZmeLDAwMMDhYj9lsXf/7muLaxMQFRDGE3W5laWmClZUkNTUDnD4d\n4PTpWYpFJ5J0hmPH+nnttV+nWDxHLDZCU5NAMllHqeQC5hBFE+VyiMVFmaYmFVVVXRuSVA6HjaGh\n/4fr10MYjbXYbDtwOP6Jyckifn+WqalpOjq209gYWb/WCm4qwCwtpTh37sJ60unEidNEo8+QSNTj\n8w2j0/mw2/egKAoAqVSCWGySSKQOp7MbUXQANzljLly4xMREE6mUFr9/gmSymtpakUzGvB703+tg\nbqslCj8LPMpr/LxaJG6Pg3t6tOh0xbtegyAITExM4vNZUJSDRCLnef/9v+bFFw9hsRjx+33Iskyh\nYEGnm2B2VkQUp8lm3UxOTq6r0ZbLy9jtepLJCMHgVYrFNkymauLxqyjKNRRlH9HoPIriRxRn+Kd/\nMtDc3IDdbuDZZ9swm61MTAiMjc0zPS3Q1wf9/VZ27+4mFIqQz4PV6mR0dIxiMY0ggMmU4aWXbExO\nJlhcTGE2p7HZUkQiFsplPRqNmZdeenl17U3zyiv/ktOn38ZkGqVQyJJOB2lvb6WlpeUTZeEfFT6P\n52arPpsPUkFyr4TE/VRfrT138/PzxOMpVlYkMpkxPJ5l+vra2batH4sF5ucdSNKzaLVavN4RLJYw\n9fV7iUTKRKMWnn56PzduXGZhYYRCIUwwqCGX60GvN1AoOCgWr3H5chGtdhabLYPDUYXTWU9dXZJM\nRqK6eolgcIWZmSbS6WoymVHm5y8TDGppa7MQCpkJhy8TDjuoqRkkEFhar8y8ed+agDSi+DFgfeC4\nYivOjwdK8giC0Kcoyvhd/vZ1RVH+4eHMeoJPwmfl2DZbLO5G7LyWBV1TvOrq6tqgwtXZ2bkhIOvs\n7MTn8xEMhpmcvEGxKNPS0khXl5r5+XGcTiPDwylGR89ht5cpl1sRhAYEoZFkUiQWm0alUvNLv/TV\ndSKvoaFhFhfzwCK1tS48niRzcwvodDK53Mpq32aGYrHInj1HOHToECMjYwBEowr5fDPbtj3N8PB5\nDAY32axCoeBDECLEYgYSiRTFoohGk6BQmACiNDYOsG9fD4JQJBZLcObMWcbGLKTTSZLJd6mp6aKh\n4Rl8vhEURcBkKiKK7Vsqu/uLDq8XTpyAv/mbx23J54df+iVQFHjvPfj2tx+3NU+w1fGwpcO7du1k\nbOwMs7MnsNuD2Gz7WFhYIBI5idf7Lk6njp6eNrq7Veh0JgoFHc3NaUqlBMvLejo6zGi1VQwNXSES\n0ZHJxFCU66vrcYxQqJVodARZ9qNWF9DpnIjiflpb/djtJeLxXqxWOy5XmWg0Siplobq6lnxeRzqd\nwWY7SG/v05uSJj6sL3zQZM3jEmC4PR5Y87WRSIyvf33PurxyKBTZVKZ4Y0Xt/0kyOYLTeZCJCYm2\nNu/6vOnu7ubb377p4ytEzF4KhSrGx8+yY4eJ7m4b0egsY2OjXLlSIhotEI/X0dbWgMezSCg0hMNx\ngEymEfDwr/91C4cO1fPxx5exWBzE4ynicQ2hkA9ZnsbphI4OMybTCleupLl+vdICptN5MBqXmZoq\nE4/vQxDieDxTBIOXyOWaqKvrIpNpIhJZweebplz20dnZya5dOxkfP0EsNo5enyIcdnL2LOh0Xo4e\n7eb5558ll5vg7NkbwAQmUwsTExLt7V4AJiYk6utfZGHhDFrt+3R11bNzZz8+nw+LxUZPTzdGYxOy\nbGdl5XV0ugUkyUYikePGDRFFUXC7q+46T7daovCzwKO8xs+rReJ2jp1YbJ7qagGYZ9eunZteQzKZ\nRpbt1NbuIpW6BlzHbO7G55OYm1MIha7T3e3m+efVJJMXyeX0FAqv8j//58+YmfFTKLgRxSD797up\nr19Ao6klFrMiii6SyQWqqvaRSGiIRs9jNoPJ1IYsL7Fnz/MYDFYslkqF2qVLblKpKTye7+F0gsMx\niNVq5tSp05w7dx1J6sRobGBkZAadzoYgGGhszPDss92kUmlSqSUsFhOS1E93d5r5+ZN4PB/T2qpF\nEMpMTl6kqUnN0aMVkvG18fjwQ99qm2T3fe9ZHnRv83k8N1v12QyFIiwsZIAsi4se3O7MJ963WxMS\nohjawKXW1dXFK6+8sj4WFy58fMdYeDwe3njjBNGoilhsDFGsorPzAGZzkm3bdBtaU1dWJoEi9fUm\nmpsPsbxcT2MjnD37MZOTJ1heXsRorEKWJSyWAFZrfpU0OYJKpSUavQ6U0GpbsVjitLRc5td//RkO\nHTpENBrn/Pkcr7++zMqKCZWqC0EYolQyUFfXwPKyiuvXF8hkqojH01gsQdYIzsPhKPl8FRaLk+Hh\nRZaXF3A4XqCn5yCTkxc/9V5tK86PB63kOS4IwiFFUWZu/aUgCL8GvA6YHtqym5/5KvB/ACoqMup/\npijK64/q839Rcb+O7dMumJsldO6WnbzdhqNH2RDgejyeVcldBUm6RH//adLpasbG/Fy6NIHDsQ1R\nPEVHh4X29hcQxRC1tcuMjYVJJHrQatXAFJmMDptNYmFB5PRpmWCw8l2CIBAMmlhaamdk5BQul51c\nbh6zGfbs2cPbb3tZWdEgy7WoVPDee5M0NTWxsmIgEFBYWRnGaJxCEEAUI9TWDpBKacnlnKjVMisr\nej74YIKlpSJzc2oMhiPkctcwGgW83in6+0UEwbGuRuJ0xkkk3kKtbubYsd/knXfewOmcoKenk1QK\nJibOk0jcYH7e/KRt6yHxV38FDgf82q89bks+P9TUwIEDlZatJ0meJ/gkPGzpcHd3N88+O0smM4ZW\n28P3v/9ThobGCQZl8nkL4XAb4XCKiQkv+byA291IIiFjsyXRaJK0tx/EZCpisTSiVi8iy61AEihS\nLl9FEDooFmsBNxBAUeqpqqrCYjFjtWoZHPwqHs/HBINXWFqyMj2dRJav4HQaURQNHR03mJgQSCRu\nEI9LXL2qf2QcaFtNbv2TcGeVwcyqdLoLna7I0aNVq/GBZ1NffntFrdN5mMHBrzExcYFQKAJsbPHq\n7q7c23PnLtzGG5LC4YgTiUQYH9cxP1/ZBEOJd955V/2+MAAAIABJREFUB70+QT4vsLgYYceOekTR\nyPDwKOPjMcbGbChKHSbTNBqNF73eTam0g+VlDx9/vMjJk3FUKiiV6nnpJR1Qhd9/FqNxN729g3i9\n/8C1ayex23eTTquYnr5EoTDD9HQ9styE3+/Fav0ev/d7v7d+GDU/P38HF8PTTx9g27YZzp2bw2rt\nx27vZHExt3qYBZLkZs+eXczMxLDZgrhcNubm5vB4SqucfDGgQrrc1GRFrU4RCq0ALeucFXdWFt2M\n1dbEKB5UGecXAY/y+XrYde5+Y+Rb4+A1olabbSc6XRhBENbfc+vnNTTUUl/vJRB4HZhBpzvA6dOL\neDxhMpkagsEqFhcNNDRocbtbyGY12O1uzp6d4do1NUZjG5HIMplMlCNHuti+fRuRSICxsUlcrhCC\nUEalUjCZSuh0bTQ07CCXm8fjucT+/TtxuXoIhSKMj09z7doyk5MuBEFhZGQRk+kyxaKVTKYOlUrg\nwAEXi4sqyuU0+XwNXm8RWKKpqQab7SBe7xmWl79PItGIKJrQahcYHBxc5cYaXb/2u43H/e5ZHjRp\n93ms2VvVL6TTSUZGPiYQsKJSabFa59mzx3vP+9bZ2UlPzwyzs+NoNAI3brgpFtm0wnOzsdjYzn2D\n5uYafv3Xv83ExAUslpttvp2dnfT2zqDXL9Da2o0sy3zwwRn8fhPx+AwGg59k8mns9sMEg++hVsfQ\n6eooFGaRZQdQRakUR6XqoFjsoFSaRa+3Mz6eo6lpDovFhs1WqYaTZQOKIpHJdCIIy5w9O0J19Sg6\nXT8Wi5picZjGRvV6l4nL5SSZ/DnHj/sJBmXM5jYslgpRfmOj8VNX4mzF+fGgSZ6/Aj4SBOEZRVGW\nAQRBeA34a+CfPyLb1vAG8KyiKNcEQWgBJgRB+DulQszypcX9OrZPu2BultC5W3byk2wIhSKMjUUJ\nBi0kk1oWF4dobX2ZbFYgHm+hvX2AmZk5YrERzOZOQKG93c3+/f3IsoMrV3ykUiEUZZpgMI/N1kR1\ndTeTkx6qq4dpamqiUHABMQIBK1ptF/m8gtWaYmVlnnw+jySZyOUaMBrNLCxMcvHiZRYWGpmeVrG0\nVMTlGqa728Brrx1CUT5mZSWDomgwGnciSR+TydRgtRZRqaowmZ4ik1HT2pqksdFNX5+KgYGnOHny\nJ+tqJJWWsCxnz/4jsdgSTucu0mkD27aJxGILJBJF5uc/mxaDLwskCb7/ffjWt0Cvf9zWfL742tfg\nP/0nyOe/fNf+BJ8OD1M6XC6X+f73v8/PfnYKSdrO4cNP8c47Z1ha6qFYjFAqtQHtJBJBpqdHKBS2\nkcsJJBJpdLo8drtAQ0MQrVbN5OQcpZIetVpDuWxBUbyAHUXRA04gBuRQlBU0miQaTTWJhMLVq0PY\n7UGMxhaczk5WVpLIcpq6OiMOh42+PjXNzTA/b+bKFR2JRIUDDcbWuU++LLjdF8/OjlMo9N3hm+/m\ny2/9fSrVv646cmtb82YxxE1y2WGi0Xl2736OlZU5pqbiFArdZDIKxSJUV+fQ6+dpbe3H6Wzh1Klz\n5PMK9fUVFvlYTIVa3U0kksfvD6BW5wgG66mrcxEOxwkEfGQyHajVJRQlxttv/4SmpgSiGCKTmSOT\nWcJqncLhaKGl5SiLi3kKhRNoNBGi0Q50uh7CYR3Hjw8xODi4Hoi7XE6CwY2n2efPXyQWS9DS8hx2\nex2BwDQmkx+XawCobILGx2cxmzW8/PLvkUpFmZu7eb9v3FBobl6gqclNOr2bmZl5pqdrqKrq5tSp\n4XWp69vjpZstczJTU9fp6GjfNBl0L2xFdZfPGg/bIuH1ejccRq4lidf+dmt13NGjbErUemsidE09\nq1BwEY8XaWuLEwxOYTTuQxB2EY2OkM2WKBQcQAlJyhAKaXnqqXa83jBjY6colUKoVDUYDDnKZQWr\ntW01maowOAjz8zcwGiUikVlqavrZt+9bXLhwmWx2AbvdSDa7hCxPoSjdpFIJfD4PMzMOCgUXRmMt\nkqShUMhhs7XS0tLH0tJPSSbnEYQVVlaWKZV0dHa2s7wcoVhM0N1dZHw8hiznEAQDR468hNFYwGoV\nUKlUBINGCgUXwaD3rm1s97tn2Yq8JlsdlUrNWrTaHnS6GlSqmU+8bz6fb/UgoI9A4Ayi6GZwcPMK\nz83m+dLSIpWKGDuiWIVGE7wrkfypUzPMzqY4d26O2toSyaSeZFJPJtNJqbRAoZAjnw8iSRnM5m50\num4KBRlZjlMsOpAkL1ptHEGIk82qkGUDw8NBJieH6Ov7FQqFKC0tdYhikpGRCOWyDr2+g3h8Bo1m\nggMHjhGJZKipWeC3f/uV9coyRVHQakOoVEk6O49hs7VQLJ6koyPJ888PbIlKnIfFAyV5FEX5E0EQ\nnFQSPc8CR6kkfr6lKMrfPUoDARlwrP6/DQgDhU+w7wvv6O7XsX3aBfNuKlibZSc/yYZ0OonPN87y\ncjtOZwJFsbKyMszMTA5JCnHlyjyyHECjaee9927Q0JCkt3c7ohjm/PlZ5uYiqFT91Nc3US5PoVJN\nceXKEIKQZXxcxOGwodMVWVy8gUqlRadrQKPJMDCQAjIMD1tZXo4hSWex2Rqx2fTk81lGRy8xNeVC\nloNkMs0MD6c4dqyNZ59d5Nq1n5DLaSkU9IhigHjcism0G51uHJXqpzidGWpre+jpMbNrVxczMzNk\nsyUcDjsOR55f+ZV9tLe3c+LEaaCdQ4d+g8nJi1gsFeLlhYXmJ87rIfGP/wjBIPz+7z9uSz5/fO1r\n8B/+Q6VV7ejRx23NE2xlPEzp8Pe+9z3+7M8+JplspVQaJRyeQ622o1bryGYjyPJFUqkwOt0C5bIW\ngyGPz+ejXC7idr9AMDiOSjWNRuMiFNIAeURxCY0mgSznkaQIpZIWWc4Cy0AtavUKJpOH5uZ/xZ49\nL3Dt2hk6O62EQjqmp89RKiVRq8uo1T04nSK7dx+iu7sbl8vJhQvHCQRyNDSYEcXmL9XaqigKqVSC\nQMBDKBSkoUGgtbWJycnwHb75br781t8rirKuOuJydd+1xQsqc2xmZoahoQVE0cTJkxdQq28QiaiJ\nRsuUy+BwpHE4munsNGE0lpibi+JyGXA6I2zbpqO1tYcTJ37M+PgVUqkcgpDDaJSIRiPE4xNotROY\nTCZMpgTptJva2ijJ5Aw+nw1oR6PRUl+/wjPPdJLJOLl48RTBoILZnCORsBCPRykWL2E2LxAKabl6\ndXg9rtmY3LqpDJZIpBHFKHa7QKHgoaXFiqIodHV1cfQoVFcPMz4ukkxG0OsjG+63Xh9h9+6B9cSM\nx+NBkjz4/R70+lnCYdWmp8RrsZrLZefatexdk0H3wlZUd/ms8bAtEuFwlEBAIR7fmCQG7lqpfnty\ncGIiyI9+lEUUWygUZslktChKipGROXQ6B7ncNvR6E9evT9DdvcL27WbGxq4iyyUKhQ7U6gDx+DR9\nfVZcrjQWSy2JxAqZzHmczhh6/TZ0ujBudzcLCwv4fFmWl1tJp/soFqfJ5xfo69NSKol0dx/iypVJ\nfD44ftxLdXWGzs5+4nEvyWSMTGYZWTbidC4hy2XicYX6+hS7d2uJx134/Srm5kaJxbKoVBEWF2cY\nHfUhy524XCLZ7AIez8fs39+Ay9Vzxx7DbFY4erTqjvG43z3LVuQ12epwu6toa7MyNjZHuRzC4ai0\nSd0Lt45bKDSPJM3dtcJzrQvh4sUEXm8OlcpNuZygrk5CrR7m4MFaBgcbsFrZMOaKovDee+/zwQeT\nFIs9lEpqXK4RUql6JMlKsaihUHCj1QbIZE4jios4HPvI5xeR5RlKpXrAidE4gMl0CZ0uTaFQTygU\nJhpNIwhaJGkcp7NIXZ0Dm83O0tIYKysi+byOcrmORCLH9PQJBgaa+K3femW9ytfj8XD8uJdM5ikE\n4TzJ5FlkOUB/v8jzzx/6wqybD0y8rCjKHwqC8P8CF4AG4LcURXnrkVl2E98E/l4QhAwVBshvKIpS\nutcbvgyO7n4d26ddMD9Nudkn2WA2W+nsbMdmE4nHddTV2WlrEzEaa9m7t5PR0VOUSh3U1PwqhcIK\ndvskPT29JJOXKJWuU1vbsSovOUVDgw6LxYDRuMTg4G+STEYwm+Ho0Src7gxW6zwqVQCHQ+DVV48R\nDkcZH7cRiYwjSaMoyjydnUfo6+vnwoVzaDTXkSQnglBHNArvvfc+8/MaamufJRS6iEqVRRBexGDQ\n8txzTzE7q8NqvU5NjYv+/jr27Klc6wcfjBMOd9PQ0I7dvozN5qCnpwdBqASHk5MXN9z3J87r4fHG\nG7B3L/T1PW5LPn9s3w5tbZWWrSdJnie4Fx6kdHjtgOStt94lFNpDY+O38fu/A1ygv38f4XCEbDaN\nKE4jivOo1SLZ7AAWCxiNESSpFat1J5HINKHQBPl8jvr6o7jdZubnj+NyGTCbrUSjWpaXmwiFshSL\nNVitZhTFiMnkJh5PMjvroaenlldeqSQRAoEQLlcjGs0Kg4MmvvrVZzZUoRw7NgOMIYrNNDQYPjHA\n/SLB6/UyMSEhijVIkofe3n6OHDlCW5vvgTa+d86bzVu81l5rsdjYseOXaGvT8dFHP0WtbsJm09He\nLjM9vUR9fS0dHSLHju1Z5bBL0d//rXUfDqDVBtFqS7hczQQCF8lmBYzGvYiigsvloKfHBmgJBiex\nWi2o1d2o1TVks+1UV9tpbV3k8OGWVYWsHzExAXp9A+fP66iuVpNO+yiX80jSQcbH0+ze7V2X/127\n1nPnLiBJ0NNzgDNngphMo7hcebTaaorFnRw/7l1/fVdXF7t3r7VWaTGZLPT0pDCbFaqqOpmenubn\nPz9Fa2sTL730EkePsvraXZjN1nU+o1s5MNZiNb8/eM9k0L3wZayCeNgWCZfLiSRdIhDIrieJQ6EI\n8/PzXLzopb6+G1DWlVTh9so3kffei+LzNdHQUEssNsPc3MeEQnZyOSO1tVZk2YzDAbI8x6FDTWzf\n3suPf/z3TE83s2fPc8Tj0+zdW6S1tYHTpwOkUrW0tIzR06OnsbEfo1HP0pKH733vLF7vNMvLUUql\n36Sqai8azQdUVQV58cXDTExIeDwBBCFHf/8rpFJRKspcjWSzYSQpSnW1BbNZz+HDz6BSqUilMhw4\n8KuYzVbOn1fx6qsH+OEP/xvB4AR2+358Pje5XJDqapFwWMRgmEernaG3t22dl/PW9cHt7t50PO53\nz7IVeU22Km5t8Tx0qIUdOxIIgnBXjqhbcevesL5ej8VipFQap7W1ic7OTuDmWFy9OkwiUeTy5Qxj\nYzm6uvZQKuV5/vkyBw603rWYwuv1MjycJBptoVQCh0OL1dpGNjtDqZRCqzUjy43s3GnDYBCQ5Rx6\nPfj959FonKTTZTKZDO3tVpqbD6HV1uN0tnHhwiiQIBwuMTT0MdXVMjt3HuDw4RfYv9/If/2vf8Xc\nnBWDoQeLpRardZ6jR/dsaOO+lYcOwGQapafHcl/37hcJ953kEQTha5v8+ifAIPAmoKy9RlGUtx+F\ncYIgqIH/Dfi6oihnBUHYC7y9Svwc3ew9f/RHf0S5LBONgsXiIJWKEYsd4U/+5I8fhUn3jc+6muh+\nHdtnuWB+kg0ul5OaGoFcLordnuTVV5+hra0NtdpLoeDCZisRiSRZXBxHo8nS1mYlk0kTDluQpHZW\nVhZRq2dxOus5cuR3SKejFIteUqkoen1k3Zl0dXWxZ8/Gew0e5ucvEArZ0Ot3olLN4HRmcTrtSBKU\nStXk84vo9WqiUZnTpzVI0iFkWUSW/SiKgaqqHkQxRC4XoLfXABzEZttOOFzpwQ6Ho6ubCiOBwDRG\nY4hUSrdBqSMSid1x3zcbizfffJM333xzw/3z+/2PbKy+KIjFKsTD//k/P25LHg8EoVLN8+Mfw3//\n75Wfn+AJHhXWDkjSaSvFopeVlXcRxTAHD+7jqacGWFk5yfR0HfF4N8ViiGIxjywrhMMr9PSIaDQK\nKys/oVSaYHGxmnI5Ty73Hj09X+H553vo6REBOHlynEymCqOxi1DoIkZjCrVaRX19G5K0RC63jNv9\nNFCpgOzre3l943rwIPT09KzbLAgCL7/8Mm1tbbf5gC8HwuEoknSz1N5iYZ3sdM03K4qyqXT6/eCT\nYoiqKgeJxAmuXw8iihLPPPPLDA15qa6W6e1toa/Pwe7dA+sKnNeunWVs7CoOR5ZUqp4rVyJEo26K\nRRMGQz9abYlicYiqqiQajZtdu1r57d8+gNlsJZ1OEo3GOXnSx8jIApHIHBpNDQMDbtzuCu/QN7/5\nm7z++s85f95PuZwHzDgcAnr9Dl5+udJmslnyY23Tc+bMO6vtUt3EYvOIYj29vQc5c+Yd3nzzb+np\n6WbXrp3rB4eVVjbVOvfRzMwM3/3uMPl8K3r9EACvvPLKhu/zeDx3VSy9NRm0RtB8v3hSBfHpsVmS\nOJ1OcurUPKOjKoaHK1XmL71kX3/P7clBna5lPQ40mZapqanFYKgmFksBEk5ngMbGRlpbu7HZNBw/\n7kMQduFwxFGp4jz1lIsXXujm6tVhxsfB6Rwgm83Q22th9+4BXn/9DD/96QKzsym02h1kMh9TLv+E\nUmmOzs4UL7xwbHUN9FJTs7HKbNeunQiCQE1Njvb2hlXS8ghHj3avz2FFUfjwww/XqwFbW61otXZC\nIRNdXfsIhyeIxy9TKKTZvXsfvb2HsVjUd1TD3WuPcb97lq3Ia7JVsbGgocTRo7vuu6BhY6JSx8RE\nNZLkZnIyTFubbz0J3tXVxZUrQ8zMhEgmw+RyVRQKBjQaI5C653eEQhG02mZqamT8/nm02gBPPbWb\nvj4jH320jCAYiMeTNDe3c+BAI2ZzD2NjWVSq/UxMlDGboVSaoFh0YzKZ0emSQJz6+jyBQJRCIY1a\n3U4uZ8PjKbNvXwqr1UZNTTtLS0aKxRz5/DwNDW527x7Y4PNu5aFrbFRx9OhvfuGKQeDTVfLcSzHr\nX6z+A1CoECQ/CgwAdYqinAVQFOWyIAh+YBfw083e8Od//ueYzeZbJn6Yo0c//4HbKtVEj3vBFAQR\nu70JhyO7zpOwliCpqjqMoiirpG2VDGo4HKVYdNPUVE8+D2azn4YGy+qpQpkXX+y7oyTw9lJzr9fL\n1avDxGI+JKkJvb6VQsFOOp0lGo2TTqsxGERkWc+uXQbU6hLptAm7vYjPN49Wu0xNTQuiqNDaKjE4\nWCFAXFhoWj3le2f9lK6+Xg9kMRr99Pc71su915Q6vvL/s/emwXFdWX7n7+W+J3LDlti3BEmAJECR\nlCiCIlVaSFWVKlyurhLLVV3u6fBEdHhi7PY4PBPTPRH+Mj09jrA7PDH2tNvTnu7aVKoqdXdJJZHa\nSiIJUlwBEAsBJJYEEplYct/3zDcfQIAbQIIUKYIi/p8QQOLlfe++e+65/3PO/xx49pbnsd5cHD9+\nnOPHj9/yu5/97Gf84Ac/eBTT8sTi7behUIDvfe9xj+Tx4fXX4T/+R+jvh+7uxz2aLTwJ2GjQYSW6\n9Z3v/C+Ew3+GIJzC4aigsbERp3MCqTQJVKBStSKKatLpa+h0cUqlKBaLieefr+KTTwbI5SzkcgfQ\n69Oo1b10dLh57bWjjI/nyeWsVFbmEIQZ1GoNpVI5MlmIkZE0V68myGYFvN4IKhX4/etrPNyMx73P\nPU5s5GD/RfyRjT1bOWq1jURilmRyns5OgY4O4yq5c+u7lgcSQJFwOEo2W3+9rPn/Jpudpbu7lnAY\nDIYQVVXQ09O2Sng899x+JiYmWFiYZ3HRhcWiw2IJcfDgrtXMGIvFREdHGaGQgZ4eOxMTF7BYbOj1\nDWg0WZTKIBZLK+Pj4/T3XwWWO8mtCJF6PJ9hMtXx/PPf4ezZX5PLzdLb+y4DAxcoFNScPj1ETc1l\nDh1ykM+X8HgqOHhw/2o3lpmZOTKZBrq736Cv7xfMzMzd8bRuzrgZHb21O9yBA88+cEBwKwvi/rEW\nSez3B5FIamltbSSTWUQqPYvL5cbpdN7xPlutZux2Pzf8wBamp2FoSEQmC1FTk+XgwT3E4wlmZsZ4\n770E2ezXqK5uRCI5QTD4HlKpmXffdTIzM0siYcFsDgMpRFFHX98A1655SadLSKV7MBh2kMkkUCjO\nYDBMUFtbTUNDw+o6bWlpwWT6iJmZERoaamltbUUikaxmn631btyeDfjiix2AnZMnJ1AoNEgkPgKB\nAoLwDAMDYfT6T7Ba31h9fk+r7X3ceNDMvdv9AVEUyeXWLsld1tSZYnAwTSolRxTHkUqVVFcLBAL6\n650J195Tlkn5BVQqE3b7Ii++aOXgwXpOn3aj0YTQ6/V0d9dx5IiZ3btbOXFiErc7QUPDLubnPyeT\nkeFw7EQqDSKXK5DJ9ESjF9m+XY5enyCZVCKX1yGXS/B4PLz//iCFQi3FYjs7dphIpyNoNFpef/3A\nHbbwabGVGyZ5RFGUPMqBrIM5oEoQhHZRFMcEQWgBmoDxu/3TZpi8pzFt9nYEg2GMxu3s37/8DILB\n8JobQnt7+03/Nc7S0kd4PEZaW8vR6XooFuMsC3ytr7V9g9zp59SpcRYXIZEoQ6EIkUjoEIQEH300\ny+BgP/Pz9RSLneTzXjyeq6hUNQiCDr//E2KxefT6BlQqJfX1Exw//iKvvPIKExMT+Hw3onzQRCaT\nY9s2Jfv2lWO17sbvD3Lu3NqGcgsPBz//Obz4IlRVPe6RPD709IDRuFyytUXybGEj2Mgh/4a2yxBy\neS2vvXYAiyXNxYsX+A//YZxSyUYwOEc+H0QQMhSLE5RKBRKJegD8/ip8Pj1KZRUaTZB4fASLpZ6q\nql0cONCKwbCcRdnevkx8Hz5cDwhAA6VSiUjkCtPTNZRKDYTDlwGBbNa6rsbDFpaxEX/nUfojK/v8\n9763HABpbvZx+HAPoijS1zdAX9/AaubL8md3rfoEguBGqQwQj4vs3WsjnY5QXl6HXK6ks1OPyWRk\ndDTLb34zRzbbS3l5Dp9Pj9+vIh6voqurg0hkgQsXLnP2rBuDYScq1QQORxkORw6vN4LNpuLo0aM0\nNjauZtaKoshPfnKWoSERUUxx6tRbtLUZCAbViOJuwmEXZ8/+FrtdTXt7GzMzc3i9Vnw+O/PzUyws\nSJmZGaa1tZ5w+BoAdrtAPK4glUqQz49y5YqIWj1LQ0PXHc/sZmIuFhtkeFjO3Nz6h6WNYuvA/WBY\nq0TRZBrF4xkmm51BKpUyPb1MgMCt83Pr+ttNc3MzH3zwAW73WyiVWQ4e/BqiKPLOO24ikSrC4X6q\nqk7h9w8CS8hkdj75JEux2IfZbEGn85DLfUJnp42yMgPvvNPP7GwYv3+SXC5EJLKEUrlAe/vvU1Nz\nBLW6n4GBQUKhCFarmVKpxJkzXsJhHXNzXurrnUgkktUD/XPP7b+DRLw9G9BggOee209TUxOBQIiP\nP9YQi32LhoZXGBj4JZWVwS07vAnwoJl7N/wBC9FoLxZLjGhUzeioiEoVvOU6gUAIicRGa+seMhkV\nUulnvPaaibIyI253DXp9LUNDMxSL7+P3B7HZLLS0tDA5OYnL5cZsVrNv304mJzOoVHF+8pPPuHpV\nit9vQyLpw2Zr4Tvf+VM++eQTTpzw4fWacTpHqK/PYLNZKC9vJ5udJZnUAXbGx90MDIzQ1NSIyRQm\nEBhFFFtJJFIkk3KeeaaHsTEfudwidXVVdHZWsmdP9x3v/NNiKx9Yk+fLgCiKPkEQ/nvgl4IgFFlu\no/7PRVG8ax3LZpi8rbTZO5+BxdK6oZRxjUaGVLpEIBAgl1tAq32Gzs4epqevcPLkMHb7wVucoZVU\n0/ffH2Rw0M3MTIiqqu1ks9WoVNcQhAypVDVebw2zsycRhGpMpu0Ui0skk07k8kMkEv0sLYXQap+j\nra0WiyXHrl0COp2BiYmJ1c4Kn356mtsFlQ8ceBZRFK9rR9wQv7RaHXfc2xYeHF7vsuDwX//14x7J\n44VcDq+9tkzy/Nt/+7hHs4UnARs55N+I5raRy83S3q7h0iUfp0+rCIfbkEimKRRMKBQNqFQeCoUx\nFIouJJImikU72WyJs2dHmJtzUyhUUCj0AfO0tOzBaNTjdruJRsOrjmRZmZHe3lnCYSmlkg+5PIwg\n6NDrI6TTKebnndTWatbVeNjCMjbi7zxKf2Slw1Zv77vkcrM0NCxf+6c/PcfQkAikOHXqbV54oQWT\nyYhCcaNz10opSSAQ4vXXv8vMzAyzsx7q62toaGjg1KlehofjRKNWJidlZDKX0emakEphcXGJYFBB\nqeRnelpJPp/mpZcaAAs6HbS3x3C5lktwxsfzNDYuj3WldXo4rMFs3k006mR42IXPZ6RQyHH06HJa\nf3OzjyNHDtHa2srExAT9/f/A6dN/RyKhx2i0kUrV0Nq6n2BwjuZmHw0NtYyOZllYaEKr9VBbe4HX\nXjvKSy+9dIffczMx4HabmJur3QoObSK0trbywx+K9PdfZXxcSTK5l+ef/wZnz/72ug/Iuv7r5OQk\n7747QH9/DfE49PW9i0YTJ5//PbRaHcmkh1BIiVY7T1mZlmSynmi0gCBI0GotmM1x7PYkPT17CQbD\nzM/rqa/vRhRl1NRMUF8fxucrw+fzMjn5Y+z2NJ99VoVUWqJYPE0iMczoqJX6+peZm0tw4sRJpNKW\nVYJfFMXVNXe7HtTN9uFmuxKPR7l6tZ/Z2Y+oqory7LN7v3LNbJ5EPGhCw4o/oNfX0tt7jZoaLSaT\nlLq6udXsyxVYrWZMphIejxO5XENnZy0vvngQURQ5depthocTxOOLXLxYZGSkjIqKIlbr+wSDBnK5\nCsLha0xOXiQczpBKKenrcxEMWkkkrBSLBzlx4hp//ud/TiyWJJdr5tCho5w//zdUVkr5vd87gl5v\nJB438Oabp7l48RqBQIli8SUUCh9WawpBUGM2q8lm5USjE0xP97J/vwabrZyqqoqvnMbO/eJ+NHn+\nx41+VhTF/+vBhrPmtd4C3npY1/uysBmyiR6BjhiNAAAgAElEQVQ3bn8GoijeM5ocDIZpajrCrl11\nnDnzLqmUn0Qiz4kTJykr81JR0X6HM7TcAtPJ1at6ZmYgFLKRTrsQRS8ymYdCIUCx2IlG006h8Aqi\nOIVSOYBEEkOrLScQGGFhIU+ptJdCwcKVK250utMMDqr43e/m6exs5Ec/EnE4HIiiyNzcWT744C1M\nphQWy/PA2uKXT+OcP0r84hegUMC3v/24R/L48frr8Oab4PFATc3jHs0WNjs2cshfieYePLickTE2\ndo6hIQ/ptJZCwUaxmEEQ3qFYDJLNliOKBymVlpBIJhEECV6vDlEcpFDoQKd7hkJBilabIBpd5K/+\nyoda3Uw0OkplZR8HDuwjGNQwNJTDbN5LKHSJbdtsGAwFCgUfer2ZF15oYc+ep3PvfNh4lP5Ia2sr\n09PT9Pd/Sj6v5/RpF6FQ5CYSZZbh4VPEYrPYbCo6OzU4HBaSSTmBQGi1DMvpdNLbO084rGNgoA+z\n2Us+X87Q0GWCwQAKhYNotIxCIUYuV0mppKG2VsfSUhlQYmEhx9tv/5IdO4zU1e0HBKqrn2fbtucY\nGztPX98AIyOR66TiPKKoIhRKEgpNoVBY2Lmzh76+foaHz+BwVHLkyO7VIFKpVCKRGEYUE+h0TZRK\nSWCRYLCWmhoNhw/voq+vn3feuUIkYkAmM1FbK0cQBH71q+WD0LIWyg2/Z61OTU9rQPBR417lqmv9\n3eFw4HA4VvWTzp797WoWdzZ7Yx5vz5K02ZJMTUWIRCoJhRJksyJSaZDqaieplAK1WklPTw+x2AxL\nS2dxuy+RyRiRSOYIhZYwGKTAK4yP5ykWFwE9RmMDNTVtHDlSzb59+xkdHeH0aS/FYgWp1AQTE3mM\nxkaGhy9SKCRJpRrJ54ex2WLE40rU6hsEf3//1dWW5wrFONPT00QiUYrFBWpqkncc8kVRpL6+noMH\nR4nFJtm//xlefvnlL3cCt7AmHjShYcUfGBqaYVmYe1mku67uzjPZzYSnKIqYTEb8/iDxeJRUqkAi\noSGVkpLP1zI9rcLlWsBo9BGNinR1tSCRqFlY+JRUyorZbCMejxGNzlIo7EOtbieRiPLmm++xbdth\nvN7zTE1dIJudQ6er5v33B/n613fR0NCARnORfP4q+fyzmEzPEItdoFj8jFyuk0gkQCIRJJ+vQKMZ\n5/jxfbz66qt3JSKfhi7ccH+ZPH+8wc+JwEMjeZ5UbIZsoseN25/BuXPn7xlNXjE+8biAzZZHLj9C\nc3MXQ0OnaWkxIJGo73CGlgWQ65FKo8Tj1cAi4bACqVSLRFJJobBcWhCLVaLRGNFoyrBaL2OzmVlc\nNBKPFxGEVhQKG8XiEtHoZ8TjOkqldpaWdAQCM4ji39LQsBxBLJXyQAkoro57LfHLr6LBeJz4+c/h\nG99YLlV62nH0KMhk8O678Ed/9LhHs4XNjo0c8m8XnpVIJExNxUkk9BSLQ8AEYKdUklMq2RAEE5BC\nEAaQydoxGosUCmXkclay2TTFYhqJRM7g4ALpdCsKhRy/v4TFkmVu7hrd3QqgBVE0kkjEUKu1fP/7\ne28RnH0abOiX4Ww+Sn9EEAQikRjhcA1m816Ghy9htS5gMhnweM4SCnkoFLLkcg3093uYnx8AIJEo\nJ5cTVrML3n//BKdOZbDZnsfvH6Suzsz3vvdNxsbGyGSuUVHRRjqdQC5voqamhnC4QCazAMSIx2vQ\n6xVkMnKmp+P09amRy/2EQh8xOzuCyVREKk0xNCTDbN5LMJjm8OEChw/rmZ+34XSmWFq6THV1gIMH\nm28hFycmJvjpT88xOmqlUGigrKwKrdbLSy9p+cY3arHZLNfLcS5y9aqPbNaE0ejD6ZQhkQyRz5fh\n8QgcO1ZHPC7c4fdsBQQfPe5Vrnrz3xWKcVwuF3q9EavVvG4W98o8+v1BPJ4SFksZg4PjqNV9BAJL\n+P0T5HIGoBlRlBOPX6Sx0YjJVIcghCkWUxgMVeh0i5RKKXI5OVLpMLW1L61+R01Nks7OJOHwACqV\nj0CggnPnBLzeNBUV7TQ3d/F3fzdNNDqJUtlBPh/Dat2PXl9NseiitjbHvn3P43QGVv1mYNUPP3Pm\nHfr7zxAONwFSOjsj7Nkj3GJ/JiYm+PDDSQqFZzGZAjQ1NSGRPA71ji08LKzYmPLyW0W619O7u53w\nXNbNG0Yur6e2Vs/wsAKt1kc4vIBO58dub2FiYoxPPsmTTo8jCAYiESuC4EEmM1NTM4/XO45EoqJU\nihOLtREMqshkBolEyigUmujvjzAzM4rbvUhXlxmdzsGxY9W8995FBOEMSuUcanU1hUI1JpOCaLQJ\naCISKTA6OobBUHbX/XSz6OY+atyPJk/joxzIFp4s3O6YrtRg3s1RXSuavNZ1Xn11mTWWyYoEAmFi\nseBqO11gVSxRFEVEUVwVvhsbW8BodCEIMpaWCmi1FSSTZuTyCmSyEQoFJ2BFrS4hkUBNjYzy8n3I\n5VNcu7ZILpcCnAiCFpVqL/l8I/l8GYuLn/PJJ0Fstp0kk1doabHzrW/9EaOjn9Pff5VgMEw8Hr0l\nDX0rGvdwMTYGfX3wJ3/yuEeyOVBWBocOLZdsbZE8Xz087IP/3Q75N7dhdTjkyGQzuFwx8vkSgmBG\nqZSRzUYoFmNIJC8gkymBCNmsG0FYABTXuyB2IAjlhMPXCIeXnTmPR6RYHKOsrJVodIp0Oo1SeRCv\n14vDEaazU8DlOolUmiKZ3M/4+HKHoq+is7Ue7uVsPjkRRw1QBmioqtLx2mu76esbYHAwS39/iJmZ\nPmQyAz7fDj74YBKDIU5bmw2PJ8WVK/2cPu1kbk5CLHYZjSaBTOZjfPwCnZ0W7PYmBCGHxWJBoZAj\nlwu43VlsNgNWK4TDk6TTu6itbSYW02O1thEIwOJiPxKJkVIph8kkWx2jIGiortbzxhvfZWxsjImJ\nd1laSlNeLr+lc9aKrtDoaByz+RnyeQ+lUoCODgU/+tF3V7VO3G43mYwRs7mOeFxBNhshEnEhl++l\nvb0Lj+cDhobO4HDo7vANtgKCjx7rlauurK1PPz2Nx2O4nsX4K1yuGez2Z4hGe+noGKC7ezeHD/eQ\nzU4wPn7hFh8vHo8yMHABj+cSyeQEjY02jMZ2LJaTLC6WI5M9hyAY0Wjm2L79WSor25mZuYDZXEd3\n9x8xPf1/ks+n0Wo16HQt5PNLvPXW/45MFqej4zA//OFugsEwbrdktfnH+Pg4Xu8H9PVNA3aUyiRS\n6Vmqq0solWkEwU9Njcjx4y/y8ssv09Q0eUtGvc83wdjYeXK5WfJ5K2bz80CEcHj4DhJyS1908+JB\n94YVm3M3Me61cPO74Pe70WoXUSojGAyjVFRoUavHEIQSgYAam81IZaXAtWs6VCoHUmkLcnk/Uuki\nLS3fZmzsCsHgB6RSekRxByMjaXK5Imr1bqLRcrLZDLncAL29eaJREZNJSlNTIy+/XM3s7EXi8Voa\nG19mYGCWaDSPQhHCYGgikfAyMJCnULi7xtnT8l5vak2ex40nx7n68nG7Y+pwuBgfz9+VFV0rYnX7\ndY4eXTZAPp+GQmE/gjB6S53osgDycqrp0pKTmZkZdDoD7e0KysvrOHUqzdiYm1RqlmxWgyjWIpOp\nKBbb0GiGKBaXiMVMiGIP/f3jNDXN0NhYRaEwRqFQQqttZXTUTS43QankRxBU6HQLqNUv0N39BmfO\nJInFBu4QTFQocrS3K9Dr2YrGPQL8/OfLGTyvvfa4R7J58Prr8G/+DcTjoNc/7tFs4WHiy4wy3RrF\nzuFyjXLxopd0uppUKkipFEQQpEgkeiSSOKKYQC6foFRaBDpRqxsxGGax2ZLY7c/j9V4iHq9Aqz1E\nNhvG748jCE5gBoWiBVGsRSLx0dhYzze+cZDf/e4Uly+bsVja8Hic+P3Br6SztR7u5Ww+qnfhYfo3\nXV27GB4+Szg8gN0u0NW1G4fDsbqX19SEWFr6HaCkttaK3z/EzMwC8/MVqNWzSKUxotEaDAYNsdgw\njY1w/Pg+DAawWA4Cy6XcFsshAD777Axmc/f1jIfzyGQXmJ0tkEjIkcnCBAJOlpYGiMWqMBqfZWjo\n9HWy0U42+ylVVSFAh9PppL//KvPzZszm55mfP8vAwOBqM4iJiQmGhkLMz7tZXLyG0Ziiq6uK73//\nawiCsDov0WgClSoKRCkUQK32Y7EYUSiWg1SdnQo6OiR0dy93P3rQdvZbeDCsV666srY8nvLrpVi/\nIpdzo1C0odfX0dt7jXA4hs/n5NVXWzl6tO16i3s5Pl8Al8vF+fOX8Pm8pFIyEok6MhkjWi20te0g\nFnNRKLyDUhmjra2RiordNDVtw+t1k88vMD09QLEYo1Sqo1g0kk678PtzeL0FBCHH3/7th3zrW8+y\nZ08XFosJn2+C3t53CYXmkckMJBICX/vaQVKpRpqalmhoeJFwOIogCKtk5e0k4s2aPPF4G6dPexge\nPguksNsVWK3m1ed2Q4x/S2vyy8D92uQvujfcL8F88zqy29XodFoghNG4j1zOi0ZjwGBoZ2lpAIdD\nil5fRyCwSDw+iyBEMJnA4TDR01NDZaWHd97JksnYiEaXMBjS1+UuBhHFLqTSNKWSlng8SCjkoLm5\nitbWBDJZLdPTcSIRA/39URoaIjQ1aQkENJSVZUmlkpSXH7gnefO06ObejybPfwD+N1EUk9d/Xhei\nKP6rLzyyTYCnJZ3rQXC7YzozM0w223HXhbWWQVnLwQVu+p1wS53ozZ8/c+aXuFwzyOV1+HyX2bXL\nzJ491SSTOQTBQDw+hVweQRTVuFweBKGdXG6KfN6OzdYKFIhGJ2hqamXvXhWimGJ+3kRNjZlE4nOk\n0hna2g4hinp8vqv85jd/jETiY/duG3b7zHW9oBZ0OhPDw8NUVBh45ZVXthy2hwxRXCZ5vv1tUKke\n92g2D775TfiX/xI+/BD+8T9+3KPZwsPEo4gyredABgIhMhkLBoOZM2c+Znh4mETiABrNHorF3yGK\n75LNGsnnu1AolCgUQaTSOSQSB4JwAI2mGq02j9lsYe/el8hkQqjVEYrFBYpFL9XVeQRBS0PDURYW\nFrFaL9HcrOS1147R1taGy+Xio4/6OX16AJVqhkTizm5EX2Xcy9l8VBHHh+nftLW18fu/f6uYKyyX\nsni9Ii0t+/B4nEQiV5ibiyOR1CCVpti+vYxwOMvERD/RaDUVFQfQ63Ns2xZZLZdZ66AjCALZrPN6\nVkWQV189hiAI1w/gMXQ6AxcvGpibS+HxzLK05Mbv99HYqEcQnMRiJs6caWZ4uBezOcqyKxwBUoD+\nlgyPxcU0dvs2MpkAVVXe1Y6bn39+4aZ5EXn9dQ1W63nGx0UOHPhnqNVS6uu91NUJWK1HVu/jRsnD\nll/5ZWG9kriVtXXw4H4AmpqWkMtNDA3Ncvq0l3h8Ho2mE48nSV/fAPX19SQSMcbGcni9Hqampsnn\nlcRiBeTy7SiVWoLBEDrdNDt2LHcDSqXMGI06vvvdZ5iZWeDECTdgpqpKJJc7f329t5HPh8jnZ4lG\n24Ea8nkTFy70I5VO4PdrV0mm5bKxZhobv83Jkx/i8zkxm2OUlZloamq6JzFwsx8uiiINDc7r2fH6\nO0Rqt7Qmv1zcr01ea29obf3i5P16vsKt68iB328lFFruKHzy5P8L6Dh48Jv09oJWO0hbGxw58hLh\ncJSlpUUqK6vo6trFzMwM58/P4/fvIp+3USwOkc3OY7fvprx8GJfrKktLUlKpKBIJTE9PotUOsX37\nc4yMjJHNOjh06OsMDPyS/fsb+NM//V+ZnJzE7w8yNiZlcNDJmTO/xG5Xr0tKPi1lsveTydMFyG/6\n+ZFDEAQz8AnLOj8AWqARKBdFMfKov/9RpnM96VlCtzumDQ21jI8HNsyKrtz/7R1XVv5vPaf35u/N\n5dwkEjZisTwjIzJGRiJoNIPk82ba279LMHiJI0dKKJVq3nwzQSQiIRxWUCqNARbU6gXs9m6OHn2D\nsbHPSaU+wetNo9WaSac7kMuDVFR0MDMTQCr1EAwuYLG0MTKSJZudRq/fydWrp+jrc6LT2RkeTtDd\nPbHlsD1kXL4MU1Pwl3/5uEeyudDUBB0dyyVbWyTPVwuPIsq0ngNptZqJxT6ltzfL/HyYYLCIVBqk\nVEogCDFEsQKZ7BmKxVlEsRGdrpxwuAVRNFMojJDPX0OrnSEeb+KXv/w1oigilXrQaqcwGGpRq18g\nmSxw9OgruFxXaW6OrXYtAtDpDDQ3N2G11hEISNDpDA90f0/qnnovZ/OLvgt3I/fu5d9s9JmuFxFO\nJGJMTV3jwoUpwuE4FksXhYKU3bvbcbtDLCwM4/cvEovVEI9rEIQrtLaWkEiaOHdOuEMfZe3DRtvq\n72/+fqvVzMDATxkcHEChSJJMNuPxmCgUiiSTKXw+N8XiEl1dccrKKsjlzrBjh46yMgNvvfUrhocT\n5HLlTE2NIIp17N37ImVlixgMZQiCcNu8BOnu7sJsNiGVDpFKLWIyqenu3n2HP/C0lAlsJqz3fq7M\n4bL+jYTGxrrrpEaadPp3ZLNSrl0rkc8PEY8raWqqx+sdQqFow2qtY2SkxPbtdvz+MKHQVRSKSkQx\nhM8XQaUyYDQe5I03jhKPz7F9u4heP0ckUlrtFru0FESp1JFInCKX86FSiSwuLlAqeVCp4igUMqqr\n28hmrasi5UajAZksyKVLH5PL9RMMJkkktpPLVbG0NA5snDS8WW9lLdyv1uSTaoM3C+7XNqy1NzyM\n8t/1rnE7QehyufB4Bhkb6yMYHEIQpPzmNyFGR53odFoWF938i3/xTY4da1+99jLJPUw0Wk2xGEMU\nlSgUCSQSNRLJKMeOHSOdTvK3f/s75udrkMstFIsl5uYW+e1vg6TTNYTDTgRBoLpazv79XUgkkuv3\n6OTy5XKUStv1DqHrkzdPS5ns/WjyHFnr50cJURRD3EQoCYLwPwGHvgyCBx5tOtdmyRJ6UKN8u5PV\n0tJCY+PkhlnRG/dfCyRWS7JaWlqYmJigvDwFuO+ILNwcIRwbM/HBB2NMTAhIpXbyeRuLi0kKhQRV\nVRIEQUtVlZ5kMk40qiCZrEGpDNHTo2H//jJCoTw+X54zZ97BbhcwmSp5++1PmZ21IYpqisU4weDf\noFDU09JiR6/voLv7RZzOD1hainHs2DfxesfJZBS8/PJR4nH3lsP2CPDmm1BeDocPP+6RbD68/jr8\nl/8CxSJIpY97NFt4WHgUUab1HMjW1lY6OgZwubzYbC2Ew2UUCv3o9SepqkqSybyIWv0aU1M/AfrQ\nah3EYjuRSAIkk0NIJCJLSxrKyhZIpyUUi0ri8VZ0uhlMpnI6OqpZWpplcPAzIMjiYgmXy0VLSwuC\nIGCzWaipCZLNQk2NBpvNct/3JooiH374ISdOOFEo6rHb/cCTkSFxL2fzi74LdyP37uXffFE/ZYXA\nq6iIce3advbs2cHEhJNSKUBnpxSFIguYqK5+kVisiCD00d4eR63etSoM63INYbcfXPewcTtu9mkO\nHWogkRhkaChJsbhEMLgPk0lKIpFjdrZAsRgnlwuyf/82BCGAKIb4h3+I4/NliUaNfOc7rxAKhYnF\nrlIqjZLLLXcrKpVKiKJ4i58CXCcI2sjlZnE4WhFFkXPnzt/iWz0tZQJPAm5fW35/kFxOoKfnWZLJ\nKGp1EbvdztWrk0Sj4HDsx+93k8vNEghkUCpdhMMZWltVRKMpAoEMxeJOwmEl6fQs4F3VYrLZ2rDZ\nLPh8TuLxOXK5WcrLu2lsNDI/7yST2Y5UmiSfLyKKMSSSBErlHF7vOEplmHi8nsuXA3i9Kvr7L7G4\nmEWt7sbpvIDFokalqgQW8fuDwMMpB7z5XVUo/MTjijve55uxWc41Tyru1zastTfcmmH4YOW/GyGb\nVrK8kslyhoZ6kUrVaDSNzM2dJhBQY7H8IxYWztLWdhKHw7Fqk91uN3J5LTt2lBEI9JJM9qFSSZHL\njQhCG6dPyzGZEuze/S1SKTfhsAGttoRWq6NYVFFW1oJaHaO7e4n29haCwTC/+MUv6eradU9S8lGT\nkJuR5LwvTR5BEP7bBj4miqL4hw84nnvhD4H/+RFd+w48ynSuzRLNuV+jfPtL/Nxz+1df4vthRW+9\nf4A5AoEQLtdHjI3lyGZricUGEcWBVd2dlY4rK4ztpUs2RHGKTOYy+bwXhaKD5uZyIpEc8DnV1XlE\nUYfHs4DZvI3m5m7Gx6NIpR4aGmqZmysSCASRy8/y4otHCIV0pFJFikUTuZyGQuEqoEah0OJ2zyOX\nh5mZkaDTLVJRoWd8/AKNjQZATjw+h1K5tjr9Fh4cxSK89RZ897vL3aS2cCu++U34sz+Dzz+Hgwcf\n92juD5txQ9wseBRRprs5kCaTkXz+POn0dlpb20gkUnR3p7DZ2vjwQw/R6K+x2fxUVpqALJHINSIR\nBYLQg1qtJpdbIBodJR5Pk0x2IpO1UyjkCYdHSKdLSKXjDA97SSZrqKz8OoOD/YiiSFNT06rgs04n\nYrM92D47MTHBiRNDTEzUYLcvH3a+KoT7F30X7kburfx9Pf9muXNQCqsVPJ7UmnpJd1vHKwSexwMW\nyzQSybLYdkeHke7u3YiiyI9//Cnnz39MLqego0PK/v3P4HQGV4VhFYq6+ypHcDqd/OQnZwmHNRSL\nQaTSRdLpHKWSnULhKjKZDp3OjExmRSpVIJUGMZmacToNzM9fZH5eh9FYi9t9mZ/97D/xwgvNPPvs\ndoaGfCQSct5/fxCPx0M8bmN+HnI5N2VlBiKRKE6nSGdnD/G4jUhkjg8+mLjDt3qSygS+SjZ6vXu5\ndW05USqdjI5+Tqm0QDodo68vB0gJBAL09v4Ku11Ne3sbOp2BsbE4g4N+oJxUqpFsNk8kUkCnyxGN\nCthsTpqb9bS1bcPvD2I2l6HRLOLxnMVm06HR1DE56cFu3w1YcbkW0OvnyOVMqFRLSKUa/H4wGmOE\nQhG8Xg2RSCULC1aSSSmtrYcJBOIUiwsMD1+htdVPPL6PK1eCZDIWYrFPV4WjNzp3Nz8ni8XEq6+2\nXm8uomBsLEcut76g7WY51zypuF/bsNbe8EXLf1d0mDyeccbH+9FqE8TjO1e1nFY+09c3gNNZwmRq\nQioNYzJpyOfLmZ8/RTQ6ClRSLIaYmlKtZkYajduIRhMoFDkaG01oNOWo1UryeRG/vwWz+RvEYm4m\nJy+RyYxTKAhIpTIkEiOCEGVhwYBcrsduV7BtWxMuV4GhIT+gYXj4LD09dpTK/Lr3/qhJyM1Ict7v\nsemfArNAP/ClWnpBEA6w3LrhvS/xOx9ZOtdmiebcr1F+WC/xzfcfjY4SjeaZm6tbTYVtarJw9mwO\nl2uedHoas7kanS7GsWMuXn75Zfr6Brh0yYkg1GGz1QDnUCj6MBr3YDRKsdlcFAoW3O5aFhbGiMWu\nMjm5RDY7yeXLUiYmfko+b8Th+CHh8GUikRiCIKBU6pHJwmSzw4CCUuk55PIiFRUhXnhBS329lIaG\nF2hoaCAUimCxHAaWRSE3u8P2JKK3F+bn4fjxxz2SzYl9+5aznH7zmyeP5NmMG+JXBWsdaNbKvnQ6\nndc7IAUplZS43W8jkdRTV1dHLqcjnTZTWWkgkbhGZ+cz+P0j+P1ujEYJhYIOQaigVJJSKvWTTNqA\nEjqdj0JhmlQqjEaTBK4RCikIh7tJpyW0tzcRjQpcuHAZp7Nwff6/WFetQCCEQlGH3a7B651Go/Fj\ntbbf+x+fAqzna2zEv1kut5pmZKR0XS/JeMdnVtbxWofKmzNvEwnj9WBN++qBUxRFenpceDxeCgU1\nZrOehoYGmpokq8KwY2O5e5YjrDRlCARCnD//OZ9/nqJQsLCwsIjRaESptNHe/hwez1na2qaQyTR4\nPFGKxRg6XY75+SlAhsFQzciIn2hURzqdIhCYIRRSs2NHG4lEHJfLTzgMTucs1dXNSKWteL01hMMX\n0Whgft6Ex3OSzk6B2lrdmr7Vk1Qm8FWy0Xe7l9s7DIZCbqJRO7GYhEBgka997SjJZBitdoiKijYa\nGtpWM8pCISiVjExMpKmomCWT+RxBkCAIVuz2lwgGC/zmN31IJE2EQn9PMChBLt+NUuni618P0NNj\noKxMYGmpSKHgQyKBfD5MZWU9IyNGcjk7Fy9eIpEYRhCaCAYd1NbamJpy43J9hFy+QLGYRSqdQKMp\nIxyOks3WYzCYOXs2Rzhcwufb+Nzd+pwmOHq0jQMHnuXcufPkctz1rLBZzjVPKh7ENqzVofjo0Qcv\n/72RoVNictJJS8tuxsZyNDZOrNrZvr4BTp0aw+stI5n0IZFM4PWmmJtLkkiUyOd34PFMotVGcbnK\nEcUYHo/AsWN1ANTWzlFXV4fV2rV6zR//uJdz5z5ievpzCgUAEzKZhBdeeA6v14nROIPB8Azt7d0I\nQph8folwWIrZvBdRLMPl+oyaGjcOR926AaNHTUJuRpLzfkme/wc4zrIuzv8H/PR6SdWXgf8O+LEo\niqUv6fseKTZLNOd+jfLDeolvvn+3W4fbXbvali+Xm2VoyAdoqK62cenSPIWCmYUFJTCEKIqcOjXJ\n8PA8yeQSXV2HMBpfolAYJZtNMz4e4to1HcXiEuXleXS6Xeh0V/H5lpDJiqTTXaRSMopFD1VVy8LM\nCwvziKKIQpFDLo8jlU6gUu1DoahELl+gtVXLH/zBP31iHZwnFW++CfX18Nxzj3skmxMSCXzrW/Dr\nX8O/+3fwJAVZN+OG+FXBegeamx3IFQHY8fESY2Pz18U1d1AoLOtExGJypFI5e/ceIZWqAGYYHtaQ\ny+1BqZxDry9RVjZPKrWIRCKhsrIOr3cRtXoJiUQkmw1QVdXO4qKbXK4Ch6OHsbHLDA6+jcNhxmBY\n+xD8ILBazddLtFJoNB6OHdsSCF3B3XyNe2VqLJdbbb/eklyzpl7SinB3Oh3j1KlxXK5alpbUwJ3v\n3FqIRGLodDvo6DiIy9XHqVO9HDlyiCj0yrUAACAASURBVOeeWxbDbWxcySpYLn/67LMzq+2ux8cv\nXG/WcON9P3dugrk5AYnETCyWpampimgUJic/QaeTYbXu4Fvf2sfY2DixmBK7vR6tVsfp09OMjUmQ\nSObIZBJYLDVs2/YqEkmcpaVFhoevMTPTjEolQxQzQB8SSRV2exPJZARBkHLs2AsMDZ2mo2NZxHal\nVfWTeuD9Ktnou93LrfYyT3m5QFnZDnp6ejhx4gP8/nlMphT5vI25ubrVzq7hcJRoNMHiYpZIZJZ0\n2k6hkMZoLKFSbae7+2v86ld/xdTUMJWVKqLRBTSaNr7xjTfo6/sFHs8kL720HZMphlarJ5msIhSK\nMDISYXraT7HoYmkpTSSiA6S0tQWx2Yaw2Tqpr89RVVUgk7EQiTSwa9dhYrEggjCHUhlgcHCIRKKA\nRmPH4wlvuGvhes9pI2eFzXKueZqwVofiL1L+u1Ly1NZmY2Ghkra23eRykVvs7Ph4Ca/XRHd3KxMT\nlzGbZTidi8zOypBKn6dQMKJUjqLVKlAoaujsPITH8wFDQ2doa9NiMt0IFoiiiCiK7NihZXb2FPPz\nJWSyV8nlJMTjF3A6TyGRQEXFLuLxAOHwNJ2dZhoaarl69SKTk9MUCmr0+gzT07vI5dYPGD1qEnIz\nkpz3RfKIovjPBUH4V8C3WSZd/g9BEN4D/hr4UBRF8a4XeEAIgqAFvgs8c6/P/vEf/zFG463RpuPH\nj3N8k6UCbJZozq2RNvlqPe/tzt6tQskJxsbEL1SedEM8cfmasdgoY2OspsKGw1GGhxNksylSqStE\noxFaW8uRyWp4//2TDA9L0OnaicWmyWQuYbfXolDsIRicx+22IYod5HLD/PrXf8OePQ1oNE2o1QoW\nFydJpQI0NLSQzaoJBN5Gry/S11dBOJxBEFR0d9cwN6dBEEoolTPU12c4fvyldVufPoyU5jfffJM3\n33zzlt95PJ4HerZfFeTzy+TFH/7hk0VefNn4/vfhv/5XOH/+ySLDNuOG+FXASir1+HiJzs4u4nFx\nzcPZijPf2dnF4OAgi4txdLpm8nkNMzODxOMF/P4i166NkEzGSKfjFAr1KJUVxONpJJKzvPKKmny+\nxJUrSaano0Azev0Mu3cXCIU6iERM5HKzFIsxZmb60OmGaG9Xc+yYgwMHDvDRR1N3nf+N2tZbHdeN\nlyY8aXiQveZuvsa9MjVu6CVFqKmRrKmXZLWaiUZ/xwcf9BMMatDpCng8qQ0RAhMTEwwPh/F4coyN\nvU0m48TrrWJu7lN++EMRh8OxOnan08mJE+MMDsoYGnqf0dFz7NzZjtl8mL6+fi5cCFNdbSSfN6PT\ngV5vplQyYjZrUamW8Pnm2bbtOXS6SiKRGFJpCxqNlWTST02NnMrKEnNzQfbta2N0dBJBEPH7E1RW\nllFZ2UZFRY54vBaJJIdON8/u3bWk034UCg02mxxBKBCPh3A4KunuviEGfXvm3JNU+rRRG/0klHXd\nuJfPiUZHcbt1q2O9ndiAWaLRa7hcaqqr4/T0lAM3gpErWlFVVQcIBj9GFL20tTUildZy9eoSJlOB\nVMrPiRM/Z2zsKuFwnmBwEpVqkerqIleu/ILFxZN88kmKuTkL5eVydu400N29m5dfbmFycpIrV/pJ\npTyMjCTQahsxm8soK0vywgtl17MgulezIE6edBKPh1CpgnR17UIQBIrFSSYnA1y75kWlmiEe372h\n92+9Od8IgbNZzjWPC49jHdwvEXuvOVqZf48nhUo1QyCgoaZGcp3oD5HNWigvr+bq1RlOnfoFxaKR\nXK6aVMqLXC4nl8sikbgRhAWsVikVFWqmpvoxGucwGBYoFm2cPq3GaNxJLNaLxfI+waAag2EnUmkl\nZWUyUqkFIpFpJJJpVKoqBMEK1BKJuPB6P+I73/kB9fX1iOIganWWTGaM2tpnOHjw91aJ/7XKim/X\nUXvYJORmJDnvW+VCFMUs8CbwpiAI9SyXcP1nQCYIwg5RFBMPd4gAvAEMiKLovNcH/+Iv/oLu7u5H\nMISvJlYWPDi5ciVINiusmQIdj0dXtXJgkNraudWU7AfFjTTvG9dcETDU6UKYTDGCwTAejwmPJ0Yw\nmMRslrG0JCMUqkWn01BZqaWxMUl9fZFAII7bfY18HtRqGRKJHLU6iUrlZXY2SDRqRa0OUSwWicfL\nKBYXyWZlpNMGfD6BQkFLPF6GVitw6FAzDoeWqqpqurp20da2vmr9w0hpXouI/NnPfsYPfvCDB36+\nTzo+/hiCwa1SrXuhpwfsdvjZz54skmczbohfBdx8cPZ4TtLRAfF4zboCsPH4chRtcHCUubkwhUKK\nVGqBUklLPF6iUIhjsRQwGpNIpReIxdoRBAXFYivRqJ14vEA+b0UUpej1BkqlcrTaNHV1h0gm04Aa\nqVRCMDiJWi2jsfH7JJNSJBIJR4+23XX+N2pbn5bDxcMun7nXAaGlpQWHw8XMzDANDbW0tLTccY3W\n1las1vfIZNRIpW1MTHiw2fxYrfduwhoIhDAYdnLsmIW/+7v/RDZbQC7/GkNDl+nrG7iJJDFf1wcq\nMT8fw+sViMXSVFdH6e3t5b33LjAyUkImy2AyBXA4LJjNItu3mzh0qI5UysJ771lZXKwkEpnBbldR\nKDyLw7Gfd975S86dm6NUqsDt9mEylWMyxdBo0pSXt2E2yzGZyujsTJJMLpLL+enoKONHP/ouEonk\nepbRcneim8u2b38nN9I6fbORJRu10U9CWdfK2Pv6BohG87jdtatlTLcTG2VlRiCCIJQwmy10de1G\nEAR8vpXOrrPI5bVkMnGGhzOYTM1kMlGWlk4RCESIxXRUVAQwm/NoNEqy2e1ks9WUSjEaGxMYjSfx\neNIsLR3G7w8hkSwyO1vH0pKao0eXtU/q6urYu7cWr3cej2eRkZFzKBQSdu/+E9rb2++4r9s7zfn9\nQRYW5la7FobD0Q3N0Xpz/rTY2C+Cx7EOHnb3xZVyr1tLbC2rQflI5AznzyeIRBZJp4NotSbyeR3F\nYhcm0zW02gmy2QUMhhgORxNGY4bx8V6KxRqmphbQaPyUSnp6egoMDYlIpXGKRSnHjlmw2bqJRHqZ\nmPADSpTKHdjt9Xg8TsbHJ6mo6CKX8xKJxIhEhlhYsGC3v47b/SHFopfx8Qt3bSKwrJFWh1IZQBCE\nh25bN+Ma+aJSpiWW25sLwKPs7fIHwF89wus/9VjL2bs5BXpFK6en5znGxgTq6r648Vr5zm3bnl29\npiAIt6XNSuju/ke88EIdQ0NnKC+fxGA4hFyuxuOZpKIiil7fQS63k1DoY9RqHypVikxm2eHTaEqM\njUWIRusQhHry+RhabRi1Okg63Y5UCul0EQiTSLTS0GCgqirL4cNmvve937vFCKznEH+VUpo3E958\nE9rbYdeuxz2SzQ2pFN54A378Y/iLvwC5/HGPaGPYjBviVwE3H5yHhk5jtSbWFMy8cYAf4ZlnKkil\nIqTTcqTSSpLJKhSKEJGIEVHcjSDMYbV6CAQ+JpMpIpXWIghWRLEItGA0+llY6Cca9aLR2FhcVFBd\nvYggmNBqPUAH27a1E422YLM5yGYjBINhDhx49q7zv2Vbb8XDfh73OiBMTk4yPp4nm+1gfDxAY+Pk\nHfv+8h4pADZUqgZSKTcqVWzdrODbv1+lchKLgVabJRQqJxYrABoWFxc4eVK7emByOOT4fJcZHQ0j\nkexGoRCZn1/io4+iLC7uQKWKYTKJ2O1tfPObdurr67FYlommTz89jdlcRVmZnYWFCKKYRqHw09v7\nLpOTQ8BO9PpyVCoJO3bYiEbVlJVJOXr0n13v0iLy+7/fSGfnVcC+Gvi5vW373bDRjjWbiSzZqI1+\nEtbpyr0EAiHm5m4V814pDby5y5bRuIt9+/bT2/sun312hsOHe24SIW7j9GkXH398gVConqqqbcAA\nCsU1LJZdQCsSyRCtrQKzs7NEInIUCjmCYCAYVJHPC6hU2zEYtnHt2lnk8gVCoVYuXhyjVJpCImkm\nl7Ph8ymwWMqIRCQkk3X4fAvMzMzcQvKsN0e3dy0UhNSG5mhrX35wPI518LC7L65V7nWzZlWpNEU2\nC2p1C+GwFpXKTTjcRmtrJzt3mtFoxpmbM7CwYGZ0VM21a/Mkk2nU6hJ+fxmVlUVSqRjZ7FtYLO3s\n2nWYvj4nQ0OnaWuruK51JmC3dxCJBIlGxzGboyiVVdjtbRSLN48+BUTQ6QR27api/37WfQZPgo16\nFLhvkkcQBCU3yrUOAr8F/gfg5KPSyxFF8QmTFN1c2Eh0aC1n7+ZFsaKV8zBLK+71nctps26UyiDx\nuIDDocPh2MvYWA5IU11doK6umfn5MpzOi1y96qesrJvGRj9Wq5RkMo9SWcbioha5vAaFog5RHEcm\ni5DNNmE0VpFIzJFIDCCXK8hmz6BQ7Gbv3p10d7dv6Bnd7fdbeHCk0/D3fw//+l9vlWptBP/kn8C/\n//fwySdw9OjjHs0WHidWDs7LNrOS8vIUc3O26zb1c/r6Bm7JzszlOvB6e1Eomti7txancwmp9BLJ\nZJhisYBC4SWX81EsBrDbO8nn5aTTMSSSeQShErPZRzjsoVTyIgjtFAplBAJ5OjrKqK2txeGIMzgY\nIpmUI5NlCAScq+nfG7mXLdt6Aw/7eax3QFjxGT799PQd+jdrOcaVlVVUVIyjUkUJhUpkMgbOnRPu\nSVTcnF0xPV1LLCbB7z9PRwdUVdUxN3fDF9DpRHbtMnP5cppsVkcqFaJQWECvP0JtbQUjI0OUSn6a\nmlrYs6eLtrY2xsfH+clPzuJyJZiZcaNShdHpZASDag4dUqBSzREKtQHVDA6Okc9PkcvtpqFBgSAU\nVp+zzbasLeRwOB74WW9k7p7Ug8iTtE5vH6vFciNj3WIxIYoic3NzRKMJent9TE1dA5rIZm+IEIui\nSDj8K2ZmaqmqspBMhrBaM6TTcgKBEgaDDqOxip07K2hububHPz7L9LSXdFpCPP4cyeQ1FAonySRo\ntaNUVKiZnQ2RSGiRy/2UlzfR07Psd+fzE0ilXXR21pLJTDA7u7Ey/tbWZQ2r/v6rAJSVGVha8j8R\nc/Sk4nGsgy9Cyt0o7Y7R2dlGLLZ2afdyx8LPCIelzM/7KRQqyeXkFIsRcrkUZvNVKio0dHbWUFFh\n4cyZKOGwlkikjHy+QCzmJpsNkU57icWs1wnPBTQaLUtLVqqrQxw8WMeePQ5EsY1g8CxDQzMUiz5q\nanL09LyKyyUQiXgxmYTVio/h4c8Ih4ex2xW89trhu9rnJ8lGPUzcbwv1/8xy6dQc8N+A46IoBh7F\nwLbw8LCR6NDazt7E6qL4/9l77+i4rutQ/7soMygzqAOARO9gAUgCokRKItUsSqTcnu24MJb1HMf2\nL3FJrOS9leQ578UlceyXlShOHCex8+IiS7Qty7EtSyApW4UEmygCIAESwAzRB0SZhmnAFAD398fF\nDAFw0MvMAOdbC4vEYMqZe/fZZ599dsnLS6SqqoLR0T7gdn7jasLdFvtMtdoczC+emddeUnJz+vcd\ndHV1cfLkmxgMTsbHM0lKKiA5WUtRkZb4+FFcrmRSUiQaGw1AP6WlSdx99wdoauokIwPUaidOZzpx\ncbsYGRklJcXKzp3qkJ7g+QxikXay9rz8MrhcIlVrqezbp0Q9Pf+8cPJsdebqI1mWgwVgQ3UyDGwm\nkpOHUKvH2LvXSk3Nfux2Bw0NPUxMjJCREUNFRRmvvHILt3sKn09PZuYIu3bl8PDDtfzzP1+iqysH\nScrF41ExPHyV9PTHuP/+e7nvvoPBU0CXyzEn/Ht532Wr69a1vh7zbRACNoPRmD29yX2B/PykeQ3j\nurp93HvvKFarE5XKycTEdrTajHk3DXM/32y2UlpawL59SvTZ4cMpdxQuzsqqZNeuneTlDWMyDaJS\n9XL//eVoNOncuuUjMXGcffuyeeKJ+4PXpanpKi0tMunpR/F6v0dycjvHjv0pDocFrVbi4YdL8Hg6\naGnpJDGxm6Ki7SQnuzh8uIaSkpI17Zq5lHsXrRuRaJqnofRjwD62288BflJS9gDXSE6+RllZ5R21\nPiRJoq5uH8PDiQwMjOPz9VFdncvlyzHYbDagkYqKZOrqFGejRpPCf/7nbxkaykal0pGQoOXwYTUJ\nCT4GByux22MwGuN59NF34HYbggeqeXmJpKYW8eqrLXg8HjIzPRQX75r1feY7xA38jIwk4fXqGB42\nsWOHCq12/mgHwepYyjyIpJRMJbXbhdEoYTSeoqZGhU738B3PU/Soj4yMu7HbB1CrbyBJ8dTW5pCW\nlsM996Rwzz2VZGVlTjfGeZFbt9pxOBKAARITR9m+PRtZNqFSaairewCNppTJySEkyU1GhlKPqrJS\nmY8f+xjTzkltsHbOzZs3Z10zgKeeku54bD6iSUetJcuN5PkDoA/oAh4EHgwlnLIsv3/1QxOsFUs5\nHQpl7M2eFFXIsjyd06hjZMQwo57Pylj8M2fmtt9+zszXmEwWsrKK8Hq12Gy38PtHKS52UF4uAXGY\nTPGkp2tITIwjN1dNTEwhKSm7SE2dpLo6nfT0vbzyyjVu3sxh3757SUsbwmazc+HCpTsUsAhj3Th+\n9CO46y7EtV4ikqQUYP7GN+Bf/gW02nCPSBAu5uqpgDN+vk6Ggc3Ejh1VaLWp6HT7KC8vx2AwkJen\nnALX1u7FZLJw48Y1JiYSsVp70GiseDy5lJSUcO+9+3nrrdOMj5vQahMpLMyju7sPvV5J11mp3hQ6\ndzYbdT0CNsOhQ0oaS1nZCA8/PH8NvsrKSp56SppurVvCrVsZ1NfPv2kIMLOhg8NhA/ZQVbWN2lrl\nc+YWyTSZLOzbVzddZ6SPhx7KJztbN20vfGSeDdMYkmQnNTWd7dulYIHamYa+Wj0EHKSi4gAWix6t\nNnVVUTuhWMq9i9aNSDTN07ljPXfuAkbjGDoddHfbSU3VcOCAUpagoKCPkZGkkLU+5hZ7N5ksWK27\nqa297agMpPTV1e2jpcXKxYsD+HyXqK7W8PGPHw/WdLxypYkzZzoZGblCWtokjzxSQUoKZGZWMjVV\nTlLSKRwOFwcO7OfIkSOzvs9Ch7hzbX+tFu677+AGXOWtyVLmwcyomPT0yWCB+XBgNltJTd3JsWNK\nOYzq6pgFdE4SkIZWm8+uXV7Gx5NQqQrJy1MaKQRkTpZlHnigDLt9isREDcPDPuLi4ti+vZicnCEm\nJ6eQ5VacThOpqdU8/vjv09FxCYvFBijXsKqq6o5rEuq6LkfnRJOOWkuW6+T5IUoNHkEUsdLTobmT\n4vz5i2sWSjwzx3Pu6e5SJmLg9f39/Wi1FmJiPKhUfWzb5ueBB/bjdufg9eqIiblGXZ1ERsYjJCdr\ncbkc2Gz9SFL6rOrq9fV6XC4vw8O9vPkmlJQUkJCwtJz4SMujj3ZGRpRInmeeCfdIoov//t/hS1+C\nH/8YPvWpcI9GsB4s5RRQlmX0en0wTD9QP6SyUim2PDzcwZkzP2F4+Ap5eXHk5/cGT9FA0Wc//enP\naG21kZJSg8PRDlwlPT2VkpJ4+vsHUauhsvIwarWKpqaraDQ13HXXOF1dPeTkpJGVpaWrKxWfT+jD\naCRgM3R0XCI/P4aHH35g1j0MJYczI3L27l3KpkGRtfr6DgYGZEZG+tizZ4zKyp00NjZz/bqb1NSd\nqFRmenp6sFhsuFwO8vIS8fmUTpxutxOzOWbeuVBbuzcY0n/wYDqHD9eSknJnJMP4uJu+vh4GB9X4\n/S1s354VtEc28pR9q25EwonDMcq5cxdwOHqJj+/k7ru3zRtJPlNmZnaINZutuFwO1GpfME22rq4y\nKDsVFRV87GNT6HQnp501dbOKc8uyTGuri+5uO7du6cnMHOed73wCgFdf7WRi4iDp6WZKS0uJiYmZ\nNf6FDnHXKzIskqJRoo2ZUTFG42Wamq6Gzclzu/mCUg5jpszC7fssyzK5uVZiYppJSLBSU7OHzMx0\nkpO1uN1ORkbMdHV1YbPZkSRwuRzEx4/h8SSzZ08VDzyQz+iog5aWQwwPx3Lz5nWysgqxWkdpaFg4\nSlSwOpbbQv3j6zQOwTqyVqdDa7lg3A4Hn6Kz8wZlZaXk51uApW0IbjtWCoAe0tKuk5tbRHGxDo1G\ni82mIyWlkN7eXoaGBhkZScLni8Fuv4Us+/D7M7h48SWOHasJnozU17dgMmkZGIhl795MnE5pSY6s\nUItsRYVYBFfK888rkSkiVWt5FBbCsWPwne8IJ89mI2BsNTY2Tztf9szrhDYYDDz77Bu0tPiAJFpb\nz/HUU8pmoqKigu7ubhob38JgUNPdncLoaB91dUr3mEAHoI6OKYxGH3V1k7S0yNhsDiorEzl8OA+d\nzklzs5vs7Hjy8hSd5vfn8JnP/DUNDS8ATUA599//O5w792tef/0MgNCBUcRiNsN8BxuLbRrmYjZb\nGRgYZ3Q0GZOphqtX9VitvdhssRiNEnV1apqbb9LY6KS6+ggqlS+YcuJ0qkIWFJ9JIMJovnU4IO8G\nQzKTk24KCrz09CRhMCRz8uTqHJTzOVujaQ5shc18W1s7JlMiMTEFeDw20tO93H//bUfgQsW1Zzop\nfb5eamqSqKrKxO2Ov6PweExMDLGx5SQl6dDrzZSW3i5ibrHY8Pu1TExMoNdvx2yewGo9R3W1Bq+3\ncMGD1YXs8vWKDBMHm6tFiYpR/l0+azUvl6rnPZ5CMjNHycwcwmJJwWgswmy2UFXlpKPDj9Foprn5\nTSYnUwEtHk8vU1OJxMWZSElxUlJyGIvFRn8/pKamMTiYwP79RVgspkWjRFdzTQLfYTPrr8VYbXct\nQRSwVqdDa7lgBBwjOl0a16+PodMV4vUSXMQWU2IzHSs9Pb3k5mZw9Ogng8Wa7fY2GhpuAGO43YPB\nQnYnT/YwOnqL5OR8BgbyAT0lJSVotank5R1ix44C6utP0tJyhqqqbSsuDioWwZXzgx/Au98NmZnh\nHkn08elPw3vfC01NULt4B2NBlBDQJwHny7Fj8zuhzWYrNlssGRl3A2nYbM2zakloNClYrWC3FxAT\nU0BLy9XgaWJAr9bU1GI0nuTq1TeANGpqHsfptJKSAl/4wh/P0s2Bmj9K1EcSVVUP0dHh59y5X88o\nWip0YDSxmM0wX/TAcm0EnS4Dn6+BgYF88vJKcbtHsdliqal5gPb2F/nNb04DI6hUBdx7byFOpxRM\nOTl//iI+H8tOQ5/7PTyeTHJy4mlp6cZo7Cc5OZU9ex7E6bSuKlpZcbaeo6VFBsZobX0j6GyNFraC\nHeNyuYmPV7N9ezGDgx0kJcUuOaVJcVLKjI5uY2BgDDCSn++c7kg3u/D4YhE3Pl8D/f3jaDQ7ycoq\nwmbrBkCtNi94sHq7S2IrxcUFlJeXB/+2XpFh0VogPBJQogvPYbM1k5d3u4jwclireblUPR/ogJyU\n1MrERHXwvvf0tOL1VqPTpeF0XiUjowLIYGRkgsLCArKzi4mJaZ2ubabsk4zGERISerBYJFQqN6mp\nKcsedyhCXRNg0+uvxYh4J48kSSrg74HHgXHgqizLT4V3VFuTtVww5k54szlmVsjeYkpspmMlPX0M\nmAwuhPv27WFw8CSxscPs3fsQTmdWsPZEevoYLpeTgQEXeXmlqFRJwc2KcgIpU1MjUV2tpa5uaYXT\nysvLOXp0tmF74cIlsQiugOZm5ecrXwn3SKKTJ56A3Fz47nfh298O92gEa8Vc58tCTmidLoP09En6\n+9/C7XZSUDCG05kerM3jcjkYHr6F2ewjMdGMVmsFSoOvVav1OBxT5OZaiYuzMDEhY7ebSUxU9NtC\nNX9mFsdXInhK7yhaKoh+5oseWK6NUFFRwbFjNYAelSqJrKx4JGkCh8NCXp4bm81FdnYxPT0OWlrO\nUlWlWbOulrIs43TauXHjNfr64omPTyIpaYht26ZwOCzBuj0rRXG2JpGRsQ8YxWZrjbo5sBU28/fc\ns5+zZ09jMp0gOdlEbu4jdzQVme/QUXHOXGZgYIy8PA0qVSE9Pf14vdV3XLPFIm6OHavBZmvAaOxk\nctI53UXo/nnTxQLcvHlz2qlUTUeHmZKSm+u+kY3WAuGRQKjowuWyUfNSp8tAperg7Nmf4vP1kZGR\njkp1u0NbcXEBHR1mjMYRtNpRPB49oCUl5RYejw+r1URenir4PQPdvLZvT0CWb2GxJNLXV8DIyOod\nMKGuCbDp9ddiRLyTB/gGMCXLciWAJEnZYR6PYA0IKDalJk/tHR1XFlNiM5+XmXk/QLAThizLWCwp\nTE5qaWzUU10dz5EjlWi1kJl5P93duZw8aUClSiIvT5qlaBXFe2jBsL65DqijR+8sACYWwZXxgx9A\ndrboELVS4uLgk59U2qn/zd9Aenq4RyRYC5bjhFbqP8i88ko9zc2TZGcfoL3dR0mJIdjppabmLrRa\nGxbLMBUV6uBp4syW1g5HCikp9+NwtFNUZKSuLnRIdaiNfcBY83r1IYuWCqKbtYrqlSSJxx57jJKS\nkum1XKlNYbHYyMws4eWXRxgczCE2tp/y8iGOHn1izbpaGgwG2tt9+P0l+P3DPProgyQmxlJYaKSw\nUFp1tLLibL2B0XgOGAtudqKJrWDHPPbYYwwMDHD6dCdabR0uVzoGg2HWhnO+Q0fFOdMNtASL0BYX\np9LRcWf0zULyGpgHxcXFIdP7FtqYhsMRF60FwiOBtTgs36h5GUjv7u7uQaWqxOmEnTtvd2gLHOiY\nTBYeeeRIsCZPauoORkcdSJIUrH0a6PZmMiUzMXGQgYHLqFQZ7Nx575rI7XzXZLPrr8WIaCePJElJ\nwCeAvMBjsiyPhG9EgrViMUW3mBJb6PXnz1+cVTG+piaGxx57LOi0qayspLS09I5TmaUq3qUsqmIR\nXD5er9JV62Mfg/j4cI8mevnMZ+DrX1dq8/zZn4V7NIK1YDlO6EB3CovFxsTEneksWVmZ7NlTQGZm\nPj5fL8eOVQY3NDNbWvf3B2pBZMpj0wAAIABJREFUxFBYuPxTNqEDNy9rGdU733vJskxHRxY6XSVm\nczL33JM1SwZXOwaz2YrPl8Xhw3XU159kZKRjumDuvmXLeigCzta5rYCjia0wh2NiYti5czdW6+55\nbbr5bL65TspAZHdJyc07rtli8jpfV6HFCIcjThQIDy8bNS8lSZouZXH3vB3aliMHM+eRyTSCz7d2\ncrvQNdnM+msxItrJA5QBVuCLkiQ9CowBX5Zl+bXwDkuw3qxGiS1W/HG1C9RSFlWxCC6fn/0MzGal\nroxg5eTkwFNPwTe/CU8/DSpVuEckWC0r0Sfz6anZunVHSIfRWmwchA4UrIasrEzy8y14vaPk58eQ\nlbW2RdqWEx23Ela6aY8ktsocXkzfLfT3+SIZN+qabQVHnGA2Gzkv19KJOPO98vIkduyoCUYFrVZu\n57smW0F/LUSkO3nigCKgVZblv5AkaR/wqiRJu2RZNoV6wdNPP01qauqsx44fP85x0aonqgg1YZda\nUX6pi95KK9Svx6J64sQJTpw4Mesxo9G46veNJr79bXjHO2DHjnCPJPr5kz+B//gPOHFCaa0u2BrM\n1GmZmek8/nhFMI11qSfKsiwjyzLZ2WNAX1RGIAiin5Wus4E5oKSCO2algs9c35cTHSeIXpZi581O\n/1dqh5w/fzH4/Eh2pGwVR5xg7Vnu3Fit7Afq8gRSEouLK6Ou42C0EelOnj5gEngeQJblZkmSuoEa\nIGQ0zzPPPENtbW3IVmqC6GahYsyhlFVl5cKKY6UV6tdjUQ3liHzuued48skn1+5DIpjmZjh/Hl58\nMdwj2Rzs3AnvepeStvXkkxAbG+4RCTaC2TrNwNGjldx77wEMBgMXLlxakjPbYDBw6pQBr7cQtdoc\nzKVfD7ZCi2bBxhKYA0bjFJ2dNygrKyU/3wLMXt8jaXMs5sFs1up6yLLM6dOnqa8P1MxRzobn2nkz\nZUGv14e0CyNFVgSCtWIpe6CF0mmXOkdnPtfptDM8nIjPl8XIiCH4/oL1IaKdPLIsWyRJ+i1wFKiX\nJKkEKAbaFnrdVmj7uBVZqBbOSu65yWTBaJxCp0vDaBzBZLKIRTxMfPvbkJ8P73lPuEeyefirv4K7\n71bqHIlonq1B6A4Ty9ONG6kXxVotgNAbhpXKRmAO6HRpXL8+hk5XiNdLRHdWEfNgNmt1PQwGA/X1\nepqb00lJcWC1Wti/XxdxhYwFgvViIWfMamR9OXN05nMHBvSoVDkcPizm10YQE+4BLIE/BP6nJEnX\ngJ8Dn5ZleXChF8wUXK9XF2ylJohulHzOmV0LbneqWMk9d7kcdHbe4M03m+nsvIHL5Vjx2GRZRq/X\nc/78RfR6PbIsr/i9thoWCzz3nFKLJy6i3c7Rxf798P73w5e+BD5fuEcjWG8CLaEHBho4e/anqFQm\ndLqMZevGtdSLiyHWagHc3gScOwcnT+qDm5K5srGUdTZgJ5jNehISejCb++6wFyINMQ9ms5LrEUo2\nzGYrLlcKPl8qer2fmzdbFtVnC9mZAsFas957h1C6NcBqZH05c3Tmc1WqIny+PjG/NoiI31LJstwN\nPLKc12yFto9bkYVyQ1dyzzWaFMrKSsnMLMBgGKK7uw+9Xr+i0GBxErdyvvUtkGX4wz8M90g2H1/9\nKlRXw3e/C5/9bLhHI1hPAi2hVapKfL5eduwI6EjDorpx5mmf1TpKaWkJWVlFmM0xaDQp6zZmsVYL\nIPSJcijZWMo6G7ALlJo8tSQna3G7nZhMFmBl6/t6I+bBbFZyPULJhk6XgUbjQKUap7JyguzsykX1\n2UbU3xHpeYIA6713WChaZzFZX0hOlzNH17PgsmBhIt7JsxIiuUhaNBCpC9BCOfQrueeB7h1GYz82\nm4eurlJ8vpUpWRHiuzLcbvinf4JPfQp0unCPZvOxaxd8/OPwf/4PfPjD4hpvZm63hFZ0kEZzuwBt\nVVU8Go1MVlZo3TjT0LTb3ajVfiSpiPz8pDXvajQTsVZvXebWaVCpfLM2DKFk48KFS4uus3PtBKXG\nihWvV4rYAxgxD2azkusRyga7994DHDvWDQRq8iSi02Wg1+vntW83olaTOBQUBFirvcN8+7bldoab\nyUJyupw5Ovu5VRGzp9wKbEonTyQV1ItGonEBWsk9Dyie118/A+zi0KF309FxaUVKVpzErYz/+A9w\nOJRuUIL14W//Fn7+c/iLv1AiegSbk7k6yOWK58oVy7Qe93P0aOa8eny2oSlTUNBPYeH6n7SJtXrr\nMtPOUKl87NihmnW6G0o2VrLORsMBjJgHs1nJ9QglG5Ik8dhjj1FSUhLc/MqyHHb7NhpkUrAxrNXe\nYb5922ocyAvJ6XLmqNBv4WNTOnkEq2OrLEAzq7p7vXo6Oi6tWMmKk7jl43Yr3Z8++lEoKgr3aDYv\nOTnwN38Dn/sc/P7vw8GD4R6RYD2Yq4NMJgter7QkPT7b0LRQV7cv4h37guhmrp2h1cJ99y2snFay\nzooDmK3BfLIxd4N5/vzFsNu3QiYFAdZq7zDfvm01DhYhp9GPcPII7mCzT+y5YY3l5eUcPbo6JSs8\n1cvnH/8RrFalMLBgffmDP4Dvfx9+7/egsRESE8M9IsFSWE7q7J06SL9kPS6c1IKNZiV2xmLrbKj5\nImR7cxLqXi/FBosE+1bIpCDAWu0d1kOuN0pOI7VEyGZAOHkEd7DZF6C5YY1HjyIcNBuM2Qzf+IZS\nbLm4ONyj2fzExsIPfgB33QV//ufwzW+Ge0SCpbCa1Nnl6HHhpBZsNOthZ8w3X4Rsbz5Wqhsjwb4V\n+law1qyHXG+UnEZjiZBoIeKdPJIk9QDjgAeQgb+VZfmFsA5qk7PZF6Ctko4WyfzlXyr/fvGL4R3H\nVmLXLiU97gtfgGPH4OjRcI9IsBir0VWbXY8Lopv1kE+xtm8dVnqvhV4UbEaiWa6F3l4/YsI9gCUw\nBXxIluVaWZbrhINHsFqUsEbzjLDGjHAPaUtx/jz8+78rdWKyssI9mq3F5z+vOHc++lHo7g73aASL\nIXSVQLB0xHzZOoh7LRBsDsRcXj8iPpIHkKZ/BII1IRLCdbcqHg98+tNw993wmc+EezRbj5gYeO45\n5fq/732Kwy0pKdyjEsyH0FUCwdIR82XrIO61QLA5EHN5/YgGJw/As9NFmN4C/kKWZXOYxyOIYpYa\n1iiKga09/+N/wM2b8NZbSp0YwcaTkQH/9V9w773w5JPwwgviXkQac3XPvfceELpHIFgEsbZHNmt5\n3aM5PUUg2EosNu/FXF4/osHJc1iWZaMkSbHA3wA/AN4535OffvppUlNTZz12/Phxjh8/vr6jFGw6\nNrIY2IkTJzhx4sSsx4xG47p8Vrj46U/hX/4Fvv1t2LMn3KPZ2uzZAz/+sRLN85nPwL/9G4g9TuQg\nChEKBOuHmF/hQVx3gWDrIeZ9+Ih4J48sy8bpfyclSfpHoGOh5z/zzDPU1dVtyNgEm5uNLAYWyhH5\n3HPP8eSTT67PB24wDQ3w1FNw/LjSzlsQft79bvjud+ETn4DMTKVGknD0RAaiEKFAsH6I+RUexHUX\nCLYeYt6Hj4h28kiSlATEy7Jsn37od4GmMA5pS7JVQ5uVYmD6GcXAhFZaCW+9Be95j5Ie9L3vCUdC\nJPF7vwdWq5JG5/PB3/2duD+RwHronq2qxwXRwUbKp1jbw0MkXHehBwWC22zEfIiEeb9ViWgnD5AD\nvChJUgxK8eUu4KnwDmnrsVVD7UQxsNVTXw8f/CDs3Qu/+AWo1eEekWAuf/qnoFLBH/0RuN3wz/8M\ncZG+Mmxy1kP3bFU9LogONlI+xdoeHiLhugs9KBDcZiPmQyTM+61KRJvysix3AyL3Ksxs1VA7UQxs\n5UxMwJe/rKQAvfOd8JOfiC5OkcznPw/JyUrns+5upV5PWlq4R7V1WQ/ds1X1uCA62Ej5FGt7eIiE\n6y70oEBwm42YD5Ew77cqMeEegCDyUULtzDNC7TLCPSRBBHPhAuzfD1/7Gvz1X8MvfykcPNHAJz4B\nJ08q6XUHDsC1a+EekWAtEXpcEMkI+RRsBELOBILbiPmwuYnoSB5BZCBC7QRLoaMDvvpVeO45xclz\n8SLcfXe4RyVYDo8+CpcuwQc+oNy7v/1b+MIXIEYcB0Q9Qo8LIhkhn4KNQMiZQHAbMR82N8LJI1gU\nEWonWIiODiVi5/nnYft2+Pd/h9//fYiNDffIBCuhokKJ5vniF5V6PS+8AN/6Ftx1V7hHJlgNQo8L\nIhkhn4KNQMiZQHAbMR82N+J8ViAQrIi331Zaou/aBa+/rhTs7exU6roIB090k5AAf//38OabSjHm\nu++GT34SenrCPTKBQCAQCAQCgUCwEFHj5JEk6fckSZqSJOk94R6LQLBVmZqCX/0KHnxQ2fi/9Rb8\n0z/BzZvwmc+I7lmbjQcegMZG+OY3lfteUaE4e9rbwz0ygUAgEAgEAoFAEIqocPJIklQEfBK4EO6x\nCARbEaNR6ZRVUQHvfS/4/fCzn4FeD5/9rBL5IdicxMUp3be6u+HrX4df/xp27oRHHlFkwO8P9wgF\nAoFAIBAIBAJBgIivySNJkgT8B/A54B/CPJwtjyzLGAyG6SJdGVRUVKDcIsFmQpYVB84rr8BLLylp\nOwkJ8MEPwrPPwn33hXuEgo0mOVmp0fO5z8GLL8K//qsiDxkZ8L73wYc/DA8/rDiFBAsj9KhgJQi5\nEUQTQl4FmxUh24JoIBrM8T8Bzsqy3CQmUPgxGAycPKnH69WhVusBqBQVu6IWrxf6+pRaKz09SrRG\nY6NSb8diUdKv3vEOpZjyhz4EKSnhHrEg3KjV8Lu/q/y0tioFt3/yE/h//09x+Bw5Ao89pvzk54d7\ntJGJ0KOClSDkRhBNCHkVbFaEbAuigYh28kiStBv4AHA43GMRKJjNVrxeHTt2HKS9/SJms1VUZY8g\npqZgfFz5cblgaAgGB5WfW7du/z/w+8jI7ddKEuTlwZ49SrTGgQNKTZbk5PB9H0FkU10NX/uaksrX\n2Ai/+AWcPq3U7ZFlJaXrt78N9ygjD6FHBStByI0gmhDyKtisCNkWRAMR7eRBce4UAYbptK1twHck\nSdouy/K/h3rB008/TWpq6qzHjh8/zvHjx9d9sFsBnS4DtVpPe/tF1GozOp3QamvBiRMnOHHixKzH\njEbjrN//6I+gre22E2d8HDye2b/7fKHfPz4etm1TWpxv3w4HDyr/5uVBSQkUFytRFyrVOn1BwaZG\nkpQW63fdBV/9qhIF9tvfgtMZ7pFFJkKPClaCkBtBNCHkVbBZEbItiAYi2skjy/K/Af8W+F2SpNeB\nZ2RZ/lWIp2cDPPjgg1RVVc36w9TUFM8999x6DnVL4fMN4na7kaRkLl+2c/ny5XAPaVPw4Q9/eNbv\nL7/8Mk1NTTz//PO0tbVhMIDDoThiUlMhO1tx3qhUs38Cj6nVkJam/Gg0ykY8FIHIHoFgrUlIgIDq\nffnllwGC8rzVEXo0+gmHTAu5Eawnay3TQl4F4Wa99LSQbUG46OjoCPw3e6HnSbIsr/9o1ghJkl4D\n/jGUk0eSpG8Bn934UQkEAoFAIBAIBAKBQCAQbAj/Isvy5+b7Y1Q5eRZCkqSjQP2PfvQjdu7cGe7h\nCKKM3t5ezp/vxedLR6Wycd99RRQVFYV1TL/85S/5yle+gpBpQSSw2jki5Fmw2RAyvT5E4nq8VRAy\nLYhmQumO5uZmIdNbkM28jrS1tfHkk08CHJNl+eR8z4vodK1lMgKwc+dO6urqwj0WQZTh8fjIzt4e\nLKKWk0PY5SgQVipkWhAJrHaOCHkWbDaETK8PkbgebxWETAuimVC6o7JyDBAyvdXYIuvIyEJ/3ExO\nHoFgFrIsYzAYMJut6HQZVFRUIM1TmEYUUROsJcuRvWhBzBGBILqIVj0kdI1AIFgOAV3X19eH3W6j\nrU0mIcGCTldJd3dnuIcnWAGrXb/EOiKcPIJNjMFg4ORJPV6vDrVaD0DlPD0OKyoqAKaVSWXwd4Fg\nJSxH9qIFMUcEAWQZfvQjeOEFKCyE//k/YZNEQW8qolUPCV0jEAiWw21dVwC4KCzsp65uHxUVFaIg\ncpSy2vVLrCPCySPYxJjNVrxeXTBUz2y2Mp9+kCSJysrKef8eiple5szMdAAsFltUnZgK1oflyF6k\nEuoUZeYckWUZvV4fdVECgtXzla/Al74EDz4IL74Izz8PL70E998f7pEJZhKtemgl6/FyWcsop2iN\nmBIIooXAHDOZLLhcDjSaFLKyMoNzbbaukygsjA6HtmB+lrJ+LaR7V7qObCZ9Lpw8gk3LeofqzfQy\n2+3nAD+pqXuj6sRUsD5shjDRxU5RojVKQLA63n4bvvxlxdHzv/83jI7Cf/tv8M53QkMDVFeHe4SC\nAJtBD60Xa6m/hC4UCNaXwBwzGsfo7OyirGwX+fkWQJlrQtdtPpZyT9dD924mfS6cPFHGZvIwrjfr\nHao308t88mQP4OLAgeg6MRWsD5ESJroafbHYKUq0RgkIVsdf/iXs2AH/638pv6elwS9/CQ88oDh6\n3noLcnLCO8ZIZaPX70jRQ5HIWuovoQsFgvXFZLJgNI7hcjkwm9Xcc08FXq89ONeErtt8zLynmZkV\nyLLM+fMXZ62d66F7N5M+F06eKGMzeRjXm/lC9dbK0J7pZU5PHwMmxSmCANiYdIOlsJC+WGweLHaK\nIk7Oth43bsCpU0p6Vmzs7cdTU+HXv4Z77oH3vx9eew3U6vCNM1LZ6PU7UvRQJLKY/hKNGwSC8DF3\n/jmddjo7u7BY0hgd7cFgeIM9ewqCc03ous3HzHuq1+tDrp3z6d7V7PM2kz4XTp4oYzN5GOeyUaec\na2Voz/YyK8UolJo84hRBsPGEmj8L6YvF5sFiJ2Pi5Gzr8f3vQ0aG4siZS0EB/OIXSp2eT39aea4I\nMp1NJK3fWz0qeDH9JRo3CATry0I6aO78y8pyU1a2i3vuqcRgSGT/fh+PPCLmWjSykrVnvrVzPt27\nmn3eZtLnwskTZWwmD+NcVjMp51May934zmRqaopXX32Vnp5+iosLOHLkCDExMcG/i5MDwVqxFhuu\nUPMnoC/a2i7gcFyjry89+P5K+PMUOl0aRuMIJpNlliwvJt8L/T3U9xFEN7IMzz0Hv/u780fpHDgA\n3/ue8pyqqtspXQKFmeu3SmXC6VTdEX6+UURqVHCkOJ8WsxNCF6bfOk4ygWA1yLLM6dOnqa/Xo1IV\nkZdnAhQdJMsyV640celSHwkJeYyP29m/30NeXjk+3yh79mTyyCOVEaGvBMsn1NpTUVGxosjy+ezQ\n5ejvjIw0enp66O01Bvd6m2VvJ5w8UUa0ehiXYrgt55Rz7vvJssypU4Y7DNaFNr6LGdqvvvoq3/lO\nEx5PMQkJTQA8/vjj63SFBFuZtXBwvvbam1y7NkFFRVnQaXPffQeRZZlXXqmnv9+Bz7ed4eEOAFwu\nB52dN7h+fYyEhB5crtp1/T6C6KapCW7dCh3FM5Pjx0Gvhy9+EUZG4Otfh4SEO583NQVdXdDRAePj\noNPBvn1KjZ/Nysz12+lU0d7uw+cjLE6WtY4qWsoav5TnrEQXrsQxtNjnLHagFqlOMsHmJ1IcoavB\nYDBQX9+CwZBPUlICbW0XGB29ykc+8kEAzpzp4/JlFw5HIykpNlJSCnnf+1Rotaxq77MZrl20E2rt\ngdn6VJblYM0dnS6D8vJyjh6dvfdd6F4uR393df2czk4n8fF7N91eL+xOHkmSvgm8BygC9smyfG36\n8Szgh0AZ4AE+K8vy2bANNEKI1uiRmRNKpeqgu7sbrTZ11sRcTo6802mnvd2H16vD4Xid+HgTbvce\nDh06QEfHpaDBOleZmEwWMjPTmZy8yfh4M+np22hry8bvv9PQ7unpx+Mppq7uIzQ2/pienv4Nv26C\nzcncxclksixpwzX3deXl5Zw+fZoTJ96ir2+CW7eGMBg86HReXK5aJElCkiR6eycwmytRq7cBQ5jN\nVjSaFMrKSsnMLMBgsNHd3Yder18Toyf0Ii6IZl5+GVJS4NChxZ/7V3+lpHX9yZ8oKVzHj0NZGbjd\n0N6uOIxaWmBsbPbrVCr40IfgG9+A3Nz1+R7hZOb6ff78RXw+wpa6tdZRwUtxesz3nJl6ra+vD6+3\nYNZ1qai4/ffMzHQgkBqdETwBXuh9Q7VdXszJtdiBWiSl3gm2FtHmYAy1GVfmZDLj40M0NZ1Blu30\n9xfQ1fUT9u7VMjqqITl5GxMTVrZvTyMmJgetNpX77ju4qrFE27WD6HNMraTeY0CfVlUd4OzZX/Gt\nb/0rTqearKw68vJG2Lnzzj3jfHV6YHn6+8KFV3G5tvGOd2y+vV7YnTzAC8A3gIY5j38duCDL8jFJ\nkvYD/yVJUrEsy5MbPsIoZD2VwkpO7GZuYs+e/Snd3T3k5d09a2IuNin1ej3PPnsOqzWRwcELJCVl\nU1l5N9euedFqk/F4bgCQnx8TNFjnKhOXK576+jZaWrRALF1dBrKzszl8+E5Drbi4gISEJhobf0xC\nQg/FxWsX6SDY2iinWB0MDMj4fJepqUlCpcoOueGSZRm9Xk9T01UGB29hNieQmroXtboDjeYsP/vZ\nRQyGCuLj8/F4POTlucnPr0SjSUGWZRobmzGZYklOnmBgoIukJBM63Q4A8vMtGI0mbDY7XV2l+Hxr\nY/SEWsS7uztX9Z6C8PLyy/D44xAfv7Tnf/7zcOQI/N//q9TnGRpSInrKyqC2Fj74QdizB3buhORk\n5e8nTyqRPydPwiuvwN13r+tXCivhTr1e66jghZweAXvg9dfPYDSmBA9jTCYLoKexsZnWVhcpKTvo\n7m5nfPwqJlM/ubkJOJ1qfvKTF2htdZGauhO7/Q0gntTUXUH7Yb7Pvt12eYrOzhuUlZUG2y4vlMoa\ncI4vdKAW7vsn2LpEi4MxMO/ffruRl15qwevNIifHzx/90btob7+BwXANo9GJw9FLUtJ+hoa24fON\nY7ffxGSawOnMZ3x8BJ9PRUZGFjpdxqrHFC3XbibLdUyF2ym02HjLy8upquqmp6eV4uICysvLgZuo\n1XoaGl7i6tUzWK2xjI/r2L3bjc02SE9PbHDPGIjyUdaT7DvWk6Wk0M7U39nZMQwP3+S3v/1XNBoj\nRUWHN+AqbQxhd/LIstwAIN0pgR9CieJBluW3JUkaAB4EXtvYEa4PazkJQ73XenirA5+jGGQ2UlL2\nkJAw/4mdsokdx+droKYmPbiJ9fn6UKkq71CyM42qmRtbgNravTQ1NdPSIhMbm8b16/FotT46Ok4C\n8bzrXR/G7Tag0VwjO1s5wZNl+Q5D1mSyYLPZyMjYB4zi89nx+XqDhlpmZgV6vaIkioqK+NSnZHp7\njRQV7aOoqChs9RMES2exWkrhYu5ptdGoxm7fzsDAGLLczxNP5AdDkcvKyjh16hQ9Pf3ExUl0dvq4\nfn0Ci2Wcyck+du3yMDLSw+joCENDeYyNeUhOHiU21o4kpZCfn0RWViYGg4GWFiuDgw4cDiMFBV6O\nHn3XrA3d66+fAUo5dOiD8y6Uy5X1UBvIy5cvr+HVFGwkDgdcvgyf+tTyXrdjB/znfyr/n5yc3ZFr\nLunpisPnYx+Dd79bcRBdvgxRkpG8bDYq9Xo+WyOUE2O9OpLcdrZk09l5A3iB/PwkXK54rlyx0NHh\nwGiUqKubZGAgHa02Hp9vGK02ifb2bPR65e/HjhXS03MdSOLAgYO0t1/gypVGrl27yrlznZw5U0xN\nTQmZmY8EHdwdHQ6SkvIYHy9CpyvE61Wu+b33HgCYtmfi6evLp7W1gerqZurq9s2q6zfXFlnKoZRA\nsF6Ew8E4cx7Iskx6eipabWowMk6SpKDt1dXVi9Vqwu+fYmhoira2TlpaICUlF0kaYnLymyQk7GR8\nfBtxcaOoVAn4/Vb8/hy0Wh8TE9kUFcVy770VdHRY2L8/jY985KE1mWPR6JxdrmNqNV1VN2K8N2/e\npL3dx8BANm1tyviOHDnC0aNMO27SkOXtjI25MRg6KS+3k5HxGBpNPg0NF7h58zdotTvw+dLp6rp9\nuO9yxfP22+bg4emxY90cOXKEmzdv3vF9A7JkMllIS8tmaKibsbFmSktzKS4uXtH3XihyNFz7xbA7\neUIhSVIGECfL8siMh3uBwjANac1ZSydMqPeaGfrW0PASr732Jt3d3SsSutnOHRc2WxJGo49jxzJx\nOqWQCsdstjIwMM7oaBIDA/mAiWPHlHxap7OG9nYf7e0XGB29waVLTvr6+oLGkyRJGAwGnn32HC0t\nMjBGa+sbZGaOA7F4vQPExW2juDib9vZL+P2dnDr1I3Jyxtm+vZCEhAJGRgwzjNiZhqyetLQbtLfX\n4/OZ2L1bzeOPl2O39wHQ3d1NR4cfny8LtfomR49WcvTo0ZBhgYsVChOEh/WupbRSRT5zntrtLkZG\nWjCbd5OU5Kera4yLFy/zkY98kIqKCk6fPh38DibTWeLizGzb9lESE520tHTS2dnOxMQgcXETJCXl\n4HZfR612ceBAJe96VwV33aVsOi5cuITPl45OJzE+HkNKio/i4uJZcvvQQ4fxeg10dFwKRrtduWJZ\nlaxHa1qpIDQXLig1dA6v4oBrIQfPTHQ6JZLnnnvgAx+At99W0rg2Gxs1R5Zja8yNMDx2rJvHHnts\nSevaQk6PgD1y//33YLXagCaqqh4iOVmL1xtDTU0lRuMpmptfw2SKQaOpxOkcp7+/H5NJJisrn/b2\nt3j11Z+Rne0mI0Oivf0idnsbjY2tXL7sx2LZTnz8CA5HHzU16fT09NDS4sRolHC5momNNWM2x5Kf\nn4ROVxm8/mazlf5+0GoLOHeuDZvNwfDw7ZRyp9POmTPdtLb6gSRaW8/x1FOhbIvIINyn+ILbrNe9\nCIeDcaZN7nL1EBs7wb5995KXZw7uLd544zVOnzYzNKTCYukmNVWHJHkYGzPhdJbi8bQTF2fn0qUB\ntm3LwGabwG4vAMxoNONwVr1oAAAgAElEQVQkJAyQnp5DXJyN+Pg4YmIkHn30HRw7VrVmKVXR6Jxd\nrmNquV1VZ9p3odJhlyuzmZnp2O1vcPJkK+npk2RmPhT8W6Co9quvtmM2q/F6Pdhsb1JcXExVVRUA\nzc0/pqWlA58vG41mlH37chkbM/Gzn/2AkZFR1Gotqak2fud3HkaSJEpLhykpKaSrq5eGhnG83lIc\njiSmq7/Q0eG/Y/0L6H/Qc/26B7//UYqLNWi1bpqbr2G1ji77+y8UObpS+V2tDolIJ89qePrpp0lN\nTZ312PHjxzl+/HiYRhSatQwZDPVeAaXQ0PASnZ03sFpTefXVphUJXUBwA6dttbUVtLd3cvr099i1\nq3jWBA6g02Xg8zUwMJBPXl4pKlVSMJ9WlmVKShSnUVfXAC0taUiSc5bxZDZbsdmSghE3Nlsru3dv\np6ZmlO7uIfLz3Xi9Y0hSMjrdffT3d+B2J+F0StMGXv90hIISGhjw5GZmpnPoUC43bjThdqcCiQCM\njCTh9eq4ePEyKlXOHelbSykUtpxrOhNZlnnmmWf4+c//C5UqHo1GA4DRaFz2ewnWv5bSbUU+Rmdn\nF2Vlu5Y0p2bLkExmpoOrV1vo6JjC4fBhNk/R3f1Djh9/gO7uPjyeYoqKjtDR0c/4uJ6enheJjfXg\n9UpMThYiy8l4vU0kJLjRaPIoKLDx8Y8/zuOPPz6r+Jzf34DbnU9NTS2pqYPU15+kt3cClaqQ3NwR\nduxQkZ09BiiOVmWc0rrIuiA6OXsWsrI2LqomNRV++lO46y74h3+AP//zjfnczcbMaJaamkocDnlB\nW0M5nJEZHd3GwMAY0EJJScmS5vpCTquAPXLu3K+x2QbJyKilo8NPZaUDu72X7u4YcnNtTE3doq1N\nwmbTARcoLU3BZvNitZ4iNtZLTs4hMjIyOHw4j5QU6OvTcONGGlNTCcTGljMx0YNef5lf/3qUrCwT\nKlU2x44doqXlLOXlidx9dz5utzMYrVhRUREcW0tLDzBGTc3jdHW1093dQl7eIQYG9JhMdjIyHgXS\nsNma1yXFY60cAtFYc2Szsl73IhyHKDNtcr9/isHBYdzuBFpaBunqGkGtLuRXv2pkZCSHiQkfHk8O\nkjTB2FgvExMpTE0V4fF0kZxsxestxGC4iNV6N5JUikbjZvfuMfLzd+H3d5OYmIFWW43P18eOHWvr\niInGA6jlOqYWcgottpex288B/umSAKuR2XggCRgLRoEF6qm++WY7V6/2YLOVkpTUh883ziuv1Acj\nJB98sAqHw0Zu7m4kqYoHH9RhNBppa7tJTMxuRkdtGI1tNDS8wD337KW4OIWzZwe4erWba9e6iY2F\nbdvicLs19PT04/VWz7vXNput093dtjEw0IXX20RraxX9/bPrtC6neZBOl8b162OzIkdXKm+r1SER\n6eSRZdkqSdKEJEnZM6J5ioG+xV77zDPPUFdXt67jWwvWMmQw1HsFlEAgFSMzs4YzZ66uSOgCghs4\nbTMYzhAbO0ZiYhHKRJ5NIFWqqCgOm01PWloSubngdNpnpTuZzVZiYhxkZlYz03gqL5+ire06XV1n\nGRw8SXJyOnv2pFNb+yHuuiuGkREzHR1tnD//FmZzAX5/PG53HmlpmQwPj1Ff/5+oVBnALrxePZWV\nXTQ03MJqTUSWXyM+fhiHYzsFBe9ncPA8b711haSkR9mx4yAm0wg+3533RafLQKXq4MyZnzAy0khc\n3Ha2bduOx1PIzp2rc9QZDAbi4ip573v/DrXazNGjygnhc889x5NPPrn8N9zirHctpduKHK5fn0Kn\nq8TjsdHY2LzgAjC7q5uZqqodOBwuBgb6kaRtjI5quHo1jrQ0PdXVifj9LZw504fN9jagwe/3MTV1\nnomJQiRpGzExPuLiJklISKGs7B7S062MjjpmfWZFRQVHj1Zjs53D7e4nJmaMpiawWKrIy0vCar05\nI9fZjCRJZGVlzlsUL5ry2AVrR0ODUnB5IwMC9u6FP/5j+OpX4ROfgOzsjfvstWYlG/i12PQbDAZa\nW10YjRJG4ylqalTodA/P+3zlcOYyAwNj5OVpUKkKlzTXFxprwB7Izh5jdFRPaWlFMDV0dLQXxYZI\nBOKYmJDRajPYvXsfzc3tjI6Cx5OC3V5OfLyNysqDjI2N0ttr5KGHSnA4RpHlW4yNmfB6bajVNuLj\nt01vDmz4fHqczn6qqjQ8/vgxenp6qK/X43KloNE4guH8jz8uMzlZj9s9SGdnEz7fMGp1YdAmiI8/\nh9V6GUgiL09adW2Q9UyxF7o6PMxXXNhoHEOng/5+N1euNM1qmhAqjSRS0ekySE+/gdF4DputifHx\nCa5f344st5KVlYLHc4XBwUnGxqxMTOQDV7FaE4iNzSIuTiI11YHd7iU7O53MzEKs1i7i4txMTcnI\nMtTWbuPd766lry+T/v4Cduy4l/b2i2i1RPR12QiW65hayCm0UNHjHTsOcvJkD+CaToddmf4wm634\nfDqKiioxm5UUP5MpGa9Xx8CAHocjlu3b9zI2ZmFiQsvoaAqnT3eya9dpHnvsMerqahke7mBgwIbX\n28Mbb1xjeNjE0JAeo7Ebny+fhIR0Rkb6mZrScP36FOfPj2GxuBgd7Sc9fRy/v5bk5AyKi0vp6DDP\nu9fW6TLIzR3Bar1CcrKB3NwEUlJ2zFvfbSH9HLi2RuMICQk9mM0xwcjRlbJafR6RTp5pXgD+EPiy\nJEl3A7nAm+Ed0vws1yBby5DBUO91OxQNvF49RqMBtbobvd6GRjOB01kZLF612HcICK7DIVNToyI+\n3k5e3gEOHXo3HR2XsFhss8ZjMBg4dcqA33+AgoJrVFd7SE9PvaNdrLJoTGI03jaeMjPT+d73vscP\nf9jK0JCW0dEhSkp0pKfn0tPTQ0pKGm63E5crm4yMR4iNPcPIiI+YGAlJykCjsZGT4yQj49D0+C7y\nyis/oalpGwkJhfT2WlGrJ/B4hoiJOYnH04/Hk0Bamon29ovk5Uns2FGDRiPjcsUHT/zKy8vZsaOb\nxsa3MBrTGB3VkpvbR2bmKO3t0qocdcIoW1uOHDkCMF2Tpzb4+1oRmA/9/W78/qtcvTpKSooVuz1n\nlvd/bopTaWkpyclnMRrPkZqqoa2tGperhu7uRoaGWpGkxygrK8HpnOTmTT0ej57xcQcul4vJyTri\n4ixMTZUhy3uJi5OQJA8lJYmUlMg4HAO4XHG0ttqoqzME574kSZSUlFBQcAubLQmXS49KlUVeXikD\nA10kJ3eSkXFkluwFalXM1k2GqMtjF6wNXi9cugRf+9rGf/YXvwjf+Y4SzfP1r2/8568VK9nAr8Wm\n32y2kpq6k2PHCmlpOUt1dcwsWyNUt76jR7sYHX0dt1tLVpaOjIw9wVPYUKH8AKdPn6a+Xo9KVURu\n7uxOKLIsc+qUAa+3EJ/PhVo9GkwNBYnU1F3k52dQX29Glsvx+Qbo7r5IdnYcHs8Q4+M7KC/fw9DQ\nZX7zm58QF6fCai2ir68B8FNefgyn8wXs9lY0mhzi4lRIku2OtbyxsZlTp67R01OKx5PI2Fg7166d\nx2g0cv/99xMTU0Z2dik+Xy979iTjciUGbYJHHnk46ECvrd276siChVLsV2sHRGPNkc1AqHvqcjno\n7Ozi+vUp/P6ruFxaSkuLUKv1VFV1h0wjiVQqKir42Mdkmpqu0ta2jevXJ4mPH6Srq4f2dgmbLYOx\nMScTE1lAKpDG1NQoanUOkuRnauoKGo2D7OxiCgudqNVZmEwu4uIGiIsbJyurnPvuO4hOl8HIiJDf\nhQilt+c6DOdzCoXeewbsuwtMTfUzNubg7NlfTTu0q5Y0hpl7XkXub3D9+hgJCT1s357AxMRBqqoO\n0NHRgc3WRExMHomJ/fj9aaSkVDA+nkB9vRI5WlFRQXd3N93dLdy6NcnJk71MTKTjcuUiy3pycvaw\nffs+3O6rvP22i/7+Jjo7p/B6i/B46nA6bWRldZCdXU1Skobk5HZUqkFKSgqnizzPvh47d3bT0zNB\nRsZDxMSYsNuvcfasEZ+vD6ezBlmWl6SfZ9b5cblqZ5VyWCmr1edhd/JIkvRvwDuBHOCUJElOWZYr\ngT8HnpUkSQ94gY9Gcmet5RpkaxkyuNB7zRS69vZsrl1TQtPa2rzA6Vkt6eb7DrOVwsNBoy1gqAWE\n7s4OGu+ko0OicLqSUqBdbFvbBRobmykoKODQoSJ277YjSRK1tXsBOHXqOv39hfj9Y3g8KdhsiVy4\n0IfR2Mm2bfvo7r4IJHLXXe8iIyOehIRE/P4ELJY2tm2DD3zg/RgMk3R0XMJub6O/34fV6sXrbWR0\nNJaSkr04nVfo728mL28fkqRFoxlhYmKY4uICHn30UX7zm9/wyivXcLvjSU7288QTe9BoUtBoiigs\n3I3dPsHw8BUqK8e55x6ZrKz5HXUraScoWDkxMTFrWoNnLhUVFciyzMsvv8LNm27AydjYKFptNVpt\nAS0tPWRnNzM1NcWzz75BT4+TuDgHFRVqGhtj8Xr3YjLVs21bPCkpRZhMmfj9HmJjezCbrbz9dhce\nTzx+/wO4XAZkeQxJsuP1jqJSZZOcvIPERBcpKUN87GOPk5ubS0ODk+rqw3R1NQfTFAPy2NR0FZst\nierqQ1y54sHhuEZKShIVFQ5qavbhckmzZC+UPonGPHbB2nD9Ong8cHB1nWtXREYGfO5z8K1vwZ/9\nmVKcOZKZT9evZAO/Fpv+wNridEpUVWmoq6uctfbMXfOPHoWSkhLy8xWnsCSN0dPTg14/MR3K/wZz\nO1sB1Ne3YDDkk5e3Dav1Cj09E8FOKNnZY3i9hcE01YKCfgoLlQLzsiwzPKzn7NnfYLHEUltbhSw7\nyclp5/3vfy+NjY28+OJFvF4HWu1NnM4RVKr7sdvV9PVdIysriw9/+P8jKyubggIl0HtoaJDt28ep\nrd1HZWUlBoNhurizk/7+JGJinPT0dOD3m7DZdvLDH7bicDiZmDgYTNOuqprC7XYGu78cOXIkWCvQ\nbLZiMBjmPcibKQPz1bdYKMV+tXbAcnR1KHkVrIxQ91SjSaGsbBc6XSVXr44SExMb/HtPT+uCaSSh\nWGo9wPWoBRSwC2RZ5vXXf0tTUw/j4yXIchEq1RBJSRomJ/1AP8qWbRhw4vPVEBNzneTkKVSqXHS6\nPZSW6igqUuFwuElOziQuDrZvzwWErbEU5urt5TgMF7LvGhubGR3VotEU4vPp2bGjZt7rP7e5zrFj\nNcH6bYrcl6LTFWI2x7Btm4zJZKah4SWs1lvk5tag090iPd1Eb6+V8fE4/H4NAwMwMmKmsrISrTaV\nvLxD+P0Oxscl4uN9eDwWJicnsdmamZx0ERMzhNW6B4ejkvHxTiRJR0LCdtLTu9FohhgZ0fLSSxY6\nO02UlZXi9fqAV+9oxa581n40mgIaGn5NTMxFJKmEbdtqaW/3UVJiWJJ+Xo9UwNXOh7A7eWRZ/oN5\nHh8B1m+ntsZsdDTGUpX4TKGTJAmrlWAb856e3lltzEN9h4qK0EZAwFDR6SopLy9Hr1faoLa0OBke\njuPmzctYrRZqavLR6aqQZTlYiGtq6hZ2ex79/RJq9QRHj9ZSVlbG97//fV577QyDg4kkJrqxWPqZ\nnHQyPFyJ09mJzRaPx7Ob3l4dVutNTKZrqFQJJCSYsNuzSEgoJCdHTUlJCaWlEk1NVxkfv0V6+m52\n786mqekUiYlKG1aHw0pSUi51dfsZGenE7TahVhfR1taC0Wjk2jU3V69q8XptTE76GBx8g717NTid\ndgyGNszmZFJTfej1KTzxRMaCDr3FHIBiUVs+G1lccj5D+OrVIYaGsigoKCEhIZnh4WY6OkwohcJV\nDA6e5OLFcZzOUqzWt7h8+bdoNE9QVlZBc/NrmM0X8Xjewufzk5xcics1gM1mwO/PweXaRlJSHA6H\nGr+/kbi4nUhSCrI8wtTUBZKSYnnwwSre+c5j9Pb2Eh/fz5Ur9Vit40jSbrze2xuw1lYbRqOP9vaf\nExt7i8LCQjQaE8eO1czpPDC/7EVjHrtgbbim1C6kpiY8n/+FL8Df/z384AfK/yOZ+XT9UjfwM3WN\n02lHpfItadM/nz4MOKQDnaECqVMBXTm7QcMLvP76GVJTU0hN3cmBA0q6RHf3Na5dm2RszEhv79sU\nFd3FRz6itKxV6jmASlVIXl7SdHSggYyMh4J2BPShVpuDaarp6anIskxXVxdW6yhDQ9dwu204HGO8\n8MKbJCVpSU4unt4s7OGuuzIZGGhkYsKLz/ceHA4/TU1G0tLSADcNDUqnroyMNDo6/ExMHGRkxBzs\nIBb4jtXVFdy4cYKRkQu4XNeBh0lJycVkGqe7u4eysrLgtXa746c3TdV0dJgpKbkJsKSDvNkF9kPX\nt1goxX61dsBydHUoeRWsjPnmeH6+Ba93lJISFeAP/r24uGDBNJJQLLWw62LFdReymUI5kjIz0+nq\n6uLEiZ/S2GhgYECL261FliVUKi2y3M/UVAuyHAtMAlqUeixWEhM7keXdlJSUY7dLFBaWkZaWQn6+\nhri4UWy2WNLTE6mr2wcIW2MpzN2r9fS04vHsJiUlg5aWVrKzx5ZlE88uQl8YfN9Aqlygpk5jY/O0\nE307sgxGI9jtydPNdfQUFyt6u7+/H5XKBhSQn59EXZ2iy3784xdITIT9+5/g7bdfwe2eYnx8iMHB\nt3G5qnA4VLS33yArK5NLly7S2mrB7c4kLu5thodl/P4CkpP3EBNjJDb2DbzedK5fHyYtLY6pKT8+\nXwtTU0Z8vnjc7gnc7njcbhm9PpbU1DEslgHOneunuPggeXkm4LY+ttsbOHnyMiMjw6jValJT47jv\nvrtwOvsXiHBff1Y7H8Lu5NksbHQ0xkpCuWeOMVQb81DfYb7PKS8vp7v7VVpaWjl79ixOZxYGg4P2\n9jEyMyv4/9l70+A4zvzM85dZVVn3XYX7PgogCYAkJIoSRUmt1kWp3a2xx1633ePuHjs2eiN2HTsR\n+2li/cUxX2YjNmJsj3ccnoid3eger7vdPrtbrYM6eIuiRBDEQQCFG6gCClWo+8zKqsz9UAQIUCBF\nipRIdfP5QhYqK/PNN9/8v+/7P54HSmQyk/T3d9Hb28vMzAzxeIZoVEJVM9hsu6999uxZ/vzPr5JM\ndlMoTNLYmMTvTyHLbdhsVjyeITKZEYLBWURxA03z09joolyuZ3LyA3K5/dTXD5HJmBgdHePw4YNE\noxZyuSFSqUl0uiwNDRVyuTBra+9Qraokkxk+/jgITOP3G3C79xEOtzAy8jaVioN83kE0msFm06Gq\nHhYXF2lo6EVRPkKS7LS2fptwOMyVK1e3WeH3wmc5AB9NanePL5Nccq9rjYyMEgxCOu0gFrvCsWMC\nhw/7mJvTGBx8hUwmTibzHsmkwtraIsViFqPRw/r6h1y7dpVqNYvFoieX0yiXNymV1oEUmnYYTTtA\nqTSLLJ9DEKIIQgJRLCCKVsALLGE2Ozhy5GkEQWB6uowkBchkTuHxHNwuo9zagDkcQ7z6qpd33vkJ\nZrONb33rf2Vm5iPs9lrW06Ox9wi3w9gYdHfDdT74Lx319fCbvwl//dc1jp6HmZ7hVrZ+5wbe6605\nXnby020txnfaGkkq099fU6S81aLyZuVLp3Pfp8giz507x9tvj+JwdBOJmHaVct8QaPgp8/MLwH4k\naR3IbZchJxIxzp1bJpnsQtNkisXznDvXTHOzQDYrkUymMRgSOBwq5fIVGhtNiGKMqakLZDLTNDdb\nsFo3kKR1DAaRqSk/a2sxzp9/A1mWUFUHhUKKWGyTTKaHYtHF5ctJ/P63aW39H2hpcTE29hGVSpGu\nLpVodAzQeOqpb2Ay6ejujvH884eIxeI7COM/3OZI23KWLSwsUy6vUKnYMZuPUKnESCYnEQSVcrlu\nV1/vPtfFbVt6J4G8O+G3uF2J/ZdNpvtpEtZH+Dz4LHU5r/dpYCurq7aG7uz87ADLTmw9L6/XyUcf\nzVNfnyEUqmXq30wm+1lCIVvO3p3OHJ+vts59661ZwuECGxsxLBYXhcI84fAqkUgdhUKKGkVqC7BO\nsagCKUSxQs250wQ0AmUgiihKwBqpFJhMVWTZgtFYZnj4EI89JuxyOj3CneHmvVpHRytnz45x/nyZ\nXE4jl1vD7X7njpURt7ClivXmm+No2jqtrX3bJbc//OEHvP/+GBsbVerrcxw8KFEsxtncPLwtrnPl\nylWiUQulUgvx+DKS9B4HDx6ht7eXubk5FKWJXE7jrbfeoVy+TKk0jMnUgCDsx2p1YDIVuHp1grNn\nFwgGi8hyltbWNR5/XOCTT6xks12YTCqKskml0o7V2kQkMkcq5aBYTCNJVSCCx3OAtrZDLC1dZHLS\nTDabYn29jMcj0dT0Ei5XjRB6pz0eGBjl2rUwTudxNK3M5uZpxsfP0tdnu2WG+1cBj5w89wlfdjbG\n58kc2tnGGzLmuyNJN0f9bnWdnTLV+fwZenqO8vjjzzI29reEQkEGBrpxuTzY7U4EQWB0dIy1NQ8e\nz9OsrLxJLDbO9HTH9rVnZubI5Tqx2b5GKiWTyfyCQ4c6KRQEVFWHzWbE5ZJYXZ0jkbBRLKa5cOEs\nsrxKPt8L6EgkxslkqhQKZn7xi18QCrXT2HiAQqEKzCBJHciyRDbroqGhnmQyQVOTgsXSRTo9STic\nI5stEgzqUdUZSiU7oAJmLJYQ8XgnFssQmlbGZFrE5XKTSMwBjtv2+6NyrPuPLzJz7uaoeG3Bv/ta\nkcg62awDUexAVUOYTFkaGwfZ3ExeJ+5cQRA22dhYYHOzFVBRFD2ynEVV5wEfpdLx6xPwOqAhCOuo\naph0uhdNiyEIc4jifiSpA1UtUK22IopFXK5ORNFJpaIRjycpl/0888yTQIlyeeNTZZQmU61cY//+\nZkD51PeP8Ai3w9gYDA092Db84Afwwgs1la9nn32wbbkdbmXrdy4Qg8HgLR3UN9s1ux2OHbt1ndzN\nypevvtpGNivsmqd/9KNpIpH9eDxpYIEnnqjbtpW7BRr2c/z4N5mevkhb242SqvfeW8Ns1rDZhikW\n6/F6R+nujtLe3sKZM6ssLlYoFufo7zfQ3By4nik7jsFwCTBz5YrAwkKM7u79yPIM+byeYtHE0pKA\n3d5NuZxnfT2DovSjqj3Icp6NjXmCwTyx2D8xMpIlkbChaS5isX+mWtVwOh9jeTnE4KBER0cn0egm\np09/wNWrcWZmrlBXZyCdrrK62rbtLDMaI0xP+9DrG5EkB5nMBQyGEK+++vu0ttZjt4s7+jq4gyQ/\ntu3MSqdzTE9rSNIm2ay0p6Nu5xhwuwtA9bbj4UFir/G6uDj/YBv1FcWtnunW37bWFZ91/O2w9bzG\nxq6QSi1x7do+vN4FcjnnnsftRa5by9r7OT/+8U9RFD+y7GJ+fgG3u5FEYoR4fJlS6WnyeYW1NT2y\nXKJatVCpZFDVBuAAoAFFIA0kAQeiKAMlVHUNcAHrGAxJOjtbsNvTPPGEgf37D9DX10tdnW+HY/Nz\ndPY94MvMAv+icPN+s6enh2Ty71lcTGA0drC5mdrmt7n74KeBdDpNLCZjt5uJRmslt0tLm6TTJhTl\nAOm0hUwmzZEjEsvLMSSpxqkKNUe4w9HK2toUoqhy9myYROKnRCLrJJMNDA8HiEaDOBxtXLiwyvq6\nCbM5S7WqIQhzhEJepqc1kkmw2/cTCi3S2irhcFSJxSYoFIrodHEKBZlKpYSilIFlVHWQarWDSmWU\ntbVF9Poq6fQSuVwAnc5OPr+AydSGyeRiYmKVQCCE11ujCBEEgeHhQ0xM5BgfX0PTChw44KSnJ0Jd\nXdOnMmC/Snjk5LlP+LIn7c/jONhqY29vLfUumbzKlmzylqETBGFbTjwanaWvz4DRqHzqOjtlqs+c\nWSebnSGTCTAwYKBYXMPlaqSpybStqLW+voamiUAKq1XPwYN+jh69EaHs6+uhWn2f1dUiECGd7mRl\n5TGs1jBdXWMMDx+ivv4bvPHGKqGQj9XVTVKpD5FlI6o6jNEYp1L5BE0LMDHRQjJ5imIxjF4fx2YL\nEwj46Oz8BooySTr9IblcBFlWyGadPPFEPzabgTfe+ITl5SLlsgGz2UEup+L1HgYWiceXqVTaSKWi\nCEIau32TWOzH6PU51tYOMDMzQyBwg+/g5rr8V17p3Y7gPIpY3Du+KMeZpmm88847u/iYhoY8SFLd\n9rW2IvEmUwSbzUuppCLLflZX20gkVsjnQxSLdsbHr5FOy0AbOl07xWKBWr26j1oULIemZYE14Ak0\nrR5B+DkWyzqVSjflsh+LxYOqrqLT6VFVyOcb2NjYpFpdZXnZRmdn23ZJR3Ozmf7+wJ6R/70iiY/G\n4SPcCcbH4X/as6j6y8Pzz0NHB/zN3zzcTp47CfbczkF9t3Zt61xbypc7I49Qm6ehn/b2Z1hefo9M\n5ho+32vbv79ZoGFm5iNMpjjDw4e2/764uIjfv0g4fBVRTNHTU8/zzz/LyMgoFy9myWZ72NhYJxg8\nz/79Rv7Nv/m3BIMiFssElcoAmgbXrmnXgzkhxsfPkUo5KRZjWK1NZDKLiKIZk0mhUFhGlpdQ1SpL\nSxYikU+Q5Tp6er5PJDJHMjmHxfIURmMDEMfnU5makjl//kNGRq5htbbjds/g95uR5UNoGoTDRYaH\nPcTjUebmVikU9MACdnuExkY7JpOM0RjfRTC6OyAmMT1dRpZbgTFaW1f3FJLYKoeJxeL09Rmw2TR8\nvru3uV/mJnSv8frxxx9/Ide6V3zVN+f3UkK1hZ6eHgKBBa5eHcXjqeexx/Yjiilstt2Bxp0B252l\nkQsLC4yOniUajWA0GkinEwQCbSQSflKpHIuLZhSlAbN5gVTKRCYzi6q2AjlqCnjz1Jw8cWAOKCAI\n3eh069jtMbJZA6rqRhCyaJofq7UZp7OVw4e7+MEPXnkoiKWDwSA/+tF5kkkLbvc1/uAPtNtm4j9o\n3Grc37zfHB4+xCS89R8AACAASURBVMWLbzM7m/pMZcRbETefOnWWcrmOoaF9nDmzjM8XQJaTrK/P\nkUjMkExqqKqVfN6IwVBl376jNDZmgNI2p2o0Osv4+BJQoK7uECMjQRYXZ4nFklSrRUKhPE1NCQYH\nh7DZ5hkd3SSbNeFwJOjubiIWC1CpLF53XGpIkoFKxYTbbUSnCyKKeSSpnng8jaZZgWVAQaeLoqou\nBKGFanWJjY1lCgWJarVIterCZHJjMsnEYuNYLGXMZtOuPtlJLA52XK5eZmYUVlf9RKOzu+bKrxIe\nOXlug3uZVL7oCeleMoe21K9kuW1bNvnmGv2tBajNpnHihPdT19kpU+31lnj55W727RN4/fV/DdQW\nNdlsenshlErZaW4OI4oTNDdLvPba13YZ1u9///tcunSJ9977CE1zkMkcwmLZx9qaAas1hCh24/VK\ndHamWVkJIssWTKZ6qtUSsjxPpbKJJKXI5cxIkhFRbEDTFPT6bkqlNLncCpubl0inJ1GUIPF4K3q9\nlVTqCvm8gs/XwcbGIrKsoao6kkk9mmbEYulDr8/gdAZwOuuJRCYxGJLU1x9mZWUTna6D06f1xOMf\n8OyzS3soivgwGmc5cSJw24jsI9wd7nb83wkZJmyRyQUZHdWTycQAM8lkiN/7vSbS6Rqx5+LiIpub\ndpzOBmR5Brs9jKI8TqFQYWPDgKKUEQQv0WgfsrwC5KhU8tQydvqBDDBLLQKmAR5gDb0+htHYhc1W\nRBQFSqU8LpeFdBrMZjPlsg6zWcBi6cdkKpBOdzA9vbOko29PO/MwRIwf4auJjQ2IRh98Jo8gwLe/\nXVPa+su/BIPhwbbnVriTYM/tHDl3a9d8Pg+SNMP8/AYuV5SeniqvvPLq9u/a21uQpLNEoxkMhkm6\nu/3bUUlg2yZ6PC56e3VcuvQuer0NVe3Zjly+9NJLaJrGRx99gsPh59VXT9Db28vIyCjlcoxkUiST\nyVAsDnDlygJO518zNNS6zTkSChWuy8laUJQ1RNGE0ymSTufQ6S7idoPB4CefL2AwXMVotGGzPY4o\n2lGUAjDH5uYvkeUMVmsbXV3txGJp0ukxJiYshMNThMN6kskDeL3NQJZ8fplweJFr1zQUZZx0+j0u\nXEiTTg8hCCJ6fRRJqqNaPUQ0GuTFF4/u6uudz/HChYuUy7Bv35NMT9eEJDRNIxyO4fO5CIWi11U4\nd3L2KJw44f1cm4IvsxT5YckouhN8mf3yReBOSqjg9vc0NzfHuXNrLC21EYslOX/+NIGARi53dFem\nwc6AbSikMjd3BVEssbKygcFQU6g1GiXicSf5/CSVSpZi0YAgtCBJT6Cq5xGESQRhDSgAB4E8sERt\n3bIKGNHpDPj9FZzOFg4csBEK+QgGixQKDej1Ufz+IerrF3n11d94aIJKV65cZXxcw+M5RCh0/jPp\nFr5M7LVvvJNxv2XT29urpFLjuFxDNDdb8Pk8e17nVsTNoZCD+flrJBJOTKY0m5sWDIYY8XiOZLIe\nWV7Aag1TX6/S29vDzIxCuXxjH7m1/qyrG2ViQmJjIwQUaGoKkExWOXjQxdraBIXCJqHQcWw2K3/0\nR4Zt5UKXy8GbbwZxu0UEYQ2dzkljY239vLbWgsHQT6kkoqrz1/d4BuBrqOoyOl0EqzWJwdCGohip\nVCYpFGxoWhvV6seYTGvU1bXS3m7mued+n0wmvksZWhAE+vr6tsfClt3fynzbKWhyq738w+iI/pV0\n8tyvjr6XSeWLnpDuZXK+m0jiDdWo2e1Jqbe39yaZ6mFeeuklRFHcdZ2tl2RLVWNw0AbsVgDYIvWa\nn5/n+ee/jijOsLqa5dq1eZaXZarVDImEiTfeOEu12sh3vnOCanWJSORjNjftVKsbNDaqmEwWikUR\nRUmRy2VR1Tk0rYdSSYfRWIfTCQMDESoVA7nck+RyKVTVxeamlXfe2UQUw8zN+YE+yuVJjMZrdHUd\noVC4iF4/Q2trD62tLcAYstyAwdCAorjw+/fj8ThZWjpLPj9Oc/NxJGkGVZ1nbs7G4GCATEa7JYn1\ngzYAXwS+DEN38/jfIoa71TV3k2Ge4maFmK3J9IMPzpDLOdDpEqyt2fF6mwiHU0xPzyAIXUxMhJmf\n/yckqYnW1i7Gxj6mVDISjWY5c+ZvMJmiGI1VCgWRfF6kUrEhCAuI4joGQy+KMkRt0bSBIAQxm59B\n0+rRtCySVKFSyaPTrdHQ0ESpJKEoKnZ7H0ePNjM1NYIgWDGZ3BiNdoaGvkY2m/jMko5HeITPiy3S\n5Qft5IGak+c//kd491149dUH3ZrPj9s5cu52Xt8pNVtfP4gomncFbTo6OujuvgRMk8+rKMpR3n57\ndvv7GzbxAvF4hLW1RjQtz8zMT+jrc9LY2MThwwd55ZVXOHHixK5rHz58kIGBadbX30cUe+jpeZlK\n5Spu9wp9fV3b0rWdnVX6+vz09fn4+GMf4bCZXK4eu92H0znGgQPHaG0d4N13f0Kp5EKvH2RjI4mi\n2Dh8+Bjgx+m8hiiaGB+HbHYSWT5NJNJOItHB2tp5RHEAcLK+vkZ3d4TOzl6Mxi4SiTyjoznW1haI\nRA5gs9WTyaxjNK5jt7+IyzWMzRYmmaxlHOdyGaxWO7lchkQixcZGBE3TSKUcTE9rGI1xvN5ezp07\nx6VL00AMjydKLjeMIAi3LSG+3by4NX9duXKVmZkZVlZsBAJeQqHCp/hWfh2wV189rOImd4qda2tJ\nipHJGDh58l2CQR/Hjx8il9M+dU+qqnLy5Mnr6+xWrFY7yaQFh+MZMpk3SSTGiMd7+Ku/+hlvvPEm\nr712gpdffhlRFHfw97g4dWqZUilMLrcPu11hfT2HTmegocGNw5FBrxeYnVWJxycxmVZxuZLY7TKJ\nhAwEgC0nSBmoAGA2H8VkWqOvz8Hx44c5fryJqSmZt98+y/z8FRoaOjh8uJNvfKP/rrlhvngUgNT1\nf+0PuC03sNe+8U7G/VbgXlGO0tIyxsCAwPBw3y0da3sRN8vyAMePHwV+SldXms7OmgT4pUsLfPih\nnUymFUEw4fdnGRrqx+vVsbio7XJ0b6kx14IIV1lfX8PlMhKJhAiFLpHJePH7dXR3P4XD4WV8fJJq\nNUs87iCVslKtjuFyJWlsTGO16qhUplEUI+GwyPr6FAZDO5q2iKoW0es1FGUfotiHzeagpcVEa6tI\nMhlldnaWQmEdOE59fSOJxAGs1i4EwYzTWSKbTWAyxbcDLHu96zf46n7O/Pw1oGtb0ORWe/mH0RH9\nK+nkuV/pePcyqXzZE9Ld4G4jibcauC+//PL2izE3N7ed8rf1ong8LtLpC7z11hJud4HBwaZtKdad\n6W9b5y+VWoEVHn9coLk5w/z8JqmUxuqqiXjcBEQ5cGCFoaFDnDpVolzWSKXqsVgyeDwlstkh9u07\nwdTUm1gssLAQI5udRqdbQ6drpK2tg1jMyOJikXR6jmr1E0RRxG5/GaczRbmsodNZEUUzLpeE2Rwn\nEkng9R4gkRDp6hrH5WpkYsLAysoiqrqByZRHr3ficmUwGAaw2z2cPfsuhUIKVd1HKPQ2g4MSPt/z\nD6UB+CLwIO7zs665mwxzArBcJ8OsEXTWiEuTyLKLRGIBSGC1FmhpacNkgoWFRSYmJgiFRLJZN4XC\nLIIwRqlUwmA4gNFYRpYr1NX5KBQWicVGqFYHgCqiWMFk0qGqaVQ1iaoKiOIAOt1pLJYIer2dajVB\nLldF0/qRZRO5XJ7OTgf9/ccYGZnG4fBy4sQT+Hyl6/djIpOJ75qoHuER7jfGxsBiga6uB92SmqOp\nvx9+/OOvtpPnfmZP3JB/Pb7nWiORSNHV9TKdnXD69BJ1df3IcupTRMJvvbXExkYVj+dp0ukxPvlk\nkslJ8HjsTEyc57vfvZGqvnNB/PrrT+ByFXnvvRiVygSatkwmU+HMmUXKZfc2F09Li0hdnY/XXnuV\nq1d/SDCoMDx8GIejDqs1RqGQ4rHH+vD7G1EUlenpZTIZHWCjqUngtdd+i7a2Nv7iL/6JubkNslkL\nivIkDkc/grCAwxFFrzfR3LzOd75zlKeffpr//t9PMzOzTjptBPRUKqsIgg+D4UNEMcnycoj19QSS\nVGViop2RERNzczWRhuXlNcplH5WKm/r6KoFAlsFBO8PDh9A0jbGxBJrWhMsFbreTeDzJtWtTTEys\nE40u09Ji2VX+Bbefo2ZnZ/nRj84zPq4RjaZIJpeYnzfj9aY+xbfy64C9+uqrIG6yhb02jTeXAJ45\nE+LiRYFodJ5I5Kc89ZQTn+/4rt+/8cYvefPNGAbDICbTFV57zY+qJggG59jcHEVRQNNypNONjI5G\nmJ4+iSAIvPLKKzv4e6bZ2DhPoVBFVfMkEkZ0OhmHo4tqNY0oRpDlHhTFRrVqoFg8SblswWR6CovF\nTza7QC04G6JWsrWGXt/D0NBzqOoM3d1zDAzY6OjooLNT4Ikn6m4r7/6gcfjwQSYmTpFM1qoKtsqM\nHgbstW+8k3G/9bud2Ya3G6tbGaBnz/6McnkZj8eCJMWYmfmIlhYLX//6jXLd1dVVyuVrKIqGwbBG\nsShhtSpIksT8/DUmJwsYjYtMT9chCMKOCo42JMlMd3eUa9eukck4yGYdFArrGAwXOX/+E5LJKqdP\nT2CzfZ2mpheYmJjCap0jnweDwYUsl0inm9Drn6JafZfW1gybmxI6nYn6+jyx2OT1saynoUGivV1H\nOp2mWu2mWGxA05ZIpYoYjR6eeeYPSacXaWyc4+mnd1Ma1HwGp64rvVX5gz/Qtu+/lsHTxfHjv7Mt\naHKrrn0Y9/2fy8kjCMKfAv9N07Tl+9ye+4L7lY53L5PKw0y2eztZ1b0WoLcauLdK+dv6HAjoAYVa\nPW+VRCJFKCTi87ErQrV1/htkXRp+fzM+X5mPP54iHpd46ql/RTodZGlpFafTgV4vUFd3FJcLbLar\nGI1LJJNw9epF3O4EnZ1dbGxkyOXSFAo9TE9HiMejKIpKsZjCaEwAg1Srq2haEFGsQxCmKJdlrNYi\ndruXZDKL0fgSDQ09yPIc1WoUl+sQdvs6qjqN1Zrh5ZdV+vvryOfNnDkzzsjIAuVyAUlq5dlnDxON\nBhkYEOnt7eXDDz966AzAF4EHYeg+65q7yTCrQIHp6Yuk01Ok0wrJpJNQqMyJE4cQBAGLpUJfnx1B\nyKNpOaJRgcnJItlsD3Z7kUoFFMWGqvZRLm9SLOqRpByVygGKxWXAhslUR7EoUK3msVqbKJUuI8vv\nIwhPIAgFRLEJi6UbhyOO07nB6uoQ8CKVSo5K5QO8XiN+fytPPZVkYEDH8PDXtyelGwvIGxPVw5gq\n+ghfbYyPw4EDoNM96JbUSrZ+93fhP/0nKJdBkh50ix4O3G6tsfXdzpKplhZx+5idBMGqqmNt7TyJ\nxCSaZsLvfxKns51kcnSXPa2VtM4QDhcpl1d45ZVn6e4O84//eJpk0s7ERBcmU5TDh93E4y4aGkyE\nQiVisTjHjj3J7/3es7z5ZhBJKtLU5MFurzI+HiSft7K6qsPjsaEoh7DZRGKxGZzOANPTZZLJcbq6\nvk5nJ6RS/0KxuEEkEqJSyaIobiRpkqGhFgKBfpaWlq6XZOWx232kUi9isXxAU9M0ZrOFTOYYZnMH\nudxl/H4Vh2MIcHPp0hrV6hqRSB06XTNW6z5MpgSimKOtrY1AIMCFCxcxGtvp67MQDueoVJY4ezbP\n2pqHbLZAJnOapqYAmhbYU67+5jlK0zRGRmrKLjrd47jdVUqlBAcOdGG1lj7Ft/LrgL366suWML6X\ndcytHERbnJg/+clPmZ7O4XA8g9O5Doxy4EDTture1kb57NkNwuEGnnvuJZaXT6IoWZ59to3p6ZPk\ncs3kclVWVkSMRgM+3+PEYtdYXKyVlW/1TzI5itttQadrJRqdRK+fo65uH3p9Gp0uiyQFmJlZIptt\npFrdpFTqQxR7UNUKNls3svw2lUoWTXOjaVUEQUEQNojFLtLQkMFgaGd1tY1odI4TJwI8/fRTX8Tj\nuG8IBAJ897sPp6rXXrb8Tkp473a/uTMDVJLayGZN7Nu3t5Lj4cMHaW29SDi8hCTZsduLDA1Z6evb\nx8yMHZ+vjWAwwvh4gUQCwuEgklTPM8/U3ptKZQNRrMPvP4jTGSCff4tM5iSh0AEqlWPk88sYjTNk\nMhZisRi5nIVSqQeXy4aiZMhmZ7DbvVQqWdbWglgs+7Db+9A0P01NH2CzRchk7MzNeQiFEpTLfuz2\nx7DZHMjyvyBJI9hsfaRSC5jNyzz55JHtzPetDMqf/OSnfPihSlvbS4RCn2z7DG7mq/usvn0Y9/2f\nN5PndeB/FwThNPB/A/+gaZp8/5p1P3Dv6Xj3wnvzZatt3Q12Eyx7mZg4z8DAVYaHD+25MbzVwL1V\nyt/W5+XlCZzOg9vyoRsbF5mfLzE5qWIyLZHNOggGg6ysrJBO51haWkLT8vj9AYLBjxHFOerrIZcr\nkkrNYDYv09FxmI6ODgYGppmYuIpeb8XhyNLU9ATHjz/G+fP/gNVqI532kEjMIwhHMZlayOdTvPPO\nBxQKEpnMJpVKJz7fQaxWA/39Mbq6TBQKDWxsQC5nQtMMGAwBJMnD8vIqknSamRmBlZVPmJ/3oqp+\nXC5oaWnE43Fx8eIKyWQOWbZy+PARVlZCRKNB+vpsDA/XCJkfRgPwReCLvs9bpVbWIhM/IRodQ6/3\n4/W6t8mwd76PHs9zLC0tsbg4xtzcZaJRNy0tQ6iqiYmJswQC9fT1HdmuE9Y0Bz//uR6rtYlCwUah\nsAgsoWkHUVU7NUWJOcplkXj8QxwOBdCoVudQ1RX0+nngcUql/QhCCrN5lkpFhyS10dt7gnh8nM5O\nI6oKKyufIIpJDh1y8e1vP4/DIeDzPf+p1P698OuSKfYIXx7GxmB4+EG34gZefx3+9E/hzBl48cUH\n3ZqHA7dba2z9vyaT7MRqtZPPZ4nF4vh8nm1BAK/36e3Az9iYiampBOn0OSqVVZqbxW1uhy2HxKVL\nYRTFTz7fAsxx9GgdbncfUE8qVSAWW+Ly5XnicQcff1zAYlmlr2+Ap546SkdHB08+mWaLrHNz008i\nIaBpLk6fHkWScshyA06nQLnsQNMsBIN5VDWCXm/kwoUrlMvLuN0mrNYIsVgbRuNTFAqTnD8fIZeb\nI5FYQ6crkkjMo6pGOjr6gMMMDGQQBJicLNHa2kUymcBqXWNy8pckEpDPr6JpDXi9EonEMoVClFLJ\niNtdj9fr3l6vGAwJnE4NiyVEe7uXubkG3O6DFApvMz9fwWIxAdOcO3eOSkWjo6OV9vZ2jMa5XYpd\nWxv68fEs6bSTaPQcNlsSv9+BLK9jMGTI5YwPvbLL3QYYPuv4vdYQ9yMD7m7aeXMbvN7eT5WEw42A\ny06uv5WVFYrFFhwON+fOvUsqNcrv/u7vEAgECAaDnD49zfJykkxmg5YWI319ZiKRNf7sz1YQxVZy\nuSA6nR1RFMhk3uPChQRdXSY6O4dpb2+nWv3/yOUOIEkKudw18vlZ1tb6cbsXWF7WEwwG6enp2b4X\nr7cbu30/+XwIm62CpgmI4iVaWn4Dvz/A7GyGbPYTFMUNHEUU26hWr2IwTNHS0o6qNpPL2VDVIi6X\nhKZVaWkp4PHosNu7v1KBy4eZh2ovW34n7b3b/eZeGaC3KvsPBAK8/vpRRDFJY+N+UqlJFEUln8/S\n1GQiHF5mbe0yOl0PTqee+fkilcpJwERzs0BHRyv19VFmZz+iUJihuTmBz+dDrxcwGq0oioVqdYNs\ndgpV3UDTrFSrF4lENqhULKhqK8nkx4jiJoVCI7I8QbVapL//JTStj0IhiKp2IMutVKvXrmeepRBF\nK4KQxunsoq5OxmL5Z3p7u2lra9u2pzfUKY1EowpOZwWwfO6+fRj3/Z/LyaNp2iFBEA4D/xb4c+D/\nEgThx9Syex44Nf/9Sse7F2PwMBsSuOGgsdtbOXfuGolEmomJDxgYGP2Us+dWA/fmSXCLaPFWn/3+\nRrq7zdTkHC2kUukdZVpj9PREUNUMZ89eYnU1BThpaemgvT3Ovn3zHD16ZJsL6PXXn0Cvf4upqXlE\nsY2VlVVcrgZstgLRaAlRbEEUHcjyLKWSCUHIcPmyiqIISFI3imIgHr+EqmYplR4nElExmdxUq2Vk\neRGfrwlNE6hULl0nahZIJIZIp69QKklYrfvJ5YycOXMOr/dx5uZasVq9FAqLVKslBgclBgZEhodv\n9NfDaAC+CHzR97lVjplImNG093nuuW4OHTqIxRLh4sXTxONWVlYENjc/4HvfEz6lYKFpGjMzCufO\nFTl3Lku1asRieZOengo9PUfp62vZRSjX12fAYJjAbNbR3Fy9Lo+eZ2lpBcgCCaABTcsiCCns9kay\n2QiKIqPTmYAucjk3Op0bvb73+sQzi6ZVGBn5BEHYwOGo0toKNlsUq1Xle9/7Bq+88so2Z9XN7b9B\n6n3DmVN7p73Y7a2Mjy9RVzf6KJvnET43KhWYnITvf/9Bt+QGDh2Clhb4+c9/PZ08d6q0cvOxfr+X\nY8eevL6oTSDLAkbjLK+8UnOQb51vePgQ0aiFalVjY2OUgwez7N+/7zqxcBBN05iYSLKyskoiIXLg\nwH4kyUIkskAslmdhIUw+H6G+3orJpKO5GSSpSjrdxthYnpMnT17P9r1B1un3e69nG0UxmZYol02U\nywtcuRInHl9nedlBa2sH2Sx4PEssLibJ5SyUy0kGB23o9Q2k0xqCkCKX8yBJDcTjCZxOG5LkIpeb\npFQCi0ViZkZPW9sgOt0MivIeTU0iyaSRUEhEliXq6+243TokqYFyeRGzOU5TUzMtLTpGRq4wOZnG\n4RhEEHI89pjA8PC30DSNH/7wHCMj/5WlpSkMhkHK5S4uXLjA9HQI6MPhmORP/uRlTpwI7FLsKpe3\nIt91/PZvv8K5c78gEDDT3NzA+HgUSWpnerpMZ+fsQ+2wv9sAw2cdv9ca4n5kqt5NO29ug6Zpn/ot\nsAfX3z4WFpaJRE4SiTjJZt1EIiLl8im++12BK1euEgq5cLv95HJnsNtLeDzf4JNPkoyNKfT2NrOw\ncJVM5jyKcoRy2U+lcoFA4HHa29tZXFwklzMjy9PIch1mcxuiuExHxxpGY4Dl5Vb+y395mwMHTnP5\ncpT5+Qzr6/NI0ggGQ5VcrglFuYbZXACCjI1tIssyggAGQwxJWkNVc7hcQZ57rp6Ght+ks7OPv//7\nv6RYDOPzBRDFIV577QQLC5cpl3/1A5d3insdo5933/h5fuf1ukmnz2/TaWypr+517uHhWlVCKBQh\nmUwzP7+P1dVFVHWZ0dEEa2tN5PPrjI39P0Aam62IyfRznn/+t2hvb+eZZ5K4XGOYTDJPPPEsoVCI\n0dFfEosFgRh1dZ0cO/YkH354ing8BbSjKBWgG4slQLF4Hk2ro1o9Rrk8QbmsMj9fI1POZERyuRUU\n5QpGox1w43DEEcVxVNWGy/VbhELTxON5NjYglfon/t2/+9cEAgFGRkaZmVHp7T1KJHIeuExTk4Km\n2QgGg3fsZLuX5/BF43Nz8miadgW4IgjC/wZ8k5rD57wgCNPUsnv+X03T0venmXeHhzkd72HBloNm\nS+quvj7AyEiQZFIlGt09+d1q4N48Cfb09NDZOXfLz5qmEYvNIsspWlpEQNhVR3rkiApcYmoqjtHo\nQ1HcVKsePJ4mXnyxY9vLHAwGCQYrJBL9bGwY6O19nFJpgWj0LaJRD2trjRSLWXy+NkSxQrWqoKr7\nqFQUqtXidTLcLMXiRyiKncuX47S2KmSzRSoVO5p2mLm5IH5/lZaWftbXV8lm/ej1fZTL81Srm2ia\niqrKxGKbNDa209zcQDi8QEuLTG/vxjZh5U4j/zAagC8Cd3ufdzsxbpVj6nQuZmfzhMPLvPnmDGtr\nE6ystCLL+5HlVSyWeS5fdm/z7TgcQ5hMQerqCoTDJhYWNDKZISyWAslklVLJgSh2k0plKJfbdinM\nffvbx0in/4GVlXUkCSyWZ4lGIxQKIpo2CEQBDVE8QjRaQFUzWK3fwOm0EI/PYrOVqVS8WK15LBY4\ncqSb1VULs7MyoniISGSW5mYvf/zHf8L09EWcTnYpfu1cXNbVFZDltk9Fz3w+D+n0Oc6duwYUmJiQ\nGB5+uDcHj/DwIhislUU9DKTLWxAE+OY3a06eP/uz2udfJ9zNJvVOSDyvXLl6PaP3hm0pl9uup9rX\n0dS0cp1HT9j+3uEY4sUXO3j33dMYDEaam5upq2vk0KEufL4iU1NOXnihG1GEpaWT5POt9PV1YTRG\nWFxcIRRy7irZfuqpo/T1LWIwLON0VnG7zWSz88zNOTEaD5LJLFAsVtncHCIY/CGx2ABG4zPE4+eJ\nRKZwuUKsry+jqjpUNU8sNo0gzJLJDHHw4FE2NkCvT9Ld3c/kZJXe3sN4PB66u6M4nQ7OnEnT1jaI\nprkol0/R07NJX58Pl6uLmRmFcLjIm28uYDJVyGbLtLcvEQ6HqVaLtLS04Pd7OX68iZGRUdzuY0hS\nhWh0klTqQ0KhYazWo6yvv8svf/kW//k///kuxa7+/ieJxaKUy0FyuRBHj7Zw4sTX2dxMkEzylcmQ\nuNvSps86fq81RDAYvOdM1btp581tuHDh4o7f1rj80ukMoVAdnZ0tfPjhScxmP8ePt7K25qFYNFIo\nWGhqOkxzs5tkcnKbC6tQqJLLdaLTPYmijKIodTQ1NTM6eol4fJJ4PESpVI+mdWGzmSgU9KyutvPO\nO3MkElcQhP243SNEIlkcjhZMpoNUKqMoSoFEwkU6LXDlyt+yvt6LJB1hczNHff06ZrMTUdRRqTxD\noZAkn09SKoUxGtupVvUYDFdwOJIYjYt85zvP8Nu//du8884cy8uzuN0tdHcPoChrWCwJstkVmpsF\n+vsH9yzz+XXEl5VNff9K82/QadwOW8+1xk+zn87OPt56a4Viscr8vAez+Sh6/SLZ7FvY7QOYzUfY\n3BxjenqGlLOgbwAAIABJREFU2dkqstxBY6ONEydqfTEzo7Bv39eoVkeQJDdGox5BSHHkSBMLC03k\n84dYXfWRy62iqksIwgqVigNNq5V+6XQKxWKWSqVKpdKLJNVTqXyEplVxOJ6jvd1AInEWWbaTTntI\npYqUSk7gIBMT01y5chVBEJiYSBIKlVldzREIaAQCEI87WF1tu+6A+upnw98P4mUBMADS9f8ngf8F\n+A+CIPyPmqb95J5OLgivAf8BEAEd8H9qmvbDz/jNr8Vmei/c6cu/9dLekLpbASwMDj5DNru6a/K7\n1Tn36ufbfd4qM9niAnK5HGxsxLbTl2dmooyOrpNKpYhENDRtBVX1sH+/G5/vRs3A1kTd1ORkdFRG\nljVstjokaQmX6yjt7YOcOfNjyuVlLBYb+XwcRUmhaXYMhjyqKqCq6wiCFUF4hnA4TCZzAVF0IcvH\naG7uIptdxGKp59ix32BiIky1OkapZEdV29HpPsJkOo3FYuDQoUEaGiCRmMJqncbjUVhaEllfN7Gx\nEdzuo0e4NW6eGLdSKW8/hgvIcphi0UIuV8fmZpH19QSy3EE+r6NYLBMMfsLf/Z2GxdJDLqfw6qte\nslkBVV1idvZdwuE4glBGlq2AnYaGfZTLPmAVSYpx+vSPmZ9/j9VVK4ODB6iv72VxsZFMpoROl8Fo\n1FDVehSlCU2zIginMJmSmEwalYqGLI+Rz0tYrZsEAu3I8ir19XUMDQ3Q2Qk//OE7yLKMydSELBcp\nFpc4e/bvKJdXyGYHt9+XrWjD4OBhslkNKGA0bn4qetbb28vAwCjJZIbBwVfIZOIP/ebgER5ebClr\nDQ4+2HbcjG9+E/7qr+DatRpf0Fcdd7Ngv5tN6u5ja5tSgHQ6t60UBew6H6zssi17fW8yxQEvzz3X\nzsCAm8OHAywuLlIuz2KxOOjsLCGKJZqbzfT1HWJ8PIYkWWhqgs3NDU6d+oBy2Y/fr+frX3cwNzfH\n9HSZ8XEjc3Mpeno8pNN2VNWF0zlAJrNJPl+gpcVOsViPoqjIsoIoiuh0bo4cacfl8m+XEjz2mA6D\nYZizZ9coFEZoagKvtx1F0ahUJhgbS9PRYaC9vYVUKoOmrROPl8jnK+h0m7S0DDExkUOSguRyQ3i9\nrUxOqrjdZkZHz3LlyjmMxiGuXdsgFrvE0FAPdXUFBgdfoqWlgWDwMhbLefL5JOXyHIIwgaIsk0rd\neDY7s6D33ijPfqVKu++2RPvzlHTfD66/O7nurd7HWubDKd56awJVjZJKeVAUD6OjH3H58jxQJpdb\n5ty5XwAKx479Bm+/fZ6NjdNUq1aOHvWTzabRNBVRHCGXW6O11Y/F0sDS0ilU1Y7FEiSbHUEU3ZhM\nHlKpeYzGNczmdhob9zM2tsjMzPvMzckUi81omka5HMVkKpLLNZLNpkkmz9Ld7SaRyFMomLHbOxCE\nGXw+gbU1hWJRRZIOIAgbVCoTiOImDkcbDQ2dWK1Vjhzx8MILX+Oll15CEAREUby+ue/m+PHfYXr6\nIm1tq7S1Cfh8fV+5bOEvkrvwTsbo/cxIK5W8ZDJ7V2B8FuLx5C46jZ1y4jdj5z5GloNMTJwFLLS2\nHmJhYQyYBrLYbCrgRlF0aJrEwsIiJlMjfr+PUKhANLpJKLTKxx8nMRgasNsP4vfbWV1d4MqVNxka\naqKrq4OxsWtAFL0+hKYt4XDUkU7nqFQuoqptqKoRvV5GVb0Uiw6MRh9OZycOR4hCIcjq6hJ6fQav\nt4VcLoSmLVMqPUk2K2C3G7eflcMxxKuvehkfP8Mzz/TQ2trKhQvCV8a5fif43E4eQRAeo5a983uA\nDPwQ+J81TZu7/v0fA38B3JOTB/gR8KymaZOCILQD04Ig/IOmafl7PO+vJO7Uk7z10vb29jI8PHs9\n2yFHNruC0bhbsedOz/lZxmsnF1Cp5GV8/CpebxG9fp5qVePMmQTR6EE8nlFKpRwNDU4MhgqBgH5X\nffEW/0oyGcdqDZLPr2IwJNjcTJJKvY+qajQ1xbBYbJhMfUQiKQqFJRQljqrWkUwmkGWRclmHwZCi\nUomQzzuRJBfZ7GkWFhbxeARUNcflyyfRtE00rQIouFxuHI4BWltlDhzo4Xvf+x1WVlZYWooBbYyM\nzABV+voagMivhJH4onGr6PJeExjUnINu92XicRm3u4iqenE6IRxuoVxepVoNYTbHKBZFlpb8eDwm\nCoVNxsZO09/fSKGQIxqtotM1AtNUKiMIQiOXLmWoVEb5wQ9eIpcL8/HHp1he9jIz08xHH13C72/B\nYnmMlZX3SCRmsduT+Hwi1aoHq7XE+noLouhGEDbo63OhqlOUyxqBQCd/+IevUSoVsNkc5HIZpqZk\nnM7HMZtHaGhYwm730ddXpVTaQJIC2yn6wHa0IRR6i8FBgW996+kdTrAb0bNaWu0hotHgpyQiH+ER\n7hbj41zfID/oluzG88+D1Qo/+9mvhpPnbqK/d7M53nnsFsF8jWB4jNbW1W2lqGh0dvt8hw8f3GVb\nbv99jSssGAxy9uwSsVgavX6V114LsG9fK36/l56eb2wrbmazaf7mb0okEp1IUh253BrJZJpYLM74\neILp6RLhsA9RTJDPFyiX02SzPuz2JJ2dGk5nnt7eNjY2RgiHN9DpUqyvq6TTHo4cOYiiSLS1tfLC\nC7V2Ly3V1FKcThtm8ybr6yMYDAoORxuJRJizZ8Hl2o/Hk6WnJ8Po6FXW1x2Ew1GmpycwmdJYLEna\n2rpRlDALC16KxWVKJY3W1kbicTeSZESWfcAKTU2QSFzGYrmEy9WOKB5gYeETjMYRzOYSTmf9dgnA\n7izoT2+Uv2ql3Xfb3s9zf/eD6+9Ornur91HTNOLxDNGohKomsFo76e4+yOjoeURxk2PH/hWzs5dx\nu6eoVlXOnr1GKjWPy+XH4XDS2dnI1JTMxESSSMQIaKTTISoVE7JsJBKZoaHBhcViv05w28309Fv4\nfCIWi4XLl0+yvh6jWn0cRZnHZLIhigepVP6RQqEei+UFRHGJTOYDJiZyWK12NC1IKvXPaNo1VlYM\nGAxmTKYwJpMJn89CQ4OJctlGOh3EaPTy5JNP8L3vPbPL/txMPmsyxRkePvSVDV7eb9W0z+KSup/X\n38INsRoP58+X96zA+CzczfukqionT55kcXEFq1Xk6adtTE7miURSuN3L2GzrOJ166uo6WVhYIZEo\nYjCUmJraoFh8H6fza1QqY+h0oywtlRgfF4nHzRQKl1lczCJJHQjCE7z//gpdXXHs9g0OHDBRLDaz\nvu6nq6uB1dUwqdQSgiBgMq1iNGqUSoex2RYwGhO4XHkslnpglkxGQRAOk05naGy8THt7P4piJZkM\nEgio2xQumcwplpdrilpbc9tXybl+J/i86lrjQD/wDvBHwM81Tbs53+tvqfH13CtqrsEanMAmNafS\nI+yBu4123Ozs2Wvyu9Nz3onx2m2cFGw2KJVKmEwuIhELXq9EPO5EEFaR5TacTivxuMTc3Nz2ubaY\n4RcWYrS3O5maukoy6UWvP4LVOonJ9N9wuyUUxUax6KatbR+q6kPT1kgmN8jlGjEaG0mlKqjqHHr9\nHIrSj6LUo2kGZLlMPq9HltPo9Z/Q0dGI13uIVGoDu93I0FArr77av20olpZWkaQAvb0B5uYEnM4c\n4fACFksMn6//Hp/orz5unmxAIxRS0bQUIyMJkkknkcg0VutpTp8+x8qKSF3dQdzuFI2NRRYWTrO5\nWcXptNDcbOXatSiVSh3FYoFyeZaNDfB6F+nuttLXZ+Ddd+cxGA7zrW+d4Gc/+z/IZHIYDM+yuTnF\n5GSVf/mXcYrFOPG4n2r1EE7nIKWSTCYzxeLiErmcjCQNA+t87Ws2zGY30agJk6kBs1llc1ME7CST\nadzuTnI5mVKpwMsvv8zs7CwTE5OsrdXx2mu/T6FgwOmMsn9/KwcOuAiF2ne9Z8CuaMPAgH2bTHqv\nd/Crtjl4hIcXY2MPV6nWFkwmeOkl+MUv4N//+wfdmnvH3czZn5cEcmXFxspKK/v2PbVLYnd31uRO\nos/aOVRVZWlpiaWlCTo6Wunt7UUUxV3tq5E1lymVvESjczQ16Th+/Ph1+zVHb28vgYDAhQsXqVad\neL3tVKsN6PVFBAGmpiY5f/4D4vEOBCHE3JwOl8tNfb2J/fsdWCzP8cILbgRB4NQpI2ZzM3p9ClX1\nks/3MjISZ2Agxr59ddtl4n/3d39PMulkYOA477//D8zNTQIHyOVS1NfbicVCzM+vc/BgAEHwIwgZ\nFhasLC9X+eijd9Hr62ltfQpVXcFimaG/X2BhoUxLywGCQZXl5THs9iTl8vC286vWTxU8nv3kch7+\nf/beNDiO80zQfDLrvm8AhfsuAAQIkBRPUZRkiQfkYxzdvtTjdrc7OmZ6YmNi2tMTOzux82di+/c4\nNnp2NjY2djeme2yPbHd0R9sWdVjWQVKiRBIEAZC4zyoUjrrvI7My90cREG9JJGVSFJ4IBcQCMuvL\nLzO/773f/fuHiMcFKpVFdLp6TKaDvPbazZ2WPm2q0OPOZx3v/Vzfw9jbPs333ikCLhqN8+GH5wmH\n3bjdT7Oycpr5+XeZnY1SqXRQLE5z9uz7WK2tKEqMYFAkEjGRTPpxuQ4QDC7w93//j2i1B8jlnEjS\nPvx+I6nUGdbXkxQKvRQKu5HlFbq7vfj9mwhCkKefbqG52czly6uEQtPk83sZGPgem5v/A0kaw2xu\noFy2UyiYKZevIMsbGAxuJOkAOp2KwTCFXj+CIHjI5Yw4HH5qawP4fNOcOLGP4eF/DsDoaDVsc6vE\nwOcx948Ln0fXtC0+zTw9zIi08fEJ7paB8Unca6y3GrPm5+f58Y/fI5utw2pd50c/OsaxYy5On55h\ncPAUkrSM2aylre05SqXTVCpBBKGJaHQXopjBag2yvFwhEpkjk9FQLNpIp4tUKiaKRRM6nQGXy0M6\nbSSZ1KLReNDrr7Gx4SKX22RyMolOF8dqNVMuuzCZ6oE1mppUFKWN1tY0nZ1NpFIDJJMpRkZU+vr2\nsr4+wtCQjvb2rxAOFymXVxgeHqC7u5vp6ekbjLZlVPXjtulPwnO+xf1G8vycapHl1bv9gaqqUaop\nVg/K94B/EAQhBziBP1CrYRU73IH79Xbca/P7tOe8dfHaKtZ4axckg2GGsbFxslkZi8VELGZn//5u\nstkZ8vkrqOoKJlOacnmJPXv+CLNZt714bS0+VcNKMy0tzXzwwRUKhT5sthdZXV1lfT1MTc0fkMud\nxmw+Q6FwmFRqlFJpgXzeQSYjYjK5cbnsiGIdOl2RcFhGUVJAF2Ahl9tkamocrdaDVmvHbtfhcJho\nasry8stf2VbYT5+eZnw8y+zsJUymD1GUInq9jdbWIMPDu5+IReLz5tbNZmFhgfn5UcJhiWxWw7Fj\n3UxMjPPhh6+yumpEknrw+UTs9iJmczW1z2AYpFSaRFGCGI2tWK1WlpbOUiyasdkiiKINQajmAicS\ntSQS40xOCtjtcWS5HVn2oyhlMpkUH300h0YTwWh0EomMsL6+TFdXnr17m1hff59MZgij8RCyfB5Z\nTjM8PMDVq9eIRjfJZMwIQg0Wi4/l5TyNjW3EYhEWF1duel7m5q4Sj8c5dMjOwEDDtlc9Epm97T0z\nGmfIZAQCgbrtTm1344umHOzw+DI2Bt/73qMexZ156SX4i7+AZBKczkc9mgfjs+zZ91sE0ut1s7l5\n+3d80vnm5uauF0ruZ3o6SlvbHHfyFEeja4TDdorFXfz61xMkEq9gt/dSLp9leHiAEydO4PW6aW21\nsb4+T7m8TH+/BqfTwauvTpHL1SMIcSQpitPZybFjzzI5eZlicRNFifOb3yQoFgtEozYslqcwGpfI\n5VzU13cjCJvIssqRI4dQVZU33niD1167RDCoZ3IyzNraJUqlAC7XAInEGc6ceZdKJYWi2FldPU9D\nQ5za2jUSiV04HDai0TQ6XR2K0k25HCOTKVFTs49s9h1EMcCePXYqlRn27bPw1a8eoKbGS2dnJyMj\no0QiMqVShbm5EfL5MIODBvz+JnK5bp5++lucO/fL66kvbBvUPs/0kSeJ39fe9vH7+AELC2evpxuG\nCYUukUrV4HL1YbFoaWoyUqn46O8/ytmzv6ZQiHD8+En+4R8+Ip3upKWljVhsjuXlJPl8hYUFLXr9\nNDqdHY+nhlAowtraBQoFA4piQKezEIloUJTz9Pe30NKyG1VdZHY2Rji8H0VZpFDYYHHxdVyuRYrF\nDQThCpLUjNnsIZe7iqqOoCgn0GhMqCoUixlstkFqa18gFLpKNhuhu7uNnp5uDh5spqen6oTc+vmo\n5/73wYNEhN1PLamH+f1bfFxuI3/XDIxP4l5j3WpukkiYcbmukUpdYXW1Eb//JKurv+Kjjy7x4osv\noNe30NXVzblzG2QyJerqjMTjNtbX11DVA5hMBvL5GS5fvkixqCKKIpKkUC5HUZQarNYutFot+fwi\n0egZZDnD8jJotXo0mkkkaYDa2j7W10fweGR27x7k4sUYBkMNpZKLcjlIa2uJI0e66e3tYXpaYnw8\nicEwRTwu4PeneOmlU7S3txOJxMhk7CQSSV555ReEw6vbRttw+Byjo2P09PQ8Mc/5Fp/ZyCMIgg74\nU+CXwF2NPA8DQRA0wH8Evqmq6jlBEJ4C/kkQhH5VVeN3OuZHP/oRDofjps9efvllXn755c9zqI8N\nn4fF/dOe89bFK5vVcelS7Car99axlcocc3NRVle9bGyMMD0do6FBQKtNk8+3o9EcYm7uLO+88xOc\nTgiFTKTTSVpbW3njjTlCoRquXHmXTEZAlm0UCqPIcp5yeR5R9OFytZNKtaIoK8jyEtGojCT1oten\n0OslymUZUVzCal2nXC6i0ayjKHWAAUijqstIkkAy2YTZnMZo/DWtre0cPnyAF198cdv7ubpaQBA6\nKBQU0ukrdHY2UF9v4aWXdnPixIlPLaz97Gc/42c/+9lNn4VCofu7YV8wbt1sIpEYHR3ttLfDyMjU\n9fSjaYpFB1brQfJ5mUhkinR6HZ+viWxWT0dHL4uLUC5nKRbDJJMilYoGQVCRZZFcLsrERB5BAKez\nFqPxXSyWZfbvt/PmmyukUjkURSYWk0mnBRyOHiyWNH7/CFariNHoIhqtQaPxAmVyuXfR6ZZZWAhw\n5swqfX1+hoYaUNXqmCORKVKpICMjY1gsGWKxQSKR2Pbzoqoq6fQYhw/voqmpCfhY6K+2O9bd1ub4\nSfEs7PD4k0zCysrjGckDcOIEKAq89Rb84R8+6tE8GJ+0vz4MI8D9ygWfxuu8Z88gTuebhMM+urr2\nkMupLCzM09q6j1CogeXl3/Cb35ymtbWFp58O0N9fjcrZs6e6JiaTJqzWBgyGNKK4Tm+vlkJhmUym\nmkYdCq1TLHqoVAwoygwOhxnIYTItoqoibneF1tZqzb6qIX2GpaU2RHGTROJNQEEUzYTDRYzGEIFA\nHaFQHQ5HMxaLgkazSj6fR5bXUZQKWm0aQdgkGn0dl2uObHaAf/bP/oDFxWvE4x9hte6ivt5OZ6cf\ngMXFRS5dusw//dM5Ll2qEIv5KJVWiMdH0Os7+cY3XmZuTuHcuV8yP78A9BEMnt1OQ75bt8QdHg1b\n70a1hEGayUkzhcIqgtCK0RhBkt5iYMBLW1s/ExMRFhdHsNlS5HLL/Pzn/5HV1SVKJYl8PolevwiY\nEUUDlcoBisVFyuV3MBh8xONFisU91791CknSotE4KZVqmJzM0N6uEItVWF3NUqkoKEoHWu1/QxBW\naW3tJZ9vRKsNs7iYRhRrEQQnqlqPIKQoFDRAEb2+SDy+RCLxJmZzibq6JDU1bTQ0mPB63Y9ohh8t\nD6Ij/b5SBj+JLZm5s7MTl+tNlpau0tradFNZiwdhq7mJ2z1EKHQOuz2JKFbT+kQxid1erS81OvoB\nkcg1IpELGI0aJiZkrNYC4MBimUejqUdRZoESOp2VVCqLXl/Baq2nXC5SqcwDIgbDCqKokkrpSaVs\naLU2oANZvkqhoEGj6UOj2SSVWqVYTJHPe7BaI+j1Sez2XUjSAc6cmcTjSdPXp+L1msnlJmlra6W1\ntXV7jk+fnmR8vFrXUhRnyWbrcLuTQB6wPZS5e9z4zEYeVVUlQRCMn8dg7sAQ4FdV9dz1774oCEII\n2AO8dacDfvzjH7N37947/epLwedhcf84pasqbH7wwYc3dS3bEkA9HtdNCmkkEqNUEm6J7Kkq8aqq\n4vOZMBigVNKi1RbxeGpxuVq4eDFIKgXFYhPz8xNoNDXMzHQyNfUuw8NTyPIhjh49yOrqNFarFq+3\nm/ff/wWq+mt8vibC4RxXrvw9MEM+nyMcTlEqOdFoDBQKcbRaLw5HAFm+gixLZDItKEoGQTCiqjYg\nhqKoKIqeSESLwVBHLCaTSnkYH/8d8/ML/Omf/gkej4ty+SzhcCN1dV2k02b27x9CEMBq/WyC+Z0M\nkT/5yU/4/ve///Bu5BcEn89DQ0OUUEjBbo+i0cQZGPCysqJjYWGaSiWKKM4iigGyWTOyHGJx8U1M\nJjfd3UOcOxdHVW2oahxVTVMoTBONBpmePko0OkKx6KFcDpBOJ5meDpLJLFKppDAYmpAkCVnuQ6s9\ngKqOIYo2FhYMXLmSQq/PYbfvoqPDSyo1SqHgJpPp5le/GiESkejt/Sqlkhef7wzR6DV0ujIajYTZ\n3M/GhpWpqWssLY2ysdFOd/cRVHWE8fE88Xg1D/jUqS3hfua6cbTa5vjUqe7tznI77PD7YGKi+vNx\nNfK0tEAgAG+88cU38nzSnv0wajjcr1xwq1Lj8XQxPT293TxhK73jD//wIPH4RXI5CUGYpVDYZHT0\nEsVilGAwikZTi8s1y759C3zzm89spzpfuPARsViYchkqlVmamyvYbFFmZlZQ1UHy+Ry5nBuzeQ+C\noCOfh0DAjs/XREtLgpYWF21tzRw/fhyoKk7ZrJ1y2cL6eoFCQUUQfCiKHZ1ugvZ2EZvNg8Wyikbj\noFRKoNGYqKl5Dq/3CtHoOA6HhtraJJubJSDAzEyOn/70r6lUDLjdXiKRaaCGa9fWMZliFIsJvF4f\nwaAWp7ORZNKKqg4hy0UmJ9eYmprma1/76g2dafZy+vRrLC7OcP78Ci0tWmT54BNV7PNx416GUlVV\nmZmZ4fLlK6iqisvlwGq1Ew6vsrISY20tQT7fg9/vpbXVy7FjFlpbm5icLKHXF9nYOE80usLSksDa\nmoBG001LSwWHYxOvt8LSUojZWZVsVkJVQ4iiB4OhlUqlgFbbhyTtAk4D7yLLRgqFRgoFJ7/4xa/w\n+7UUCg7W199Do8mi01kRxedJJo2sr0/hcFhR1XlyuQpabT2l0lHa2lRWV8t4vQr5/DPU1zeTy12l\ntzfH3r378fvd7N375XUYPYiO9LilrX3aSMv7Iw9UDSBDQ4NYrUU2Nq5QU2OmpyfA+fMXrhcSN1Io\nONDrY+RyIWw2F+l0Lfn8HDU1awQCWuJxD9FonErFiyyn0etj2O1aVDWDKOrJ5Sqoah2C4ENVfUiS\nDjACEoVCDQ6HDZfLSLG4iF5vJZWaQ1G0iGKMlRUZrXaTa9fmsFrjCIKVpqYBksl1TKYG3nhjDkEQ\nuHz5CpOTGTSaQzgcCqVSAbs9htk8QUODfntPetK433St/wP494Ig/PnnnDoVBPyCIPSoqjolCEIn\n0A5Mf47f+cRxv57AW4+7k8cJuEEAvVUhnUGvn+bMmX+iXF5masrMxYs1rK4WGB3dpFLxUy4vYbF0\nceLEd8hkgojiB1QqSXK5JqzWGnK5BLKcQ6eLs7CwxsJCns7ODqanP6Stzc7c3DITE0l0ul4qlQV0\nuiJmcx2y7CGfd1EozAOtgJNKpYhG04wgJLBY1ikWBbzew2g0jWQyy5TLc5TLFRQljygGEcUSitKB\n1eolk6llczNLKtVCOp1BFN/mBz94nuHhAWCGbLaEVpsgGl2hsdF8xyimHe/cp2Or5tLly++RStWQ\nShVpbEzz1a+2sLa2ydhYiGi0hVLJQ6XiwW6fxW6/Rrns4to1PdCOy9VCLJZEkoqIopty2UQ4nEUU\nHdhsHZRKrcRiZ4jHI6hqC4LQQakUBwoIwgKRiIzFMguUSafrkeUDlEqXUdXLaDQdKEqCQiHB1NRV\nBMGKooTYv3+Turoi588L5HKHAC3FYhSfr5Z8XsPYWA5V7SSdvkYyWaa+XkSvD9wm3D+MnO0ddngQ\nxsZAq60aUh5XTpyoFl9W1Se7lfr9rAcPGv2zdfzmZhSzeZ1EYhSt1srCgoazZ5eZmJAAMxMT5/jB\nDwSOHj3KpUth5ucXyOVEzOYuVlYWiEZlSqUajMbdJJOTjI6u4fEoTEycAyTicQtGo49nn61lYSFI\nLudnfr6XcPgiJlOMbLaOSmWafP4dNBo7ZvMasqyg18s8++zznDx5cjvlaWZmhpWVFSRpCVl2YbXG\nkaQW9HovijJIJjPH4uIaophm165WensF0mkDwWAHnZ0HWV2dZ2PDhCDsIhRawmhs5bnnfsTk5GsU\ni7/Bbt+H0dhEKNRIoZBlcdGC0eiiWCxht5cpFDSkUhcol6tRpGbzIKKoJ53OAuBw2NHro0xMnCWX\nW8ZobGN21kwicZWmpkmmpoQHLva5k/p1Z+5lKJ2ZmeHHP/4lFy7EKJU2sdud9PXtYnJyjpUVK9ls\nEZ1uFo0GZDnN+rqLpaUF0undDAxUu7MGg1HS6XYKhU00mjQrKzmam5PY7X04nf3I8msoSghR7KJS\nyaKqAhqNhE43hiwHEYR1zOYeyuUUpZKE01lPobBANpvB7e4jHq/BYJhEUTIkElfIZLyoKrS0uBAE\nA5FICb3eRbE4RTwu4XAY0OkkNBoPXm8/Ol0cjaaGSuUwkUh0uwnKp2HnmfqYh+FEf5ht1j9NiYx7\n3as73VuoNjdxOi9RKqXw+yv4/dUITKvVTiaT4syZVS5cEAiHBbRalXJZTz6vIstmFhfTqGoBt/sA\nGk1b3A+eAAAgAElEQVQBpzOCJF1GkgYRxcOI4gRwFqNRQ7E4iCjWUyjMoqrzQB5BWEFVtVTNE9V0\n3FIpRjicxmAQUBQPEECnmyCVKhGLLTI2FkNREtTVdSBJCh6PTCzmo7ZWIRRSGBkZ5erVJMlkis3N\nt6ipETh0yMWxY4PYbI6brv1J436NPPuBF4AT14sw39TpSlXVP3jQgV0/z6YgCP8C+LkgCBWqNX7+\nJ1VVvxx5LA+J+11Ubj2upiZPqdR8W2HYUslLIHCQs2d/dVO++Zayvrg4jl7fzNjYOgZDAa+3GZ1O\nYXCwgXC4glab2c4prampZ/duI5ubOqan18lm5ygWnUSjYWw2DZGIha99TY/NBh7Pc/yX//J/IkkC\ndXUnCQbPI0m/RafrplJpQ1VTgJ3q41oGrEAZRVGIRkcxmUrXN9syWu0K5XIYVV0EZBSlBUFoplxe\nQ1WTFItJksnAdWNAhqWlDLFYghMnTtDW1nY9xaYOq9WOz+e5LYppR1H/9AiCgM3mwGIZwOl0sLo6\nx9ycgtstsnevn9lZHYVCimzWSEODhlKpiY0NDbmcBknKotcHsVplWlrCJJOQzzeRz5dYX1/EYAhh\nNmcoFsfI5daoVNxAH4KgQxCCCMIaouhEEMJotTkqlTSyvJ9KJUClUqJYvEo6bUIUuygUPkJRJIzG\nANEorK6uc/x4P2ZzE253C6KoJ5v9HRbLBhaLnVyuBqezF4fDgCBcZffuIbJZ4bbQ34cRErzDDg/C\n2Bj09oJe/6hHcndOnoS/+RuYneWJXlvvZz14UEVi6/hQSGF0dJJKxYHVamN09AKyLOJ2vwg4SSRG\nt+WA9vYTtLXBu+8u0dwMweAMmcwGklSiVJpBVceoqdnFwMAzjI+fIZmco76+m2rbdj1GY5FksoXO\nzmOEw3NUKgaGhrqQJAmrdRyjMUs87iOdbiQYdHPmzCrt7bN0dXXx+uuv87OffYQk+UilVoB5DIZ2\nisUVEoklFGWKUkkmm32eSsWA1ytw4MAhpqau8fbbV5ibK7KxMYckDdHU9A0WFv5ftNoZVlbOotfP\nY7V2sb5uJxisRjBFIiXSaQ2CsJ90eo3JyTg2mw+TSUdLi4vNzRBmc5DGRjuNjf7r7Y6bgDE6O9fJ\n5cpEImYaGtpxOEz095dobuaBowMepgL5JHEvQ+nly1e4eDHD5uYgpdIoyWSZ1lYBRenC72/Cao0C\nF3A4xtnctPPWWw1sbs7gcmkIhXIIwhzZrJZYTKZUMqDTxclms6ysrBMMdqDRyEhSC5AG/KjqGpFI\nGLtdobFxg0zmIomEH51uL4ryDooiIsstyHKJdDpJIpFDUUwoiodyeQOttgtRjGM06kinJcCExdKB\n1ZrDbtfQ21vGYGhCFD0sLQUxGq9it+epqbm/aLGdZ+rh8jCdeJ+mRMa97tWd7i1Ua1fW1j7NxsYF\nBMHO6moL0WiMU6c8BIPB65G+e8lk3qDaUDtDpWLG6xVJJELo9TYcjqeR5VcJBvUYjUPodCVUNYws\nb1AsGlDVHtLpeVQVNJoABoMWRRmlXNZRLttR1TxgRVXrKJUuEo0KCEIPiiJiNKbJ51XyeQNWax/F\n4izgolhsolhcYGHhAsWikatXW/F6S/j9Ruz2g3zrW27Onv0FgQB897vPbzcxeZK5XyNPEvj7hzmQ\nu6Gq6is8eBv2LzX3u6jceNzk5Aesrc0RCi0zPX0ei0Uik9lNS0sLqdT7vPLKKJHIMqo6RKn08eJi\nszloaDhKT8+h6xE9M0SjYDQuIQhm9u/vwGaLIMvVnNLm5t2Mj7/PxkYISTqPVutFpzsAFPB4UsRi\nMh9+eIHvfvfbdHd3097eitW6SqGwjCAs0NQ0QCi0Sj5fQqvNoig9qGqSaoTGDGBDFLNoNFZ0Oj1N\nTRs4HClisTjBoBVBGKJYDKKqjWi1AfT6PKo6hsfjJ5Op1upRlDz5vMTKysq2Bfj2hXRmR1H/jNzo\nVchkUjidOcbGxshmXezaNYBeX2Zq6n0KBT8uV5ZE4jyFQj16fS16fYBSqUyhUMRiyWM2J3nppT4u\nXoxy4UIQjaYI6FFVEUkKAUVUtQaoAyKoqgFRTKPV5pCkNIKwG52un/r6C1QqMySTGrTaKC5XH5XK\nbvz+3aRSeRRlGVU1UaksY7MdweNxYbPlkeXfodfL9PbKPP98G319vbz22iyzswt0dzfidLrp6am2\nGb419PdBQ4J3PG87PCiPa2etG3n2WdDp4PXXn2wjz/2sBw+qSGwd7/U6yWSu4HZ34XYPUS6/g063\nSDx+ATDT0CBsR/mmUu+wuBhBkhKUyx1YrRtYLBa02jCSNI3XW6CrCxYWLlGprBCJJEgkFAqFGKHQ\nK6yvZ4hECqRSZczmVbxeJ0ZjEJdLpqGhA6PRzPQ01NS8ADhZWnqNt99+j8XFRX72s/e4eLEWi6WB\nbPYqLleOuroSc3NFSqVaZHkKQehCp3OTTkeIxZbJZocYG8uRzzvR62fQ6fJotRFkeRav18TRo43s\n3Zsln6+lXN5PNKqQzyv09qpMTX1ApZKmvr4FvV7C77czNHSUixcz9PY2Eo1O09q6zgsvHCMeT3L5\n8joDA93Abg4cgL6+NKdPz6DXm2loEB9aS+qdKNA7c29DqUqhoKFcNqCqFgRhmVTKS6m0TD4fxmhU\n2L27DkWRmJ/fTW1tOxsbRtraDAjCGpnMKvm8jKIoiGIGnc6JqpYol/Vks9NUKtfQarNoNAqKEkav\nX8RoVKipqcfn66OtLcPGRoq5uVEMBhMajQ+zeRZJkhEElULhGlCHy5XCZmvDbPazsWFEFLMIQpKW\nlg7s9uOEQvN0d4ucOrWbYLDluuP1F3R0pGltPcbUVPlzKTa8w2fjYTrxbt0bPqtz+U73FqBc9nH0\n6EFeeWWMjY0ig4Me0mm2fw95tFoJk0nC5/NgNveztnaGctmO0diPqq6TTv9faLVBSiU/guBElsPA\nFbRaLarax8aGnlIpgiAYMRp70Grr8HjMyPI+BKGWhYV/RFXX0Om6UZROTCYnLlc/Kytvk8uFEYQ4\nimLEYIBy2YBOF6a5eYByWaa3V0UU2+jqOkgsFqSuTr3uiBc4eHCIkyerMvEHH3yIx1Nt3l0tM/Lk\nycv3ZeRRVfWHD3sgO3x+3O+icuNx6fQYqmojlyszN7dAZ2c/U1NlVHWJat5khEpFS3v7ENlsYntx\nufEcDQ0CPT0DWK12slkHFouN6elJxsbiGAwtFItlVHUZQZDR6UTMZg9abSOZTIZ8fppMRuTatVrm\n56c5c+Z/49/+23/OqVMnmZn5BWNj7yJJIoqyn5qaUazWSaJRPamUk0olSKWSRhSNyPI8ktQI7EWW\n51lcXEavP4QgaNDpokhSCVWtB6aRpBQGQy2plB+n04rd7sBgmMbvVzEYGnn33STvvvs/OHasG7fb\ntR3FsxXFBI9P7u7nzd3CPu+VB3/r77a8CsWih1RqEY+nwNGjEA4XqK0t09AgkM3aCIXOs7bmRlEC\npFIL9PQUyWRsZLMZFKUPULBYzNTU1OD1yhiNQdLpNRTFgNGooNd3o6px8vkUgpBFVU2I4jWgTKXy\nPKJoRhAiNDaaOHLkj9DpxhkdDbG6qmdjY4NC4VdUKovo9UkqlRKCEMLrVejtrXao8HgaaWw0sb6+\nTFvbPjSaRtra2hgeFoBqVFtDgwmfz3PH0N8HDQne8bzt8CAoSrUmzze/+ahHcm+sVnj66Wpdnn/9\nrx/1aD4/7mc9eFBFYuv4UGgTmy1JsThDPJ6jv1/HM888TzKZBj6uyTMzMwPocDo7sduDPPOMm8OH\n9/DeezMkEl40Ggu1tf7rHbdmCAR02GzHUFU3v/2tntHRMul0O0ajEVX9iPZ2Ly0tuxkfH6FcNjMy\nYsFmMyOKaxiNrwJGRDHHhQtG3nrrdZaWNslkTEQiH6AoUYzGTsbHFymV6tDp9lOpbKCqSSQpi9G4\nQHOznYWFZaanV8hmnWQyEmazhqamdTyeK9TW2vk3/+bPCQQCvPHGG5w+/QHZrAW/v4AomrBa26mt\ntZDLhfD7s3R29pBIxEgkppmclPF4Crz44nO0tbVx9uxZQiGBUOh1Bgb0+HzPc+TIIdra2m7bLx+U\nnSjQ21FVFVVVqanJAysMDe1GVVXef/88Ho+LTCaNJI0iSbPodBL9/TYaGtZYWSkjCGl0uhRdXX1c\nvepmY+MKq6sTmEwCktSJomgpFveh001TV5dlczOOIHjQaDxkMkUURQs4kGUjopjEaDyD0RhAEFqJ\nxyMIwgJra+skEmUkaRCXSwcsoSh6BKGFfN6DwRDHYlGvy5dGHA4BkwkGB48gCGUslggGQ5H6epnh\n4WO0trayuTnL9PSHNDaaef75Ibq6umhrm70veXTnmXq4PEzd4Pa94Xbn8r2cfh6Pi1TqHK+9toTL\nlcfjeRpBqNaIPHv2F0QiOSoVP6dPV9cuj+c50ukkTuc48fgmra0VDAY/gqBgtYpotc3U1naTSLxD\nLBYmlTpIKrVIpRJHq+1Ao1Ewm3OkUmGKRQ/gQ1VX0et/g9vto73dzuoqRCIyWm0NguBEqzWgqikk\nKcraWh5ZDiOKNvz+TtbXr5LN/haXS6alxY7Hs0xtrZ2vf/0rvP9+kJWVq7hcFfbseRZRFLfnXFXV\nbRk5lXoH0OFw9D2R8vL9RvIgCIIWeA7oAH6qqmpGEIR6IK2qavYhjW+Hh8D9Lio3Hrey4iIYbMLh\nEFhbc9HdPUS5nGR5eQKHY5ATJ5o4ffo1JibOEAjUbW8EN3934KYFZmZmhl/+Ms/cXBMNDWYgj9G4\nsX2+ZPKXJJNX0WqjOBxBJKmdZLKRVEpDJDLHf/7Pv+Bv/uZ/5kc/+h6/+927XLyop6vrABcv5slk\nsjQ21hOLXSUezxKJtKPT+SkUJCSpBru9h2x2nfX1AjpdmkLBBsyh17sRhGYEwY0sy2i11UJ3Xm8Y\nn0/P/v27sVotvPuulnLZyezsLKurK+h0S3R0tNPYWC0uXV14n6xWfPfibmGfdzM23OnvI5EYoVAe\nVc0zMrJKINBHINDJc8/pt/NmNzfd/Pf/fhVV9aDV1lAslrHb4+zfX+DqVS+qKlOpyNTWSqgqlMt2\nOjoOsrg4QzqdJJ8PUSjkEMUGBGEDna5EpdKNVqtBUUKYzU8hyzq02nN4vRKNjRZ6eo7h803yt3/7\nKsViParaRLk8zeBgCoPhRVpaduN2C9jtTmKxBE7nLo4edfLuu6N0d7dSLnNTat/DFuxvZcfztsOD\nsLwMmQwMDDzqkXwyJ0/CX/81lMuPd2rZ75sHVSS2/j4SifGVrxwnkUhtd8S6U4h7LJbA4eilsbGZ\n8fEziKLIn/3Zn3Hs2Nx1+WGFlZUmenoOcfbsL0inZzAY1pmfDxONhslkXOTzTahqM2azhMnkIxA4\nzOSkiEajR5ZduN0uHI5FAoEooBIMNgENTE1lWV6+QrG4gaKA2dxCX98Aly9HkaSF60q+DoPBSF+f\nFp+vGvL/6qtBrl1bplhMoygp9PpG3G4z3/72EPv27dl2PExNldHru7FYlmhrU0gmN4AWGhr6+N3v\n3qG2dg8ejw69fg1BaKOra5BYLIjVaicajeNw9DI8XJ2X/n5xWwb6POSDL5tz6dMwOzt7vZZkMwZD\nlOXl5evFaqsK3tWrMyjKftzuFEZjmMHBBhYWMkjSM7S0vECpdIalpY/I53fR2ellbe0cR47IDA46\nuXSpgiCkKZcTKIqAxSJhNlsxmfzMz2dQFCfVPjGTiGIYszlOY6MTs1nD+rqAw+FnaamGXC6HKNZR\nKonodJfw+RppaXmGjY0whcIYPp+R5mYNvb0GfD4d0WgLkqShXI6we7ebnh4fPl8PXV1dqKrK0tIS\nS0sT2x2XnqRiw190Ps929He6V/dy+qmqSiwWYmOjQDxe4tIlM/v27eHkyS7eeecMcJi2tr1MTJyl\nv19EVVXOnFlClg24XCkOHmykUoFYbJOWlucRxU7m5sLIchi9vheHY5hs9u8RRQOtrU+Tz9eRzf4K\nVRUAFegHimSzl6irc+P1DmI216LRzJHNChgMEhoNtLfr8Xq1jI3lsVi+Sj4vk0xOoNVacLn6cbvj\n+P0+vN5BXK789f1JB1T1ylvn/P33z2/LyK+9NgGYOXjwyZSX78vIIwhCC/Aa0Ey15/SbQAb499f/\n/RcPa4A7PDj3u6jceFxVwZ4hFMpjNC4RjZppbBRpbW1iejpKJqMyMCDQ32+7qXL/vb47Go2j17fQ\n0FDH6uoCZnOI1taB7fMdPmxFUbyEw43odN/g3Lm3KZXOoqp+BOEQwWCI0dExvvvdb7O4uMjU1Dgz\nM2+ztHQFSXJitxsolTqR5TUKBQ2VShOVyjQGgwmn00WlYkSWPcB+RHEMjcaCXm9EkrS43e2k0yGM\nRhGXS8RgaKGjo8L3vvcNRkZGgQylkoKiNGK11pFKqXi9zZRKPHGLxN240UOwsrJCsdhEb+/t9Zru\nZGy4kyEim00zP7/A2pqJTEbh2LFGymUdNhscOXIIVVVZXFwEgiiKhEZjp1RKs7i4yeDgS7hcCyiK\nBp2uFZMpwuysRCplZ2HhDIWCCbv9EIXCJTyeJtzuvaytJSgUcmg0eiqVOKqaQlWn0evt+P0CX/lK\nPb29BqamyszP28hm7ZhMz1Fb+zWSyZ/R3T3H7t17rm+eUXw+D8C2B7z6nog0NprxequKUfW9mL0+\nP7OfS2jojudthwdhbKz683FP14Jq8eX/8B/g/ffhuece9WgeHx5Ukfisx3u9blKps5w9ew3IMzGh\nZ+/eue1zeDwuJibe4ZVX3iISSTA4eAyDIYZW+y6qKiNJOhRlA0WJ43QWcLshGl3Bal0nk9FQLC5Q\nLNazZ4+Dl1/+DgD/9b/+E6OjmxSLBiqVdrTaOTyeXchyhY2NUbTaIAaDBkFQURQnNluWnp5atNoF\nVlddGAy7EIQiFssk6XQAgyFAOh3bvnao7lPlso9nnjnEmTM/JxIR0OsHSCSuUSicwe1u5JlnTpHJ\nBGlqsuFymSmVBBobzTftB5mMQCBgZe/ez7cGxOepQH5RuVXWWFqaoFTahc3WxAcfvEkkosfjOYKi\nFDEaz2MymbHba3G7Uywvv0Vd3QI1NR6iUQsNDXsxmQo8/7wNl8vBP/7jG6yu2hGETmy2NEeO7GNq\nappUKozLlSQe91GpqIAeUVRQVQVZVtDpOpGkSdbXTRgM/VgsCWR5mVIphtnsRVUjKMplmprMaLUl\n6upkLJY2nM7jaDQxOjo2GR/fxGAIkM0K21HBUDVqPcyOSzvP1BeHO8mY1RSuO8vho6NjhMMuNJqD\nTEy8hyjOEY1aOXWqm+efP0axOM3i4gg6XQSXq5uRkVHOn9/EaOwmHn8fQVDo7z+BJF3Dai0xO3ue\nZHIKrVZDOj1BMplAq40jCFAs2vF6I/h8vSwulolGdahqPaJoRKPRYDZrMRhqyWZnyeW0GAz70WoX\nGBjY4K/+6l+STKbI58NkMp1sbIwjikFstq/z9a//L7z99t8gSWlOnfoeU1PnWVmZwOHo3zbcxGKJ\nm+bpRhnZ5aoA+SdWXr7fSJ7/HbgIDAKxGz7/B+D/ftBB7fD4caNnL5t1bKcmdXZ20tY2d91yfPQz\nKa1er5uGhgiwjtkcYXh4gOPHj99wvmeIRPp4/32BQOAgqVSKZPL/I59vxGKpw+lUAG7ytq2t/QZJ\nMqEoe7ly5QP0+lmMRj2q6kKjaaRS8VBTs0lf3wKZTIWNjd3k8xqKRR0Gwy46OnqIxyfw+w14vX4M\nBhmdzoLFIjE83LftKZmYOMfi4hoNDVHMZgel0vpNCv2XgRs9BKlUFhi7rUPI3YwNdzJEqKpKR0cf\n7e0uRkYus7k5RSDg3z5u6z7X1e1jdTWHwVBCVav5vTrdV0il5rFY4rz44h+wsXERQbDzzDNdLCzM\nI8tRjMYCqlrAaNzA70/S0eGnVEoiyyWczl6MRg9LS1qam1twuwc5eLAFQRAol2FgIMC5c++SSHzI\n+noSl2uBQ4cOcOxY9x09XNX3ZM9NKXy3ztnnFRq643nb4UEYGwO3G+rrH/VIPpmhIfD5qnV5dow8\nj46uri76+0dJJNIMDJwknY7dwdmho1i0UaloaG/vIZtN0NkZ5urVJQTBSzYbxeFI8dRTfl5++Wls\nNgdf+YqdRCLJ+vo6fr+fPXuGttez4eEBZmZ+TankxGx2kcvVUqlkqKsrAQrQj063giRdRq8XqKtr\nQq8P4vdrSaVq0Ghqsdmc6PUaBMFIY2MHJpPmpuu6cZ8ql1fQ67s5evTrAFgsY6yvxxkfP4PLlefr\nXz+y3aoXqk6Qrq4uTp3aWYsfJVv3cHLyA9LpMbTaAgsLb7O6WkMuV0ZV04jiCHp9if5+KwcP7sXh\nKAMLpNPXOHlyiCNHjvCTn3xAIjFKQ0M1oi0ajePz1aHTBWhosJDPX0BRkhgMYLf7MJvLmM1h0uk0\nxWIej8eEzdZIa2s3PT3dJJOtFAopisVl9Po1dLoF9HoHPT3DlEoiJtM1hoZURPE5kkkLoVCEoSEv\nmYyILG/Q0LD/UzvQdgw0Xx5ulTEDAR0Gg3QPI4aZUsmEojipr2+hVPISjcY5fPjgTY1zpqbKrK+P\nsblpRa/3s7mZRhTNtLfrSSTM2O1zCIKKXn8UjaaI253GbA6xe7cTt9uDyQQNDXuYn1d5++2rSNIY\nhUIBjaYJh8OIRuPCYpExm/VsbAR46qkTLC29wdGjMU6ePMnMzAyHDmVZWlqlt1emq+urjIwIjI7+\nHKt1ndpa2/Y1bgUf3O2ab5SRPZ7ngK2aPE/eGn2/Rp5ngCOqqpZvUeiXgIYHHdQOjx/3suY/nDDQ\nnruEMVdzTKenP+Tpp9sYHPwW585tUCzO09Skwem0E4nEKJe9tLc3Mzp6Fo3GiF5vBYyYTO0UCuuI\n4hSyXEarLdHcbOc736nH6ezhvfdCXLy4jsGg0NTUgkbjo729geHhHvbsGQRuL8jV3d3ND34gXFfk\n01gsNnI5/00K/Zeh+O3NwoRKU1Pwjh1C7iTg3rzIdqEoCh999CGbmxF8vgEOHbIwMFCNCuvs7GRm\nZoa3336P1dUavvWtf0mx+FMMhgparZFstonFxSC5nBOjscDIyGXq66O43VoikVna2+uQJD/B4AZu\nN3R1wbPPZhge/gGCIGzfX1VVr4d13x6Zk06rDA8fJh6/giwvcvjwAX74wx+i0Whue/bv9T78PgSw\nHc/bDg/CVtHlL8JyJYrwwgvw1luPeiRfbgRBYO/eITY3Z8hk4hiNsZsE62o6Vx/Hj9+c1j0w8BTr\n6wpjYwVyOS9+f5bnnuvhxIkTiKJ4z+88fvw477zzLqurQRoa9pBIaNi1a5EjRw4yP++nvn6QmpoP\nCYX+Do9ngD/6o78ilwvR2LiCRpMjkViktlZPZ+dzzM3JiGIEl0vY3vfh5n0qne7nzJlVXn/9FVyu\nPAcO7OPcuRUSiSxQ2W5LvblpplTysrk5uz03Ozw6tu7hyMgoExM6JGmAfP632GzrDA9/n/n5y9hs\ncwQCvds1ptrb5zhwoAav96Xt43/wA80t8twsbW12xseX0WrNdHRoqKuTMZv3oaouVlYMDA/X4fX6\nOHduBqOxC1UNYTAUCYev0tzczt693Vy69DvS6Qw229Osr6+RSCTx++vw+fpoadGSyeyiqamJUOg1\nxsffIxCou6cSuxPJ++XiVl3j1sgdq1Xl1KnbG3xAtaZa1WF9jYaGONC8/cxsdbndapwzNXUeo9FM\nTY2ALC+yvp5nbW2Dn/zkH2hq0tHYKKOqDej1RsJhmf7+Lnp6jvDNb9Zw5Mih7bHOzMywe7edcLiZ\n6elpVlbSWK0BGhrMvPRSAFUdYHV1lFTqAn5/ikOH9m/LtH/yJ8L2dXZ0dPDb3/6WpaUgLS3P0tra\nSjyexOvt3g4+qOpouu3W8lt62JdJRr5fI48IaO7weSPVtK0ddvhE7vWibS1ckUiMQECH1ari8/XQ\n2fk13nzzTV59dYxcTsfp0+Ps3u0mmYSzZ68hywaMxhiCcJHa2gotLccJh18nFtsAfLhcZlpammlu\nbubw4YO0t8+ye/co4+NeymUXkhRkePggJ06cuKtw9mkWiJmZmSe++O3NwkTsjh1C7jZPW3PY1aXy\nxhtv8NOf/o5g0Ew+b2Bj4xzf+tYQ3/nOtxBFcXsuQyE78/PXUFWVF15opL/fRTbbws9/vsja2go6\nncyRI0+hKCpHj3awd+8Qly9fwel0s7iooqoZXnzxzzGZ7Bw8KNDT03PTmFRVRRCEO26G1c9epKvr\nXz2Q0L4jgO3wuDM+Xq1180XhhRfg5z+HZBKczkc9mi8v94og3Fr3bk3rrgrjbbz66mmuXIlQU/MM\n2ayZubmPU0zu5jCZm5tDFDvweusolxM895yNv/zL/4QgCPzt354lFHofsznPc889i8fTSC63ur1P\n7du3tc7vvUlZaG1tumncN+7109PTnD27DFSNOslkGodj8LaUgBsVrMuXr2wbfZ5UOeBxZ+seRqNx\ngkHo6TlENBqlXJ4hm03Q3Gzl1Knv3HRf7iS33PpZV1cX3/++wunTr5FOr3Hw4FOoqsq5c2dZXa1B\nFNOkUjZ++MOv8o1vfI2RkVHGx51IkpXNzREaGhyYzQ46OprQ65/i6NFv83d/978yN7dCKlWHRpNE\np6vBYLi9HMKNEfQeT9d2IWmv101nZ+dO9NiXiE+K3PH57l4f9GaHddttkee3yqsDA08hSct89NEH\nmM0NOBx9xGJXaG3tBGxEIiHK5SYqlatkMnZ0uiE8nsD29wmCQCAQIBAIbBt8tiIft+q9bcnh1fV4\nD8ePH98+9tbrOHkPQaX6Ps9cbykvfGnX3/s18rwB/CXwL67/WxUEwQr8J+DVhzGwHR4fHkVUys0L\nl8SpUx/nHNtsDgyGFgoFM3NzWWATs3kdjcbEsWPHyeXCWK1zrK/bEIQK9fW15PO7KZWaSKc3scmR\nIIYAACAASURBVFozeL3uGwwNXezdu3V9ez7T9d1tbh7HkNmHfR8fRlrQ7Owsp0/PMDNjJZ+3An5E\n0cf4eIK5uTm6uroYGRllelqhv/8ooNLREeH555+nq6uL998/z9CQncFBIyMjZSoVlZ4eP/v2dW/f\nW5frTfT6CzgcRoxG221e5i3uZrx7mBb/nVSqHR5n8nmYnYV/9+8e9Ug+PS+8UO0I9s47j39HsCeZ\nezk/bl73bk7rDgQCxGIJZFnFZqsWKK6tHd3+mxtlAb1+msXFRWw2BysrKzgcvXz72y2Mj5/hmWfE\nbRnhj/9Yva482BgaOn5DxGb3DRG51bHNzMzcVsNkq2DpjXtlNRrpY6OOIKxgMNweTXGjUgR3r0u3\nw++XjxXWD9DpIvj9Wvz+le3oHbhZRvqk1sqCICCKIhpNJ2azl5mZKD5fDp/Pi05Xe73rUIpYLMGR\nI4duMjJNTjbT3BykuVkgk+lmaqrM9PSH1Ne7cDgCdHcfJBqdIRDwUlPjveN7s/Wu3epQPHXq4cos\nOzze3Kpr3Cty51Y+ruFT/f9bn/Nb5dXOzk7a2+fQ6yNUKhocjiZKpSWKxSxer4HOznaczgbOnVtD\nq00TCi2xuNhwx2L9txZE34qwEQThnsabe/FJUU1fxvX3fo08fwW8LgjCNcAI/BToAqLAyw9pbDs8\nJjyKlsz3MpJ4vW7K5bOsrjbS0NBOLlcimQyRSpV5663XaGyU+frX93LokOt6m/Y8Y2M5crkM7e0S\nw8O77+qt+6zcbW4ex4iNh30f7zZvn8WYtFV8u6nJz0cfvYMgFAgEmtHrPduF4yYmEoRCZYLB12ho\n2MTh6Nw+3ufz0NgYo1TycPiwn/5+602Fv+fm5pieljCbX8DjmaSlJcTevUP33Pg+T6PmlylMdIcv\nHteuVQ0mX4Siy1u0tVX/e+utHSPP48onrXt3Kty8Z88MgiDw9tvvEQrZOXr0IGfP/orFxXEaGo6S\nSiWALIIg3lbUeMtb/Gm4k6wBt++VN+7pen0Ep9MOpIGbDQVb59yqM7e5Ofup5YAvQ5r375NbjTYn\nT3Zx+fIVUikZSTrI5mZsW7GEW+sMvsMntVa+9dkRhDxtbQ7Gx3NUKnncbj1erxu4+fkxGj+OfFYU\nBXiTpaUJdu92k8m4kKQkjY0iNTXeT2zW8Dg6FHf4/XGrrnGvyJ07MTMzw9/93TskEhpcrgp//Mfq\n9tp5p3W7u7ub737325RKb7O0dJHOzhj79gXo6+tlelpiZiaH2WzH5dpHNCrz2msTtLe3f+K7s5VS\n9SBr32evR/Tkc19GHlVVQ4IgDALfpVp82Qr8P8BPVFUtPMTx7fAIeBysofcyknR1dTE8PADMoNeb\nKZfTZDJ+PB4Hs7ObzM/Pc/myQFOTRCCQIZutwWAoIAgrDA8P3DMV67MKWXfbYB/HiI2HKQzca54+\nizFpq/i2quqQJAUI09raQUODCa/XTTQax27fzfCwhzNnfk4+rxAMNrG5WT3vvTzEt1+zQHPzJxu2\nPu34dwTyHZ40xsaqtXh27XrUI/ls7NTl+eJxqwK+a5eFRCKzXbh5K9UpFKphfv4a8AvK5Q30+ubr\n0RDq9WiI2+vAfRbuJGtU9w0PNlsT4+NL1NSM8v+zd+dxcV7nwfd/N8uAWAUMIMQikGCQZJAEXiQl\nku1Y0ea0cdomTvTGdp4mbfa0cdukSZOnbZKnb7a2Tp42ebI1fd44ipw4qxNbsuVY++qYRYAEA4ht\nEMsAA7MgGGDO+8cAYhlggBlmGF3fz4ePrWGYueaec59z7us+y+OPv3NyGozNpqO21onTOf0uNEwf\nRTHfFGBPAnFDbbXzvi9Sz6FDBrKzsykriwaSMJnMmM29Hhct9mZr5Zllp6RkOyUlTI4im5r8m6tP\nOHEjani4CJ3OzJYtOuLj75TphcpEMN5QFCtn+qY4s9efWUh5eSVVVU6Sk+/HZHqd8vLKBRPkBoOB\nBx9sxuEYQafbRni4Rl5eHhs3aqSnV2C3D2I2j5CVFY9Ol+PVuWO3R45PrbpTzj2NqFzM9dhiRjWF\nqqWO5EEpNQocHf8RIWQlsqELXSAvVHEdOHCAvLy88QURdRw7dhaTKZqkpFzGxhIBjbq6TiyWTmJi\n9rF37+7Jk36+911sJ2uuBjYYR2z4sjMw33FaKJk0s3N/6JABs7mX2tpS2ts7SUjo4ODBQ5N3sKKj\n3VvQpqZGo9MZKCzcxfnzz3Pq1FmUUj7/zN4mw6RDLkJNVRXk50NsbKAjWZx9++AHP4Bbt1bHrmBi\n9gV4YeFaDIYYbt6swOlsJSIinM7OTaSkGOjrs7Bx4wB5eQZu3Bjm3Lmf4XS2sn17Mbt37/TZtOOJ\n9U1aW1u5ebOFW7eSgUGqqiJJSjpJfHzi5CL9Tqe2YBux2H6AjMpYvMX2Rex2K42N16mpGSQ6uhm7\nvQSXy8XJkye5fPl1OjtduFwur7ZW9pS4mVh3ZMLE2iMTG3XExSVMe42ZMcbHM7lQ7VyfYebaQDNj\n8De5wRU8JuqY5a0/EwOsHf/vHTPXzdmxY9vk1FeLZYD16+9j8+ZdnD//W06fPsdb3vIgjz/+Ttau\nTeC5587hcOhJTU2YnPo41cxy6x5MoC04onIx12OLHdUUipaU5NE07bNAp1Lqv2c8/n4gVSn1VV8E\nN/6aOuDfgIPAbaBSKfWUr15fzLYS2dCFLpAXqrhmLogYE3OV8PA2bt/uJSysg7KyZOLicnG5wkhJ\nuTG5tffUbPHU+f0TDdViO1nBOGJnLr6MdaHpdDpdHefOvYDT2YLNdmcxNfB8d83hsHH8eA9DQ/lE\nRzezdWsLmzdvnhazzVZMba2T8+efp7HxJrCVtrbTzDekeimf2dvEkHTIRai5dg2KiwMdxeI98oj7\nv6+9Bk88EdhYhHc89TM2b7bS1NSMTmfAaCzn5s0rREYOEh3dQV5eCQcOHABeobm5BZ3OvZZJXl79\ntDp/sRegU/sSE+ubDA1lMzj4BnFxsHfvYzQ2lnP8uJHMzPv9Og1ARmUs3mL7IrGx8WzatBG9Poee\nnjDi4hI4efIk3/teOUND+YyMVGEwXOXJJw8D82+t7E0Sb6K/YzK5aGy8zqZNG8nK6gW8m9q/0O8D\ncUNRbnAFn6X2Ryd22LJYKsjMnL67YH19Pc8+e5qqKicQw5kzvyQlZR2JiVsZGLAD1zh/3jw+0nIj\nw8PuNaHy8vLIymrBYglH00anvd/M+vlOkt44x4jK0LweWylLHcnzIdxTtWaqAZ4DfJbkGX8tl1LK\nAKBpWpoPX1t4sBLZUG9PXm+e19trIS9vP9u3p1BVdYawsB7GxraybduDWK0t5OSYJod0T80Wnzv3\nwuT8fk/z7r3pZE3dJaq+vp5Ll64E7Z0NX3YGZq5PYLPppu3usHlzE01NVeh0ObM64p6+0+bmNoaG\nciktfQ9lZc/R3Nw2K2alFHl59Zw6dRbYyp49f8zLL/8X8w2pXspn9rahkA65CCVKQWUlfOITgY5k\n8dLS3Mmp3/9ekjyrhad+hqZpZGbez+bNuzh+vIvUVDvbt+dOXowDWCwDjIyksnnzvdhsrbPq/OVc\ngE60TVu27KKnpw2nswubrY+RkTZ0OoPfpwHIRcriTZSjGzcuYbVeo7U1abIPVlBQQFPT9L7I5s02\nsrJiGB6GrKwYUlNTqK6umdL/gJgYu9drOi1kokzp9WupqRlEr89heBivp/YHY5mQG1y+46tRUUvt\nj07ssDX1/Sf09PRhsYSTnHw/sJaurucJC5vobyuys9sYGOgGNrJnz7uoq7syPgIHjzsPwtz1s+dy\nXr+k6zEpi3csNcmzDuj28LgZyFh6ONNpmhYDvB/InHhMKeXpfYUPrUSj4m2F5M3z9PrkySk9hYUZ\nFBbmUFc3gs3WRnR034ytve9ki53Olsn5/RMN1e7dO5f02e+2OxvTR9hMrE/A5O4O8fGJZGbumfPu\n2szvNDc3m+jocsrKniM6upnc3JJZ73lndBcMDxupq7vi1ZDqxfK2oQjGzpcQS9XeDr29sGNHoCNZ\nmn374Be/cCergiy/LjxYqFOfnOwiOTkRTbtzMV5ff2chfpPpBMXFGnr9nmmvu5wL0KltU2bmGjZv\nNhAfz+QoUn9PA5CLlMWbKEdlZRVUV0dOW7PPYDDM6ot4StA1NTUt2P9YqokyZTJ1Ex3dTE9PGFlZ\nMV5P7Q/GMiE3uHzHV9cOS+2Pzle+9PpkkpLGMJleB2JYvz6cpKSJ/rZ78XC40x+fa5fBqeVjrvrZ\nUxzSx16+pSZ52oA3A00zHn8zcGtZEU23CegDPqdp2luBQeALSqnXfPgeYoaVaFS8PXm9eZ6nbf7y\n8ho8/s305IRhWsdNrzcs+bPfbXc2ph6nixcv43Qy7bMvtHA2TP9O8/PdO2Y1N7eRm1vC/v3753zv\n6WsoPAzMP6TaX4Kx8yXEUlW6p92v6iTPN74BDQ0gfcHgt1Cn3lPdfunSlcmF+KuqzlJUFD+rzl/O\nBej0tqlw8q76xChSudgIPhPlqKfnzhblU/tg3oxMn+hveNP/WKzp60uWEBeXQGpqyqouQ3Lx7Tu+\nunbwR3+0oKCAJ59UU9bkefPkmjwzv3dPZcHTY4upn6WPvXxLTfJ8H/iGpmmRwETCZR/wNdzr5/hK\nBLABqFZKfVbTtB3ASU3TtiqlzJ7+4OmnnyYxMXHaY0eOHOHIEdnZPZh4e/J687y5tvlbaCFEX3bc\nlntn49ixYxw7dmzaYyaTacnxrCRPn32+ToCn70vTNA4ePOjV+0nFL4TvVVTA2rWQkxPoSJbmwQch\nPNw9ZUuuOVYnb7ZavzNqd920bdMnLOcCdK73lzYn+M3VB/OmPISFhXnd/1isUCw7ofiZAiWYR0VN\nLCLuzW5bM8vCXOVDEoQra6lJnq8DKcC3Ad34Y0PAV5VSX/ZFYONagTHgJwBKqQpN05qAYu4kl6Z5\n5plnKC0t9WEIwp8CuUq/Lxuq5VZcnhKRR48e5YlVsMDEXDtMLPbYyo4NQgRORQVs3756pzolJMAD\nD7iTPB/+cKCjCW2Bqqu9aWflAvTuNFfZWKg8SL9DBNJqTnos5dyR+nllLSnJo9z7Fv+9pmlfArbg\n3vWqXik17MvglFK9mqb9HjgEHNc0LQ/IBW748n1E4ARiLRt/NOp3c8W13M8+8X2459RbSEjYRnR0\n6K9rJEQwqayERx8NdBTLs28f/J//Ay4XhIUFOprQtRLt9lzt9N3azgbCakqALLVs3G3rKYrgsprr\ntGA6d1ZTXbWSltUNUkrZgQ6g39cJnik+AnxK07RrwC+BDyqlOvz0XmKFTZ2POjysn1yZ3Z+MRiM/\n+tF5jh5t5kc/Oo/RaPT7e65mSimMRiMXL17GaDTizvH6zkRDce6ci6oqJwkJKStWFoQQYLO517JZ\nrevxTNi3z7149MT6QsI/VqLdnmgXLlyAEyeM1NfXL/g3/m6r7jZL+Q5Wiq++60D0QYUIBb46d3xx\nLgdzXRVISxrJo2laGPB54G+BuPHHbLjX4/kXpZTLVwEqpZqAR3z1esI3Ar3t33KUl1dSVaVITt6B\nyXSB8vJKj3NOQz0z7O3n83e2fqKhKC4uwWQ6QVXVWQoL1/m8LIT69ynEUlVVuXel2r490JEsz+7d\nsGaNe8pWie82yBEz+Lrd9lQ3L2VBUm/bKmkLvOPrDSV8edx91S+ZqyxLGRFiflPPHZ3OjM2m4+LF\ny7POl4XOJV+cy3fb5jfeWuqaPP8CfAD4DHBh/LE9wD8D0cDnlh2ZCGqB3vZv+QaB/vH/xnt8RjAN\nRfQHbz+fvyvPiYbCZlMUF2sUFcVTWur7shDq36cQS1VZCRERsHVroCNZnqgo2LPHneT5u78LdDSh\ny9fttqe6eSmJJG/bKmkLvOPrZJ4vj7uv+iVzlWUpI0LMb/puxTpqa504ncw6XxY6l3xxLgfzAtaB\ntNQkz/uAv1BKvTDlsWuaprXjXoxZkjwhLpi3/VtIScl2qqtPY7FUk5mpo6TE8+3rUM8Me/v5/F15\nTu9k7fHbHbNQ/z6FWKqyMneCJyoq0JEs37598MUvgtMJOt3CzxeL5+t221PdvHv3zsnfeZtI8rat\nkrbAO75O5vnyuPuqXzJXWZYyIsT8pp47Fy9exunE4/my0Lnki3N5NS9g7U9LTfIkA7UeHq8d/50I\ncas5a2owGHjqKW3a0EFPVvNn9Ia3n8/fledKJfpC/fsUYqmuXIGdOwMdhW/s2wef+Yz7M+3dG+ho\nhDc81c1LaRe8baukLfCOr9tmXx53f/dLpIwI4b35zpeFziVfnMureQFrf1pqkqcS+DjwVzMe//j4\n70SImphbaTb3UlgYSVycIjV1dWVNva0Mgikz7I/54d5+vlCpPIPp+xQiWNjtUFMDfzWzNV+lSkpg\n7Vr3lK1QS/KE6johvqqbV2PbHspmltf8/HwOHfLNcfd3v0TKiJhPqNbFSzXf+bLQuRQq1xjBaKlJ\nnk8DL2qa9lbg0vhju4FsYJVvwirmM31u5QiHDqWE7DzlYKp4/DE/PJg+30q42z6vEN4oK3NvOf7A\nA4GOxDfCw+Etb3Enef75nwMdjW+F6johK103S1uwMmaW10OHWDXHXcqImE+o1sVLNd/5IudS4Cxp\nC3Wl1BnAAPwKWDv+80ugUCl1znfhiWAj200Ghhx3IYQ/XL0KsbFwzz2BjsR33vpWuHzZvTV8KJF2\nQKwmUl5FqJKyLVaDRSd5NE2L0DTtH4EwpdTnlFJ/Nv7zeaXULT/EKIKIe25lz5S5lbIE00qQ4y6E\n8IcrV+Dee90jYELF/v0wOgpnzgQ6Et+SdkCsJlJeRaiSsi1Wg0VP11JKjWqa9mngR36IRwQ5macc\nGHLchRD+cOUKvPvdgY7Ct/LzITcXXnkF/uiPAh2N70g7IFYTKa8iVEnZFqvBUtfk+T3wENDsu1DE\naiBzKwNDjrsQwteam6GtLfQWKNY092iekycDHYlvSTsgVhMpryJUSdkWq8FSkzzHga9omlYMvAE4\npv5SKfXCcgMTQgghhP+cPu1OiIRakgfgwAH4/vfdSazs7EBHI4QQQgixcpaa5Pn2+H//xsPvFODz\n2f2apv058F/AOySJJIQQQizP6dOwfTskJQU6Et975BF3AuvkSXj/+wMdjRBCCCHEylnq7lph8/z4\nI8GzAfgL7mzXLoQQQohlOHMGHn440FH4R3Iy3H+/e10eIYQQQoi7yaJG8miatgbYp5T63fi/vwxE\nTXnKKPCPSqkhXwWoaZoG/AD4OPDvvnpdIYQQ4m7V1ORek+ehhwIdif/s3w/f/S64XBC2pFtaQggh\nhBCrz2K7Pe8DPjTl3x8H3gSUjP88CXzUN6FN+hvgnFKq3MevK4QQQtyVXnwRIiPd05pC1YED0NMD\nFRWBjkQIIYQQYuUsdk2e9wJfm/HY/6OUugmgadoTwMfw0YgbTdPuAf4M8HpZyKeffprExMRpjx05\ncoQjR474IiQh/OLYsWMcO3Zs2mMmkylA0QghQt3vfucexZOQEOhI/GfXLoiNdU/ZKi0NdDRCCCGE\nECtjsUmefKBqyr+HANeUf18FvrXcoKbYC2wA6senba0DvqdpWoZS6rue/uCZZ56hVHpzYpXxlIg8\nevQoTzzxRIAiEkKEKrsdTp2Cr828ZRNidDp4y1vciy9/5jOBjkYIIYQQYmUsdrrWWqaswaOUSlVK\nNc94vaiZf7RUSqnvKKUylVIblVJ5wGXgg3MleIQQQggxv1deAacT3va2QEfifwcOwPnz7sSWEEII\nIcTdYLFJHhNQNM/vt40/x1+UH19bCCGECHlHj0JJCeTnBzoS/3v0UXdCS3bZEkIIIcTdYrFJnpeA\nL2qaFj3zF+M7b/0T8KIvAvNEKfWIUuoFf72+EEIIEcosFvd6PE8+GehIVsamTXDPPfCC9ByEEEII\ncZdY7Jo8/y/wOFCnadp/Asbxxwtx77QVMf4cIYQQQgSZ55+H0VF4z3sCHcnKeewx91bqY2MQHh7o\naIQQQggh/GtRI3mUUl24t0y/AXwF+NX4z5eB68Ce8ecIIYQQIogoBd/6lnsKU0ZGoKNZOW9/O/T2\nwsWLgY5ECCGEEML/FjuSB6VUE3BI07Rk3LttATQopfp8GpkQQgghfOa11+DaNfj3fw90JCvr/vsh\nPd09ZWvv3kBHI4QQQgjhX4tdk2eSUqpPKXV1/EcSPEIIIUQQ+/rXYds2eOSRQEeyssLC4I//GH79\na/doJiGEEEKIULbkJI8QQgghVofXXoOXX4bPfx40LdDRrLx3vhMaGuCNNwIdiRBCCCGEf0mSRwgh\nhAhhLhd8+tPwwAPuZMfdaN8+SEuDn/wk0JEIIYQQQviXJHmEEEKIEPa977lHsHz963fnKB6AiAj3\njmLPPefeZUsIIYQQIlRJkkcIIYQIUa2t8KlPwV/+JTz4YKCjCaz3vhc6OuDUqUBHIoQQQgjhP5Lk\nEUIIIULQ2Bi8//2QmOgexXO3u/9+KCyEH/wg0JEIIYQQQviPJHmEEEKIEPSlL7lHrfzoR+5Ez91O\n0+CjH4Vf/MI9okcIIYQQIhQFdZJH07QoTdN+pWlaraZp5Zqmvaxp2qZAxyWEEEIEs5Mn4YtfhC98\n4e7bMn0+73sfREW51ykSQgghhAhFQZ3kGfddpdRmpVQJ8AIgA62FEEKIObS3u9efOXAA/uEfAh1N\ncElMhKeegm9/GxyOQEcjhBBCCOF7QZ3kUUoNK6VOTHnoMrAhUPEIIYQQwez2bfiTPwGdDp59FsKC\nupUPjE9/GiwW+Na3Ah2JEEIIIYTvrbbu318Dvw50EEIIIUSwUcq90HJ1NbzwAqSmBjqi4JSbCx/4\nAHzta2C1BjoaIYQQQgjfigh0AN7SNO0fgE3AB+d73tNPP03ijBUmjxw5wpEjR/wYnRDLc+zYMY4d\nOzbtMZPJFKBohBCr0Ze+BM89B88/D6WlgY4muH3uc+4Fqf/n/4RvfjPQ0QghhBBC+M6qSPJomvZ3\nwDuAfUqpofme+8wzz1AqvVuxynhKRB49epQnnngiQBEJIVaTb38b/umf3Imed74z0NEEv6ws+F//\nC/72b+E974HduwMdkRBCCCGEbwT9dC1N0/4GeA+wXyllC3Q8QgghRDD5/vfhYx+Dp592j1AR3vnE\nJ2DXLnj8cejuDnQ0QgghhBC+EdRJHk3TMoF/BRKBU+PbqF8KcFhCCCFEwI2Owmc/Cx/8oDvJ82//\nBpoW6KhWj4gI99S2kRH4oz+C/v5ARySEEEIIsXxBneRRSrUrpcKUUgVKqVKlVIlSSgZVCyGEuKud\nO+eeYvS1r7l//uM/JMGzFJmZ8NJL0NAAb30ryFJoQgghhFjtgjrJI4QQQtztlILGRveW6B/5CBQV\nwYMPgtMJly7Bpz4lCZ7lKC2F116Dri4oKYGf/cx9zIUQQgghViNJ8gghhBBBRCmor4f//b/hT/8U\nMjIgPx+eegrOnnWP4PnNb6C8HB54INDRhoYdO9zHc+9eePe74eGH4fe/l2SPEEIIIVafVbG7lhAr\nSSlFfX09PT196PXJFBQUoMlt8qAm35lY7RwOOHUKTpyA48fh5k3Q6eBNb4K/+Av3f3fvhqSkQEca\nuvR6+OUv4eWX4e//3j19q6TEffzf/W5ISQl0hGIlSHviJsdBCLFSpL7xPUnyCDFDfX09J04YGR7W\nExVlBMBgMAQ4KjEf+c7EauNyQWUlnDzp/jl71j39Ki8PDh92/zz8MMTFBTrSu8/Bg3DgALz6qns0\n1V/9FXzyk/Doo/Dnfw6PPRboCIU/SXviJsdBCLFSpL7xPZmuJcQMPT19DA/r2bx5F8PDenp6+gId\nkliAfGer06lTcOEClJVBbS3cuuUe0RJqU2Ru34aaGvcokc99Dg4dgrQ091owX/gCREa6F0+uq3Ov\nvfOtb7l3e5IET+BoGuzfD7/9rbtcfv3r0NnpnsIlQpu0J25yHIQQK0XqG98L+EgeTdO+Cbwd2ADs\nUEpdG3/8s8D7gALgT5RSLyzwUmkAv/71r7lx44YfIxahrqOjg6qqDsrKXiYy0oqmZdDU1Ljicbz4\n4osA/OQnP5EyvYBg+c7E3DyV5/e9D8bGZj83LAxiYmb/rFkDsbHu/4+Y0npNjOidOrJX0+78W6k7\niaOZ/z/1sanJpamPzfX8mc8F93bcDgfY7e7/9vVN35o7MRE2boSHHoItW6Cg4M5nef11948IPno9\nfOIT7hFYR4+6H5M6OjTdze3J1DK9bt26u/Y4iNAh9fTqcDfXu4tVV1c38b9p8z1PUwG+Zapp2h7g\nJnAeeMeUJM99QA/wQ+AbCyV5NE37T+Bjfg5XCCGEEEIIIYQQIlC+pZT6+Fy/DPhIHqXUeQBtxupK\nSqk/eHp8Hr8DPvbjH/+YLVu2+DZIIaZQStHa2kp/v5W1axPIycnxy+Jgv/nNb/jiF7+IlGnhjZUq\nl0sl5VksRzCWbynTItRImV79grGuDCQp02Ihq+2cuXHjBk888QS4cx9zCniSx4e6AbZs2UJpaWmg\nYxEhzGg00tYWyfBwITZbD/fcE++XxcEmhpVKmRbeWKlyuVRSnsVyBGP5ljItQo2U6dUvGOvKQJIy\nLRayis+Z7vl+GUpJHgCefvppEhMTpz125MgRjhw5EqCIRKiZujhYbe1lenr6WG5dcOzYMY4dOzbt\nMZPJtLwXFXcVf5RLIYKFlG8hhFiY1JVCLE6onjMhl+R55plnJFMr/EqvTyYqykht7WWionrQ65df\nE3hKRB49enRiOJ4QC/JHuRQiWEj5FkKIhUldKcTihOo5E3JJHiH8raCgAHBnfvV6w+S/hQgkKZci\nlEn5FkKIhUldKcTihOo5E/Akj6Zp3wHeBqQDL2uaZlNKGTRN+xzwYUAP/EDTtCGgRCnVG8BwhUDT\nNAwGQ0gM5ROhQ8qlCGVSvoUQYmFSVwqxOKF6zgQ8yaOU+vAcj/8L8C8rHI4QXlNKUV9fU9Nz1gAA\nIABJREFUP575TaagoCCoV2MXYqmkrItgJuVTCBFspF4SQizHcuuQgCd5hFhJvmx06+vrOXHCyPCw\nnqgoI8BqWY1dLNLd3lmTsi4geM8DKZ9CiKXyV70m9ZIQKy9Y+ylLsdw6RJI84q7iy0Y3VFdjF7Pd\n7Z01KesCgvc8kPIphFgqf9VrUi8JsfKCtZ+yFMutQ8L8F5oQwWfqCTM8rKenp2/Jr+Vejb1nymrs\nyT6MVAQTX5ab1UjKuoDgPQ+kfIa+kRGwWMDlCnQkItT4q16TekmIlRes/ZSlWG4dEvCRPJqmfRN4\nO7AB2KGUujb+eCrwI2ATMAR8TCl1LmCBipDgy23yQnU1djFbqG6v6C0p6wKC9zyQ8hmaBgfhO9+B\nH/8YKipAKYiIgHvugUcegXe+E3bvhlU6El8ECX/Va1IvCbHygrWfshTLrUMCnuQBnge+Cpyf8fhX\ngEtKqcOapt0H/ErTtFyl1NiKRyhChi8b3VBdjV3Mdrd31qSsCwje80DKZ+gpL4f3vAdu3nQncz78\nYUhKgu5u+MMf4Kc/hWeegYIC+OAH4S//EhITAx21WI38Va9JvSTEygvWfspSLLcOCXiSRyl1HkCb\nvSrS47hH8aCU+oOmae3AQ8BrKxuhCCXS6IqlkHIjhJwHYmVcugQHD0J+PlRXQ2Hh7Oe4XHD6NPz3\nf8M//AN86UvwoQ/B009DRsaKhyxWManXhAgdcj7fEZRr8mialgxEKKW6pzzcAuQEKCQhhBBCCOFH\njY3w6KOwYwecPes5wQMQFuaesvXss9DcDB/5CHz3u+7E0D//M9jtKxm1EEIIEVyCMskjhBBCCCHu\nHkND7qlZej389rcQF+fd361fD1/5CrS0wMc/7v5/gwF+9zv/xiuEEEIEq4BP1/JEKdWnadqopmlp\nU0bz5AKtC/3t008/TeKMidlHjhzhyJEjvg9UBIxSivr6+vE5l8kUFBQwe8Zf4N53sfEdO3aMY8eO\nTXvMZDL5PH6xfAt9t/4qI0KsVp7KOuDVY3JO3D2+8hWoqYHXX1/a+jpr18JXvwof/Sh87GPwx38M\n738//Od/wpo1vo9XiJU2tS5NSUkCoLfXMmd9Kf0McbdQSmE0Gikvr0QpRVJSIvHxiaSmpty15T4o\nkzzjngc+AnxB07T7gfXAmYX+6JlnnqG0tNTfsYkAq6+v58QJI8PDeqKijAAYPEzA9HUD5+37enpe\nQUGBx1iUUtx7771s2JA37fGjR4/yxBNPLDnWUBMsnRWj0cizz57GYgknKWmMJ59UFE6ZU7CcMuLp\nef4ULMdU+E8wfMeeyjrA8eN1tLcrnM7XOXy4idzcXF5+ud7rcyIYPpvwjbo6+PKX4VOfgu3bl/da\nGza4RwL93//rTvZcuwa/+hVkZfkkVCFWzMw6zuVy8eMfX8RiicHleo3k5HTWrr1nzvrSH/0MqXdD\nR7B8l76Io76+nmefvUBVlcJubyc8fIAdOx4iK6sXWF65D5bjtFgBT/JomvYd4G1AOvCypmk2pZQB\n+AzwrKZpRmAYeK+3O2ut1i9DeK+np4/hYT2bN++itvYyPT19HhfZmtnAKaXQNG3JZcNs7sVkGkSv\nB5NpELO51+P7eooPPDe2wXCx70v+Ov9W4jh5E3t5eSVVVU6Sk+/HZHqd8vLKaUkeb8umt8/zZewz\nhVrZE7P56zteTHmbKOuFhTs5f/55Tp06S2JiAiZTFC0tUZhMLvr7X+PgwVKGhzd4fU5I+Q0dn/60\ne9rV5z/vm9fTNPjzP3ev7fPYY7BnD5w6BXl5vnl94T/B1IdfqVjmep+ZddzYWANVVfEkJ++goeEa\nOTnJvOc9c9eXvu5ngNS7oSRY+tVLuVab+bpmcy8WSwzJyTsYHa2gr68evd7A8HD/ssv9ai3zAU/y\nKKU+PMfj3cDBpbzmav0yhPf0+mSioozU1l4mKqoHvd7z9zuzgSsvr6S7O2bJZcNut9LYeJOaGhfR\n0c3Y7Z7HlHuKb67G1h+NcCD56/xbiePkfewxwNrx/07nbdn09nm+j/2OUCt7YjZ/fceLKW8TZf38\n+edpbLwJbEWn66Gh4TxGYzZxcdG0teno7OwgKirW63NCym9ouHoVXnjBvYiyr6dVlZTAxYvwlrfA\nQw/BmTOS6Al2wdSHX6lY5nqfmXXc4GAFEA70o9OFExHRPW996et+Bki9G0qCpV+9lGu1ma9bWBhJ\nUtIgJtMFhobaiY8foKfHSFZW2LLL/Wot8wFP8vjDav0yhPcm1m9wZ3ANk/+eSimFzTZAe3sVZnMr\nmZnu3uNSysZExvjmzRbCwjRycmBkJJHY2PhFxFfvsbH1RyMcSP46/1biOM2M3WzuBYzT7iaUlGyn\nuvoCFksFmZkaJSXT5xZM/e5TUgpQSnHx4uVZdyO8KcNTLXQ3ZCnHPdTKnpjNl9/x1DLY2trK8HC2\nV+WtoMB9Hvz0p88THR1FXl4hNpue7Oxr9PRYSE3dy+joGjIy4iktNSx4TkzE0draysCAhRs3FNHR\nvVJ+V6nPfx62bgV/LZ2YleVO7jz4IBw+7E76JCf7573E8gW6D7+Uem65I37m+swz6+/i4vsYGWnB\nYqlm165M9u7NJSGBWfXlRDxmcy+FhZHExSlSUxfuZ3hD+g2hIxD9ak/n0Mw4YPa1WkHB9HOsu7sH\nk8mFXr+WtrYu9Ho7RUWxpKR0kJ5uIDl57bQ1eZZjtZb5kEzyrNYvQ3hP0zQMBsOsimJqQ2uzDXDj\nxjA6nQGns4XNmw3k5hro7q5fdNmYyBhfuzaI0XgLs1lPSsoADofN6/jmuqhf7MV+sPPX+bfU47SY\nztfM2O32SN54o3fW3YSnnpo+jHSqqd+90Wic8w7GXGV4LgvdDVnKcQ+1sidm8+V3fKcMpnDzZgOD\ng7WYzWYyMzX0+jn2usZd1jVNw+lcj92uOHHiFYqLdTz66CESEm5hsQyQlBRGSckOr86JO3FkA3Zy\nctooLd0h5XcVunoVTp6En/0MwsP99z7r18Px47B7N/zpn7rfMzLSf+8nli7Qffipbe3AgAWwU1ur\nzRuLN6MV5uuLzPWZZ9bf+fn5bNzYsGB/Zno8Ixw6lOKzEUjSbwgdK/FdenM+z4zD5XJRXX2REyea\nSUoaJCXlzbPOsdjYLhobzdTUDDIy8jp2+zo2btxLVFQs991n8OmIu9Va5kMyybNavwyxfFMrgfb2\nKnQ6A3v3vp3a2svEx7sb3TvzPO+UjYV2f5m4m1NQkEJDQzT33JNNbGwqcXEJXsc210X9Yi/2g52/\nzr+px2kxiZvFDLeeGbvZ3MvwsDbjDoQ2OTJrYq2lud7fl3ckF3qtpRz3UCt7YjZffscTZTA+Ppv2\n9jTi4jrp7r5ARkYGShkm59HP9beJiVs4fDiHqqpzFBWFsX//fjTtVZqb28jNzfa6rph+LrhHVsqU\n7NXp3/8dNm1yJ178raAAfv1r99Stz34W/vVf/f+eYvEC3YefWr/cuKHIyWkjJ2f2aJm5/mautn6i\nLzI0lExT089Zt87Frl33s3///jk/s6f625v63J+joaTfEDpW4rv05nyeGUddXR0wAtiBscm/n1qm\ndboONm3aiF6fQ2VlA2Fh2ePr/v2WU6fOTr73xAY3yxlpt1rLfEgmeVbrlyGWZq6htWZzK05ny7Ts\n8Vxlw71j0gUslhiSkq7z5JPuixV3g5xCU1Mtg4O1REamkpzcT2zsEFlZYaSmpgTmQwexlTj/FpO4\nma+z46ninx670eMdiIV22JrgyzuSC73WQsc9mBazFKvPnemvRszmCjRthMLC+ykrM9LQkMqJE0aa\nm5uJj0/0WL4myq/NplFYGEdpqYHGxkbq6kYYHi6irq6HvLyGOc/jmaM0dTqnjNZd5Vpa4Oc/h298\nw7+jeKbaswe+9jX4m79xT996+9tX5n2F9wLdh5/a1kZH906OEqyvr+fSpSvz1m/z1UnuvkgKbW2d\nvPxyF4mJqVRWlgFw8OBBrz+zN215oEdDCTFhKedzb6+FxMTt7Ny5ixs3LvLSS8ex2ex0dEShlIvo\n6D7y8nJwOkcYHoa8vFRgkPPnf0tj43VgI8PD0ze4mbmb54EDB0K+Dxz0SR5N0w4BXwIigUHgw0qp\na4GNSvjLcncIujO0FiIjbWRkjJGR0UpJyfZ57waVl1dy7ZqLiIhErl27RkqKlQce2MnwcAqDgyNc\nvWomOvo2GzfaKC1NRK/vIi8vh/z8fJ99jruVy+Xi5MmTk3fz9+/fT1hY2Lx/4ylxM3O+7sQxn6uz\no5TilVde4fhxIzrdBjIzzcD0ZNFcdyBm7rBVVlaBpmmYzb3Y7VZiY+NxOGzExsb7bD78cu9uBtNi\nliKwvKmfZj5HKUVtrROdLp3IyDdYvz6Rrq5WIIbi4r3cvPkGTU1VZGbumdwdA6C8vIJbt27hcil6\ne81ER8dSXHwf+fn5XL581eu7zVPLr07nZPNmHfHx899dF8HtP/4D4uPhf/yPlX3fT34Szp51v291\ntXsqlxATPLW1c7WfM9e+iY114XBEYjb3olQd4L5g1euTSUlJYmDgAmfPluFwpLF+/X309TXT3Nw2\nK4b56mhPsRQUFGA0GikvrwRgx45tHDxYMP7eC69vJn3V1WM1fWeLiXWuGzlNTRdobOwkIuI+Rkf/\ngMFwlUOHHmXTpk3AqzQ3V1NcvIHc3FzOnDkPbGTPnndRV3eZsrKKyQEA7e3R9Pevo719kIk0wtSb\nUsCqOa7eCuokj6Zpa4EfA3uUUrWapu0BjgLFgY1M+MtCF6KeKgxPQ2uhjYGBUUZGdtLd3Tu5JsRc\nr6OUwuFowW6/TW/vGk6ebCQhIR6LRfHCCye5dSuatLRSxsZ6CAuzERX11nnvPE+/IKmjqalpzjvc\nd7uTJ0/yve+VMzSUS3R0OeC+qzUfT4mbucrOXMkRd2a/ivr6LDIz1wGdsy4ylVI0NTVNJqDy8/On\nfHd3dtjq7Ozg+PEYqqoaaWhoITU1nYEBG6mp2eTl6XjyydzJcrLUBnq5dzcDvZilCB7eJPxmPict\nbRCnM4e9e3dx40Y2WVktVFVVUl3dyYsv9pKUdJv09M3j9fAlXnrpOJWVZurqXPT0dDEyotDpcsjO\nDmdkpIWNGxu8vtuslKKsrIK6OivFxQasVkV8vMab3rTL78dK+IfDAT/4AXzoQxAXt7LvrWnwX/8F\n99zjfv8XXnA/JgR4bmvnaj9nrn1TWGgbH52oMTBwGogkMXErUVFGDh4soKgojsrKGMLCNMzmRhIT\nX2dwcAdGo5H8/HwaGhomL3Jra504nXoGBs5TVFQxucnD6dPnMJkS2LNnJ3V1VyanjT/77AWqqhQw\nSFXVaR58MI/4eM87wE6Qmz+rj7+/M18mkRZzTXenzKcSGTlMfLyZ0dEuIiLaiYjYyb33HqGsTCMm\nxo7BYMBoNE6OBDYae8jL08jNzeb69Wu88MJ3cDq7uXlTIy8vG6vVQldXFz09BjIz43A44jh+/M5N\nqQmhdi4EdZIH2AT0KKVqAZRS5zVNy9E0bYdSqiLAsQk/WOhC1FOF4WlobU9PH21tOZMXHG+8UU5Z\nWTkdHR2sW5dBUlIidXUjOJ2p6HR1xMRYGRm5RmdnFmFh66mtjeJ73/sVubmxOJ0uoqKKGBxMA9oY\nHV274IXy1M9x7tzPaGpqJjPz/pCpOHypubmNoaFcSkvfQ1nZcx7vas3kKXFz6dKVKWXn0mQGX69P\nHh9x1TDZGdq0aRMvvvgS16/XExbmoLa2nXXr2rHZDk5bV2SuBNTMHbbWrcugvPw2ZvMonZ0GrNYe\nenqiMZvHqK1tIilpAHDf0ZvakK1keZDh22LC9MT49HNlokM3MbUgPj6bqqpmRkc76O/v48SJapKS\nxnA4wjhzpo/mZoXLdYK8vGhiYuDGjUtYrddoa7NSX5+F1epgbGwQpfSMjm6hr6+Hq1cbKSpay+OP\nv4tDh6YvKmo0GmfFUl9fT3W1HZNJw2R6meJiHXr9WwJ9GMUy/OxnYLXCRz4SmPdPTobvfhcee8y9\ndftTTwUmDrE6zNV+zuyzNjdXMzxcxObNuzhxohqIYedO9+96ey2UlGzn2rUBHA4jY2MXiInJ4PXX\ndVRUPEdBQRhmcxRRURsYHm4hKqqQjRtzOH/+On19A5w581MGB4cYHEyku7uWvr5eiooysdmiqKqq\npqlplKSkh9G0fpqbX8XhGFmw3yk3f1Yff39n3iaRFkoG3bk546K4uASbTU3bsTYlJYmmpiZOnKjH\nbk/Aaq0kIWEb995bwvnzFURGNrF16zsYHe1mdPQaZWUa0dHN5OaWTHvtoqIdNDV189xzz+N0ZuBw\npNLQUEl8fDT9/Rls354CbGPHjiu0tJjQ6XIYHh5Bp8uZdgxhabsvB7NgT/LUAymapu1SSl3WNO3t\nQByQC0iSJ8D8MWRwoQtRTxcn2dnZs4bJ2u3WyaF+Vus1zp61YjRG0N19i7Q0B1lZY6Snb2bvXncS\npqOjHbM5hd7eNkZH+4mMjGJgYCNmcz3x8QVER0diszWRnW0jNzff49SfqUNl165NQKcbobb2Mk5n\nKzqdIaQqDl/Kzc0mOrqcsrLnJivwhcy80zZ9vZBuIiPNDAyM0taWQ1SUkcLCpvGMv7vRiok5y89/\n3sitW+k4nTUkJblIT7+fl15yD+GcmKs7VwKqoKCAvXubJ0f4bNiwgStXfkd/fzjJyS66uvqxWlsZ\nGdmOUn2cONFIX18CIyOpNDefnmzIqqubSUurWJHRXb5ezHI1DRkW002tZ63Wa1RXR9LWxrQOnV6f\nzMDAec6fvw4MMjo6gNXag9OZhsvlZGDAREfHWiIjt2GxvIbJNEJ6uhWD4TKRkQ4iI3PIylpPd3c5\ng4NVjI7GMDJyC6s1AodjhNOn63E4/pvRUUVubja7dj1AQ0ODx86lp0WbfTlFS8ryyvv+92H/fsjN\nDVwMb387PPEE/PVfw759kJkZuFhEcMvPz6ewsInm5urJUb0wu8+ak5PJCy+8wqVLvyEqykFe3jbO\nnXsBp7MFm829rbPFYmZkJJKxsViam1OxWLJxOLq5erWC9PQDFBSsob/fQVjYZdrbbwEjpKcbePXV\nJuz2VKKjdYyNDWG1Xic+XkdtbRrt7QmYzZWMjR0nLi6CtWtt6HTbxheifX7WQrQTVsvNH6mj75hv\nCQJfHKOZSaSpiZmZN1/mm7HgvjljwWRyYjKdoLhYw27PnNyxdmDgNCZTK83NGxkejsHhiGJk5CQ1\nNSYiIsbQ6XTs2pVCXt7DGAxXWbPGRmRkKrGxcfzwhz/kzJk62tvjqK3tIDy8h9TUNdjtYDBsIjY2\nms2bYzAazVRVnaWwcB0HDx6evIFlsyVSWzt7Xb+oKOPkjarW1qRVX9aCOsmjlLJqmvZO4CuapsUC\nl4DrwOhcf/P000+TmDh9eOKRI0c4cuSIX2O9G/ljyOBCF6KeL040dDoncXE3qKoaRKfbQEaGIj7e\nTH9/JVZrDwMDhURFbSQqah2jo510dHQAb3DjRjZOZyvt7Q4cji2Ehw8wOPgKERHbSU5+GxERx8nI\nGCUlRREZ6eDd734HGzdunDXPub6+nmefPU1VlROIoajIxoMPZhEfDzZbscfKZKpjx45x7NixaY+Z\nTKZlHcvVYv/+/QDjCZOSyX8vhtFo5OzZJszmASIjL7B9+zpGRnbNurs20eG5ceNFuroKSE9/jJYW\nOzpdN2vXbqWhwcHx40by8vIoKCggIkLD4TjL2bMdpKQMkZtbCkBDQ8O0BWNzczUOHy5GqTocjjAS\nEgYIC3MRFpZMVFQcUE9z8wixsevo6sqmpeUyTU0W4uIiqK7WUVpa79fRPP7oIMkw79Vraj3b0rKW\n8nJQCkymQbq7ewAwm3tJSbGSmRnLtm0HOXv2p5hMseTnH+TWrQskJFSjVCoWSyO3b6eQmBhPV9cw\nlZU20tM309fXSHIyFBd3Y7NtYHAwgY6OBvT6ArKyDtPeXkVt7RvExj44OUouPj7R4500T4s2L6b8\nLlT+pSyvrJoauHQJnn8+0JHAN7/p3k79k58MjniEfyy0g+pC7eLMNn9iqv7MPmtjYyONjcPY7TnE\nxrZxzz2d9PT0o9PlUFvrxGK5RljYRvLzd3Dz5s/p7TURHW0lKsqJy5VHQkIa9fXdKNVFQUEho6NN\nrF+fSGdnC6OjawgLi6Gra5Ciohhyc/cyOmrF6Uxlz56dgCI2tp7CQgNr1xZQVzfC+fPP09h4E9g6\nbSHaCYHeycwTT9+V1NF3zLcEgS+O0cwkkt0eOZmYmVhvT9M0Tp06Ozlt8Pz552fNWOjp6SMhYRuH\nD6dQVXWWoqJ44uISGB7WKCzcyU9/+ipms52wsA46O23ExGg4nRGYzeXs2vU2rFbXZILm0KFHAfd0\nqhde6OXq1VpcrgzWrYulv7+M1NTN7NnzKCdOvMKtWzVER/ejaXkUF2sUFcVTWmqYPL8ndujNy6sf\nH1FUgFKKnp4+Cgsj6etrpaYmkra2bLq7V3dZC+okD4BS6gzwMICmaTqgE3eix6NnnnmG0tLSlQnu\nLufrIYPeXIhOrdxaW5Noa8uenBLV3FyDw/EAsbFruH79IsPDt7h9O4+xMRdhYddxuXqwWpuxWmPI\nzs5neLgLk+mnxMbGMDLSzNBQMklJJYyNtRIZ2Y5SV8nKiuJd7ypmy5Z75u0EmM29NDWZGR3NJyoq\nE4vFhMUyQHx8Irm5ueTmMu8CeJ4SkUePHuWJJ55Y+gFdJcLCwhZcg2ch5eWVVFePkJy8j9bW0yQk\ntJCQkEhtLURF9ZKbm01dXc9kh8duL8bh6GbNmqvEx48QF+fk1i0HmZkb0eliKCuroKysgps3Ffn5\nD2CzGTlwYNNkAqqnp4+hoRQSEpKpqqomLW2Qxx9/J7m5uZSXV3Lr1j28+motJlMrsbGKjRtTGRrq\npr39JgZDPp2d3URGdrN9+8N0drbw4osvYTb3kpqa4pe7Bv7oIMkw79Vjvl3kbLYBGhvLqalRREc3\nU1dno6wsffxOWwLJySPYbH1ERtqJjAynvf0KnZ1X2Lz5NklJ3Vit7eh0VrKyHiYiwsLoaBZ79rwL\n+BmxsfXk5CRhsz3Ixo338vOfP4/T2YbL1cHYmAmlCiZHyV2+/DqFhQYGBixcv+7CZquavJOWn58/\nbVqXrxcdl7K8sr7/fUhNDY6drZKT3du4v/e9cOIEHDoU6IiEP3iqA8D7NTjmqiNmjio+deoskZHF\n7Nvnrtes1koyM986+XfQSlLSICbTBcLDh1i/3sbw8AU0zUpS0lrS0qyMjFQQEbGWe+99JzZbKzk5\nJjo6btHQcJuurk6GhytwOtPIyDAQEaHR3n4es7mVzMwYDh9+HIPBgMvlQtNO0t5+kaSkHHJzS6ip\nuTBr5PB8a/0FavSMp+/KV3V0KIwImus789UxmplEMpt7GR7WJl+3vLySrq41VFVF0tBwib6+W8TG\njhAVVTjtvfX6ZKKjJ27OrKO09M5omfPnn8dsdjA2tpHbt28RHX2V0dFUNC0apzOK5uZeioth794N\nkwmaiSUZ9Pq1gJmICAcmk4v0dI3c3ASs1l7Wr7ewbl0YWVkZFBZmk5amn1zraubOeBPH0Gg0TltX\nKy1NIzFx66KPYzCWraBP8miatk4p1Tn+z38Efq+UuhnImISbXp+MTlfHuXM/w+lsxWYrnraeyWJ5\n2sZ85rbUU09MvT6Z7m7j5JSohIQCYJSamuuMjdXgcKwnMbGUmBg9en01992n0dMTR3NzJmlpudTU\nDGAyDZGSsomEBBvr1pUTHj5GRkYC27atYf16jZ0738KBAwcmd3uamJY18yS2262YzRZMplpGR69i\ntZpRagt5edlER9dz6JBBFgn1uxgGBsLo7lakp6eQkDBCdnYbpaU7yM/PJy+vYXzI8lb27Svh2Wf/\nP3S6crZs2cC9926jpsaM3T5MV1cLZ86ApmXQ3h7G4cP7sdk2s2ULk+VAr0/Gaj3F+fPDOBw2HI4m\nkpLcCb2urjVcv55ET49GSoqVnJwU3vGOnWiaxokT1eh0OaSl5dPba+Ls2TL6+4e5dm2Ajo4MsrJ6\ngeUlYBZanNxXF7GrZZi3mD/JEReXwKZNW9HrDfT0xDAy0jVlSqyLyMirxMRUs3dvASdPVvL669cJ\nC9tATY0Vl8tFTs42zOZK4uLqyc/PIjk5krq6K0RG2unoGKO93UJX1y+xWG6xc2c8qak5ZGTEY7dv\n56WXzJSVPUd//wUqKjQcjm1ERkag010FEibvpB06hF8XHZeyvHKGhtxr4HzgA6DTBToatyNH4Ic/\nhI99zL3b1po1gY5I+JqnOgC8X4PD2zpi5vTzwsJ87HbzZD+5uLiIJ57YRkVFJbdupdDdPUZtrYWY\nmEISElwYDBYiIvQYjSP85Cffpqgojsce+zOys7OpqblCdPQIUITT2cngYDWaVkRkpJ6urj+QkZGC\nUu4dvyZGHsFuWluv0NT0I+LiEhY1cjhQo2c8fVe+qqNDeUSQr47R7CSScdrrArS3KzRtCzCK1VrD\n7t33YLdr0957vlFi7r74bvLySqmuPs/IyABXr3YzMFBMUlISkZEtZGSkTO6MrJTixo0a/vCHRlyu\ndCIjO7HbISJCIz09g717M+nvN2GzZRETswWHo5e0ND0FBQWzdtGduE6dKFfuJJZ+WiI2Kqpn0ccx\nGMtW0Cd5gC9qmrYXCMc9XesDAY5HjCsoKKCpqYmmpmZ0OgO1tU7y8pY+7cS9LbUiKWk7tbW/JCLi\nZ+zadT8WywCaplFSsn3ytWduWVlXl8S1a310dbWSlDTEunX5VFSM4XK14XC0ExExRGGhgczMddTW\n3uDKlR4GBhopLNxHcvKbiYmJ5a1v7WTNmlgiItYRExNHWFgYeXl5Xg3rj4tLYPv2B8nO7qaycoCw\nsEJu3Ypn+/YUbDZN7gz7ycT263V1Rtas6aWnpwGdroeUlJ309bm3cJ6atQcYHjY/nx9CAAAgAElE\nQVTicJh45JEMUlJi0TSN2Nh49Pou2ttvcvv2WtraIC/Pgd1uparqHIWFcdMq+oKCAoqKKmhqaic6\negNmcwTHjxvZtWuA9vZoursTsFq3k5GhIz09lcTEJHbv3snGjRsnF5x78cWXqKkZJi5uCz09nbhc\n0ZhMg3POnffWQouT++oiNhiHeQu3mYm+mZ2Ynp4+Cgrcz2lra0OnswCpZGZqREaG0d7++uTaVpq2\nhtHRe+jvv87YWDeJibvYtetJXnnlUwwMRLNu3b3Exg6xZcsAH/3o4zQ3N9PSUk1f303q6jQGBzfR\n19dLe/t1du/ewebNO0lNTWHTpk1kZ7/K5cuvU1ExxPDwI/T3r2PtWoiJUYyObvUYr6e7ZAvdQVuo\n/EtZXjm/+hX09bmTPMFC0+Bb34Jt2+DLX4YvfjHQEQlfm6sO8HYNDm/qCKUUGzZsYM+e6zQ1XSY3\ndwNvetObaGlpoampmcjIAs6da6a/3z1qp6srBqs1DpvNTkHBfWiahZiYLuLj16PXOzCZbAwOujdt\nSE1NIS5ulIaGZMLD07BYorhwoZaiomI2bdqM0dhKfb2eZ589TVGRe23IoaFs9uzZRXv7LW7fbuHA\ngXdhtfZ63R+dnmxxr4E5seZlXFyC30Yee/qufFVHh9qozaltX0pKEgcPFsw7a2ApJl7H/d1HYrEo\nOjuv0tKSTHi4ldu3o4iJiWXPHsO0955rxNHUvrjdbhrvXz+MxdJCR0cYZvMtLJZOWls3cOKEuw97\n7tw5vvvdi9jtOuLimigpiSci4n62bXsIq7WXhASNhAR33316Inf2Lrrl5ZV0d8dM9pELCyOJihqZ\nLG8lJdunJIG8P45mcy8mkwu9fi0mUzdmc2/Ay1bQJ3mUUh8MdAzCM03TiI9PJDPzfh9WmINYrVV0\nd/fzxhtxXLx4krExPXFxaVRXX+Cpp9yNyYkTRoaGUrBam0lJuU1PTzxRUYUkJ1eQlbWG2FgDAwNX\nGR0tY2zMTFRUOi0tWdTU/Bq7PQK93oDdbsZiqSQ2NorMTI23vc095/NHPzpFVZUZiKG6+gJPPumO\nrLy8EqPRiM1WzN69d7auNBjcDXBWVg+3bnWxZk06hYWltLa2Tc4nlTvD/nFn96t8+vu7iInpQqfL\n49SpWtLTk0hODqekxDhZYU9tBK3WTH79axM1NcOMjtoZG2tmzZp7iInJoK3tOn19Teh0ZhIShjh4\n8H3TKnpN0ygt3cHly63U10dMTvOCIZzOFqzWSJKTB+jvj8LpHESv3zyrwSsvryQ5uYvw8DX09Zmo\nq+tEp0vE09z5xQwD9dSJ2b175+TvFmq0vH2v5W7pLvxnZqJvZidGrzdMeU42YCcnp42kpERu3EhF\npxvC6TSSkRHByMhO4uKyOXHiMkNDGrdvV/PGGz/B6exEp8vF5WomJcXF7t27CQsLw2gcZXj4Hmpr\na+noaCQ8PJ+YmFhsNjNnzxrp7d1KdLR7dM7BgweJj0/E4Wilvz+G9vabrFnTTURE7JQpCGvQ6wvn\nvUtWX1/P8eN1tLcrnM7XOXy4aXLxdFj4Ak3K8sr5/vfhwQdhxiDdgCsshL//e/jqV92LMUtZCC3z\n1QFlZRXj6zvOvQaHN3VEfX09r7zSQEfHJtrbh4mOzuTkyUbS0gbJzLyPwcFRXn21guZmSE3tQqdL\nJz09h3PnXuXChWoyMgYwGPSYzWWYTOvJyiokPd1Jb6+F3bt3cvhwMXV1v8NkSmbNmnBaWx1ERZ3F\n4egCYkhPz6KsrAKLxUVS0iBwjbo6jbw8HZCLzdZHdHSv1/3RqaP1u7sraWzUMTLSQ2NjE/n5RRQX\nJ3s8Vsvl6bvyVR0daqM2p7eL/pk1cOcmqXF8bZ4cRkbeoK+vnNu3C4mOtnP2rJF77y31+r1nLmTu\nciUyOjrGwMBN+vraSE7eCmykvf025eWV/OIXp2lpyWTt2jdjsVwhKspBQUHGZJlOSSmgubl5cvOV\nzEwNvb6Qnp4+dLocMjPd/YuYGDOQPq2PHBenOHQoxUPdUD+ZKPImmWm3W2lsvE5NzSAjI1VkZKT6\nLRHqrSUleTRNCwOeBPYBaUDY1N8rpQ4sPzSxGviywnRvS32a69fLSUtbT2HhJi5cqCQ5+R6Skw1Y\nLO5tfpVSmEwulOqnrKyPxMRRxsbiOXz4XlJTU8nObiM7O5stWxxUVQ1iNhdjszkZGrLR2TmA05lF\nRkYRVms7W7fe5G1vi6OkZAcFBQVcvHh5fG2ddURFraevr398vRc7VVUKu91FePhZNE1j/Xq4ccNM\nVVU1GzZkYTBEUFY2jE4XTktLG5mZfdPmkwrfm7r71e9/30V8vJUdOx7mwoVqSkszSUxMnZK1T2Fg\n4AJFRXGUlu6gpaWFmpoBhoYewOFQgIOMjDG6uzvR6XpJTs7A5drG7duDwOwFGvPz8ykuTqKj4xou\n1zDr1ydRUrKdpKRmlLqGwxFNbOwIhw9v9fj9T5T3vr4u0tPjWbdOo60tg5QUAyaTcdpdgMVsaTl1\nl7GJhs5TB2muZE4wDjkVizNz+/O0NI2DB3dMu8s2Mb/d3dHRyMlx/+3ICOMLKf4Wq/UaIyM3qKio\npLv7Fvn578Dluohef4qcnB1oWg4mUxcGAyQlJY4vxJhGXl42Vms24eG9WK2v4nLF4nQmMTY2xq5d\nydjt2uToHJttgOHhFlyuSPLzR9i2LRmbLRWdLhWns4XNmz3FO/2GQk9PH+3tiv7+dbS3DwJV5OXl\nTZbbqeU/GOfN3y0aGuDUKfd0rWD02c/C0aPw0Y+6F2OWYhH8lntTYmL3vpkjAJbS5E2s1adUP7du\njbBxIwwNpQCDDAzc4MyZBvr6ksjIyMVu7yIurhW7PZG0tLWUlmaiaSnExIwxPKxwONpoa7tNQYF+\n8ibRgQMHuH79Bt3dtYyMZDE6uhdoIj/fQVJSAt3dtUAMxcV7sdlax/vCCptt/fiI+NbJ6S/eHMOp\no/VHRrJpa+tDqX46OzeSkBBPe7vyy0iYifde7EW2N0Jt1OZKjkya+l7NzdVkZCQQGfkAUVFDaFrX\not575kLmqakOUlJiMJtj6e9/iMjIFBoabpGb20RdXTxDQxGsWZOA1Qoul53+/n5iYjrR6TrIy8tB\nKcX/z957B9d1nmmev3Mzbk64IHIOJAESAEUxQsGmKFK21MFuW+pqqcdbM7u127s93dM1UzW1W7Nb\nNV07UzNT5e7tMOMpT4/bbtuy5dCjQFKSZVEEKWZkkrgX+d6LcHPO4ewfF7gESJASkyjKfP4hke75\nzne+837v94bnmZzMolBUkc066OzsRhRFnE4nMlmAQmERjWaWnp5eent34PVOl8+tlZUdN9mGjTw9\nn84PLrW+tyCKKoaG1ExNacqVSA/Lh77bSp5vA/8MOA5MA+J9G9FjPFK4HwZz/QYzMNDE9u1GrlxJ\nkMkkkUgWWVgIsLIyyu7dSiyWPubn55mZucrSUo54XMq2bd04ne5yW01/fy8dHSX1lWAQOjvr+P73\n/4Zf/OIsFRVViOICTufbmExyGhr20tu7k/n5eT788BR2+1UcDj8ejw+pdIy9e1XArlWeoJ1IpWPE\n479Gqx1Dq93C2297CQYrEIQ32bfPyLZtX2XfPivj46cYGGjkm9/8vccHiPuM9etFJhNQKucYGnqd\ndHqcQCCNVKpny5YkgmBBofCvEhZqsdkMjI0VCYWieL0OCoVlFAoL2WycbDaE2eyjsrIKk2mZSKRA\nJtOKVmvC55vn2LHjSCStZLOVZYMviiKzszlkMjX5/FW6up4t9w43NV0jFouze/cuGhsbbyJ8g5LR\nf+21tZLQp5mdnWVsbIRTp0ZQqeaJx69Lya9triV1sLdu2dI1NTW1YaPr6uq55Tt5q2DOZ+U0PD5s\nPzjcKH8+MaGgr6/0/TWn2WIxoVRObdq+cPr0W8zMXKWlpR2lMozVOonNVonBsJNiMcHTTzfj96sY\nH7djNPppb+9icjLL4qKO0dGzjIyMkUzG2LPny4yMvEkyqaWh4WmWloY5ffoN9uzpxWJp59133+VH\nP/o1oRCYTAq+/vWD6HQGPv5YYGCgtP50utI9bRa8hOuBzfn5k3g89XR0tKFQNNxy3T4OYj48fPe7\nYDTC1772sEeyOSoq4K//Gl54oaS09Y1vPOwRPVw8Cjb6frzPmyUr7/Te1+zQ1au/xm7PE4uZGRqa\nZN++EL29T7O8fAKVKkFDgw2vdw5wsm9fG2q1FrNZisFQiVIZwOOZJpHooLW1Fp9vkGIxis+3HXDQ\n3t7OCy8cZXTUh8Nhoba2FYNBRUWFjIGBWoLBMFeuJIjFnCiVAfr7ewFWqy8aUSr9CIJw033cTgpb\nq9WvVuvX88Mf/ohYzI3ZLCEaFchmc1itXTe1DMGa0Mjdr5kHZae/aFWbn2Vl0vprGY0FLJYUbvcQ\nCkWWrVttWK3mT/3elFqbklitJVXPykrQaHJksxYMhiISSYiKCicVFdUkEt3IZEHUagep1DxyeYzR\nURV2+yV27NhHOp3h6tUTTE1VIZEoGBqaZHLyQxobd9PS8hyh0DT5fJ6mpueIx0vr/8iRjtueW+/G\nDy51dASw2+NotXp27HiaWCz4UFsC7zbI8/vAN0RRfPt+DuYxHj3crcFcbwhisQiTk9nVA3SO55/v\npb8f3nnnGBUVIUIhEMUI0ARcj5a2tMDQ0CSFQkmhwGaL0Nm5m7a2NkRRJBoNMzFxgWBQJB73IpP1\nUV9fTTp9Fbk8z+HDrxKNBjh+/ASnT6fx+5UsLvqRSjtRKLKIohu3283oqJRCwYTTOY3bPYdOp2V5\nWYIoLhMMalGp2llYUDEycpVdu8aRSHaWmeQ/bw7R5xV34lBdb81IkU4H2LWryMrKWUKhAsViL/Pz\n5+nv19Hb20wy6WFwMIrbLTI6+gFKZYGenleJxYLU1SXYuzfO/HyUrq4QAwN76eraRjwe5erVawwO\nXiYQqEerlTA6uozN1lI+eJbU3Zyril6HCAYvEg5HmZ6e5h/+4WPGx3WAlKWlIQRhGImkBaPxCgMD\ns+j1xpsUjqC06bW2tmC1NuD3S9Bq9eV7XttcT59+i+npKwSDFVy79iZHj/ZsaEvx+4Nks5UbDsh3\n0ta1Xq76QTsNjw/bDwaiKCKKIgrFElqtkoMHXyIWC97Uh/788+23dHRKQcQWDh78Pez283R3G9Hr\nEwSDI2QydmZnM8zNpVle3oJEInD58hJtbe00N+/k9OkzJBJLxOMJ5HIbMpkMk0lDba2JQkFCZ2eB\nI0dK6i/f+c4xLlyQU1FRRWVlgFAoQktLy03r73bBy7Wf6fU78XiGCYd9qNUmYjHDpkIAXzROhkcF\nuRx873ulVqjPM7Hx0aPwW78F/+JflII9Wu3DHtHDw6Ngo+/H+7xZsvJO733NDuVyzchkHp59dhvF\nYobu7lKjg92eIBhUEYkMUVGRpa3taeJxGwcOtGM2LzA/f4WmpnoCgS0Igg+DwUQ4rGRy0kM0egWT\nqcAf/EERQRDYubMSUVxCJhMJBiPMzm4nmy35zrt2beQS2VgBWeLVudHPWj+Hg4M/3SCFvdbqG40W\nqasLEwr50ek01NRIOXp0x01zFYmcBOQYDNs2zNudBs0e2+lPh8+yMmktiTk8PIpUmsLvl1NfL0Em\ny9LcLFtVGZ7j2rUMS0ts2jq9tg7Onz/HmTNORDGAVuvm2WcP0tNj4uzZixQKetRqP729WzCZnqWr\na+8q39UxnE4VovgcbredSAS8Xh0TEyHy+WXsdhd2u4dMxoJMVsfk5Azf+tY+JBIbWq2Wgwdf5PTp\nNzh5cpBnn32KfftKgiibCercjR+8Nvc22wgTEwqi0cAdtUc+CNxtkCcPOD7xtx7jMW6B9ZvC4qID\nhaJqwwE6Ho9y7pyLQGArWm0tdXUGpNJo+WeZzALxuIba2iwGwziCUE88XsPx46Vl2dTUxODgPG53\nDr/fhVRaTVvbTrzeq2g0K9TVNZdfwGAwht+vRavVkU43odHISCTiKBQplpf7GRxM0N2dorZ2lmi0\nmoaGZ1hamsJoXEYQlllYUGE2V1Jbu4vubjUNDXwhykA/S2yWSdJq9ZsS/Pl8AcbHZ/D58oTDcnp7\nVYAPeJK6un4uXgxht0uQSGZJJuP4/TuwWCyk08OYzYHyc+/vX+8QmcvOytBQkHx+L3r9P6JWZxkY\n+C2mp4fweC5y4oQXk6mAxfIMTqcTUAPG1X9LG20opMZs7gXCzM7+glRKRltbL5OTP8ftXqS7+/Cm\nTuNaFiCTgbo6NZWVlvLP1tbShx+eWq0ca2VqKgE4NrSl3ElG8lab2GflNDx24h4MpqamePfdKeLx\nDtLpWebm7NTVlQ4a6+c7EAixf//e8pyvXydNTfWk01ns9vOrRIS99PXB977391y6FGVyshGfbwGt\n1oxOtxWH4x1SqTc5dernuFy1WCzPIZHMUlubIpdrJJFwk81+wN69Vr75zWfp6Ojg9dd/isORIZHo\nJJGoIpNZZGVlmfb2UvnEjQeVteDltWtnCYVc5eo4ny9ANlvJSy99lTffTBKLuVAqO28pBPBF42R4\nVHDsGHg88E//6cMeySfjL/4Ctm6FP/9z+Pf//mGP5uHhUbDR9+N93ixZ+Wnufb3NdDqdZDL1DAz0\nc/z4CYrFQDnZNzQ0gt2uIh7PEwyuYDbX0d//VRKJRUZGxlaD76W2lY4OIz09EUKhCfR6F8vLWwiF\n1MTjYxQK82zZsp9c7knU6pNks6OYzfs5cOCrOBwXytw9a21OouggGg2zuDiBz+dELo8RieRxuRo2\n+CDr5zCbdaJQdNzEVzI0NEIkUk82+yS5nJOjRzvKh/f1c3XixASgZs+ejfN2p0Gzx3b60+GzqEy6\nMSnv8VQwM1PNyoqMo0efZ3Z2hIkJD6GQwOKig3hchkSya0Pr9HX/eoSJiRAzM3F8vgqqq6soFNJE\nIlE0Gh1abT0VFWr8fjdXr05iMEjx+bzU1Uk4dOh3GRxc5KOPFsjlvJjNWqJRLyrVAjpdIzrdIoWC\nCp3uKRQKCZnM+4yOnmTbtiYgyenTbzAzM8uNvJclZeeThEJSTKYCr74qltfmnfjBa8+ivb2d/v6p\nzyTw9km4l3at/x344/s4lk0hCMILwL+lxPsjBf6TKIrff9DXfYwHi/Wbgs/nJZu9bszjcTnHjzuY\nn28mkfCRTl9BoZCwbVsnsViEwUE3Y2MxVlYusH17G4uLEA7HUKnUJBKVwDh790YIh2U0NHwFvT6I\n03mcpaU3yGZlqFQtzM97MBrf4g//8DVOn14hHB7H5TKRTE5SLJooFGKk03oMhkZsNgOx2BgVFSoM\nhhoMhiaCwUV27NhBW1uC996bQadT091tpr+/63OX6fo8Y23zKHF56Ghu7uX06bMMDcWoqupkZmaO\n1tZtZWnx9vZ2JievcvnyGJHITqqqZCwtxcnnE8Ris5w6NUEuV4FCMcDExHnk8hxabRyvN8HOnSp2\n7Oggl5tALpfg85mx2axlUuLr49Bz8OBX8PtdZLMeYrEgSmUYtVoPaIESR09v7w4++ugtvN53qanJ\n0tt7AIlEgsl0Fbf7DJBEo0lTKBiAMNlsgHy+45ZO4+2CK+vVwa5de5OpqQQ1Nc3E46ENrVt3kpG8\n1fU+q3Lmx07cg8GabT14cA/wBq2tXp599ilEUcTrnWJy8iyRyDWcTu0tuJgshMNurNYYdXVJTCZD\n2bkbGVnC49mB1bqDXM6H33+FfD5BPm8gFIozP79IJrMFCKFQ+IjHpcjlVdTWdqHRRFCrA3z44Snm\n5+cpFApAFql0CnCi10fZsqV60/W3fq1Eo2OrJKlsyDTb7efRahOYTHtoaelifPwUVVWpmzLGXzRO\nhkcF3/0uPPEE7Nz5sEfyyWhqKvHz/Pmfw7e+9fkjif6s8CjY6Ht9n+80CbIe6/fWcDhGMPg+Ekk1\nNTU+Dh5sZdeu0niGhkaIxRykUjUolU+Rycxx5szP2L27ldHRERyOKnp6qvH5iigULgYGmtBq9bz1\n1gwjIwVSKRmFQpEzZ+zs3buP5mYLDoeAVGoFHLz11vfRamPEYqUD67vvTpWrakRRhkLRQTa7QHV1\ngVxuz00+yPo5jMV6mJzM3sRXUuItaij/7foq4fVzZTIVgORN83a7oNlmz+Cxnf78YGNSfhyFooOe\nngHc7hOMj59CJguRSNgQRSPxuI7FxTNEIlnq6nTI5fXlgOMPfnCGa9dihMMJjMYkiUScaNSDSrWC\n3Z5Ar9ciiilWVsKsrBgJBJI0NUUQhI85dOhLPPfcczQ1TWE2H+PUqRT5vBSLZZb2dj1DQxHCYQUy\nmY9M5gwgoaYmycGD7Wzb1kgoFMHhcNDauoODB1/cIJxTUnbOYjbvxu2+yPDwKJ2dnXftB3+eWgLv\nNsizG3hOEISjwASQW/9DURTvZyfzD4CnRFG8IghCIzApCMLPRVFM3MdrPMZnjPWbQm2tQFdXDzpd\nqQKmJNOnRypVk88X0WiuMjDQwauvPsPw8AjnziXxeHoJBmW43V4EQU4iMU2hoGT7dgsKRYlB1GQq\n4HJdxOtdIpuNIYpSolENgYCafL6excVzWK3HEQRoaKhBFE1MTi6gVIpYLD243QvE4+9jt+cxGFR0\nde1CKnWTzZ6kpiaGKGqora3lt39buyrx3vlIbUQPs99+7dprUf1MZgujoxe4fHmabDaAQlGPzVZB\nOt2E1dpBJhMuc4mMjQWRy7uQySREIlGMxlm2b/8Svb1m3n77v5BMVlJTU4ndHiedzlAoxBCEKWy2\nWuLxZhYXU8zMzGK3V1JXFyyP6fhxO+PjcqanLxIMBujurmXr1g50OnA6zbhcO+nq2leugrBYTFgs\neiQSKSaTqkwW+OqrpXJW0GEwtHH69ALh8ATbtxuAKCdOvI7JlMRiOXAL56a0qW7G49Pe3s7Roz2A\ng3g8RDAYZmZm+4asxN1kJG/3jB7U+njsxN0a9zL3a7bVbj9PXZ2aZ5/tLZfLC4KwmpHN4XRuVJJZ\nWyc6XT2nT19Fq80hk9mpqBDR6bqYmPgV8/MRwI/LNYRGM41cnkMUZYiiBKnUgFy+n6oqNeGwi4aG\nEE880UkisZ2DB1/kzTf/C++/70ejaUWlGqavL4/BoCASCSMIQXp6GsscEjfOhSiK2GxJRHEBqTTJ\n5ct5ampCQIH+fjNHjljLB5RTp+Y4frxUZTcxEd+grrdZm+T9mvfHuDUWF0uVPH/7tw97JJ8e//Jf\nltrL/viP4cSJ30wS5vttox/E+3WvB6pPkwSxWEptKh9/fO42bU5eUqlZNBodFouU/v7ecpJFFEWM\nxiiBgBmjsRe1Gjo6Euh0Pt55J8PSUpjx8X+ksjIMDJDN5jhyxILNZiOdHiOTmUWhiCIIBrLZBU6f\ntuP1irS1Pc/KynGWlj6iu/sok5NZQqFRMpmGdVU1Go4ceYnJyXNUVzvxegM3BWBuJKZvbr65CuHG\noJfF0l5ucVlTLS3Z4MZVkucFjEYDPl8AcNySA+5Wz+BWa+2xjf7ssTEp7ySbXSAWq6SnR6C7W0ci\nIfDOO0t89NEIudwkcrmIVOohEPDT3l6LxdLLsWPHOXnSQzKpweWaQCZbIpttYHHxFEplmkuX9lJb\nW0r6RKP1yGQDCMIiSmUGrXYLOp0BiURCR0cHc3NzjI7GyOUqqagIsLLiI5cTOHhwD3V1KSSSeaqr\nt3D06DcQBIETJyZQKBqQy60oFP5yhfL1NSgSj+fJ56Ok03m+SDTDdxvkSQNv3c+B3AZFwLT6fwPg\nBzKf0bUf4wFho/NwPTgyNTWFy+Uil1tAqbTR3S3BZjvIV7+6h87OToaHR8lmQ0gkVahUEAikqapS\n8PTTexgZuYJcXqSmphWjUUF3t0ihMEo67cbjkRGPB0kkZigUClitRpaWLPzyl17UaigUZGSzIlZr\nJQoFLC15KBavIpPVE4upkcuN7Nr1JSyWMTKZs0QiSj74QIPTOYLNpqW5uZK+Psr9nY/CJvQw++3X\nrm23F3G7sxw50sXS0jKp1AI7dz7P5csOlpZmUKky+P1q6uokWK2lg6hS2UhjY4xg0IVM5sdorECp\nTKJWN3P48PMEg0FgArV6iWBQRKv1olJZCYViRCIpLJZ6rlwp3hA8gsVFEegimZxndvZD9u17nuee\n+xYSiQSr1YzXuzGr5/cHMRh2lsuSA4HQhoqb4eFRIpEoAwNN6HQGYrE6BgfnCYfjiGKeubm5VeW2\nEHr9DlSq6x2wN8pBP/fcc0xPT+PzBRBFkb17bTgcU5hMPTdlJW7ErTKSn/T8H/T6+DxlOz5vuJe5\n/6QKrRszsmvrxmIxEYmc4ezZcywsTGE2VxMKFREEN21tW1hZ2UYqNUptLSQSw/T0GKmufoFgMMzg\n4AihkJRMZo5EwoDB4OfAgXb27NmN3V6qsolGp4BO+vtfZmjodebmPqS5uY2urhq83im6uiQMDg7y\n4YenaG5u4LnnnkMikZTbzzKZemZnP2R6ep6pKSPwATU1UTo7n0Qi6cZqNbN375OEQj8jHC6WFWZu\n5CK63Vw+ChwkjyK+9z1QqeCVVx72SD49KirgL/8SXnoJfvlL+N3ffdgj+uxxv230vbxfD8qvulUS\nZP2930ppZ2Ob0wI2204GBr5R/pz5+fc4fnwcubye1tZOdLo4anWIpqZqvvnNA/zkJz/D5zNSU9PK\n/PxHqNXKMg/aml+iUgkUiwkKhRQyWZLGxgKFghuNpkg2ayebDSKRVGG1NrC46MRmE1Eq/ZtW1fT1\n7VwX8N48aHerZ772u6UkrHw1QRcnl6tc9VM6aGpq4vLlAOl0A7Oz7+HxBFCr62lq0vHqq8/ckgNu\ns2cAm6+Ve7XRj4p//iCxxkFTSkaWlF7XxGrWfr5+jtYH6GprK+jq6kCrhXi8Fq1Wj9PppLVVS2Vl\nI6Oj0xgMO9mx4ynGxwfp6ZEgiiKnTs0yNRUllcqRz8uRStVUVxuQSGKEQru+hfAAACAASURBVCZ8\nvi34fAsYDHEslgK5XJxIxEMiEaBYlOB0OsvEzidOTOD3d6DRyBgdXSKXM5LJ5Ekmr7JvXzOvvfY/\nlduw/vZv32Vqqo7aWjUGg8iuXcJNlBpGowGpdIxQaAZBcLK0VHrnvwhr466CPKIovnq/B3IbvAz8\nUhCEBCXyi98VRTH/GV7/MR4ANttI1jbSVKqObPYcavUUNtsuurtbqKy0rGZD9FgsfoLBE2i1aaqr\npbS11VNXtxWDIc/27UaSSR/HjydIJAxEIiJLS4t4PDay2T4E4QzwK3K5vUil1RiNDRSLOurrV3C5\nrlEoLLO01EAioSCXU2KxdKHX7yQavcCJE/8di0UgEimSyfSSyXhYWCiiUGxhfDxVLvF7VA4KD7Pf\nfu3aPT19uN0nmJgYpLlZATRRUaFnxw4F27fbMJuNaLX6snF3Op3I5UHkcj/V1VkOHfomKpWUxkY3\nDQ1gsTwLwLFjxzl/3oLLZWZ21o5en0EiOUyxOEswuIRKlcbvVyOX+zh/PgbAykqEhQU9MpmSYvFL\njI8nmZ6evk1r09Qtgyc/+MFJxsezlORME7z2WguCIGA09rJ3714++uh1vvOdNwkGc0QiCb78ZQNS\nqQSfL4AgCDfJQQNMTmYZH59henqBtrZeqqqqUSpXNslKbMStDv2fpNj1KPAxfFFxL3P/SQez27ch\n5MjlAgSDXiIRK0YjZLNFXC4v7e17cLniVFUl2LJlK+3tOoLBCAqFnrq6SkymHGNjCVSqIjqdBa+3\ngxMnpujpUdPVZcVk2sZPfzrNBx/8JYLgQKfTk0qZWVmZRCrNc+WKkV/+chyjsQul8j2uXr3GCy8c\n5fLlYc6fn0alsjI8vEA0aiSZNCGVhvB6Fzh1qpZQqBul0sGRI9Df34vHY2d29jLZ7AIyWYF8/uYW\nhfs974+xOYpF+Lu/g9/7PdDrP/n3P0948UX4ylfgT/8UjhwBtfphj+jRxr28Xw/Kr1pvDxUKH7GY\n4rYVO7duc+rY0OYUjUr5r//1A6amKqivL1JdraevT0ZHh5m+vlLP4uRkEI8nyfKyHI0mjdWq2bCf\nV1fX0NoaJJ+3EAjModc3ks/vIZdLIJUuEQolEcUMwWCIjz6aR6Wa50tf6mXXrpbVCptngDWlq47y\n/XzaadssICKKIsePj3H16jzLy2rq6+vLNAlPPhlibGyFZHKEixdPk832sWVLIysrM/T0jPHyy9/4\nVIkoi6V9lceoSE9PH7HYdan2e7XRj4p//iBR8lHPMD4uUlLfPMlrr11PUN44RxtFGjrLFWol1TaB\nSCSBUpkDGtDriySTE8zOSuno0NDf38nQ0AjRaDUyWR3p9DRqtYt8vopYTIMoesnlIgQCAeJxJx0d\nzej1EUKhY6jVK+h0agqFei5dUnDu3Ls0NhZQKOqprdUwPj5MMinQ2noISBCPH0cu95Wrf/3+IApF\nI7W1W1hcnEWtdtPf/9JNz1unM9Dbu3NV+jzI9LT2oUuf3y/cbSUPgiBIgKeAVuCnoijGBEGoAuL3\nq5VKEAQp8H8Bvy2K4hlBEJ4A3hQEoVsUxeBmf/Onf/qnGAyGDd975ZVXeOVRSiF9hvg8RbXXjLfB\nYCaRaEIm20Is5kWn09HW9lWmpqaw23NYLC0sL1+lqqqPmhqR9nYFgnAesxmWl5OMjvpYWGglm9UQ\nj6uYm/ORze5BJmsnnw+jUPiQSqcwm+NUVbXgco1w9WoUicTM4uJlkslKqqvbWFxcIhC4SHNzBzJZ\niEgkSibTRSymoK5Oxtych0TiKtlsO1JpxU33cSeb0I9//GN+/OMfb/ie2+1+ENNcxr3229+PlpJY\nTCyXfK45PiWH5NkNn3c9k1YPxGhsTKJQCCQSSxgMFZhMhvKY5ufnuXRpmEikDo3mSYJBCIenSCYr\nqK42sGtXlpaWrYRCYT76yMP4uA1IodFE0GimSSYP0N7ej0Kxgt8fpL19ozyoKIqcPXu+XKK83oGC\nNfJlKWbzbsBIKHRdzUKhsDM4+FMuXPgRCwvViGINXu/HeL3/wPbt2+noKBFNezyT+P0d1NRoiMdl\nfPDBSYLBKrzeHCsrHej1Zsxmkf7+9CcSfd/q0L9esWtm5irQsqHt61HgY/ii4kHO/WZBvzXFjFDI\nQFfXNjyeSuTyJLmcBK02itW6TF1dHI9nlIUFJ6FQBw0N/wswRUeHF5AzNhajWOyhWPTj8RhRKlWo\n1RWAm4EBC2bzAT74wEE2O49cnqK29gDt7U/z3nt/RygksLISY2lJQBSdRCJptFqRQOAMMzMTTExU\nEI97KRYjSKVBYrEsarUMqVRNOFyxwdbu27eHubk55ubGy1LqgnCNyUnhE+fy8Zq//zh5EmZn4e//\n/mGP5O7wF38B27fDv/t38G//7cMezaONe3m/HlQAdmOgRrGq9MpNFTulvftNstkFrl1TI4oiVqsZ\nuN5SWlmZYGVlmqUlL++8M8r4eBdS6W5WVk5TXX0Nq/Wf4fWWSPCHh0dJpxW0tNRSLFZgtbbw4osd\nSCTO8mf29e1k374woZCURKIWm+0AXV37mJ+foKnJws6dzzA6qgRi7NzZi9+vRqczbLrf342/5nA4\n+P73TzM/n0Mm8/LKK08SDIY5e9ZDPm/D7R4hnVaye/c2FIoGxsdHuHgxQThcRySiwGRSkM9XEQ5f\nxW533LI64sY9SRRFJiZCuN1Z3O4T9PQIWK0HgXu30Y8D+TcLhIRCExvmYWMCsKRG9cwzA1gspnKV\nlc8XWDePIvX1LsBFJFK7Wt21QGdnybew2x2ABoPBjNc7RypVRCKRUVmpRCarIZMJo9cnEMUqWlu3\ncvnyKTweBZmMCb9fztTUMEbjCsGgE50uSG/vAA0Nu+noiJPNykgmHcTji0ilMhKJHbz77hQAsViE\nTMZOsbhIW1uOo0d7NvWTbyd9vt7/f9hn5LvBXQV5BEGoB45TCvDIgQ+BGKWAjBT43+7T+HqBalEU\nzwCIonhJEAQ30Ad8sNkffPvb36a/v/8+Xf6LjzuJaj/ogNCa8R4fnyCREFcddCWDgw4OHpzC6/Vz\n+vRZvN5FUqlG2tv3MDU1jd1+lpWVFEplPVptlkJBiVodIxDIUChMUCxqkUjs5PNSFIoZamu3o1B0\nU1Nj58tfrmB8XMLgoI1k0szKShXF4iKRiIBabUCni6DRvI9UGiUc3opK1UM0Oo7f/yE6nYBS2UMq\ntUhbm4K+voEN93Enm9Bmgcgf/vCH/MEf/MF9m98bca/99p+0dm63XjZe++Cma2m9rKHT6SSVqsNg\nsDAysoxMpqKqqpdsdgGdTs3kpI1MRmR4+G+ZmYmRSqkIBMYpFBSIYpRCQeTSpUlstiiVlTa+9KWn\n0WqDSCQiFksvECKbjdDaWiQa9WIyrVBbWyJfXE9IOzv7JslklMrKXcTj71JdLWXv3t3s2bN7g/qA\n0ZjH7b4IqMuf097evnr4nKdQMJBIVCCR6CgUniKbncXnyzM46GD79t+houIaCsVJVlZUpNMSRHEH\nMzMXSCarMJvVRKNestkk/f3Pl7Mqm3H4fJrnf6Nc9mZZysecOZ8tHuTc36qKcs2pjseXkcvnyedz\nBAJBLBYbHk8Eh+P/xu1uoVh8hkLBh15/ia6uGioqCrS3i1y75iafj7C4qEIUZ8nnFezZ01kOtDid\nTpLJTpqbD7CwcIzZ2VOk00kymXnm5xMEg2nicYjHrcjlWjSaWkKhIpmMkvb2pwgEivh8IVKpMRQK\nAxpNOyZTDpMpvSELf/bseYLBMHJ5PVZrAz6fSH8/NDZ+surh4zV///Hd75aIiw8ceNgjuTu0tcG/\n+lfwH/4D/OEflr5+jLvDvbxfn0UANhSKkMnUodfXMz4+j802UiYBXgscx+My3n7bw9mzWfJ5NyqV\nglyukZmZK1RWalhaCuD1GgkEBJLJeWpqFkkkwiSTftRqBamUfrVNO040qiMaXcFmq6GuTo3H4yEQ\n0GMwbMXjKZHKd3eX2CqMxmex23OrbVhFTCYFghCmqUlOMJhjYWEEkymJ1bo5S/iN/toaR9vt/Pnh\n4VHOnYsSj7cRj2cQhEGqq0U8Hg2i2Ewudxmp9EMMhkZqa9WEw2pMplZaW/dy6ZIPpXIe+BUqVZxE\nYu+m1RGb+Ylnz55Hr9/B0aMWxsdP0d2tK6+Ve7XRjwP5pTlYEwiJxxepq0sQi9WX18T1BOB1NaqR\nkTdJJHwoFM1oNDl27NCgUNhW5zFAX99OhodHCYdFurs7mZ0VuXDhEqdPL5HJtCGVjqPRuKmsTGM2\nt+F0BgiF8qjVfiyWNGZzEZ0OMpll0ukimUwdmUwlojhPPO5iZWUEQWgjGNxGNjuLzVbglVeO0NjY\nyOjoOA6HhFjsKQ4c+CpnzrzN3/zNfyYSMSOXN6DVxjh6tHODlPt6tLW10dk5Ryg0TbFYJBLxU1FR\nWl+PeuXX3Vby/H/AGLCLEkfOGn4BfOdeB7UOLqBaEIQuURQnBUFoA1oA+328xm807iSq/aAX+1pG\nuVCYZmxshKkpI1qtBLs9zdDQCLOz05w5s0w6XUOh4ODMmSSCIMXvL+Lz7UClUtHSkiKbnUUQfGQy\ndkIhLXAQtXoRufxdKiryRCJPI5cXkMkqWV5eRqVSo1Rq8HgkiGIvKtUsqZQSpVJgy5ZDpFIfks0W\nCYUS5HLz6HQhWlsLmM1fobm5n4mJ0wwMSMpz8agcFO613/6T1BLee6/Uj65QNFBb6wOur5dPc+31\n6y0SiRMI/IqlJRPBYBKFYgv79u0iGq1kcfEDPB6Ryko5Q0NhIpFttLQ0YrP9I7ncBxQKbUgkNgqF\nDKGQmlOnioTDP6ejQ02xmCMYTKxmASLU1DyLwbBCd3eavr6diKLIyZODuN02mpvruXAhSjrtwWK5\nxPJyhMrKbYyNDeNyuZiflxAKqTEaExw82EhPT6kNrK9vJ21tbTgcDs6du8jMTIKqqhZmZoZJpfSo\n1WZMpq2IooN8vomtW/fh8zlJpQRiMT1+/zJGo4rKylLFkcEgQaMJcvTojtuqZ33a5w+QyThuavt6\nzJnz8HC3c3+3gXiv18/ycgGNJk8kMoVK5WdmJoTfb8PvryOfl1MoGMjnW9HpdpFKDXP69AkCga0s\nLnZRLPqJx6OkUp2AHr0+hkx2nlQqT03NPiwWE+fPnyMYdCKV6igV4moBLbFYkXxehl6vJ5XSYTJV\nUij4mJkZor1djVKZIZl0YDSqMZul5PNPks83EIlAW1uaV155Er2eDVn42VknMzMryOUiKtU8hw71\nsX//3gc274+xOQIB+MUvShUwj1Dy8yb8638N3/8+/MmfwNtvP+zRPLq4l/frbv2qzWwisCEpU7Ib\nlUQiIQKBBZaWrlFqY1HQ3z9FR0cHOp2B2tqDiCK8885ZCgU5fn8d2awDnc6M06khFJonEjEjCO2o\nVFoSiXP4fMeQSJJks0/y859/QHd3gXTaTDa7g6997TnOnPkZEskoiYSNixf1JBI6jh5tYHbWx+zs\nOEplI9msk+ef305np5yFhQm6uxsQRZFLl35FoZCgWFQiCDFKFKabY6O/dpZjx46zsCBdbWfxled4\n/VyJokg266NYrEar1ZDLWVGpEuh0USKRBbTaBurrzezaJdDf38nsrJyxsRHS6XE6O2U88UQDKpWS\nRKKbgwe/sSl34Gb+i9VqRqVyEIsJZRn6tX3sXm30o+Kffxrc7X6/JhBy7NhxRkZy2Gz7OXXKTSj0\nRtnvtdmShEIlNarm5n5+9CM78bgU8COKfkIhJa+8UkMkUqo8m52d5eTJKa5cSTA0dA2tVsRmMxOP\nixw5chBBkJBOf8y1a2YWFryIYpF0ukAyaUAqTdHenmBgoINoNMaFCzNkMjspFlVIJBpKNSQypNJd\nyGRGEgk5i4taHI48LS1SXn75G+Vq/zNn3mZk5DyLiyskkxV0diqpq4P5eRdTU1ObztH09DR2ew61\n+stYLNdobHSXidPPnj3/SFd+3W2QZwA4KIpi5obJmgPq7nlUqxBF0SsIwv8M/FQQhAIlGfU/EkXx\nwfax/AbhTqLad1rmeKcGSBAEBEFAImlFJhsmkQigVB4kFltgZWWZcDiOStVLV9fvMzX1F1itVykU\njCwv16PThYlEgiwtOamtbcFsbmRlxY1S2YtO10exqKStLUU06sduX0EisRGNTvPzn0+zf//XSacv\nkM8HkEhS5PPViKKHWCyB17tCLieSzxsxGs3EYlO0tmb4+te/hsORJx5309mpva+b0OcNdyMxOjU1\nxfHjjjLhGSTv2DhuXG8icvkSEkkl/f29DA2NMD4+iMkUIRBQsrQkcP78u8RiAsVimmvXzlBXl+W1\n1w4zPR1jYiKM329Fr9ejVhuZmFgCbIjiFI2NiwAoFM8wMPASdvt5GhpYZeV34HbrmZ6+wsWLl/B6\nl9BoarHbryIIDfT09BMIDHP27AX8/j2Yzb243Wfo6Ynx8svXRQYdjpJ85AcfiMzP+1CrKzGbC6jV\npcCORiPQ0KCnqcnK5OQ5cjkXVVW9NDfXMjHxJu++O0R1tYxvfrONbdu6Nzirpd71KD09HUSj4h3P\n8xfJ6fmi4U5t6N0G/Oz2a1y6ZCeT6SKfT2GxKJBKOykWk6TTY8hkUnS6HQSDHiKR88jlfopFF0tL\nVVRWNuByzZBKhamo8JHJhEgmRSyWXZjNFWzdqgTA79ehUNTj8w2jUs1RUfEMPT0Dqzxbs0ilbSgU\nI+TzRtTqKLGYE5nsS9TWVlJZmQZiiGItfr+OfF5HNuvi6NG9HD58GICf/OQNHI4oPT2dCEIdlZWU\nWxi02keMDOYLgv/230r//pN/8lCHcc9Qq+Hb34avfQ3eeqvE1fMYny1u9KvWV/rezjZuZhOBdZLQ\nDhSKKgYG9nLtmohC8QESiUhPz/NEIn6GhkbKwSCFIsviYgpBmCIa3UVdXRszMx5WVkYRRQ3BYCX5\nvAtRTFIo6LDZaigUFqioMHPo0P/JhQs/JBIZIh7fw8zMFYLBReRyP5GImkymD602Sjy+yPj4IHK5\nj0RCTiqlZnGxjlDoIvX1VRgMOzlz5iqBgHs16SVDoRD5vd8rtZgEAqFN52+9vxaJXMPtXsbn66O2\ndguwgs8XYG5ubkNirrPTQHe3iomJCygUFpqatrBnz1ZmZz/E4YhSX99PY6OchoYq2tvbKRaLHDw4\nSTQ6zZ49T3H48GGmp6dXRTY2JpHW9rYPPzyF263n4ME95SDQvn17gM+ukvVRxb0k+Do7OwkEQuTz\noNPVc/z4CcLhKBMTZ4AcBsNOcrkQCoWfiYnTKBR5lEozc3MpLBYNi4sqJiftSKVtZDJWjh9/D7c7\nR2Xl00xPv49K5ae6eg/Dw3bGxwcxm6P09e2lqmqGt95yEo1Wk8sZgRwaTSf5vAaXa4lLlxxEoxEE\n4QKCkEEm81JRkUYQjKTTlxEEAxUVcnbu/CqZjPymyvMPPzzFtWtFJJLtpFJZhoYusrjowWR6aQMd\nwXpsPGuUiJnXfudRr/y62yCPlFLA5UbUUgq53TeIovgT4Cf38zMf4zru5IB3p4v9bspD/f4g2Wwl\nu3a9gMvloLKymoqKNKJYRCYTUCgus7gox2SKsWdPP263G4fjLNlsDXq9Ea1WRKEwo9M1otX2UlGR\nIhp1oNVOs3WrjelpK1qtkWzWSDZbgcuVY2VFQjotYcuWDJnMEpFIAI0mRDotx+vdh1IpQRB8GAwJ\nVKpKnnrKwOHDh2lpmf6NOBh/GonRzdQSbiQ8s1pvlke+HTautwA7dpSUetJpKTU1MWy2CHq9Fp1u\nPzt2NPLDH06jULhRKo2kUgq2bLHxta99DYlEwrFjxzl1apJoFFKpIEplNVVVdQwOLmA0NmOzZdHp\nSiTGa20f4+MTuN02Dhz4OsHgd1hePoVC0YNCsR2l8gq53BIjI+eQSMapqopRoiILA0lAt+FeSg5U\nFmhAq9VgtUpoavoqu3enicUS6PVajhx5HolEQiAQIhrtZnBwkY8/HiObDVJd3UuxGEWj0WKxmBga\nGmFoaASjUc/4eAy3W8DtfpeeHgVW67Mbrv1JgYIvktPzRcOdOnF3yzeQyxUxmbbS1PQMV67EiETe\nJBRqQhQrACPF4gyiKKDTTVAoXMZm20E63UMu18js7Fmi0SBKZRdyuZTa2jmgk0OHXqCqSoZWy2oZ\nt4annurDbj+P1zuD07nAG2/8lLY2Ea1WTzotpbIyiShOoVRWEQo1YzK1YDLZqK524fWqSactSCRj\n9PcL9Pe/VF7LdrudkyfnuXgxxvnzf0Vbm4zW1k4EoeSkulxpHA7LI9dP/yijUChJpr/8MlRWPuzR\n3Dt+53fg8GH45/8cDh0qqW89xmeHG/cxURRXVfdubxtvtIk+XwCXy1VOjMjlDWSzJeUglSrAzp0l\nPyMWCxKLjTMxIcflAoUiS1eXgieesNLZuYvx8SQKRQqzWc3cXJrlZRNarRm9vkhlpQ+nM0Qm004q\nZSYcnmJ4+D+j18eoqdnFwMA3CIX+kljMhUzWQCSiQan04XSGqa52MTDQicnUwbFjY0xPx6mtbSGR\nKHHz7NmzlxMn5vF4UpjNh5FKc/h85xgfP0Vn55ZPJcDgdGrJZPpRKDSr/lnJ5/nxj8/gcCiorw8h\nikVsNmhv1yGXB2luVnP06IGyCtPx4w4UCsWGtvb33psmn9+L0ehDEATOnbuA2Wyko0PGwsIETU31\ntK32O67tbW63bbXyYpHmZgMWy4HHPsmnxL3yC12nyJgHkvT0PM/Y2GUikSV27oRMxkh/P6uiISbG\nxiJ4vQFqa/egVqeIRpdRq0vXHxkZIZt1YjA0otEYSSR8XL1aRCqNYDCMA224XA04HA6s1u3k8wqu\nXXMAcywsSEiljExNaXA4UojiiyiVdhSKOaqrpRw6tJ/a2npGR0dZWZkmm9WysHCRLVv0OJ16LJZS\nS2MgEKKpqR6zeYbRUcjnBYpFN4VCnpaWXuLx0KZzdLuz7aOeBL3bIM+vgP8D+F9XvxYFQdAA/w8l\nrp7HeERwJ8b0The7zxfA7S5itRpxu70MD4/g9WpuuymvvWyCAM3NcfL5S+RyLi5csNLb+1v09R1H\nrR5Br9fgcESYmtJQKFShVJo4cGAfU1Marl2bZWTEB1zBaMwgCDJstk6SSRMqlRulMkM2K0OtFikU\nZPz61xdRq+X09z9LsfgBUIEgdJHJxJFKdyCX55BK/ZhMAXbv7mPr1ibOnbuA1WouZxweZWKuT8Kn\nkRi9EVarebUEeAW12ndLwrPb4cb11traCvyKc+d+TTgcBJ5gZWUes3mSQCCAWi1Bo6klmTTQ17eN\nnh41oVCE/fv30tHRwQsvlCQjl5eX8Ps1TE2dx+MpIpU24fFc4+DBBerqTKysLHPqlIps1sTs7FUA\ntNo827Ydpr7egNu9Qk2NCagiGk0SCEiZm0tRWXmBdDqC0RjHYGjDbrevkjKbiUbDzM9fYXZWQiYz\nh1ptwmDYTjBowGDYh1TqRyqVlt+HyclJ/sf/uEA4PAwoMZlqEMUkKysrG1QRJJJfU1HRS3//k3i9\nDrq7JTfN81oVUSikxmS6yquvinR2bt63/xifL9ypE3e3WaempnoUipOMjv6MRGKIQkFOsZgEqtiy\nRUexmEWlmqaiYhtabRfp9BxabRXV1T243WexWKrZv/8pRkaGMBoLyOV6JJIQSqWEeFxe5vtxuRL4\n/Wfw+WTodCLR6AWefLKJP/mTbzEyMsbJk5WcOeNlfl4gk5nhV7/y8JWvPEl9vY5MxsrWrTdn2qAU\nRLLbJXg8FUSjLvJ5D6+99hzRqItIJIfTWY/X++j10z/KOHYMFhbgj/7oYY/k/kAQ4K/+Crq74T/+\nR/g3/+Zhj+g3CzcGvG22JJlMwyfaxhttYskexcuJke5uOYcO9aDTlTi72traaG6eXg2GmHC56svX\n0Olg//697N+/d50YQyeDg2b+4R/siGIlhYKfvr4++vvh17/OEo/bKBZlaDSTHDrUjVrdzOnTbxCN\nzqDXP8GuXV/m7//+eywtXUKjaaeqqp2+vt6ynSoFU9RUVsoRhPwqJ0+SQkHF1NR7ZDIK6utjHDzY\nwK5dHeXW8Bv90fX+mtVqxuOxIwhJ1Go3R4/2EAyGcbkqSCTUXLx4kVAohtNZycxMDlFUkc0meeGF\n0uc0NTWxd28EKLW1r7W1pNMW9Hozp079ipMnw9TUPEGx6MJs1mE09mK3+2luLimWls4HSYpFFbFY\nEY3GAzyWr7sT3GuVyWZcNKI4h8+XKKu1HTrUx+HDh+nvn2JoaJiPPiogCAJms8CePU/gcPiZnDyL\nThfFag2SzR6nqipIoVBFV5cReIrGRi+x2DZ0unrcbh2ZjItwOIFSuYDBUEksJlIodBCPT5HJdKBU\nPkOhkEMme4uWli+j1Xbx0kvPYLGY+MEPJslkGpiYmGRlJcL8fBc/+cn7VFU10dLyJRSKDCZTConE\njkTShcVSS7E4z+uv/79s29bKiy9er7BfqwYcGhqhUFimvj5BX1/vBh/6UQ843m2Q58+A9wRBGANU\nwPeBDiACPDim2Md4qLjTxR6PR5mZucqVK0mUyjmk0hjR6I6yJKLPF0AU7QwPjwKUN4sjR0oBIqNx\nmvfecxON6gkGjWzdqqa//0Xq652cO+dhYiJBMJhFoaihUHDh9U4RjyfIZs2k0yHyeSmFQjcajYZA\nIEM8nqKpycT+/R6uXDmDRLIfs1mD2z2LXm/G40liMimRSLaRSqVJJLLo9W4kkhjt7XK+9a0vYTYb\nb1JfAB5pYq5Pwt1sJBsDNF2fGPi6VbXJ+vXmcDiw23M4HFYmJlK0t5vI55N0dMRQq0VgB/v3P88H\nH3yI2RymtlZTVr9YK0/t7OwsX+v113/K7GyYcNhPIpHBbo8gkyUIhbYwOTlHX18DJpOBlhYPzc0d\nXL2aZmJiFoNhiIYGNamUQCBQIJs14Pe3kkpdoa1tmfr6I5w+vcSZM5S5QgAAIABJREFUM04Mhp0o\nlQ7y+SmKxVI2MJeTIZMFaW+XUSjs2NRJHRkZY2nJRF3dt/B6f8bi4n/niSe62bKlg+lpMJt7iUQW\ncDonqKhwkkjI6ekR6O8/uCl54vi4WG4lGx4efRzkeURwp+/epw3E3/i+NTY2YrEU8XhWyOfVZDIW\nrFYtKyvTZDJgMNRTW3sYv19JT08HqZQemSxGVZWKqiotarWeujoNuVwBuVxEq42xY0eS/v4+/P5g\nmUTznXd+gMfjIhTahd+vQK/fztJSkY8//phTpxxcuaLF5zORzyfQ6WooFt1YrTH6+g7i9U5tkNhd\nf5ARRRGX6xKBQC2i2MH8fJbBwdO8+OJLuFyffBB8jPuPv/5rePJJ2L37YY/k/qGjA/7sz0pKW6++\nCs3ND3tEvzm4MeANTpRK/yfaxhttos8XwGDQc/RoA+Pjg/T0SG4iZF0fDPF6b7a/N/omfn+QJ5+0\nIYpyhoZ8zMxUUyg4WVi4SDjcgsVSoKXlSZ5+eg92+zXOnZuhWKxlYWEMj2eaZNKOStVGS8sT5PPz\nnDw5iCAIPPfcczQ3N5eDSVCqVrBYDjA7O8vrr39MPl9BU1M9/f2lwNB1JdJbC2KIokhVVYqqKujr\ne5GOjg5+8pM3EASR0rGwjVBohKWlJWKxnYhiHZcuTTE8PIogCKsVVA0olf5yAMlqNROJ/Jp3313E\n7S4poQpCLT7fPA0NMV5+eaMNLp0PZlleNhCP5+ntPYRabbhlu9lj3Ix7rTLZjIumsbEVna4Cq7Xj\nplbn+voGfvu3jWi1eiorLbS1tdHSMs3Q0AihkI5cbi9LS5eRSOJIJPtxOKbp6VHQ3NyE3e5nfHwe\njUbGtm3bef/9s6jVu6ioqKJQ8FJdXc3y8iJKpRudbgypdAG9vhqL5ZtMTFzi2LHjvP/+ZWZna2ho\n6CAQiOHzTaJWtxMO69iyJUZvr4XZWR+Li3lstp0kk3Ky2UVisQKFgpF8fom5uTm6urrKvKE//vGv\ncbkUaDSN7NiRoL9f+EIl6e8qyCOKolMQhB7g94GdlBgUfwj84H7Jpz/Go4cbDw4ajY7W1has1gYc\njhBLSyHCYR8u13Fqa73IZBVcuODH7TaiUORpb5/imWfa6e/vZf/+vUxMXEGjaaG21szZs29w5szP\n+cpXSuSZCkUjJlOUpaXZ/5+9Nw2O60zve3+n931Fd2Pf0QBJgCBAiiIlQtQyksjxjHd5IntmXNc3\nN1WOK77l3KRuElcl10m+JbErvuWbjJ2ULU9Gs8ge2zMaUcvMUCJIUdywkwS6sTe6AfS+L6eXcz80\n0SRAkKIocihp9K9CFdE4fPs557zv8z7vs/wftNoIOl0SQfCSy0XI59uRyUzI5XuRy/dQqSTZ2Fim\nvt7B8nKc+nolLS17WFmZIx6Xo1DYUCjaEAQfx471kcs5WFpKoNPJsdsz2GxyXn75N3jxxRc5f/4C\nosi2QwNQi2BMT8/gdGY/U9k8H7aR3IuD5sNwp7KUW8deXV0ln29GrU4QDPrI5f6SujoXLteTHDw4\nhM93jmDQT3+/kuPHrQwP935oJ53x8R+zvr5Ga6uVVCrI5KQXh6MXny9EJnOZpiYVHR3VSIYkvcWZ\nM36CQTeiqMDhiCKXjyMIx+nufppQCAQhxsjIL/Lmm98B0jz+eHWeZLMTiKIFQdiLXp8AJgmHw+Ry\n5wiHfTQ1aXfpiqFDkiyAE0HYBBRYLGas1nXW1s4Rja5hMjk4fnyEYNC3rQPFre9mfT1wC+Fthp2l\nZJ/jk4uPYsRtrZVQKEI6nUSSpNoYW7po65qxsQlmZtKYzXtqUXGbbZjh4QP4/TOMj79KJiNhNO5D\nki5TqayiVO5HEJbJ5dY5fLibvj4VRqMZu70a1xkbm2BiIovP14BaLRKLzSEIMsxmI4uLYwSDZdbX\nJ1EqW3E4KmxuarHbrWQyef7iL94iEmlALm9FpTJSLC6h14PD0U9DQ2PtkLIVEFhaWmJurogoOlCr\nPbjdZgyGMJLkwmTqplRKMT+/yOrqKolEjOvXJTSayKeunv7TCo8H3n67Slb8WcMf/iH8r/8Ff/AH\n8Pd//6il+WTgYXdehdsd3kNDg7eU/99bBksVHtTqLVLf7XyKO++ju7ubEyd217+3XptOJ2lqEvB4\n/BgMTgYGRhgd/R7lsgWDoYlI5Cp+/xVmZ42cOeNhddWI2awllZJTLIJe30pLSyubm7OEQgFsthHy\n+Tn6+pYwGs27PtNwOIrLNUBdXSvh8CrhcJTe3t2zP29tA51MxhkdXSYeV2C1lhkaqjqthoYGaWmZ\nJJez0dd3kFxOhsfzAZJkplRSkU6LrK8HCIVads0u7enpwW7/EYlEHJnMRTq9TiQyg0ololAUb3OU\nGQwmurr20tlpZWwsz8bGCna7xOqq9TOZEX8n3MvaudM1D7Z5SjVDdsuxWSjEaW6W4XDYd9jnRU6c\nsG9rNDM2NsHKikCx2EQikUMm89LeLuLzzePxbCCT7aVYLNDZ6cBi0RKNlrFaXVgsWhKJKGbzPHq9\ngNuto7OziFq9QSolo1g8RjIZJxIJ8O67s6yuWiiVtHg8P0WtnkEUNeRyDkolHclkgKmp91Cp8pjN\n3QwOduH1+gmFllEqD9Pa+qtsbLzNpUtXOHnyZI031ONppFyWYTY3EYslPnOBoPvN5EGSpCLwygOU\n5TYIgmCj2ipduvGRHugAnJIkxR/md39U/Cw2uU86dh7Ue3uVNDfrKBSq5S5K5UGOHh1idPR7ZLMV\nLl8uceFCEZ2uH7l8k3h8CrncxebmHEtLS2SzaeLxC8zMqMjnIZ1exe0+RmfnIJubHqLREum0D71e\npFCQk0j0kc+nEQQolTyUy3JEUUm5HEKhKKHV2onHc+TzCjQaF9msjUzmGipVkYGBNuz2drq6sgiC\njP5+A1brXoxGc81j7fV6bzs02O09LC8vc+3aTW/wzEy61pHhs4AP20geRNe1O5WlbO+wFSMSmWds\nLEo6bSafl1Mur7O4OI8gCEQiawhCA3a7fVu6853lbaW+3g0ssbFRIpnUk8ttoFaXyOU2aW7W0NHR\ni8FgQhAE4vEkoVAdhcIw6+s+dLosx4/v5/RpL6GQiE63idNZV0unhnLNsBkYOMT4+DusrV0HJNbX\n05w9G6G394sUi7M0NJiQJHeNt2poaJCZmXNcvHgGSKDVDuPxpIjFEnzta0/eKDszEw5r0GpNt3Wg\nuPVebxLeTtDfr2Fo6MWP9G4+x6PDRzHibnIcZFlYWKSray/NzRHg5nrcumZuLsnamsDJk62kUgKw\nitWaZW3tHBpNhu5uiMV02O19BIMyVKoouVyAtrYANluGSiVPW9sJ3G438/PV0oaNjXV8Pgvx+CD5\n/GU2NmaQy3spl8eYng4Qi5kIhyvI5WUUijBmsx+nc5C5uTmCQTOS5KJSWcNiqaBQLCCTldFoXFQq\nXXi9XoAbvDw2vvvd75NOpzh27FepVGwYjQK//utP8xd/MYkojqHXryCXt+DztQBpWlt9tW4Zn+Ph\n48/+rMrD89JLj1qSBw+DAf7Lf4GvfAVOnYKTJx+1RI8eP4s2w7s5vKv6sfr3D8tguds4d7qPEye4\no/699dotvh6Xy8TMTJpUahWlMozLtZdCoYl43EehoOfMmWW83gqVSiNzc+ex2Zo5efIXGRsbR6lc\nx+XaxGQ6xJNPfokf/vCbnDt3mfb2kdu6k8LNTJirVytoNMukUiY8Hg8rKyssLi6wvDyN1VrBZjt+\no9OpB5WqjY2Ns3i9amy2x5idvcq+fRP09vbidrt5+eWnblyXQ6m0ode3MT19jUhEQ6kk8sYbVwgG\nN5HJuhgdDSKKKySTPbXS9FAoRD5vRCbbj0z2NqXSuxw79gwjI+2YTGx73g6HnebmCIWCgqNHzdjt\nSSIREz7fz1dp7b2snYe1vnbLFN5tfdytw5TX62VmJsbq6irRaIHWVhXr6xXef/8y5XIz09NLnD27\niFxup7f3Ol/5ymNUKouUy1GgF4NhDafTRWvrMBZLhpGRJkwmC8lknL/7u8tcufJjcjmBYLBCqdSJ\nyVQHzNLYWODatSzp9HsIQjeCECSZjKLTaSkUjKhUEoODJXK5Pbz/voVEoohMpsRo1NXuT6Vqo7lZ\nxdWr04RCo+zd213LDP6snOfvy8kjCIIIvAe8dKuzRRAEJ7AmSZLqQQgnVfusDt0y/v8FPPVJc/DA\nz2aT+6Rj50HdYJA4ccJ+ozOBm9lZkVQqisOhQaVyE4mkKRTmKZXOIooR6upE+vtHWFqaY2lpmsbG\nJ5Ck0+TzLVgsXyKZvMrs7BwnTpwAwOWaYN++fSSTKWZnVQQCMkwmB0ZjhVAoRbGYRa8vIIohrFYz\npdISJlMBtdrGwoKIQqFBq91LuRzC4/HQ3w9Xr5owm/eTSFynv1+gs7NzR5vq7YcGSZKYnRUpFjtI\nJJZpb9chigZCochnyht8N3xc8jeobjYq1Ryjoz9AFFdIpaoOj1vHvn5dQqn8CRaLlqamwxiNRrLZ\nN5mairK+LhEIWDl58u4dJnbKC6BQrOHzyVAqu4lG1Wi1ZdTqQTY2Nujri+Nw1FQQ5XKMaHSMXC6I\nQuHn8OF+mpq0ZDJJOjtd/NIvHcRsBrv9SYAbnDzVKOPly5e5cOEs8bidYnGdbLYLECgWIZXaJBJ5\nl699jZrB9fWvCyST/x/Ly0bS6WFE8Rybmxvbys48Hk8tu2ErDXtntM9i2ctLL1VT00dGZD93eunn\nBVvzuq4Orl6tUFfnplCIb1uP4XCUfN6O06lkauo9Rkd/yOHDTQwNDTI0tJUpY8Rs/j84ezbA7GwM\njUbPyMgLeL3XyGbDrK7uZ3U1Szj8Lp2d55iaytxoaXqZSMRKNmsimQxgMFRwOt1MTnrJZhtQKrsR\nRRN1dfO0tzt57DEBjUbitddElMo+SiU9BsM4+/aVCIWayGRcXL++wne+s8q1a1n27tWxtqYjGg0x\nPq5EEHRsbPyYJ580cODAEY4ff+aGMzaNQtFOqXQESbIiinW0tDg+n/c/I0Qi8D/+R7WsSaN51NI8\nHLz0EnzjG/D7vw8zM6BWP2qJHi0ehA3wYfgwh/e9ynC3cT7KfVSvtWM0tjA9vYzLleM3fuPXGR6u\nOr0HBkb4+7+f4vz5S+h0ChyOI8Rik8jldTQ0uCmXr9HSkkarzTMwINDf78ZqfYzZWZFz515nfn4G\nSerEYtm9O+lWJsxWWU0sFuev//osCwsx5ubmqaur0NWlZmlpibfeunqj02k9Pl+GzU05xaKFQkFi\nY2O99lxeeOEFOjo6CIUipFIq9u0zoFSeYmxMRi5Xz+XLQfx+kf3751CrPSiVHbz66gX0+jE6O58h\nEACjUYfN1ojJ5OaFF0q8/PKzdHd314IBUG1jvd2ZcIxQKML77wv09j7O2bM/5PTpMwCf6gP2veBe\n5tzDWF9b9qLTmUWSVrBazYRC1aBQT08PbvfNZ76bM+jW7miFQj3PPdfGT37yNjZbC+l0nExGh93e\nTSQiAmUqlSNcvfo+b7xxEZPJgU53GJPJiSSVqPZrsrG5WcBgMHH06ON4PB7U6jcBFXb70/j9MpzO\nDDJZHS6XElHsIpdLUCwaUCpXSadhbEyGTNaC0ZjE7Y7yxS8eo7X1S8jlrxMMjuN0Kjl58kTtnqrO\nUxGtNseBA06++MUnd5z3Pv3n+fvN5FFQzfm/LAjClyVJun7jc+FjjHkv+N+B//shjn/f+Flscg8S\nD8NTuVMROBzu2mYqSRIdHd4bDp8BzpxZY2kpjVyeIZudQaOxoFRauHjxHTY3p5HLzfT22jEY2tDr\nVbS21rO+Psni4jLnz18glUqwuamjVDqCKF4lkTjD1atR8nknGo0Go7GAUtlKpdKCQgHd3RqiUS+l\nUpJQqIFsVqJclpNOpzhw4CCtrVBfXyCdNjM762FycpbFxTo2N6stNO7UYu/99z9AFB243U1MTUW5\ndm2BxkYl6fTQhzytzw52vvedfBk759ZuKdGSJFGpLBAMhnA69zM7K9LR4d02tkYTYf/+Q8zOjrK6\nOk4iIWG1JjCZHmdgYIS1tTeZnj6D2+0ilVLx/vsf7Pr9O7t2GQx68vkihUKWbPYaCoWDnh4ner2Z\n/n5LzRgZGhrE5RpldTWIzaZCFAVef30KrfYEPT0DmEwbmM1WnnjiSO0et1CtWXdhsfRRKIiUSlrS\naRmXLp1Hq/XT0PCbTE+HeeONUzWy5p6eHo4ePcrVq4uUy37S6SSgrTlytn6CQR2FQh3BoLdmwG7B\nbreSSJxjeXkFqzXLgQNPfGYiFD9PuBd9vTWv19ayaDTLhMM6VKowKyt6UqkEBoOJdDpJIrHE9LSI\nSqVHqfTR19dR65iyxdVU1ddz/NVfvcL58z6uXJFhtebRajtRq58E4iwvjzI+PkUg0EKhUESSdBSL\nK+h0FRob5UiSg2DQg8slx+udwefLUy6LZLNGGhvh6aePc+HCJQwGJzJZnlRqncHBBg4ccHDxYg96\nfQGfT8b8vJFYLMLm5gVWVqzMz+dIpwUOH/4i6+vvs7x8kVdfLeF0HqK5eT8vvdTL4uIif/zHo6TT\nAQyGNZ59duQRvLWfT/y3/waVCvyzf/aoJXl42CJhHhysZvX8m3/zqCV6OLhXO/GT0Gb4bgfRD5N/\n67q7lXfuHMtms7C4+ENmZkClKmGxWBkaqu7BW6WyDQ0ira0FtNo+0ukiDgc0N8uRyfz09e2hsxPK\n5WsMDrbw/PPP3yA19vCd77yG0WhAo+nD70/s2p30ZiZMtaxmY2OD6Wkj8biMQKAFo/EggUCAixev\noFK5aWrS4fcvotGUcLmKWK0BYrEEiUSZt956q8azsmXvXLkSoVBoRyarRxAKpNNlKpUm0mkti4sB\nXC4N9fUHmZ8/j1y+yeBgKy7XIDBHsXgNlSqMwdDE4uIiV66Mc/VqplYeDNyWVVl9f17Onv0hCwvX\ngM47trz+LOFe1s7DWF9er7fGrZRITAIZzGbLbU6NW51BsFrjTvV4PPz1X59mamqRlZXTtLYOsG+f\nDYslyOZmiUKhyOLi+5RKM5TLFlQqOyaTlkwmg07nwO124fenEcUFfL4cXm8DcAWHY45MJsXsrEgk\n0kehsIDVuo5Wq0Cj2USj2aRSibO5WYfF0k+hkCeZ3CCZTJHPu1CpmrDZXBgM1a6dMpmM48fbgKoN\nf2uZGXCD7+orQDUou1Xy/mk6z98N9+uQkYBfBf4QOC8Iwm9JkvSjW/72wCEIwhOABfjRh137KPBJ\n2OQ+Ch6Gp/JuabC3Rk8kSSIWe414vILN1sPlyz20tR2mUJhgYeEdisUeUikzf/M338fhkJPNpshk\n3sFiWadYbODcOfD7p1Gp3HR2tjA+PsHKigdRbEYuFyiV5pCkIpLUR7F4EbV6ncXFIQqFbtLpy0AM\nSepEEDKUyxvI5RscOvQ8y8s/5fvfP008bkIuV1JX14TfL9U29d3er91uJR4/zcWLi0hSgD17DmK3\nN24jK/usY+d7lyTprnPr9rK+Kr/G/LyBWMzI448/ydLSGKdPn+Hpp0d48cWeWkZMpVKho2OJdHqJ\nUinEk092YzA0kUqt3oiGGbFaVbeRY9/6/duVew+vv+5Fks5SqayjUgkUCqukUlYsFhNWq6VmFPb0\n9LBnj5GlpTB6fRfLy3GSyQp6/RjZ7AZHjxpJpdScO3ee2dlrTE1FUavbaqnWHR2tmEwXCQR0SFKS\nSgVEcZNKBZaXV5DJgpw5k6JYfByNpip3lUxxgZmZGcxmJeGwFq/3ZingvTmXi0AaKLO8vIzHU7qv\ndf9ZSmH9tOFe9PXWvK5y8piJxeLMzBQZG4PFxXG6uvbeaHebp6WlnoGBXyOVWsVovJ1oUBAEVlZW\nuHKlgN9vxedbYs8eaGlREAicJZNZoVicI5GQE4lcJxxW4XD0YbPJaWhI0tQ0TKm0Tnf3Bi+88Ess\nL4+yuHgatbobQSih1RpuZHYOYDRGcThS2O16vvKVp/H7/YRCp1hZyZPPawmHVYhiElinVDJgtwuk\nUn6Wlk4jSTF8vl7m54u0tvqIxYwcOhQhFktQLuuwWq3k81FiscTHfge7zf/PsR25HPzpn8Lv/M5n\no2363bB3b7Wd+n/8j/DVr0Jr66OW6MHjXu3ET0Kb4d1kuFf5d8vUHhoaRJKkWrBoZ8t2t1tBNhum\nWNRjMFhYWkryxhunkMm68PtzLCwsYrW2oFTKMZnyNDamOXHiSTo6OohEYqRSiRt2ioPZ2RDwDkaj\nmVQqgSjWIZMViUa9NDfHOXny8due6c77vXIlAwSBDJBEEGJAFpPJgMWiBbJotT4cjhY8niQ+3xmK\nxQznzxs5ffodenoGGBiw1cYsFOro7X2c2dnzyOVvIQgqVKo6slkzmUyGzc0YqdQYzc1GIpEwU1Nn\nsFoTNDbmmZ2dIJFo5kc/SvLWW+/gcNSTTttq5cFbGT23vpsXX+zhxAn3jQyeTo4de4m5uQsf+YD9\nSdfTH4X3aQsPY33daju++eYMoKtxSO4sx9qNaHt8fJIPPogRCu0jEEgiiqMYjV3kcgZEcRil0osg\nFLDZGpHJYmg0l2hq2ktHRwOQIRA4Q6USwuksUSgcoK6ujqkpHXNzTnK56vmuu/sQExNXSSTepK3N\nhEIBwaCRSMRAOq0in59CktaRy7MUi2oymSIyWQCZTMG+fXtJpRKcOjVFLCbfxj8F28+kO0s9e3uV\nqNW380h9GnG/Th4BKEmS9HuCIFwD/lYQhP8H+MsHJtnt+B3gryVJqtztoj/4gz/AbDZv++zll1/m\n5ZdffoiifTI2ud1wp4PZR8k8up/DnSRJzM3NMTExBdz0oG4piC3OEY8nikqlxG4XCIVENJp6Ojt/\nlUAgjiie59ChFp57zojXu4hcbsNs/gJ9fUcIBlfwes9w/vw1crkQ2awanW4QtXqYVOqH2O0Rnnvu\nBIFAK6J4moWFOrTaJtJpG6XSKOWyhFbbi0ymxOEIYzKF+elP1wmF3JTLFpTKFZaXr+F0hrhwoY76\n+gbcbjNGo4TDsf39RqMpYjEtomhleTlCY6NuW4nPveDb3/423/72t7d9tra29pHGeFTYmf78/vsf\n3HVu7Zx7y8sz5PP7aiUkp069ikJRBrooFLycOOHmiSeO1Ma2Wof4J//kd5md/YAnnpBwOOy1lN+t\n+mFR5Eba72u3pf3uVO7RqAmtdi/ZbI6uLjeVippDh0wYDNWfrbKoN944xexsNSq3vn6NXG4WpfIg\nkYgVheIaTuderl8vMDNzgStXximXe2lvTxKNRjh0qI7nn3+e1dVVvvGN17l6dQVR7KOu7tdIpabw\n+c7icg2SSJgxmew1Q+jo0cc5frwbQUjgcrWyubnK2NhE7V4+zLkcicQwmwdrm/fKygyFQv99RSg+\nimP4k25ofdpwL/p6pyP9u999jVjMjE6nJZ9vp67OjSjGaWnJIZfrSKV8qNV3JiNeXvaRTltxOJ4g\nFitQLI5x/HgXGxsbTEwoWV3tJRJZIp8vIwhdyGRKdDobDkeOUimFy3UMmUzggw8+YG3NCuxDFMto\ntSGUSjV+f466uhba2no4dEjBs88ep1KpMDrqp1SyIEkLmM0bgIKWlnr0+g4SiXrc7l9AofgL7PZZ\nZLKjZLNurl4dZ3JymvX1PO3tPsplgApOZxuRSIiNjfU7ZvbdK3ab/59jO155pVqu9c//+aOW5GeD\nf/tv4dVXq6Vpr732qKV58HgQJVA/K+wmw73Kv1umtiAId23ZvrIyg8t1kFwuytjYMnq9ilwuS3d3\nAw5HG1evVujpOUAk4qGrK8gzzzy1TfdUs8CrdsoPfvAKb755DpvtIArFKk7n45w8uYfp6TOMjNTf\n1v1rt/1VkiSuXn2XxUWJUilLU5Ofjg4TJ08eRyaT3ciiN3P9egGVKkY8/h7lso21NRm5nBOz2Xhb\nUPPs2deIxfK43SdRqabJZLyUSo0cOHAUv3+SePxVdLoD1NVVkMsvEI02IZPtJxyew+E4SKGQIBr1\nsn9/P+Pjl/j+9/+ShoYKAwOHkSRp27uJRGI1O69Q8DA3dwGVKnTXrOzd8DD19IMIdH0U3qctPIz1\ndavtaLWWgextdqQkSYyNTTA3V6l1Rb51DYmiAlF0oNXuweVqplDIIJM5sFrLrKw04nTuo69Ph1Y7\njdtdoLfXjclk4M/+7BTT0xUEoUJjYwFBmCEQSCOTGbFaO/D7r7O5+XeEwxoyGRG1uheVKo9Wa8Fq\ndZFMKtFoFiiVFFgsvSSTi0SjNpTKLgTBi8EQ5KmnvkwslmB6WsRme4y1tUuMjU3cQtZ+5/PwrVQj\nn6Tz/P3g42TyVP8hSX8mCMIc8D3g+AORagcEQdADvwEc+rBr/+RP/oTh4eGHIcZd8UnY5HbDnQ5m\nHyXzyOPx8M1vniMW02G1XuNrX5Nwu923KbvtJLnniETWCASsgI6ZmXN8/etC7bqxsQkikQ0cjjqy\n2TW02mmamzNksyUmJv6SREJOfb2K+XkFdXUW6up+kcXFnzI7+1dMT5/GYCghSQVKJRGdTk4spqVQ\neI9sdh2NJo9WayUev4rTWcLh2E8otIbPZ8VkslMoNCCKU8jlEoIQRKMxMj4+STAoIpcbgCYkKUih\ncJ7r1xvxet04HAb278/w9a93bjvYRiIxZLIWBgaqLa3hIv391o+sFHZzRH7rW9/iq1/96kca5254\nmJkYt46dSiVQqcQ7zq2dc6+9vYXR0SmmpgqoVHpKpes4nYdrkZxqnbBnx9jnSSSus7qqJ51Obsuc\nutVAWVhYBPZSKHhqZU63RlDGxsZZWirS3t6DJK3gcGRRKqv17s3NOurqbLz11lt84xt/y/Xr6xSL\n+7FaXeTzfiSpEUlyodXqqK/vwmZzsLSUJxQqEQ73USoZSKejtLYuk053IpPJGBkZ4Sc/mcLn8xOP\nJ0il/MA8Wm0TLS2DFIt+pqfP0NtbT12du+YQfe+97/LjH19dHncPAAAgAElEQVRHqbQRjXqYm/Nw\n5MhjfOELX7hrFGi3Zz039+FtZ3fDR3EMf34g/njYuVbtditqtfee39sWGeLamkg6nUQuz9bKt5qb\n9fT2KtHrK2Qyytr62tIHW9+dzabJ5+fx+ZaoVCR0OhGL5SCCIHD6tEgu56BYTCFJAo2NLtTqLOXy\nGuVyN4GACaVSwu8PoNGMI5fvweHoIZsNYDRuYjTqmZtb4OLFKODh6NF+enp6+O53X+PChSzZ7AC5\nnByZbAOYZXV1EofDjl4foliU88wz++js3MfoaICFhTPk8xFkMiOJhJJ/+Id59u9/GplsmnD4uygU\nGebmeiiVpI+Vtbrb/P8cN1EqwX/+z/Drvw5dXY9amp8NTCb4T/+pmsnz4x/DF77wqCV6sPi0Zajv\nxG5cf5VKpcYPs2UHbZU1v/nmMlZrFrv9SYLBMFNTPlSqNKIY47nnrLWW7SpVCIVCoFDYIBSaolKx\n4nIdIZn0EgqNIQgCGs0ykYiO5mZZzcGzm04fHf0BFy++QSSixm5XodMJwCROp+uODRXuZJN//esC\nwWCYubnrFIsVOjpacbvdyGQyenqqjn+vt4LV2onZXKRUiuH3p1Eqvfh8IlZrBbv9KzWn0Xe/+xpa\nrZonn3yRK1fMBAIV4nErly55EUUnoKNUSmM0KggG80SjSwwM2FEqzYRCo6hUGozGBLHYEvm8n3xe\nT7msZ3R0mWPH2lhcnOGDDy7gdIp8+ctfBrYHzFOpu2dl74aHqacfZpORh4U72f23Zv6mUm3EYgkE\n4WY5Fmy3I9bW3qS/H1KpZs6dO086ncRu3yAa3USjKSCTmVCrMygUIVQqcDqDKBRKSiUdJlMRt7sH\nq9XM66+/wdhYkVTqaUolL9Hoe7hci9TXL2Iw9OD1+vH5rlEq5cnlNqmrO0Jb29OUyx8Qi82yvr5I\nKCQjkykjk5mx2eqRyzeQy7VoNEOUSgrq670MDx/gjTdOEY0GkctjSJKWjY113nxTv+399fT0kEol\n8PunCYVWaWrS4nD0fiLP8/eD+3XyBIDy1i+SJP1YEIQjwOsPRKrb8Y+ACUmSPj8tfETcqZ3ibjWW\nd8L4+CTT0xI22wF8vrO88cYpxscneO+9BQShA5utuslEIrFb0v+W2dzMYbO9AFiIxSZqKZqnTs1x\n8aKX1VUFzz33Is3N8+j1XkSxk/X1Nrze82i1LTQ3d5NMriOX62hutuP1lonFWpDJNtHpNnG59tLc\nvIfx8cvk8/UIwjX0+izd3UPI5UECgffZt+9L6HStvPACTE5uIEn1iKKJsbESyWQQcDEzo6JQmCeZ\nLFEopJHJRrHZVlEo3ASDg0AevV7L0lKQ06fP1Oqtt1JuLZYMa2vngCwDA06Ghw98IstYHiaZ2G6d\nJoxGdnU87Mx66+7uJhb7G6LRMi7XEB6PRLEYqPHwpNPKG/XhN8eOxXwkEkXGxjRMTr5LXZ0Os1ni\n+PFehoYO8OKLPZw+fYZo1EylAhcueCmVvMjl3YiiA5VqDoNhlNdf/4CrV1UoFG6s1iDPPtvJ3r17\na/XpkiTx7W+fY2LCTD7fSrkcIJmMo1KBRmMjnV5FJmtHqZRQqeSI4irxeDU9OxpNoNdvoNHoWFxc\nYXZ2lldeeYVLlzYwGH4NhcJDNvt9DIZ2mpqGyOdTtLWlGBlpYnj45nOrGqXL+P06dLo1VlYqzM2p\nOH36H1hbW+N3fud3tpHkfdiz7uiYv68IxUcx+D8/EH887FyrW6ns9/rewuEoJtN+Tp60MzX1Hj09\nGRoacszMFPH5WgmFIvT2ppibK1IoCNsMnmonlmnk8ibU6nVkMtBq91AoiLz33hnicQ0zMwEymW4M\nhjIajYTTGSaXW0KrtSIIjXg8l7h+fQm9PofDsYFMlkehKGEwbDA0VM/AwCDz85uUSgpEsYWpqShe\nrxdJkkgkVsjlLCgUGSqVHLmcAp+vns1NF/X1BUymZTo795NKOVAqiygU72MwKDCZngZWKZXqcLuP\nIAgCyeQkSqWb9XUbBw7cLBW4H7W32/xfWlr46AN9RvHqq7CwAN/73qOW5GeL3/xN+PM/r3IQTU6C\n6oG0Hflk4JOaoX6v6OnpYWlpiaWlaVSqVmZnReCdG3pvZwDiZlmzJEm8995p3n13nkplPwbDEu3t\nTrq73cAqFouJ2VkHarURjeYiJpOEQlGiXM4yOFjP4cMtpNPmbTw3O3X6Cy9043YrOHPmm0SjJcrl\nA4RCc5hMCzQ2um9kKe/eGn43m3yLy8/hsDM25qJQqGNuLkxHx3wtKHvT8R9EpQrgcFgpFJYpFuXo\n9RlEscD4+ETNfhXFRtJpibfeegeZzIvF0k6lEmJpSUSv78BicaJSTROPeymVzEQiVtbX36arq8DT\nT/cxMODGZrOwvOwjnx9CpXoaiBOPz3D9+iwLCxukUhZSqTjLy8v09fVtC5hvZTt9FIfIw9TTD6rJ\nyM/ScXonu/8mf6Pnhn3dtq0cayuLJxIRaG3VsbbmpVIROHNGYnm5RCi0TEtLM2ZziMZGFQ5HHZFI\nB8Wik0JhmcFBHeVyiXx+A0FoqZWNb2wIZLMZJGmMYjFMpeIkFGpCJpOh1eZJpd4iHq+gUo1QLK6z\nvn6BQuE6DQ0m6uudSNI5VCo7lYqOXA5WVnJoNKBS+ZDL38DhyPC1r1XJlaudZWWEQhfp71fS0NCF\nz7f1/s4zNjbB2NgE09MpVCo3orhCX9+nT8/dDffl5JEkqWWXzzyCIBwAGj62VLfjfwP+/CGM+5nH\nbgrlTjWWW7jV82u3W1lf9xONJpHLV8hkVpiYUHL6tMjMzCZdXe3odBLj4xNYrZaaN9RiyVCpaAkE\nLgG6G1wQNsLhKH5/jmLRQTS6wU9+8lOOH7fjdvcwPi6g0SQxGIZxudrJZkXq6pJUKj7efttLIlHG\nbu8nmbSSSjUhCJvIZKcpFAzI5fsBGypVgfX1AnK5H6NRQVdXGa83y8hIFwcPWlhZWWN5WcPqai8y\nWTOi2Ikg5InHryJJ3cjlncjlKZqbyxiNJyiX9+D1/oS1tR8hk3WwsNCFz3cOKGI2D6JSiYyMNDEw\nkASMH+owe5R4kBGEndGBnURlRiO11Nud2C3rbXj4ADMzpxkbm0CSGtDrF8nnf8Lg4GPo9UYKBdm2\nsY1GMz5fK8FgEb/fRqFQYHo6STIZIxislnh1dLTy/e+f4fx5EZksQDYbp6eni87OFkZHJ4hGLxKL\ntaHRKLBa1TQ3d3L48BGefPJoTa5z584TjYJc3gHUAWEMhjmam/cwPw9arYyODi2trXZ6e/fQ3JxC\nkuaYm8uRz3sRhCb8/gI//ekyb789xtWrfmKxg0hSDpXKRGPjPvbufZFgMInTeZWXX36B9vb2G5vP\nOBaLmR/96BTXrqkoFvcSDF5BrQ7Q0PAUGxsp3n57gZER7x2ddbs96/uNUHwUg//zA/HHw861upXK\nfq/vrfr851hcDKFS5dm7dw8Ggwmfr21bmeTO0j1J8vDqqxfweOpQKqfx+QRyuQOIYjfp9ASnTl2i\npWUfXV0HWFoKIwga6uvBaFwnnzextqbE652lWIyjUhWRydxUKvtpa5ujpSVBR8ceTp48wfLyMqHQ\nFcLhTmw2kUxGQzgcxWo1o1ZnKJXSlEqL5HJyKpUGoIFyuZFMpkA4nMHv3yCTcSKTHcRiAUn6EUrl\nRVQqDYIgMTX1LgpFkPb2x+nsHOLUqbeYnh6lt9dw30b1bvP/0qVL9zXWZw3FIvz7fw+//MvwCBKp\nHym2SJiHh+G//lf4l//yUUv04PBJzVC/VwiCgNFopqnpWE3PLS1Ns7bmoq7OwtpakGAwzNraGrGY\nnIGBp0gmI0xMTDE5GaFS2YPD0UYul2RqagO1+guo1WEgSbHYysjIESIRP5HIDLHYJEZjnD17nt9m\nQ2xhZzeucvlNwmEjS0tW8nktkiRQKonYbHZksi4cDjtutxuPx8OpU3P4/RKieIkTJxZ3tclLJXYt\nK9uy8251/E9Pv0d3dz2PPXaYS5fUzM/X43Q2MTY2weioRDBYHcdk6mN4WMO5c29QqcQIBBwsLcUp\nFvMUCtPk8wksljzp9Ar5/JdQKi3k80FiMTUyWTeHDg3jdruZm5tjcvIHzMz8EJWqxJEjVlKpDErl\nY3zhC/+IsbHvsLJyOz3B/ThEHqaefhAOmoflON15boNqIHp1dZVCoeVD6BNuzkunc6LmlJyZSePx\nZAgGAxgMaiKRJYpFPTbbU/j9KQYHm3A6j/JktZks585VHXKjoz8gHPbQ1HSMWOwsKlUTDoeTa9ck\nenv7WFp6nWj0bQShA6XyIDpdPWr1CtGol3xeTz5volCYpVj0I5dL5HIqslmJbNZIOn2EXG6eXE5E\nLtegUIioVF0Ui0uoVH4aGmzodAbGxycxm/fw0ktttc6yQ0ODBIPVjOhE4jqJRJFYTM7amsDJkwdJ\npZwYjXwig/T3i4/VCUsQhEFgz41fr0mSNAU8cEtekqRjD3rMnxfsplDOn79w18P+zrKrcDiJSlUi\nFHqPurooSuUR0mkFmUwev3+GhgYN6+smNjd1NW/os8/20N7+5DZOnqosXkTxLOl0E/v22VEql+jv\nN2CxmFhYmCAcVpPPL6PRyGlqktHf72ZpqUQyWUCtDhONvk8+38i+fYOYTEHgfVKpMrmcFfADURSK\nIAZDE4GAlb//+3fo6WlGkpTY7c2Yzf2sry+h0dRjNhsIBpcpFhNAlCpJnZJyWUVdXR0GQ4hoFNra\nAvT2qmhoeJxjx77MW299F0jXeE5MJmpt3T/JeJARhNvJkz8eUVlPTw/9/RPEYtW2y2NjsLkpMTdX\npLc3tevYarWHQGANmSwO1FGpGGls3EehoCQcjt6IorWgVHaiVneg0UyxuTnB3FyIaHSTVEqDRgPZ\nbBaTSU5HhxOHw75NrnQ6ST6fBXwoFAt0dEQYGDhCKiUnl8tSV9dLLgfJpJdMppPnn3+ejo4OfvrT\n97h82YFS6eLy5SkKhQYWF7VkMkra21vZ2AjgcCxw5MghTCYDTU0xTp58kfb2dr75zXeZnhZJpyXk\n8gnC4WWSyT6MxjYE4Spy+QbhcAqbzYHRqPuZMf9/FIP/8wPxx8PHXau7RbD7+pLb1tFupXtjYxOs\nrRnJZk34fEEkqRGFokilsopcnkYUH2N1dYlyOUepZKKurozJZEKrbaC39wuoVNcJBCZpbu5gYyOJ\nKCppbXXT3t7CL/+ys+b4jURidHd3YjariMfV6HQiqVSC5WUfe/YMcuTIPt588xssLKQoFBqALJI0\nTbkMKlUrJpOBWGwFvz+L291MpfIcbW0ZDAY9Hk8SmUyOJIFSmSaZjDAwoKK/X7YtQ+6j4tN+4H2Y\n+OY3q1k8f/u3j1qSR4P9++H3fg/+6I+qmT1NTY9aos+xhZ0lWw5Hkvn5MFevVrsQzs05WFoSWFsT\nWFt7i4EBFWDFZOqhvr5CNLqJVruCybS/ZjPDaq10y2AosX//IdzuIcLhVYxG8x3lSCTOcvbsNSBL\nOr1OqaShtfWXEMVLxOMr6PVKXnrpt9DrlducM36/RDxej9+fJRY7jVZr2maTu1xf3FW2W/eOujob\nGo2HVEqgt7eBEyeq3W8dDjvf/Oa7TE5Okk4b6O//FdLpNWCVZHKW6WmJXC6LStWH0+lkY0PN/v1G\n/P7zqNUZmpsPs7QkUShcJJdrRK9vpLX1APF4bpttYrMZaW0No1CkGBkZAtqZmppgbOw7aDTLtLff\nzmN5Pw6Rh6mnH4SD5mHJt/PcthWITiRiQJrZWeGO9Am3zsuZGRXDw1Vnkdm8h+HhEj/+8WW0WohG\nKySTPozGIDJZnECgQEuLbptNPjv7AaK4gkpVdTSGQquI4goej59MZpFksomODi0uVw/xeAWZLES5\nvEixmEatzuJynWRzs0A0OoFSGUOr/TX0ehf5/Bhra2F0un4qlQKSNIcgZFAq1UhSGY2mB4OhC59v\nkjfeWKCjwwGkEQQZvb2G2t6/RdmwumpgdbWF5mY7a2sfPwj0ScV9OXkEQagDXgW+QDW/EUAvCMKP\ngd+UJCnygOT7HB8TWwqlp6fq5d1qP343zpTtrOvLCEIDTz3VxuTku/T22shmk1QqOhobBSQpQ3Nz\nmfr6XtbWHIyM3HR89PX10dfXB1RLTt5++22WllZxOApIUgi1up2mpj6Gh3sJhSJ0de3l8OEevN53\nOXRIwTPPPMXY2ATxuMSxY1+isfEs+fwHJJM5XK4iTU02ent/BaVyjOnpOUymLC6XjnS6QCDQjkKh\nIpdbR6mMMz9fYWGhwK/8ygs4HAOUy7NEozFUqivs2dNIMtnKe++lEcVNtNo0IyNHOXx4mOVlH21t\nv3yjs8I8Z8/+EIslgyCUP3V16g8ygvCgicoEQWB4+ADBYJVvplr69iKpVPSuYzudGUymKImEhFod\nRBBiqNWy2jvp6FAxPe0jkfBjMKRpbFSg15cxGls4dy5FPr+K1VpiZKSJr33tV2q16FsRkWg0zoED\nj3HggAy/38PBgy00NjaysbFOW9sh5ucX2dwM4HQOc+aMj1jsbxgePsAzzzyFKHpZW6ug1ydIJtto\naelFFEUkaRa3u8hXv/rLjIyM1AgRY7E4Fy68xuKiCptthFKpSCwm0dAAq6sBlMoxXK7yjRp9H0aj\njn37LKRSCd5//4Nt0Zt7aRf7MLtkfX4g/nj4uGt1twj2znW0W+nelSvjSFIUmWwdpTJGfX0nsRhk\nMufQ6920th4kHteQzZ5FrbZx9OgvolbrCYXOE4tdRqEo0d6ux2xWUiotUiiskcvpUSrt2GzuWtlB\nOp2kv7+JQABEMcvAgOkGabmK+XkPDkeSlhYD4XCCeFxDpRJAklYwmbQ8/vgRTp58hpWVFWAapbIF\nlUqL2109WZdKR9iz5yjXr5+npWUVQfAB1lqg4bMUpfskQBThP/yHKhfP4OCjlubR4Y/+CL71reqz\n+O///VFL8zm2sNPhHQxK2GwV3O52wmEZxWICs7mfkydbmZ4epb+/GvHf2JgD/CSTXgYHu9DpOhgd\n/R6iuMrAQD8HDrQzMTGFQqEkHBYAieZm3W2Boi10d3djt79xo93406RSDkIhD+WyAqezSHd3mfr6\nVnQ65TZC/Lo6G6J4Cb8/S2OjnvX1PIWCAZutgXh8mb4+Ky4XNXt0aGjwFu5Bd82mqVI0ZFhfn8fh\naKh9BiBJCkolK6nUCleu/JCBgWaGhgaBSWKxJENDT3HmzFlisQm02hSieACXy0B393O43Y9TqbSx\nZ88UMzOTyOUSGk0zVqtQ60o2Pj5JPK5gZOQ3SCYjmEwCR44cRhAElpd9tLcP8fzzz9/2zB6GHfFx\n7J9HYdfcq7w7z21bgejr1yVaW320tt6ZPqEaYE0yMPAiyWRkG/m2IFQwmwOUy4309HSxthbHYLjO\nsWN6nnqqi4MHt49ZtWfdzM5WuTOVyhRy+TqxGHR3N5JIeGlsdHDw4Mt4PB8QCr2H11tGJmvGaNRi\nMq2jVGpQqdJks3tRqeQIQojm5jxQYmHhLUTRxt69JzCb49hsK6ysZPH7u1AoLFQqDTQ2ujGZWrbd\nd3d3922cWMGgl2SSbUGg3cojP802w/1m8vy/VGsXBiVJmgYQBGE/1e5afwr81oMR73PcL3Yqhlvb\nP34YZ8p21vUskcgGY2MFoBuZrBq1giiZTB16vZkvfrGX9vZ2QqE7E4O+8847/Pmfj5PPt6NWh/mF\nX9CzZ49zW+ed5uYIhUKC/ftbePbZ6v+/ejV+g/TrLQYGBP7xP/7d28hz29vbOXXqTZJJPYcPH+Ta\ntet8+9vLVCrtZLNZJicLaDTNqFRx/uZvXqGnR0lzs0g6nUWpPMLysgmbbZkjRxrQ6VqQy+t55plD\nHDtWzUHcSpdVqVyIoodnn+2vtcH8NNWpP8gNamemgcPh/thjbz1Hp3OCmRkVyWQEjSZyx7Grzsse\nhoe9N9pGJ7fVwAN89asVXnnlr5mYWEepfAxBUCFJQVZWlMjlChobG7Hb5bS1NdUU+faISBy1WonZ\nvBe1OkYspqRSaUOl0tHdHWRhoYDZ/BSC0MIHH1wlHodg8CaHSpX75CDT01mUSjVmcxmDIcHRo4f5\n7d/+bRYXF/H5fLz33jx+v5NMpkI+P4tGUwb0GAwbuFzN9PZuotev0dXVxO///v+JXC6vEVFvERPe\nGr25t3axD56b6XM8GDyItXova/TWblxer5f19QCFQhBJasZiMdPTo6NUCiNJZgRBj04XolgsYbO9\nwOoqTEzM89RTLl5++Rni8SQgkU4bGR0NoFA8RTK5QiAwR3NzO8vLy3g8pdoetGePmsOHzdTV9REK\nRfiHfwghCHvIZiPMz5+js7MHm81PPj9OuVyP0djPwICW48c76e3tpbe3l46ODsbGqvrC52shkbiO\nJE0yOupDFFex262k005E0UEw6L2Fh+BzPCj8z/8JKyvw+sNiZPyUwGKBf/2v4V/9K/gX/wK6ux+1\nRJ8Dbnd4j47+AEHwIAjQ3Kyjo8PM3FzkRobL9oj/4cNO6uqeo7u7m3feeYeVlVVUKjdzc0UEYYVg\nUEep9DiCcJ3WVh/DwwdqtsduNngkYqJcNjI25qG/X8nLLx++oTcHOHCgemzayn7fcsL09PRw8uQS\nME06rSAaTREIFMjnBUymDF1dTp5+Wr3Nnq/quZvPwOPx8NZbXtbWtCws5OnqEgiFqvowEolRLDpw\nuQZIJsdIJq/S19dZ420JBj34fAkUijL19f20tKzR15elqWmYpaUik5PvUir56OjYT29vK3V1eRoa\nblIXbJX93JopZbc/zfz8PEajmWee6fiZHqQ/bfbPvcq7td9fv36eSmWRXC7B6Oj3aGrSMjx84K4l\n/VsB1lQqikYT2XauqdqwfUxNRVGpDLjd+xkYsNXm+q3vbcueqFQqwDt88MFPiEYrQDvxuJyTJ09w\n+fJrzM/7GR1dJR5fIBQqkEg8jUbThFI5S39/mieeGCCVcnHmjJ94PIPNVuDYsce4dGmN5eU5ikUZ\n6bSfp57q4rd/+zdZWlri29++SDS6RjQawu/3oFbHGBp6mt7eXuD2NunbeQ6fqd3Lzuvu9Lw/Lbhf\nJ89J4IUtBw+AJElTgiD8HnDqgUj2OT4WdiqGnXW6d+NMuTWKbLc/yfh4tU53YGCEVGqVvj4YGbFv\n83QCt0UPbkWVeK2d4eFq/W2plOaJJ47UNsKqIlFiMNxsUV5txW3B7RYIBDzs29dzC2FYdVxJklhZ\nWWFlRY5KtR+Pp8S+fXvZty+Gx5PEYtESDtdjtXah01XI5U6zuWknGDTj8SSQyw9SqTjw+6dobs6y\nf/9+mppsOJ2OmuzhcBRR3J6ltKU4fl7xMOqKb2ad9dTSRT9s7A87DAuCQCCgIZE4jMFgAMLAChaL\nmfr6xwgGE6ysjDI6qmBt7fRtBOK3RkFWV634fC03Pj9PPD6JUtmC06nG55unWFxEpxthbS1LOBy9\nZX3tpbk5SSwWR61uw2T6Mul0mFdeeYXp6SyhkJLV1SIORxOtrfsoFH5MX18Zt9uFxeLGYDDdILm9\n6cDaWgO3EhPeGr2593axD7+7w+d4NPgoa3Rrv1hYaECjyXP06AHi8VZaWnwUi/sxGn+LVGoauz3H\nxESBxUU9SmWSYNDH6uoibW3HefHFKmnm++9/wPi4Abu9kXJ5H05nEJmsugesrZmpqwO/P8ehQ3W3\nrBEPoniZQCBLfb2JROIY7e0NrK2lEcUZKhWRL33py7S01GM0ymoybxF6m0x76Os7yuwsKBQXWFnZ\nRKVyMz29gkqVq+nuz+f6g0UyCf/u38HXvgb79j1qaR49/uk/hT/+4+oz+da3HrU0n2MLtzq8m5oE\n+voGak6R3TIad7Mrqo6ix3blNLt+HSRptUbkWs2CgTff9OD35xDFs7S1KTCZDnPyZJUjZGBAxosv\nvrjtkOzxeAgGdRQKdWxuelheXsZoNNPe3s7v/m477747Sjbbh1JpZHMTXC49gqAnFkvcsUwMbvKu\nSFKJ9XUtnZ2Qz9+04UXxEoFAtfTVYrFhNJq3dWA6ffoMgnCUY8e+zNzcB7S0+JAkiWh0AbO5DtP/\nz957h7d13of+n8MBboIAl8RNcUoiJZGWrWHJkWJLopx5M63W8k3rpr8kTdO4fdJ03KQ3vU3TtLd1\n26cjTVcSD2XctImdWJKXZA1r2OYQKZEASJEEQUokSIIkwAFwnN8fhwABEAABECQA8nyeR49NjIMX\nB9/3+37f7/sd6QnU1ws88MD7l2387Wk/zpFS9nsTjo10tNk//o7XHrH1yitnmZqaIz5+OzbboF+F\nhD3ZCs5z4ODB/U4OyzqX39jdmWl3iJ4924rRmILZHMsDDxTT36/h8uUfMzvbRXZ2BXv37uall1qY\nmoolOVlgdtaKKI5z8OAjPPHEpxBFkfe9z7Xu58WLg6jVx0hMzEIUr5OdbXXsGQRB4Pr1m9y8aWV6\nOoWRkQlHpJqn++itzmG0ycdKBOvkiQOsHh6fWcU1ZUKIu6B6y9P1hKcFrq3tKq2tl1GppsjKethr\nZIX7Y87teGdnu2hshISEbuLicnj77etOkQjZJCTMcuKEGoBr127Q0XGHrq4hrNZSEhPjUKszlnn7\ndTodZ8+2otMVkJ+/BbjP3r1KfuVXDnH2bCsWSzV37nQxMKAFZkhIGGRhoZK8vAeZmHgBm+0ysbE5\nWK3xJCfHMDR0g0cffcRFKa5UH2M90l8ijbUMWw3ltZuaWjAY0pifL6CpqQW1uotdu44QHz+AUjmM\nxXIHmy2FuLj38/bbrzAx8c+UlpYwNpZIe7tIYuKI4xQkK0vN4KCU2z84+A5W6wxDQ3MMDXUBHSgU\nW7h9e56kpF4sFqWbo3WWnBwBpXK34zSxp6eZycmHSUnJYHbWRG/vz0lOTqamJoNPf/pTfjkS3aPu\nYOU0wmhviyvjH4HMI/t6UVtbh8EwyfR0P7t2bSEnJ1nkRvcAACAASURBVIm+vqLFjYxAbm4vCQnt\n6HT/jdlcjijGYDZPYLH8DZ/73Cc4fvw4WVlqVKo7dHQ0MzMzyMxMDCpVAfHxcXR13eX27QVmZ1vY\nunWArCy14/Nra5MRxT4mJ1OJi5tBq73O1FQe27a9j/v3mxkdHaKiQuFoHrAUbWcBbi3WHBghJyeP\nubkixzyz2WRZXyu+9S2wWOCb3wz3SCKDpCT4+tfh85+Hr37VHvUsE25cN7FVXiMQnHG36+wtzz3V\nNJuYuMWlSxMMDKiR6ppcpKZGRX8/mExJ6HSpNDbeIDOzg4qKo1RWplBfX+XoYmT/HOciuZcvv0R3\ndyv5+YdISJCaSRw9+gh9fRcYHBwlPl7q6CWKE7z11jAxMROoVPOcPi0usx3sdVcaGy2YzUM0Ng5z\n4IDJEcFw8mQ3oniLycl4rNZZzGYloii6RD5arVo0mhsuBWsHBnI5ebIBs7mP4mLfESbOkVLh3EhH\nm/3j73jtDXR6e+cYHq4kP38bCsV9h8POF/4clnp7XtqDaRzOzNpaFbduTdLZWUBKyhyTk70MDurJ\nzx9jagqSknYyOjqGTncTmCE2toixsVvExw9SWFjI7t21LulS+/c/RGdnJ319fUxO9jA6OkpCQjFJ\nSVIXPHsJko4OG1ptNnr9DBUV1QwMDNDcfMtRMsTf+xht8rESwTpk3gSeFQThlCiKgwCCIGwB/nrx\nuZAhCIJi8bongGmgRRTFp0L5GRsRd0H1lKcbGLOAmZERI42NzQ4v/0rKw26Mz84+RFnZRbZs6aSg\nYCtmczZXr0J/fysKRaXjpLWpqZm2tjFMplgsFi1q9Q4qK/cwPJxMamr6susPD4+iUBSRn59Mf/9d\nkpONZGdXc/DgfkpLSzEaR/jFLwZ59dUxUlN3YTSOYbPFADmkpRWxsHCZ6ek8kpIeYOvWfaSkDC9T\niiudiEdb+Gc04Ol0oLOzMyhHWkpKHEqlyPS0ntzcEj70odNcvfoLysqG2LmzjAsXUjGbxzEYxhkf\nz6G3N5a8vFFqa13Dr8vLy0lNvUxPz22mp+Mwm9OxWEYZGZkmMTGO1NQKdu4sQBBSSE1N9+lotdl6\nSU8vIyMjlf7+MbZuHQYUJCdXolbH+32f3KPugBXTCKO9La5M6FkyxEVqawVqatKor69EFEVHN4qJ\niVtcvjzCu++KjI9PMjc3S3x8MdPTGeh0Nl588QYm0zh1dbt58smD1NS0cO/eAlu2bKW+fg9G4wga\nTTaiqKKxcYjOziR+8IMLjI6aiYkpJCMDTp6sJS1NicUywfXrN5maEsjPz2dh4RaVlcNUVUk6va+v\nz6ljiEhh4VLuvfOY3U/tZVkPHT098OyzkjOjoCDco4kcfv3X4S//Er72Nfj5z8M9GhkI7uBoafNq\n72pVwYkTFY711TkCSK9XcfmyErV6DzCGydQGgM2mR6dLZXw8HrO5jMlJI+npGh59dJ9DF7k6rJeK\n5DoXr7U7Qg4c2Mfp0yI7dzZz//49tmzZysDAAK+8YiYxMZWODi07dzYvc/Is1V2Z55FHGhgcNFBT\nE+uwo44fPw7A2bNaFIpttLdbgVdJS1M67K+GBoIqWOuc9mOxxDtS633VBV1Lwm3/BHoo7M947de8\ncOESFksceXkpjv1QVlb1mn0X+7j6+6cZG0umv7+Ae/dukZZWSH7+Nvr771JQMEl5uYWenlFmZ6vZ\nt+8D9PS8DTRz8OA+pqdVvP76eTIzk9i9ez+9vb2OtG6pqUs3Gs0sVmshiYkqkpP7iI1NJDZ2DK1W\nyfz80j4yL28nzc1mrNZ+4uKmgbSA7mMgr4sWgnXy/DbwMqAXBKFn8bESoAOp3Xko+TawIIpiJYAg\nCDkrvWEzRla44z38LvBrjYyYUCp3U1BQyNmz57hyxczQkIbu7m7HIrBSMbDt2/cjCAKFhX2Mj08w\nMACHDu1zVF63K/t79+7R2hqLWv0gBkMvBQV6BKGagoIYjwXtsrLU5OUNMTraR0qKjpqaHSwsLHDt\n2g2ystQcPLifvj49N28OkJCwjfHxZmJiWtDrLWzZkk5iYhldXWNYLBp6eoYpK9tKVpZrD1hPxaud\nv/NGC++LBJZ37+qmo8PmOC04ebLWYZj4mut1dbtpa7uIyTREbm4BanU+Wu1NCgpiOHr0ERYWFtBq\nX6a9/Tbx8UkUFx9HqRSJiWmjqKiIykpp06jVahfbi2qZnHyIlJQ42tvPYDKVolCcQKFoYW5umKmp\n/kWDR01PTw/9/a0YjXry85NcHK1mcyXt7VYGBqZISuojOTmB8fG95OZWMTSkpampxZGa6IulkOql\ne3DgwD6f75OLIsu4Yw/1bmpqobAw1akb4lIarrSRiSE2dgyoYWEhk5mZCWJi+lCp9qPVmjGbm2hr\nM3H69BGeeOLTbp+iQaFo5c6dFkTRiiBs57XXzjE5mc3evR/EYHib2toJR6fC4uJi7t//MYODL1NZ\nmcRDDz2waOwJjI+bEEUzly8bsdl62bWr0iH39hNoyfEpCfnIiGkd7+bm4I/+CFSqjdUyPBTEx0vt\n5J98Eq5fh/2es+JlIhz3rlbQxhe+sM2lzIF9Hc3KUtPWdgWD4SowRV5ePBkZ6RQXx6HR3GZoKBOF\nIgG1+hCpqfOO1CqtVsubb77FrVuTVFRkYrUq2br1HikpbajVyZjNiXR0XGN8vB29XrIrKisrXZw4\nzz77twwNxZGQkIfVepf79+8t+y6CICzaQlcZGupHrZ6mru5hh52wVLfoQadIY3sUkZaGBtfvOjSk\nXVaw1r1phbM9Jh16annvvRGsVmFZXdD1LHYbbvsn0ENhf8Zrv6bBkMPoqBG1uouKijlOnqwNyEkR\nzN5ZSve7gsGQT0pKHD09IwhCOwUFVsrLY6it3ca77w7y7rvTTEw0Mzg4zf796ZSWlnH5spZ792LI\nz8/mE5/4/7BYTPT2LqVB2tMiZ2Z2kp6eic0WR0lJPQ8//GFu3bpITEwMaWlqjMYZ4uLeISdnL/n5\no2RkWCktzXakTfp7HwN5XbQQlJNHFMXexfbpDYDdTdgOnBedk+BWiSAIycCvA46GlKIoDq30Pjmy\nIjhB9TbBl1pQXmN0tI/6+hMYDDNOoaSe77EoipjN446Nbny8mfHxOWw2FV1ddwDIz0+iurrSoezf\ne28SqWFbBqKYRXp6N4WFepdNhzMVFRVs395NT88kavV+7t4d4d13f4rZLBIXZ+bUqaMolenExt6i\nu/sik5PTbN1aztycldJSJffvZ5GSksvWrZVYLLeprIz3qhS9ydVGC++LBNwdZz09bfT3pzM2lozB\nkI/JdAWTaZyMjHQuX+5hbCyWhQXjYrX/Ohfj4qmn7Bu+wwAuJ3Gvvvoq09PDpKWJ2GwWxsevMz8f\nQ15evKNrlT0UVKOZR6Mxk5TUytBQPAsLo8THZyII95ibW6CwcIbDh2McERAdHTYUikpstl6qqpyd\nrlIIamlpJ0bjCB0dZi5dmkCrvYPZfJfc3HlUqlzq63V+6S1Z38msFnuot70ehL1IsbMuVKmUZGSM\nMjWlB5QkJU0BTZSUJJCePoNG083cXDp6/XVUqknAtdObVHh0BIvFzP37Xej1Q8zMqLDZjNy7d5PE\nxEkGBib44Q9/DIBSmYZanU9MTAoq1RTj4xNYrUWkpRXS3d2NUtmK1SqFbnd02Cgt1TnVbJPWvo1W\nRDFSuHQJzpyRii6npoZ7NJHHE0/AX/wF/PEfwxtvhHs0MoFit117ei4yOFhIZWU5CkWRz3oop09L\nTnJIIyMjHY1mltnZfSiVXczNXWVyMpfZ2QnKylRkZdU71u1bt+Z4551uOjsTUSj6sFgS2LbtAAqF\nke3bFZhMfYyPz6LXFzI0tFyH5eZuITX1NoLQTXz8NLm52xzfwdmeX1hYYGTEwODgNAsLSY7CzvbX\nOHfddY8iMhpHAO2iHaVyimg66uIIcNa3CoXrQbDROOJi0znXBd1MenotDoXt1zx0aB8AZWVDHD36\nSMDOspVsSWd5Uasz6Onpoaenj+xsK6Ojt7l1a4b79zOIibExPv4mdXX7SErK5t1372OxlCEIPQjC\nHRYWsnj55VG6usYQxVkyMrK4e7eDwsJYlzRIe1rk5cu3uHrVhsWSSmzsOCMjWkpLFYyMGDh79jyw\nlby8UerrZ3jssSOkpqY7UsHffvv6pg32gCCcPIIgxAO/AL4oiuJZ1rbQchkwCvyxIAiPAVPAN0RR\n9JkSJkdWBId7bqU9WsLegrKx0YxCUch772lRqYbIza31eY91Op3LRnfr1nlmZ/dRXb0f+IlHRSSK\nIm1tV2htfYnJSR1TUzsYHExybEKcsSucnp4+FIoiDh36JD/60TfRaEzExu7AYpkHrtLQUENRUQHT\n031YrTUIQgpm833u3DEzPz9GQkIFpaVHGB2NJy8vzasi8CZXGy28LxJwd5yVlBTS3t5Kf38Bqanx\nGAzJXL68gMVyE4NhFqXyEDpdDxMTOozGFIBlGz53JMNCh9FYR15eCjk5nRQVmamqqiQjI93Rtaq/\nX4tCkUtubgFmcwYzM0mAjoqKnaSn70Snu4tSqefw4f0OZ+S1azewWrMoLVVz5cotXnnlHGlp1SiV\nu0lMXDoZAy0/+YkJo3EHSUkjzMwMUF+/h/T0Qr/1lqzvZEKBJzkCnZPRbuPw4RImJnIRhBEyM8uJ\niUnjQx/KpLu7l9u3Re7fL2F21sC5c22YTCkund6am28xMJBGfv5R9PoXEQQzhw9/iZs3z2C1vklZ\nWRlabSIXL5oxGtsRxdsUFDzE+99/itu3r3Dv3j3GxixcuXIHmGJycp7c3CoOH/6wV7mX50bosdng\nc5+DgwfhM58J92gik9hYqZX6//gf8Oab8P73h3tEMoFgt13T03czNNSMKArk55c5No7uCILg6PgH\nSw0Rtm/fT3PzG6SlxbN1ayEWyx0qK3NcbISKikw6OxXs3FnI2BgIQqyLIyQtTemoi+ZJh6nVGaSl\nTWE260lLm0KtznB8B+cN+/x8JwMDKtTq4wwMvENz8y1iYmJc9Ls9usbeAru9/RoTE7e4eXOakZEk\n0tN3kZgo1Qdyb9wiiiKNjc10dIyTmxtPU1M7jY0j7Nz5URITtVRVxZOQMOvxMHQz6em1OBS2X1Oj\nueGIUg/GSbbS7+AsU3fv/hddXWbi43eTkDBMVdUCen0SU1O1QCKTk1doabmPxTLJ+HgCFksiVusk\nmZlDdHSkc+tWPvPzJSiVk6jVFsrLjRw9+shix2TdosMUiot3MTJiorv7HhUVtYyNdbFt2yBHjz6y\nrClQcbGwKR2HvgjYySOK4qwgCA8AIYvY8UEcUAy0iaL4h4Ig7AFeEwRhhyiKRk9veOaZZ4iNjcVo\nnGR+XkFsrI3Y2E977SS1WfEUteOeWwlaSktLqaysJC1NSU3NMQ4ckCrkl5fPExOT5FgE9HoVmZkq\nYOn01mgccelKtXWrnqGhkUVFlMzRo3scLRadx/HIIz3odLdJTNxBTEw5/f3TXp1I9hBFKTLoJ8TH\nm4FU5ucrSE1NY26uF0EQSE2dIyYmmy1brExPm0hPn+XQoYOYTFnMzhpJTm4mP19wCe9zx5tyDkV4\n35kzZzhz5ozLYwaDIfgLRiHOMul6WiRF3UhoMRpnSE3Nobb2MJcvj2Gz6bFak1hYyCAvrxirNcsv\nI0Gq51RMfv4W+vvvUlExz6lTn6KystKla5XROITNpmVycpzc3C3U19dhMhWSnDxIYmImyck9JCfv\nZX5+P+fP6xzRbxMTFzh/3oBeP83c3DyxsZd45JFpMjPzMBpHqKxcqilVUJCMVjuOUjmLIOBoY+kP\nciTZ5mEtU5E9yZG70ZeWJvKBD5zEbL7A7KyVkpICPvCBozQ1NXPt2h0slkoSElTAbUymWJdObxLJ\niGIGiYkKZmbu0dn5Amr1PQ4ezGf37iouXxaZmUliYECNzVbJwMAd+vv/jZyc7WRkpJGVZaagIJXa\n2hN0dTW5pPp6knt5boSev/or0OmgsRFiYsI9msjlIx+BvXul2jxHj8ImPESOCrzZwjZbNh/+8Ae5\nckW1eCBZ5fcB3lL0+48ZG9OgUBRTWtqAyZTuOEi06yaDYYrMTCMpKdmoVApguSPElw5LS1OyZ88+\nsrKKGB7WO1LB3HX31FQzsBXIAJI9viY1VcTe7r26eoLRUT23b8fT2anEYDBy8mQmZjM0NjYvW4Ps\nrdI1miEuX9aiUKSQkZHCgQOZmM0CqakiDQ2ZHg9DN5OeXotD4VBdc6XfwVlerl17DYsllz17jtHc\n/GMKCgaprs5Dr2/BYpkjP3+e9PQyEhMtZGYmI4pKYmLKiY2dZG4ul4SErYyM3MNqbaWgIJ2SkkKH\nLLlGFXeSnGzBaDRw966FtLQxPvGJY1RVVS2+TovZ3EdCgqvNvJkch74ItibPC0i1d/44hGPxhB6Y\nB14EEEWxWRCEbqAWLwWen332Werq6pYpbRlXPIXl2XMr+/sLFiuzJzsmhnuF/BMnTiIIAo2NzbS1\nxdPXV0hb21Vg1nF66+6591T82X0cDQ0stow8QkaGtPlOSTGQmbl7Wc6upxDF97//KD/72S1u376B\nQjFHcXHGYm70AKOj94iP38rc3CjJyRlkZ2dQUFBAdfU2l9pC3nCuWwE4wl1Dsck6deoUp06dcnns\nhRde4Mknn1z1taMFV1lYflp0/PhxSktLF2XOgtmsp6QknvT0VCYm7pCfPwoU+W0kZGWpyc83AvdJ\nTja65C97arlqMo2jUsWiVMZRUKCmunoLaWlK9HoWW6sfcIQ2Z2WpiY83YjINMDNTzuRkEjMz8Zw/\nr2HnziEeeyzDbQxT7N5tZteuaqqrCx2t0j3hqSi1vSiiHEm2sVnL1DzPhqLOxegzm+O4fLmf2dlS\n4uKGOHy4xPH5Dz6op63tNgrFHGVlSlQq105vanUGb731Ml1dz5OSMseWLYcZHOyjvHw7ubnbUakS\nUKn6GRxsYnoaKioeZ3T0PAkJSYsdXPRs3apnZGSS1tZGMjImefTRCtLTvRdVlqMsQ0tXF/zZn8Hv\n/i7U1oZ7NJGNIEj3qqEBzp6Fxx8P94hkPDl0vNnCq4mMsEe/d3f3kJf3KHNzOmZnz1Fbq3QcJLoW\nJFYupphIkUCemifYdZh7/ZqsLDUFBSNYrVBQkOyoXem+Ya+t3cvs7AAm09KBpiAILq+xWOIX6+Y4\ndwTdQUFBIQbDOVpbL6FSxTA+PktfX5HLGjQ8PEp6ejUlJbEMDSkoLc3FZpultfUSVVVbyM6u9HoY\nupn09FrUfAnVNVf6HZxlKjc3lsHBLt5663liYgzYbCo+8pFaVKrLNDf3k5f3ADU126iuVnD37k2s\n1lGKi9NQq2uYnR1kYWGSmJg+YmMVpKbudUm5dnfQmEzNzM9nkZBQzOjoLdrb2zlx4oTP8S6N1bWm\n1WZL2wrWySMCX1xMoXoXmHR5UhR/f7UDW7zOiCAIbyDV/jkrCEIpUoHndl/v22iFk0KFt1aNzpX7\nT56sBbQoFMnk5wuO8FRvhZyHh0fp65MiHs6d6wUsjtNbT5579+LPnrytnjbfgF8LcUVFBaWlpQ5H\njD03em5uH0VF7dTUpFJXJ1lb0kK6vJ2mt3tmvxeDg0n094tcv/4qJ0/2cPz48U2lNNaKlTzvSwWw\nK6ivt0f8HHK812IpJTU13aeDxBlXma52kQNPLVcBx+c6y429EKG7odTXl8nwcCPj4x0sLGwhMTGO\nnJzdZGcLjk5xrp+zx+FIfO2117hw4RIlJYUcO3aMmJgYhyzanVxK5fZlRRFlNjZreTrlad101/uN\njU20tYFafYTR0auMjU043vflL3/YoXf37NmFIAgumxWtVktmZjqDg6PMz5dQU7OX2Nh+HnywhNlZ\nSE0VOX26hPn5Tt54Y5C4uD4KCgTKylJ5993XMZs1WK3JDA/D0JDIwkIsJSUPO1qk+vudZIJjfh5+\n7ddgyxapTbjMyhw/DocOwf/6X3DypBzNE248OXQ86dQDB/Y5ngvG6eBcyLiqah9Xrry8GA10yKWg\nvb+6yfl17mkoJ05U0NBQuWys7rq7vLycbdtcO5Tasb9GqpsjLOsIOjGxQF7eKLm5VtLSUpmdfcjx\nvS5cuARAZqaKiYmr9PTcA8YYHY0lN3eE3NwkqqoKnaKxPd8vWU9HPs4y9aEPfYxXXjnLlSv32b37\nMRIT01AqY/jzP//mskPI/v5+envfY26ugrk5Bdu3K0hJSUUUaxkYSGPv3kPYbGPLggrsNnVcXCoQ\nw/R0FtPTmbS03Een0y3KjOemOHZb+pVXztLXN4LVupfBQQ2wudK2gnXyPADcWvz/XW7PhTqN6/PA\nvwuC8G2kqJ7fFEVxefl4mRXx1qrRftJqb6VYWlrqSJkRRdGlcFVlpauVshSW+hIWi5bkZGhvv0Zi\n4ohPz73z+93DA11POBJITU2nqamFmZlCtm/3vRB7y42WFi2BoiKWtZf0xMLCAq+99hrXr7/D/fsL\nlJQ8RlKSlpycKfr7E506LrQ6UtpkVoc/Ibve0lWqqlyfE0XJgHMu/OruiPNlWHh7zrmTlVSXp2KZ\nMWU3lCoqymhpGSQ9vZGhoVESEjJRqfIpLU1znLZ5+pxXX32V7363iZmZEhITmwApiunVV1/l7NlW\njMYZzOYtPP54EWazsGnDUDcj6x3W7t5ZUKPRMTQ0xOxsMlZrP6JY5Zh3IyMm6uv3LJtr9ucvXryM\nzabi2LEjnDv3Kvfu3SYxcYzh4ZjFE2hpvfjmN/+MI0deo6enj6Kix3jvvff46U9fIi6ukq6uNuLj\n91Bd/VEGBq7S3HzLp5NHJnT87d/ClStw4QKkpIR7NNGBIMA3vwnvex/813/Bxz8e7hFtbjw5dDIz\nVYyPX+TcuTZUqnkyM4+ExOngfgh55IjU+MG9O+vqvsM1mppaKCoqWvGa3r6T62Nal/XFHu3T2NjM\n+HgaZnMRXV2NJCdfZXh4eLFMwjasVsnZVFOTyuhoDo88sheNpoX4+DkSEx9FoxmhtLRTtpMjnJUi\nhd27ue7cuYPY2HJsNiUJCcNkZkqHOfbDnsxMFYIgUF29g4ceSnOkFO7aJbJ1awoGwxRW611GRrQU\nFMQ47Bn3rAmlsoqmppt0drazc2cm2dlSEXS7XSIdfJoWa0YtjVsQBHp75xge3klCwlYE4f6ms5cD\ncvIIgrAN6BZF8fAajWcZoih2A3LZulVgN7IvXLiEwZDOoUP76OgQKSrqo6jINdQ90M4kS2GpreTm\nVhEfb6GoqM9h7Hsah/MG3Xurd9eWi+PjFuDWMqdUME4kf3jttdf47nebuHcvE7P5Llu2mImJyQKk\nlu/9/VPk56f67LggExieZMFdZkRR5Px5nUeZdHViuqYOOr9uNXhbBD0ZSgbDEIWFCahUR5mdvUd+\nfhy7d2+hrs733Lhx4x2mp8t44IEnaGz8IT09fYtF0bXodAWkpEwxOdlNa+vlxXbtsvBtFsIV1m4v\nyt/WlsbAQAtjY2cpKMhGpVKuaBi6104TRXGx9W4GGRklmEzjCMKUI/01JiaGEydOANIa9L3vXWZ6\n+jGKiwvR6/tRKIaBMaQ+DGnr8v03O21tUsv0Z56RHBYy/vPII3DsmBT99NGPSkWZZcKDJ3tQaggc\nj1SnZiroa6+URi2KYkhSbZ2/w/h4u8fUKQgstdc+dqNxhKqqeFJTRbKzXSP2GxthfDwZo3EP2dl3\n2LLlFmVllRw69Ek0mhsOJ//QkBarVUlOThIKxQNs335gU9dEiWTcZda9A5qvWqjuxbrtMv7cc1dp\nbRWBKdraLvLUUwLZ2ZkuKYX19ZJcOacqOkfg2+vy2LMmbLZOqqriUKlsJCSkkp+fRFaW2jEWjWYB\ng8G2WDNq6eDTXvMyPz+Z/v67JCcbycraXIdCgUby6JAqdw0BCILwI+BLoigOhnpgMv6zUjFOTwWK\npYm2x+ci409qwFJY6iHH64qKPC8m7ouOvZ6Np3HbK/VrNAvk5ORhMiVTXn6fhx5aWnz8IdhNUU9P\nHzMzJezZc4y33nqelpaLHDnyMHV1u1GpeoDWReWR5Ejjklkdnpx27o7GnJwprFbPnSac5fXcuR6c\nUwdDZWB4mhP20wR3405awOodC1hZWRmvv/46Fy9epqenx5GGBa5z4969BObm3qWxUSAhoZu4uBwu\nXLiExZJOXt42BgbuUlhoc7Rr38j56zKuhCusXSrKL2K1biM2FjIz71NcXERamnLFdcJT7bSjR486\nUriuXLmKyZRMW9tVTp92jbQcHh4lLa0KtTqFnh49CsUI2dkiNtvr1NRkUVe3G1EUXU4P6+p2O07x\nZFbPzAw8+SSUl0tRKTKB82d/Bvv2wQ9/CL/6q+EezebFkz147doNlModDlthZMQU1LU91Zd01tVv\nv309JKm2zt9Br09Fry/0aQ+5p1V5ivZxHfssDQ2ZLja8c73OgoIyMjJSqKqaYWgoGY3mxrIo/OHh\nUUeHrjt33qan53WmpmIwm8c5duyYo1DzWjQQkPEfd5n11QHNjrtcJSb2cfRoqWMumUzJqNV7gDFM\npjafWRfe5N++/7t5c5TZ2RImJ7MRxRkef3yXS/1Ue4e6mpo9dHT8hFdf/U927CghM/MIoihiNo9j\ntfaysBBPefksJ0/u2nT2cqBOHvdZ+DjwhyEai0yQrOSx92xkL48mcMffKBh/X+e+GWhqanFUUPd0\nCtHWZqKjY5RLl+6SkzOHSpVLdnZmQKcf3jZFKznGSkoKSUxsorf3NfLzhzh0KIeqqniGh0cpKSnh\n858vcUkFklkb3GXGniPuSdac5VClmgLmQ57W4knW3effiROi4ySitLTUIVvnz59floZlj1hw/p6i\nuEBFxQ3M5k5mZqa4ezeb2dk0RkfvolZDRcUEJ0++X64FJbNuSEb+O0xMJLNlSxyxsTmkpk460g59\n6f+ltIXrKBTDKJXpjueamlpobRWJjS3l1q1Lt2NgmgAAIABJREFUZGaedXHQZGWpqalRASYGBlpI\nT99NUdF+bLZeHnlESpPV6XQ899xFWlttgOQseuopIahTcpnl/PZvg0YD169DYmK4RxOdPPQQfPjD\n8Cd/Ap/6FMTHh3tE4WUtuwT6wpM9GKoU2JWc3aH6HOfv4F4P0JM9dOXKyy5pVbD8EFYaeyZpaYW0\ntvaQk9O8rEahe71OT41UnMcmiiKlpTp++ctX6OqyotfXcuuWZPeUlpbK7a0jAE/d1bx1QLPjLlei\nWEpf3wVqappRqZRkZExiMFwFpsjPV5CVpQ74cMq+/9PrBxkdNbNjh5rJyVR6epYcSs4d6rq7h4iN\nHSYpKQcpKk+6RkeHjYSEKgShl5Mnt29KmznYmjwyEYS/i0ugnQL8jYLx93XuixzgddxSpf5d1NeP\nceXKu9TXV5OeXrgscsK9bbu/xsJKUUWPPfYYIEX0lJQ8QnFxMa++2onVKnjs/CSzNrjLjLNhkZlZ\n4VIzyjk8OjPzYcBzl4rV4O0k0NlAmp8/S0xMGTZbtosBY48Oq69fSsPy9D0TE0epqtqBRjOLRnMf\ng0GgoUH6PikpOqqqKikpKQnJ95GR8QfJyO9GFG8xOZlKSkosJ0/u8Fi80/kxewpWTs4U9+51IoqJ\n6PWFDA1pHa+xWIYYHm5nYmKQS5fGefxxrSOap7y8nO3bu0lKmmVqajuzsw+xffvBxXbuOHSByRSL\nWv0gkIHJ1CynBoSI730P/u3f4D/+A3bvDvdoops//VPYswe+/334jd8I92jCy1p2CQyU9Wo/vd6t\ns8vLy6mq6sZguIhKlcvDD38CrfamR92YlaVmfPwKV67cQUqzUVBfr3P8JoIgcOzYMcBuE0uFlLu6\nuryOzb6xv3DhEvHxW1zsnrQ0pdzeOoQE6zR1l1lfdVTdU/oUCj2iWEpKipI33mihu1vkwQcTOXw4\nn9raCSCNurrdQcm5ff/32GM7eP31s8zMGJmfV9HVVebiqLRfW4pS2+2SOghgs2Vz+PB+F3thsxGo\nk0dkeWHlUBdadkEQhB5gGphZ/KxviaL4k7X8zGhjrRYXf72v/r7OfRyiKDI0pHOM2160Swr1HCch\nwYYgiOTlxSMIkJg4sixyIpDaK+7dxZwLObtHFTU0LEVZQOhCbWUCw3vNpuWpXOvRZcrbSaCzgTQ5\neY+cnG2OxcUuK/bosMbGH5KY2ENJSZ3XXHh78eba2koMhvO0tV1BpZpidjabvr4ihoZ0TrWrJMJ1\nOiqz8XEvyu8uX97mnU6nW6yhVUR/vx6FIs+lRkNd3W7S069w924/aWkqxscTaWpqcTh5Ojs70Whm\nsVprGB9vATro6BBcWqJmZqpQqeYxGN4BXLtCOiPPj8C4eRM+/3l4+mmpq5bM6ti9Gz79acnZc/o0\nJCSEe0ThYy27BAbKerWfXu/W2XbdCQcwme5w9er/o6Ag2WMEUUVFBTU1zZhME9TWnmBiYmTZb+Ks\nizWaYeD1xb+XHHX2lvTOOtaT3WPfs7S3X2Ni4hZ6vUrWyQEQSK1KXwSyN3RP6auqKsJg6OGNN24w\nOlrM1q1lDAxM89BDGTQ0NAQ0fvffPStLTWKiFkHI5H3vK0ehGMBiKXM4ceyy6WwDW61al9RB8B1h\nvFkIJl3re4IgWBf/TgS+IwiCewv1j4VicIssAJ8SRbE1hNf0i2gxCsOxuASD+zhco2dcC9PZC3rt\n3ZuOxVLnUpjLnocZaO0VV+eQayFn8B5VBOvf1UZGwpfsBmIoruVcdjeQurqasNl6l8mK60lYHceO\nHfORCy8Vb56YsBepjQG8599DZJ2Oymw8gllHnOeo0ahfNi8qKio4fLiUvr4OUlLUwORiIdTl729v\nl5oFQB/j47OOiKATJyo4ffqIS00eT8aqPD/8p7sbPvQhqK+Hf/iHcI9m4/C//zfs3Anf/a6UBrdZ\n2Yj2VKTY2XYCKdMgCIKjaLLZPOo4UPV1MNrT04bVWuNij8ByHevJ7rHbXlJXpHj6+paiOzezTvbX\nTnVfy3zVqvRFIDLrKbWrpkZFd3chW7dmMjk5gs3mX2HjldZi1z3tIYcTy92J4/n1rnvg9W5SEWkE\n6uT5vtvfz4dqID4QWF4LaF2IFqMw0hYXf3Eft3u0TFoaHlOigq294qqkRAoK9AiCHoCMjHQGB43r\nGmorszoCMRTXci4LgpSf3tZ2kdbWS2RkzPHooxWkp7t2rnPuGmTHm6PKVd6OOk7IvOXf+7qWjEy4\nWJqj14iPN7N16zxbt+odjhhBENixYztq9TAWSyIJCcOoVEoP779OYuII9fV7GB4epa9vyaAdGTFx\n8OB+l4LNnpDnh3+MjsLjj0N6Ovz853IdnlBSXQ1PPSUVsH76aUhODveIwsNmsafCeVAcaJkGT7+J\nr4PRkpJCNBrX+oiedexyuwck+0vS5cg6eRF/7dRAalWGCk+pXdnZmYsdsKax2fScPFnr11xeaS1e\nKSDA30AG5/pQ0RCwsRYE5OQRRTFcQbvPLf4gN4E/FEVxeD0+dDVGYbiEKpqF2d9Nu/NiFEjtFdfr\nj6BWZzjCTQcHjS6tACM1GkpmiUAMxUDncnDzSGrDKghTlJaWrrjpBFeZVCiMmM0KR42hiooKKiuX\nPnOl77sRT0dlohP3NESTSc/4+Byzs/sYGhpxFCYHSEtTsnv3Q4CCgQELJtO4w6jzLPO6oORcnh8r\nMzYGx4/D8DC8/TZkZYV7RBuPr38dnn8e/vEf4StfCfdowsNmsafW86B4pRbuK22+Pf0mrp2UeklJ\n0VFYuOSkLy3tXJVuDodOjuQ9kr92qq9alaF2mnorKbA8WmZP0LWAVvrdV6svoiVgYy2IhsLLh0VR\nNAiCEAt8Eyma6APr8cGrUUArCdVaKZr1EGZfY/f2nD/fd6VNrPs1DhzYt+xzr1274bi+/X54W/Ts\ndU9WihySiUwC6ZwW6FwOdB6NjJhc2rAOD48iih2cPXuOiQkL+/bt5dixY3R1dbmMyy6nRuMI7e2D\nvPjiXebmsikpSeepp0QXR9FKC91mOR2ViXzc0xBzcgSUyt0ejdfs7EwUihauXzdhs8Vx6ZKeujoN\ngiDQ1NSCKIqoVEpHGpdrgfWl4usrFeEPZH5E8kZgrRgflxw83d3w5psgq4+1obRUKrz8F38Bv/mb\noFSu/B6Z6GStogc96aeVWrgHc329Xs/4uIUrV3rp6uqmrGwXg4MCPT09Dj3rbIdv27YNs/kn3Lmj\nZceOSrZt812bJZQ2S7CpThA5G/5gDrr9aUnujD/3yfk1ZvM4HR22xUYiziUFJIKRMWe712KJx2gc\nAbTL9ovS8xMu5ToAr895W6M3cxRvxDt5RFE0LP53XhCEvwU0vl7/zDPPoHRbNU+dOsWpU6cC/uzV\nKKCVhGqtFM16CLOvsXt7zp/vu9ImNtDPBVZY9LR+KdT1MPjPnDnDmTNnXB4zGAwh/YzNgidZCHQu\nBzqP3BdniyWe55+/wJUrkywsZHD16lv09/czOZm7TH7tNXi++90B3n03l9TUFO7fv09trVSA1l/5\n2yynozKRj2stnWvcu9dJf78eo1FPfn4SWVlLzkvJCfsKNptAdvZ+Bga0nD17jpGRdFpbRSwWqT3q\nnj37KCgYcdHjzsXXVyrCH8j8iOSNwFpw/z584ANw967k4JE7aa0tX/sa/OAH8H/+D/zf/xvu0cis\nFaGIVPHHoQOhtf3t15+ZKQRukZKio6xsF4cOfYgrV16mu7uV/PxDy3Tj97//fX784yGs1v20tXWw\nZcv3efrpp71+TihtlmBTnSJpw++vnbqa++bPfXJ+TX+/FoUi16WRiHOH42D2REsFk7W8997IYtfi\n5ftFg2GKrq67lJXtoKBgxPF+b895W6M3cxRvRDt5BEFIBuJFURxffOhXgCZf73n22Wepr68P1ecH\nPZFWEqq1UjTrIcy+xu7tuVB830A/F3wXU/akUP1dUENt8HtyRL7wwgs8+eSTIf2czYBnOQlsLq80\nj1YKjTYaRxgcnCcxcR9KZSUWy3k0mk6ys3d6ld+5uRxSU/NZWJjEZrsDLJ1abKYNp0xkEoiz23n+\nTEzcQhTTUCiysdl6qa52NV4FQWDr1jzU6kGUynhGR6eYmLBgMm1Brd7D3JyW0dEWsrKKsFrxqvcD\nKcK/EpG8EQg1Gg00NIDNBm+9Bbt2hXtEG5+8PPijP5IKMX/2s+BHZq9MFBLsQbH3SArvDp1Q2v72\n60tFlgUKC/UMDcWg0dzAZutFofBc5Fej6cRqrWb37s/T0vLPaDSdQY8h2DEHmuoUSRv+9Tio8+c+\nOafpaTQaJiYuAzgOaEJlk660X8zKgtu3F8jKqsRqHXPZ13l6To5yX05EO3mAXOCngiDEIBVfvgs8\nFd4h+Ue46meshzD7Gru350LxfYP5XF+f6Umhurflhs1l8G8EQiFrK82jlUOjteTmxqLT3WBqSkN+\n/ihVVeVMTnoujpeVpaakJJ779zux2YzU1GRQV7fbMQZZ/mTCTSCGnfP80etV9PUVUl19wJEW6+4c\nshcuN5nayM9XsG/fXq5cGcBguMrMzBBpaWMMD+uXtQAOtgj/SkTyRiCUvP661NZ7yxbJwVNUFO4R\nbR5+7/fg3/8dvvxleOUV2ODZgJuSYDftrpEUrSgUlS6RFJ70Uyhtf181X8zmSjo6bB51Y1VVOQkJ\nt2hp+WcSEjqoqlo/j/FqUp02E/7cJ/trrlx5mdHRAdTqHdhsg44DGucOx6uxSVfaLxoMUyQm9jA8\nnExBQYzLvs7bc57YzFHuEe3kEUWxGwhNWM46s9b1M7ydqq6HMPsau7fnQqFYA/1cURSpquqmp6eN\nkpJCysvLV/yMtT4hkVl7QiFrnqr7a7VahzwMDQ1jMEyRlQUGwxRG48iyKLHf+Z2PUVlpr8nzPrea\nPMvl96mnRGprW4B86up2OzbQsvzJRAKBOBud5480X3zLr9RKvWexzW4Jjz32GKWlnTQ1tbCwkMLU\nVDZzc+OUlipd9HiwRfhXYqNvBBYWpJowX/saPPYY/PCHoFKFe1Sbi8RE+Ou/ho99DH75S/jgB8M9\nIplIwVnXGo16bLbeFR06obL9RVFEFEVycqYAvYstAjpEUaS6esJjAd7PfOYzwPfQaDqpqtq1+Pf6\nsB6pTpGMv5G2/twn+2MXLlwCynj44U9w9eov6OnpQ6fTkZmpIiFBt2qbdKX9olR3R7msJs9Kz8ks\nEdFOno1MNFcL9zV2b8+FQrF6uoavYsw6nW6xe1YNGs0wpaWdK96jtT4hkVl71mIRd59vKSmDdHUZ\nuX17gcTEHiwW1zpggiBQXV1NdXW1y+Mrye+nP/3JgAuSy8isB8E6G/2R387OTjdd3UVlZSWCINDY\n2ExPTwxK5XY0mhEXPb5WBvtG3QiA1EHrqafg5ZclJ8+f/AnExoZ7VJuTj35UcrJ96Utw9CikpIR7\nRDKRgLOuzc9Porq60qXz61rqJ51Ox/nzOqzWIhIShh2HxxqNhueeu4jJFItKNc/p00eW2dOxsbE+\na/CsJRtZZ/uDv3tCf+7TUs0csFq1XL36Czo7bzM6mkR7+0s0NNRw4kTFqg9Ugt0vbubfOVBkJ0+U\nIqdwSPhSbMHco7U8IZGJXtxlSaG4R1nZDrKyKhkeTiY1NT2o64aiILmMzHoQrLPRH/n1XFNNmhsa\nzQQGg8DJk0WYzcKmXetCwVtvwenTYDbDL34hFVuWCR+CAP/0T1IdpK9/XYrskZFx1bVV69rdz5vd\n3NTUQmurDbX6QQyGd2hqanHp/ikTXtZiT+gc0TM6moQglKHTTQI6vvCFbXI34ihAdvJEKaFO4fA3\n1C/SWsv6UmzB3KNI3VBH2n0PJ+G4F+6yVFpahM02i9U6RkFBDNnZmUFdV3bWbk6icT4Hqxv9+a6e\ndLV9btTWVmIwnKe19TJVValyumIQ2GxSxM63vw2PPCJ1dpLr70QGFRVSl62vfhU+9SnYty/cIwod\n0ajn1oOV7ks47VDfdnMykLH4382Np98QCJu8r0Vav3NET3v7S+h0k+Tnb0OhSJZt1ShBdvJEKaFO\n4fA31C/SOv34UmwbKc0l0u57OAnHvXCXpfLyckpLO1ctW3K9nc3JZprP/nxXz7paR0KClokJkdpa\nBTU1MdTXR7ceDwcaDfzqr0JLC/z5n8NXviKnZ0UaX/4y/OhH8PTT8N57kJAQ7hGFhs2k5wIhku+L\nN7tZKo5/FZOpmfx8wdEYYrPi6TcEwva7ruV+p6KigpMnawEtCkUy+fkCWVnqkF1fZu2IGiePIAi/\nBvw78FFRFF8K93jCTag9/f5GFKxH5EEgpz++FFukRuUEgxzxscRq7kWwJ4ueZCkUsrWRHJEy/rMR\n5rO/c8mf7+ppfrnOjaNyFECAiCL867/CM89AQQFcuwZ794Z7VDKeiIuTOm09+CD84R/C3/xNuEcU\nGjaCnlsLvN2XSIh88mY3V1ZW8tRTwrLIlc2K5xRj1lXePclLZWXo5UUQBI4fP05paan8+0cZUeHk\nEQShGPgN4Fq4x7JR8TeiwJ/XrXahCuSUYyM5cnwhR3wssZp7EWknaN7kNxKMPZm1YyPMZ3/nUrDf\nVZ4bwWM0wmc/Cz//Ofzmb0pOA7mob2Szaxf85V9KUT2PProx6iVtBD23Fni7L5Fmnzjjy9bejDrZ\n22+4nvK+nvISrr3WZpStUBLxTh5B+jX/DfgisEHONyIPfyMK/HndahWPfPqzHDniY4nV3Itoka1I\nNvZkVs9GmM/+zqVwpRZvVn72M/jc52BuTvr/j3wk3COS8ZcvfQlefx0+8xlobob8/HCPaHVsBD23\nFni7L9Fin7izGXWyL9leL3mPVnkJhM0oW6Ek4p08wO8Cl0VRbJK9d2uHv17aYDulrHRdZ2+t2TyO\nQmGTT3+c2CwRS/6wmnsRiSeLnk4qNsPivZnZCPPZ37m02u/qPj+MxhF5bnhgeFhyEpw5Ax/6EPzL\nv8DWreEelUwgCAL853/Cnj3wsY/BxYuQlBTuUQXPRtBza4G3+xKJ9okdXxEVm9Fe8ZXWtl7fPZLl\nJVR4kq2KCjm6x18i2skjCMJO4OPAYX/f88wzz6BUKl0eO3XqFKdOnQrx6GS8EYzicfbWKhQ2qqsV\npKWxKm94NIX5nTlzhjNnzrg8ZjAYwjSajUtFRQWiKNLU1AJIMiKKYljlwtNJxWZYvGWiG28nmaHW\nu+7zo6oqnoSEWXluLCKK8MIL8Hu/B7Oz8Pzz8Cu/IjkMZKKPrCwpze7wYfj1X4cXX5R/y/UknHZj\nJEc++YqokO2V8BDJ8hIqPMmWL1mMpn3fehDRTh4k504xoFtM29oCfFcQhK2iKP6Lpzc8++yz1NfX\nr+cYZdwIRvG4e2vT0uDgwf2rGkc0hfl5ckS+8MILPPnkk2Ea0cZEEAQEQWBoKBmrNYuhIZ1Lm8hw\n4Omk4sCBfY7nNuriLRPdeDvJDLXedZ8fqakiDQ2Z8twA3nkHfud3pKLKn/wk/P3fw5Yt4R6VzGp5\n4AGpzf0nPwnl5VKLdZn1IZx2YyRHPvmK1tkMzoZIJJLlJVR4kq1r1254lcVo2vetBxHt5BFF8TvA\nd+x/C4JwAXhW7q4V2QSjeNbiJGC1IaSyR3hjEmmhxVlZahQKDZcvv4TN1ovZLA1moy/eMhuTUM8v\n97UhO7syqLmxkfT5jRvSxv+Xv4TaWrhwAY4cCfeoZELJJz4hFWL+/d+Ximb/wR+Ee0Sbg0izDyIF\nXzZ6MDb/RtLHMmuHJ9nyJYv+zt/NIn8R7eTxgBjuAcisDcGeBPiaqKt1HMke4Y1JpIUWV1RU0N3d\nTXd3KwpFER0dNkpKtAiCsOEXIJmNR6jml123G40jVFXFk5oqkp0d/ClxtOtzkwl+9CP4j/+QIniq\nq+G55+CJJ6QW3DIbj698BaampLbqgiA5fORlYG2JNPsgUgjERvdnAx3t+lhmffAkS75k0d/5u1nk\nL6pMA1EU3x/uMYSbjep9DDbs0NdEXW0IqXyiszGJtNBiQRBIS1OSn3/IIWtNTS2OlLLVLEAbVV/I\nRC6hml+uun2WhobMkKZ9GY0jgDZi58boqNRh6fp1OHtWSskSRXj8cfjv/5aKK8fGhnuUMmvN178O\nCwtSJI9eD3/3d7JTby2JNPsgUgjERvdnAx2ofS3bMpsTuyzNzGQyMXGBmppm6uv3UFFRQWXl8t/f\n3/m7WfZ3AS8VgiDEAx3AB0VRbA/9kGR8sVm8j75wVvZ6vR6rtdDjRF1tvqp8orMxicQ8ZndZA/xe\ngHwZP7K+kFlvQjW/fBlhwRj87nPMYonnvfdGwj43RBEMBmhqWvrX3Ay9vdLzqanw6KPwT/8kOXbk\njlmbC0GAb3wDCgrg85+H9napXk9BQbhHtjGJRPsgmhBFkcbGZjSaBWpr6zCbRY/2S6D2tWzLRA+h\ndMjZ7YD0dDVXr9owmRYYGvL++/s7fzfL/i5gJ48oirOCICSuxWBkVmazeB994azsx8dNgIWODiHk\nE1U+0ZFZL9xlTRRFhoZ0fi1AvowfWV/IRCu+jLBgDH73OSa1YhfWfW6YTFJr7HfegcZG6Z/RKD2X\nmQl1dfCpT0lttOvqoLJSjtiRgc9+VirCfPo07NoFf/3X8D//J8TEhHtkMjJL6HQ62tpMGAw2DIZz\n1NYKZGUdWva6QO1r2ZaJHkLpkLPbAa2tbUAytbWHMZv7Vv37b5b9XbBBn/8IfFUQhN8QRXEulAOS\n8c1m8T76wlnZt7eLFBX1UVS0unbrnpBPdGTWC3dZs7d192cB8mX8yPpCJlrxZYQFY/Av1+fadZkb\ns7Nw8ya8+qr07+ZNKf0mLw/q6+ELX5CcOfX1UnSGnIEg442jR+HWLfjt35baq//938PXvgYf/rCc\nwiUTGQwPj5KevouTJzNpbb1ETU2aR/slUPtatmWih1A65Oyyk5MzRVubBbNZT0LCyKp//82yvwt2\nWXgQeBQ4LghCKzDp/KQoih9b7cBkPLNZvI++yMxUMT5+kXPn2lCp5qmrO0JVVVW4hyUj48JqQlYD\nWYB8GT+yvpCJVpzngPtcysxUkZDgX6SbN9ZybnR1LTl13nwTJiZApYLHHoOnn4Zjx6C4OGQfJ7OJ\nUKvhhRfgi1+U6vR8/ONQWCgV4P7IR+ChhyA+PtyjlNmMiKKI2TzOwEArw8NFVFbmUl9fFZLaObIt\nEz2E0iEnCAIVFRWIogi0AH3U1e2Wf38/CdbJMwb8NJQDkfGPzeJ9XJl4IBmYCvdAZGQ8sl455L6M\nH1lfyGwE3OfSiRMVNDRUrsrgX4u5odXCyZNw964UWXHggNQh6fhxeOABOe1KJnQcOABvvSXVcPrO\nd+D734e/+itITJRk7YEHpFS/8nLpX0EBJCSEe9QyGxmdTkdHhw2FohKbrZfq6tA5Y2RbJnoItUNO\np9Nx/rwOq7WIhIRhBEGQi277SVBOHlEUfy3UA5GR8ZeRERNK5Q727ZNCAUdGTOEekozMMtYrh1w2\nfmQ2Ou5zaWTExMGD+yNO5ouL4YMflCJ2jhyBtLRwj0hmo1NXB//yL1Jh7nffhbffhhs34Px5+Od/\nltIF7WRmQn6+lCqYl7f0/4cOQU1N+L6DzMZgeHgUmy2bw4clPZ2WhrwZ34SE2iaV6zEFT9BZvIIg\nxAFHgDLgRVEUzYIg5AEToihaQjQ+GZllyLm5MtGALKcyMqEhWuZSQoLU4lpGZr2JjYV9+6R/dubn\noa8POjulDm4DA9DfL/23rU1yBN2/D9/6luzkkVk90aKnZaILWa6CJygnjyAIxcA5oAhIAF4DzMBX\nF//+XKgGGAA5AD/72c9ob5c7u290bLZ7TE5OIggpvPPOOO+88064hxRyfvnLXwLw4osvyjIdpWwG\nOfUXWZ5lVkMkziVZpmWihfh4KdLMvRbUwoL074UXpL9lmZZZDbKellkLIlGuwolGo7H/b46v1wlS\nMaPAEAThZ0hOnaeBEWC3KIp3BUE4AvyrKIrrXhFJEIR/AH5rvT9XRkZGRkZGRkZGRkZGRkZGZp34\nR1EUv+jtyWDTtQ4DB0VRtLnlW/YA+UFec7X8Avit559/nu3bt4dpCDKRhCiK6PV6xsYmyMhIp6io\nyGt+cG9vL2+/3YvNpkKhMHHwYDHFYW5/8vOf/5w//dM/RZbp6CMQ2YsWVjtHZHmWiRY8zV+9Xr9M\n/pubmyNapqNVD0XierxZkPW0zEZDlunoZLXr10ZeR9rb23nyySdB8n14JVgnTwzgqU9EAVKETzgY\nAti+fTv19fVhGoJMJKHVaunri8dqrcJsHmbnzjSv3Y1mZmzk5Gx1FPbKzSXscmQPK5VlOvoIRPai\nhdXOEVmeZaIFT/M3N3frMvmvrJS6O0aqTEerHorE9XizIOtpmY2GLNPRyWrXr02yjgz5ejImyIu+\nCnzZ6W9REIRU4BvAK0FeU0YmpDhXZLdasxgeHvX6Wqmw17BTYS/1Oo5UZqMRiOxFC/IckdkseJq/\n0Sj/0aqHovFey8jIyMiEjtWuX/I6Enwkz+8B5wVBuAMkAi8CFcAwcCqQCwmC8HfAh4FiYI8oircW\nH88GfoDUvWsG+C1RFC8HOV6ZTUggFdkrKqQyUpIxX+n42xeiKKLT6RwbgIqKiqgIhZdZezZCNwB3\n+S4vL6ehIbA5IiMTTdhlXq/XMz5uoaNDJCFhxEXeneU/0os/RqseCmY9DhR5/ZaRkZGJXPxZv3zp\n8fVYRyKdoJw8oigaBEHYDTwB7AJSgX8HXhBFcTrAy/0E+DZwxe3xvwCuiaJ4UhCEvcB/C4JQIori\nfDBj3ijIhon/BDLBBUGgsrKSQCLZdTod585psVqzUCg0dHd3k5amlH8XmYhZXFajL5zlOyFBS0MD\nLnNEFEW0Wq2si2SiEue5kZmpAqCpqYW2Ngvp6dVAK4WFfdTX73HIdqBrhK/PXI85Eyl6KFBCca9X\nwl2/AUGnssl2mYyMjExocV6/MjMrEEVPTpxRAAAgAElEQVSRt9++7qJjfenxYNeRjaTPg43kQRTF\nOeD51Q5AFMUrAMLyO/gppCgeRFF8VxCEfuB9wJur/cxoJpSGyUZnrQ1F51DCy5dforu7lfz8Q/Lv\nIrMumxR/WI2+cJbvjo7rDA+PunwfWRfJRDPO8js+fhWYxWSKxWAQOHmyGEGIoagotDK93nMmUvRQ\nJLKSfgsEWRfKyMjIhBbn9Uur1XrUsaHU43Y2kj4PtiYPgiBUCYLwD4IgvLH47x8EQagOxaAEQVAD\ncaIoOhcU6gWKQnH9aCZac+yjEXukwttvX0er1SKKosvzzvmeNlsvCkWR/LvIRBSr0Rcr5TP7uvZK\nc0dGZr3wJovO8msyJWMyxVJb+wgwRWvr5TXJ4ZfX75VZL90RynoN8u8qIyMjEzwr6X1vOnYt6u5s\nJH0eVCSPIAgfB34IvAtcW3x4P9AqCMIToij+NETjC5hnnnkGpVLp8tipU6c4dSqgUkERS7Tm2K81\n3sLrPD0O+BWKt5I31zmU0GyupKPDFvTvcubMGc6cOePymMFgCOgaMjLu2PVFe/s1JiZuoderHDIv\niiKvvfYaPT19lJQUcuzYMWJilvz+K6V6+NJFnuaOjEw40Gq1/OAHF+jpGSY+3synP32Ebdu2Ldbd\nMdHeLqJSTQHzTEyMUFuroKYmhvr60Kc3yev3yqzXKWp5eTlVVd309LRRUlJIeXm5y/Mrhew7P282\nj6NQBL/+y8jIyGxmVtL73tZOb3ZqIClXCwsLLrZwcXExCQmdG0KfB5uu9ZfAt0RR/Lrzg4IgfGPx\nuVU5eURRHBUEYU4QhBynaJ4SQL/Se5999tmN2CLNQbTm2HsjkIno67XeFIS3zaY/RuRKYYDOoYSi\nKFJaqgv6d/HkiHzhhRd48sknA7qOzPoRDXm7djlsbGymrS2evr5ChoYkme/u7ua7321iZqaE2dlL\n3LnTzgc+8Ljje6yU6uFLF3maOzIya8FKjvwbN65z/foIFksOFksC4+NvsHOnHqVyF2ChqKiPurqH\nARgZMZGVdXTN5vJGW7/XAk+6o6JidbrWk4x0dnai0cxitdag0QxTWtrpYgestOlwrclno7paQVoa\n8u8qIyMTVUSCLetrvyWKIqIokpMzBeipq9vt0LHe7NRADgtee+01hy2cmNjEZz8r0tBQuSHW6WCd\nPFuROl+58zzwleCH48JPgM8D3xAE4UEgD3grRNeOWjZCjr37CVhHhw2bLXvFiehr0npTEN42m/7k\ncAZy6roRfheZwFjNifN6Lap2uRweHqWvDxeZ7+npY2amhOLiY7z11iCXL98nNtb/7+FL5j3Nne7u\nrlB/PRkZj/NQFEWee+4iJlMsAwO3MZlSiY19kNTURCYnb2IyxbJv3wE6OgSKiqCqqmpdxiqvEyvj\nSXestsmBJxlZ6RAn0OfT0uDgwf1rcUtkZGQ2MWttL0ZCDZqVIsPPn9dhtRaRkDDsOIT0RSC1euy2\ncH39EzQ2/pDeXgMNDQ0bYp0O1slzETgMdLo9fggIqM25IAjfAT4A5CK1ZTeLolgJ/AHwnCAIWsAK\n/Opm76y1UXBWKP39WhSKXA4fXnki2idtVdU+rlz5MWfO/JjKygpUKiUm0zjj45MuLW/Bu+KwP6ZQ\nGDGbFcsqtoN86irjm9UUfAvFompf+IeGhtFo2pmdXaC0tGhZ2pUoipjN4/T3azEah8jPF8jKqqKk\npJDExCaam39MTIyB3bsfw2pVhqRwXTS2m5aJTtznodE4wo0b1zl37i7JyTsYGrIAHcTFTZKTs4Nt\n2xSoVPMbIhQ7kgjVRsST7rh27YZTk4Mf093dQ37+gw7dWVFR4TNd+8KFSxgM6Rw6tA+N5objdd5S\nWQVBWPGQR069k5GRWQ/W2gkT6uLFwawF7nq/vLzc0b1Vr9djtRa6rPGgxWgcwWKZIDU1nezsTJfP\nCUQ/223hxsYfkpjYQ0lJXfBfPsII1snzEvBtQRAeAK4vPrYf+CTwJ4IgfNj+QlEUX/J1IVEUP+fl\n8SHgRJDjk4kAvE10Z4ViNA5hs63scIGlSXvlyk9obr7F/HwWb73VgdXaS3FxNUrlDDU1KdTX1zkU\nhr32SFNTi2NMFRUVNDTYa+koFiOJiPoq6jLry2qMfE8bU1hqR15eXk5nZ6fPGlP2KLjWVgPvvNOB\nSrUdheLisrQrnU5HR4cNhSIXq1VDaqoaozGL4uJiPvtZkRs3/n/23jy6zeu88/+8WAkS+8Z9E1dL\npETRWm3JthLbEuU43eIsPXGm02nzS3/TdtqcmXbSX6enaWY67Zk2OZmTdEk7Eydu6jpO0ri2Q8ny\nIpvabZGSQHEBSBEkwA0AsRPEQuL9/QERIrhopSTKwfccH1Mk8N573/e9z33uc5/n+/2QqSkNBQWa\nddus5DMW8ribWCRp7Om5yOTkBMFgAX19aSIRG+fOzdHZeR6Xq4l0OsLcXAHFxe2o1bOYzWcoKdlC\nRYWU5uY0Vuv9C97f7xT59W5/vTMbGxuv2bul/EnJ5BgKRWOO7RwZGaGz04ZCUUV5uTfb9mKf3G4r\nw8N9wCtUVBTmHNqsVsra2Nh4w0Oe/CFQHneKhQXweKCgAAyG+92bPDYq7oaC1FKsd8D6RmvBUntv\nMmVe/EyptJG9e3cjCEKOmlYoFACiDAwIKBReBgY8vPJKgGhUht8/R339FioqZnLaWbTHmUCQPOtj\nr+ZLL/rCo6Nuamq289RTT93R+DcSbjfI8zdX////Xv1vtb8BiID0NtvI4w5wvx1IWHuiXzMop5HL\nvZSWyigtHUOv11434LI4ad99933GxyuRy59gZKQTt1uFTKbB5ZqisXGShoZPZ8e6mNbn8RSSSJjx\neBzZ3wMEAiGSycpVjedGSGHMY+PiTpx8s9mIQjFIV9e/kUyOMjBQyIcfWrNli01NI1f5IkyEQido\nablAe3sb6XSaf/qnUwQChUSjdqzWRmKxOMGgGau1FLc7QldXJKfsyufzk0xa2L8/cwpus03j9wso\nlUMcOtTIwYMHl9iK/GYlj40Ph8PBiy8ex2ZLIooaCguHkctPE41aUKk2MTFRiFI5Tji8gCiqqa39\nGOHwIA7HJWZnG7DZnFRWRmhsfOS+juF+ri9rtX+7vsONOBWud0273c6LL54kECjEYOjj+edFmpqa\nlvSxkkX+pG3bWnNEDqJROZ2ddhyOCsrKVPj9wxQUTAMZBz+RMLNv324A6uo8HDjQlm1/rVLWxsYb\nB6rzgew8bhd9ffDnfw6vvgrRaOZ3lZXw3HPwu78L1dX3t395bCzc7azB9Q5Ye70zuN0xzGZwu2N4\nvTM5dnLp2hMKnQRS6HTbUCozqlqCIORkXw4MiFRVuaiqgkhEQWdnDIejApnMTShkwGRqxO228847\n7zEyMpKT2QNw/vwMiYRwHb7WjC986NChOxr3RsRtBXlEUbxt6fU87g3utwMJazt9S0/QQqF5Uqnd\neDwzQJhksuqGRMcALtcJbLaTRKN9CIKEQGCBhYVqLlwI4XA4csa6vB89PRezQZ+lEeLlxvNuR8/z\neLBxJ05+Q0MDIyMjjIxkTp8vXZpCqZzLli06nb0kEi1oNJWcONFHIBDG47GzsDCEzabBaGzD7Z4k\nHD7O1FQRyWSS/v5TFBbG2Lbt0yQS8uz7utRBWH4KnvlMfrOSx4MFn89PICDFaNxJKCQwNNRHKiUw\nP1+JyaQhGtUSj0+zsDCBTKbC6exGoehHrd6Wrbt3Ol33fQz3c31Zq/3b9R1uVW1v6TV7ei5is4lX\n7dpJenou0tTUtKyPGf6kvXt354gceL0zKBTVlJeXYLd3A3aMxkMkEnaamuQolSkGB89SUSHhwIHH\nVowlX3aVx73Et74FX/4ylJfDH/4hbNsGsRicOAHf+x58+9vwn/8z/MmfgEJxv3ubx0bA3c4aXO+A\ndTQaZnj4CpcvpykocBKN5ipeL7XrR444gSi7d+fuz5ZnX7a3t9HY2MipU2ey9n5wcBJBGMThUBEI\nTOL3F3DsWA91dZuzmT23wtf6UfSBbzeTJ48NjvV8gZefwq1VSrL8O6vxgMByMthrQR0YQ6Hw0tX1\nQxKJUfr7jYiiuKLWsqGhgeefz5RgTUxs5v33h/B4pFRUNFFcPLdirEudOIXCy+TkBENDalpbG0mn\nW6mudlNVtVIVI+/85XE93Em2nCAIaDQ6yssfRaOpoqvrNeTy8/T3V1JQMENNTSWDgz5sNicQw2LZ\nxtmz50kkzhCNbkYqtZNIeFCr56ip2UpFBUxMXMZqnUelkq4pMRmJ5J6C59/pPB4ULC9V1Ovncbs/\nwO+PMzc3RVFRI+l0muHhy6RSoxgMRWg0tdTXqygslGC1GvB4hA1Td3+/15e12r9d3+F66fFrXXPx\nmdrtdqJRKQbDDB5PP2+9FcFg0GWlbFfjzWlsXLS1dsrLfcAUxcVjaDSt7Nv3LIODZ1GrRQ4dMl13\nc3SjtP488lgv/Omfwle/Cv/pP8Ff/EWmTGsRn/lMJrvnf/0v+J//E44cgVdegdra+9bdPDYIbhSE\nuZ092t2EWq2lrm4zZnMjPl8harU25+8mk4FgsIt/+If3CQb7KSsz099/ioKCjDBOPG6ittbI+Pgg\narWdgwefy9pps9l4tSR3irY2KVu3tpBKJblyZRMmUyXvvz+K2dxIIhHM4V5bvs7d7/X3XuG2gzyC\nIBQBjwNVQE68WRTF/32H/crjFrDaZnP5C2wyNWRJrG510i8/hbtWSrL2Sd9SHpBk0k5zc+sKB2t5\nH7dv34bT6WRkxMnsrIWXXx7AYpmkttbC88+L2RS7xTF8+tOfwuFwIAidXLjgpbi4/GowyZhzb5ZK\n7+n1Wrq6NLjd4HYfpbVVQXv7gVVPKvM193lcD7d64p1Opzl27BhOp4uamkqqq6sJhU5x4kQfkKKs\nTEdVlYv29jbq6+uprR3Cau3h1VddvPbaCJFIAoNhM8mknampSxQUWPD7BVKpceTyVoqLK3jmGSsP\nPSTJvq/LbcOePbuoqXHkcFQtpsfmkcdGht1u5/vfP4HTmUIm87BvXyktLQYuXrzAkSNJnM7LRKNT\nLCyEkcmKiUSKUKuVhMOF7NhRzPPPf4bR0dGr8+/+193f7/VltfZFUSQcDnL58rtcuPAWNTVmTKYD\nN3W9a5m29hXp8UtLtEOhfsbG1JjNmUOco0cdRCINSKXnGB39LoFAEofjMb7znR5+4zfSNDXJOXv2\nbWZmlIyNtebw5iyOY5F3r7TUis+nYHDwDErlDBbL4n11XFXWdKzwfa7X73x5dh7rhe9+NxPg+fM/\nh698ZfXPaDTwZ38Gv/ALmaDPnj3w+uuwc+e97WseDxZuZ4+2FtaD6sNiMVFRMUMiEaSiQoLFYlrx\nmStX7PT2hhEENfPzPnbvPsehQ4cRRRGb7V2OHh0nmVxAq1Vnv2O3Z8iWm5sV7NihxWJpzpLuJ5N2\n3G4XBQVOfL5CyssFIhEFoijS1CRHrRaXrAe565/JlFlDTp06s4Ij6EEP9t9WkEcQhO3Az4BCoAjw\nA2YgBniAfJDnHmK1zeZyB04URTo7BxkfF0kmP6CjY4Snn3465+W9GaLkpaUk1zvpW8oDsigvunyi\nrOZkzswEKC/ficeT4vRpL3K5AZttjp6eiwiCsMKQDQwkmZioBT6kpGSYpqaH8Hh82brMaDRMf3+C\niYkCkslRqqrGSaXqaGw0MDFxmZYW/ZrOdb7mPo/r4VZPvI8dO8Z3vtNDPF5DQUEPv/mbIps3F3Lx\n4mW02lqSSQ0VFRU0NDRkSWUnJiaIx+PE43Ekkirk8k3MzJwlFktQU9NOIODFZFKwf38NPp+E5ubK\nHBnfpeR1SqWdQ4dYwVG1tAwyjzw2ChbXo0UFjTNnPuDttyUEAnUEAnb6+k7z1a/+DlarlWh0kGRS\nRiKxCUHwYLGU4POZKSpSIpUWYTbHaWpqorm5+X4Pa8U6u0g0ea+x2vpmt9vp6hrH5SonmQyg1fqz\nJNdrOf3Lx7PIg7PULu7dm+HEyZRopxgby5AcW60xEokq9u9/BkEQGB9/A1F8nH37fp2enpc5d+48\nBkMb09MlTEwIbNtWTSQiybG1i33p7Q3g9xchiuO0tqqzAgzL5devXLlCMBhGFEUMBh0ajQ6LxbRq\nv/NmMY/1wOXL8KUvwRe/CP/1v9748w8/DKdPwyc/CU88Aa+9Bh/72F3vZh4PKG5nj7YaRFHkzTff\npLPTfrUk6hqJ/WqfXSsYdD2lLLPZeHV/WI7R+An0egWzs8coLFRnOeHM5k6SSRkWyz7Gxwd54YXv\noVIVMjGhQKOpIpVy09HRyiOP7EEQhGXZmLplez8vyeQoHR2N2c9D7vqXS/J8HJCj023+SAT7bzeT\n5xvAa8CXgBAZZa0U8E/AN9ena3ncLFbfbOY6cKdOnWF8XCQYLGF8PIYoXgJAo9FlJ6jD4bgaCJoj\nmTxBR0crTz/99IqMm5qaSgYGMmVVyeQYkUjrimyAm0mFW83JXPzexIQbiSSIUtnCwsJEzjgzEuqv\n4HL14HSWEI9vYnraisfTjcMxj0ZTxfDwCHV1m0kmR4lGZUgkDzM+HuPy5Z8SCg1RWNiO0RjAYMjk\nwt5ullMeP7+4kQTvcjidLuLxmiwnyOioG6kUHA4vc3MGlMoBNJoLvP32OwwM+IlGHyIYdJFKWVGp\n4MqVSbxeG4mEBNiP0xnCag3S0GDE5/OQTE4Tjepy5qLP5yceN6HVGrHZerFaY1RWVuY3M3lsWCw6\nj93dPbz33iChkIDPF0QuFxge9hKJQDqdIhye5w/+4C/QaKrweo0kEkpkshLm58uZnu5CoQhSXv44\nJpOE0tLi+2rTV1PFWyRZh/vnRK4WoAkGi6iqehQIIpH0cuHCpWxQeHl/r20KbMjllSgUFzCb44RC\nWgYGRJTKGczmxuuWaCuVvqucOYU0NT3Gz37mpafnZZTKEeLxWc6e7aegQE806sFm66KpSZ3jT4ii\nyM9+1sl774WwWPawsBAHrgWul/pHXV0/pLu7h2CwnGh0HKk0RFvb41RUzGT5e25G6TOPPG4WqRR8\n4QtQXw/f/Cbc7GtkscA778Av/zI8+yx0dsJjj93dvubxYGC53TaZDCiVjpw92uCg75ZLkex2Oy+9\n9A52exkVFQoguaZ/uNZ+cTU76XA4OHrUseSAXo7VmsRuP8HkZIry8jA1NbuAzL6wtLQMo1GDTlfN\nwEAPb701QiplZWbGQ21tDLW6CbBTW1u75toZCISYmCjI7nnBturnRVGku/sCg4NhWlsbGRmRIAiF\nWY6gB90/vt0gTxvw/4iimBYEYQFQiqJ4RRCEPwC+B/xk3Xr4EcV6ql/dTEDFbDaSTH7A+HiM8nI1\ns7MZRYry8p1Zx83n8zM+PkcwWMj4eAWLk2h5VLaurg63+wWczstotQ309yeorXVkA0WLsngHDzZc\nTXnLfOfo0aPZUpWnnnoKiWQlf3dDQwPpdJrJyZO4XAP4/WEqK03odLsJh4O43TbOnn2V0VEnEskC\nExN9iGICuTxBJCIlGl1gzx4V8XgNomjA653A7z+HIOhRqxeYmtIyP69FIrnM9LSHy5cLqKqq4gc/\nOJ2j7LG8NCzv5D04uFfKcjeS4F1YWOCFF15gcHCIpqZ6KipKCQbf4qc/daHVjiORbOHUqXMEg2EK\nCiaYmPiQl1/WUFz8BKFQnPp6MJt3cfHi68zMuEmlwhQUzAOHUasfIR4/h1R6mbKyUiYnT2KxtDMw\nkKS29hrxuMlkYGTkZXp7gygUJvR6AYMhnN3MfJRrkfN4MLGotHT27DiXL/cgk0E8nqS0tIBIZIhE\nwklGuDNNf78ThUJJOm0imfQD48jlMlQqCTU1HlpbCzCbYfv2bfek72vZnqXZJOPjNhSKxmyW6910\nItPpNG+++SZnz36IVqumo+MQTU1NWXu4Ms1fjsEQw+0+CcQoL89U4i8GSfr7T9PdfSG7xo+MjPDd\n777P9HQVFksUv3+cpqbNGI1hKiszpafX47lra9uK0+nk3Lm3kMnU7N37NOXlY1cD4BaOHZvhgw+G\nEQQZxcWz1NcXcvBgB6IocvLkaSKREH19/fz0p8eZnHyYcDiBTBZkcnIhG+xebLOv7xQOxzHGx3Xo\n9dtIpUSmp6Ns22YgkZChVpPl74lEFNdV+swjj5vFt74FFy7A2bO5HDw3A5UKfvKTTJDn8OFM0GfX\nrrvTzzweHCy32wcPNnDoUGNO5kxt7VD230tt8PX8456ei7hcChYWJFy+bEOlmsNs/uyqfVhtv1hT\nU4MgCFd94gBa7VYKCuxYrbO43SpMJj2XLg0ik8Vpb9cTiXTh9XqpqqpiZsbPwMDA1b6IlJZOEQ6/\nC/QyN6dBLrcwMzNNMHiZLVtURKPFvP76GxQVvY9MJhCJWJiYiDM8fIW6us0oFAGmp6fx+RopKorh\n9cbp7r6wYj/gcDjo7Y3idgu43UcpKwtgNEo/Mv7x7QZ5UkD66s8eMrw8/WSyeirXoV8feayn+tXN\n1PY3NDTQ0TECZNR8EokUCsWmnNP8TCDoBOPjFZSXb0KhKFw1K8hut2OzxZid3YVer2ZiIpatd8+M\nyUQodJKWFnXWyXvzzTdzSlUADh48mO3fUsPT19fL+fMCPt8uZmdtKJUiL710EpVKg98/x4cfXiKZ\nrEGnq2F+/iI63SWSyXpKSkqQSJJMTAyTSvno7p5ErZah15tRKC4wP1+CTmdlfj6G3Z5ApWrhyBEf\nXu+L9PXV5Sh7LC8Nu5Pnk8e9xb1SlruRBO8LL7zAN795kWi0DonkNI88kkQUpczNTZBMTvPWWyo8\nnhKi0RkikTESiWbS6RLKyizMz8dwuX6GRFKAx3OeublKBKGd+Xk7CkU/Wm0Vc3PDGI1FhEJbCQR8\n7NmznUjEv2LTGIvBwkIDJpOGVEqOWq29IRlpHnncLywqLU1P6/H59ICM+fkJZmbciGI7EAF8gJZ0\nWk88LkEqrUEiuUg6PYlS+SQqlY49e2R84Qvbso7svcBatmdpNonXO0YyOXpDJ3I9gtXHjh3j619/\nj/FxIxKJF7v9J/z+739q1SyXgYEzqNUizz9fc5WzS5MNjnk8mVPicPjS1YA2hELHcbvHmJ6uI5nU\nMTQ0gFq9wNatjxGJZORul9vd1crIT5wYxWbTIYqFnDv3Ax56SMXu3TuZmQkwMaGhsLAdUXRgMsnY\nuXMXTqeTzk470aiWsTE7fn+KQKAKGMPnC1NamsDns2RVNhfbfOONn+HxSPH7lTidXcjlboqKiuju\n/pC9e3VYLPuyfs7Jk6cZH/diNutxuz0rJIDzyONm4PdnOHa++EXYseP2rqFSZaTWn3oqE+w5exZq\nata1m3k8YFhut2dmAjzyyJ4cG7UW1cSN/OOiomp0unK83i7a2qxrrp2r7RcXlbEGB9O43Uk6OkxE\nIgKTk0MMD8c5d85LIHCJUKiIYDCN11vI1JSKixcV9Pb2sW2bHbO5Ep3uIQRhDLncSUVFCydOvEsk\nEkcU60gm3YyMXCISkXHu3CxGYwcwQH19hIaG3Zw9O05xcYyiIj3btsW4dKkHl0tBUVE1vb1R2ttX\nqi/rdA/R0VGFzdbFvn1W2tvbsgkKD7p/fLtBnh5gJ+AA3gP+TBAEM/A80LtOfftIYz3Vr67HHbPU\nUaypqeG3fquGmZkAkYhuhcpOJhDUCthRKDLEVSaTYUUpk8/nz0rYjY9fobDQjdnclh3TctlnWFmq\nsly+NkOq+S5OZ4Te3p8RCDyJ1fos09MLeL1uwmElqZQHrVZDItGIKNawsFCBSuWhtDSGKHrYtKmB\nkhIVLS0GpqYEHI4itm59nHDYR1WVGwCbTcW5cz2oVNXs3fscodAHeL3vAqVAEIghiuqc9L1wWHzg\nU/Z+nnC3pRFvlCq7SHL+zjvvEwhsxmT6FcbGgrz77g8xGJ6mtvaX6O19m/Pnk7S1NVNUNEsyOYlM\nthO5XI3PN4VeP0xJiYXR0TTxuAFBeBhBaAegtNRGS4sLUVRRV3eQ+vr9jI8fwWZ7n6amkpxN48xM\ngOLiNpTKzFxNJl1YLNvzXFN53FfcOIARQyLxI4paJBINohhCFAsQhL3AABnXZQdwGkGQIpVaEYRG\nUikNOl05BQV6ysrI4ae6F1jL9izNYCkvV9Hc3IhGs1LRcSnWI1jtdLqIRksoLT1IKGRnevpijj1c\nnlljsTTS2NhIU1NT9hqLGTE+n5+xMQMuV+VV6dteUikzDQ1WHA4POt00NTWlRCJj2TKt5Vj0VRoa\nMjw/L7/8CufOTaFWP00kItLbe4WBgRjvvPMWTU1hFIrNFBWZiUTGkcncfPDBOS5e9OL1tiKVFuH1\n6tBqTUgkagKBY5jN4zz77K+hUmmz41xs891330ene5zW1u0cOfLXqFSTfPzjz7OwkKalRZ3zHDIS\nwH1cvhy7KgF8f5XY8ngw8bWvwcJChnD5TlBUlAn07NkDzzwDp06BTnfj7+Xx0cSdKEPl0l68xrvv\nvg9kAvDbt2+jt/ckgUCIzZvrOXz4UQRBWHW9Xm2/CJmsz9bW7bjd13xSi6WUujqB4uI0ly/XIJNF\ncTonCYeTRKNNiGIdY2MhJJLLtLU1sXv3XpzOUdRqA3v2HKKnZ5BYTIlUWoNCIWIw+IlEIohiLaWl\n+/H7ZxkfP8f0tJPpaT+gwWz28fGPt1FWVk5XV5rW1v1EImNrqi9HIgJNTWoefrjxI3Wgf7tBnj8C\nNFd//v+A7wN/Sybo8+vr0K8HDrd66nav5NtyHUUHhw5lyKdEUaS21pFzmi8IAk8//TS1tbXZcYii\nmENaODIyQiAQQi6PoNdDYaGXjo5F5SwHSqU9K/vc2nowm1lQU1NJQUFPVr62urotJ3jU3X2BM2cC\nRKN1TE0ZSCQuoVSaWFjoZmYmzubNZUxPhwgENBQXawgEXEgkE9TVhXj4YRNWq5XS0jLa29uypVZH\njtiJRPwUFPizGUXbt9tJp8cIBgc38pgAACAASURBVN0MDf0LKpWbmppKiovlBIO9lJcrMBh0nDgx\ngdst4HIdpbw8QFVV810r/blX5UUbGfe6fPFOcKNU2cU5k0zWMjd3kZGRMFLpBFLpbqanR5icTCOK\ncqLRKP39FzGbp4jFZkmnh1GpCtDpJjEa4wSDaeLxJKAhnQ4jlc5QVJRk9+4mPvGJ7ej1WgYHU0Qi\nY7S2CrS0aGhvz900LpWbzJ2rGeTfvY8mNvpzXSuAIYoier0Wvd5GODyDUtlHLLb56rcSiOIZYBgI\nABZgAYViCqWyDwghk8VIJBxYrXF27Xruno9rLduTm8HSdFPPYz2C1TU1lajVxxkffw2JJEhxcVGO\n+uTNyIdfI7Z0MDY2RijUz8AAGAwL6PVaUqk52toCHDr0DLW1tStOQFd7Fx0OBy++eJzTp9O4XArg\nLSQSWFhQIJE8jN3eTyDwIQ89ZKSkREksNo3VWs2HH0YZHPRhsUwxO6tGobiCTJZCo5FQXl5ISUkV\nKpWWgoKZFYqi1dUVqFQXGBgIoVRKUCqbuXixj5YWPdu3P57zPDISwJswm6vw+SSo1dq7Pqc2+pzN\n49YwOQl/8zfw3/4bWK13fj2LBd54A/buzShvvfEGSKV3ft08HjzciTLj4hp14sRrDA/3AZtIJK6t\nwV/4gpAjxW632+nuvoDN5ieZNJBKXePfWW2/6PE4iETEHJ9UFEW8Xgdudxql0oPTGSIeDzI7q0EU\no6TTw0SjQSKRAOm0i4GBMxgMMWCB3t4TVFVVUFoqxW7vJZUaJJHQUlgoR6lcwOH4ZxSK8xQV6RBF\nNQUFMurqRBIJKYFAiPb2tqt9cqFQ+FZwra2lMrncFgMPpH2+rSCPKIofLvnZAxxatx49oLjVU7d7\nJZ96q47i8qygU6fO5JAWjow4KSvbAVyktPQKpaVl1FzNHV2cHAsLnUSjMwwP91NRIcFsbmLPnkwh\nsdPporq6DVEU+Zu/OZplcE+nJ0kmZczO6ikqakOpfI+Cgk4MBgmFhc0kEiKNjSoUCgGZrJixsS6S\nyTl0ujYGB5Wk0+VIpSqcTiczM4EcTqBFebzTp88SiYSwWndTU3OWoSE71dXtqNU17NxZkCWh9npn\n0Ol0HDpUSWfnPzM6OsKHHzZw/PhLlJZK2bNn55qcQreDe1VetJFxr8sX7wSZOWVCo6nEZnNitV7k\nM595jsbGzInHyy+/wuBgmCee+Azh8D8yOPgqCwtbMJubmZ4OEAgcZ35+M4WFUSYnnRQXm9m9+xlm\nZj5AFFXMzxu5dGmecFhGKiVHoUgjkQyjUvmoqFBSUvIsHk8h27fXsmnT4oK8b9VFJ/deNK9aj7ya\nMt+DuJjlcQ0b2aYsJzoMh9OcP99Dd/cFJicn8HqVmM2bcbt/ikRyGVFUkqkCHyET4KkDqpDJxlGp\nfNTWKlCrE/j9AhJJKbGYgMlEdl26l1jL9tyOUuN6BKufeuop0uk0nZ1HEUU4fHgf9fX12b/frHz4\n4vsUj1cCl6ioGKO1tZpgMATA9u3P0tjYuEJ1a3GD0NsbRad7KIf/LxCQUlX1FFptktHRf0Ym6yUe\n1zM0NMfCgp902kBNjYcnnigmEtEzOlpEMqklFlPg9Q6zZYuKffseJhKJEonMsmtXB7W1tfj9wZxg\n++IBVWOjjEcfVXLq1LvMzUmBRqJRLbFYdMV9uyYBDOXlKqLRMC+//MqKcaznnNrIczaPW8fXv57h\n4Pmd31m/azY3wyuvwNNPZ8rA7jRDKI8HE2utJzcTKF5ckzIZPJvYt+85BgfPrknNceSIncHBNAMD\nHkwmgdnZa3ytmc9e+/xi1mfm0KActVqbbXPx96WlxdjtrezYIfL22+8QCERYWHCzaZOJzZv3s39/\nKVNTpwmFRikqUrFpkwWNpoSenn5E8RISiR6JRIHBIEWrnUUimUEub2J8PI1ebyIYHOfixW4qKnZw\n+fIs27dnJNSdzl5kMoH+fgupVC7X2uIYrok+rFyzgJu2zxspYH/LQR5BEPYAzwIK4G1RFI+se68e\nQCwPpiyeiK31kO+VPPdqjuKtyOQt/X4yOYZC0chDD+2lq8vL6Kid+fkqpqftOJ1ONBodkUgIQdhE\ncXEZiYQdtdqI12tGFEVqamqyn+nstDE0VEl5eQkwRVtbCTrdSYaHXchkIkVFGiQSPxbLJzAaq0mn\nHezatYnDhzu4cOESnZ2b8fkaSSajTE4OU1oaxmabYGRESnn5ThSKDIlkMBjm7Nkz+HwF6HTbmJiw\nIZc3UFPTxvh4MTU17aRSGdLFxQDPwEAfbref2Vk1oZAH2Ho1jXwYtbqBkyffxeVysXlzy7pM4Ltd\nXvQgYKPdg3Q6zbFjx7JE4U8++STDw8PZ96O3dxy3W49aLdDbq2D7dnuWcO6990aZmDDidr9Fba0R\nmWwn/f2FuFx+4nE5olhPIuEkkZAgle4jmQxQVRUgFtMQj5egUJQRjaqRyayk0/MoFEFaWuLU1BQR\nCFgRRQ0XL46iUExy4MBjmEyGLCfWrdqZ1e77NW6t/GbjQcVGm0/L1aVstghut8DAwI+QSPqZnQ3i\n8RQzO5tGoYhRWSmjtzdONLoDmAHkgB4wIZG0oVBUUVw8RHm5ka1bd7F16+N861t/id9fitW6hXR6\nkosXbTz00EP3dJx3uq4vvU/LxQtWC1YvBlIyHDoZgumlwRaJREJdXR11dR9nfHyOo0cvI5FIVqig\neL0zuN3pVTlo0uk0b7zxM7q6Imzb9gRabSuC4MZunyeRqEah8GYPV1Yjmx4cDON2C3R0VBEOZ4jq\nM9edYGYmxtjYJIFACItlP8nkEVIpKUrlPhSKIOHwOKOjUqLRSs6f72R+vh6Npgi5PE1bWyn79+/n\nzTeHKCw043D4qKuTZEv0cg+o/o2RkcsoFFVMTlqZmJglmZRQVqZDLjcxMxPIuf9eb0ZtS60WiUYV\n9Pcn+OADO2NjMp58sg0wrfuc2mhzNo/bRyAAf/d38Nu/vf5lVU8+mSkD++M/ht27M4TM9wqpFBw7\nBv39YDBARweUlt679vNYHdcLTiz33RbXKFEUcblOcvToyxgMMUymR1dcN6POakQiSeJw9NLf30Vj\nYwfRqAqPx5f9zFK7v9qhwaFD1ziCLBYTUqmdeNzEL/1ShHR6jImJBazWdsrLVYyM2Hj11Qn8/moK\nCjy0tIyg0yVxOEZJJB5HIqlCJpsmnb5EOu2luPgRpFILDkcfiYSTZHIMpbKKjo5DhMOjdHYeYXRU\nikJRzfT0BebnJ9m//9Or0nCstmZFIsJVv5gb2ufc53CNeHq153CvcEtBHkEQPgW8DMyRIV/+siAI\nfyiK4l/djc5dbfMw8DVAAkiBvxJF8ft3q73bxfJgSjQqv/qS39+N0monixnpOxsOR0U2yLKWQ7H0\n+5FIa5bHJ5kcRaGoysnwKS/fyfi4HYWimP37P01X1w+x2abx+wVCoZNACp1uG+PjdmZn5ZSXq69y\n+ngxGhswGlVYrQkKCrSEwyJQRSoVYGgoQWlpGr+/EIlEQlVVFcXFBcjlxXR1vczMzDkSiXmUSi+l\npZtpbq5keHia1157AZcrSSoVw2yu5vDhGrzeOLHYUUIhE5FImu7uHvbuVRONlvPhhz5stmEcjkGs\n1hoEYQyrVY1e/wjHj/8d4bCV0tJnuHKlkx//+D0CgZZ1ebb3qnRvI2M978HNnoheL9p+7NixHKJw\nt9tNNGrNvh8SSYpUao7HHjuMSiVbQjgXZmLCSHv7djweOxZLkFBoExUVSkZGPsTnWyCdLgQynBcy\nWS3JZJrTp90UFs4hkURRq+dIpQaRSKrR6bQYjUr27aslENBz4cI8AwNHkMliCMJjuN3HATk63ebb\nehdXu+/5zcaDj/W2KXd6MrWaulR7ewWvvvoTpqcn8PkUpFJSQIUozuF2X0EUCxDFGiAOzAPFQBiJ\nZAiFIoLZLGPr1k2YTCJXrgwglYaRSETASIac+cHDWuXV1/v8iy+exGYTgRi9vcf5wheEHBuwlmrm\n0s9cj4Pm2LFjdHZOMz5uxOE4wr59RVRV1ROPm9BqjXR1vUV3d4ItWw7nOLSLdqS1tRG3+yg2WxcG\nQ4jeXjlabTOi6ESnO48oziCV7kCprGN+vo+CgkoUCguCEEGpTBONahGEh1hY6GFysgupdBMqlZ73\n33cDR0ildqHVGrHZerFaY9l302w2olAM0tX1bzidpxFFJWZziFisgpISBbFYGJhErdZlS9hy73+K\nQ4dMAPT2nmVqKsLk5DzHjr3NE0+YMJv3rdtzh7wf8FHCt74F8/Pwe793d67/la9kCJg//3k4fx5q\na+9OO0vx059mspLc7gxH0NxcplzsD/8Q/vRP86Vj9xPXC05c33dLAVFgYdW/ms1GRkZ+xNtv+wkG\ny0gkothsF0mltAwMyOnuLlnVz17qQy5VZFwsATt0aHFP+jHq6+sZGsoogYXDQb75zQFGRxuQy0uI\nx6e4cOEKxcUNJJN1qNU6otE4Ho+NcHgalaqEUOgDpNJSEgk3hYWVSKVypFIfV66cRy73Mj4+ide7\nnaIiBS6XApksTGfnUVpbFZjNB3LGu9qa1dhYRCSiIBAIEQpFGRgQ1+Scu/Yccomn76cPfauZPF8B\n/gH4j6IoLgiC8BUy/Dx3LcgDvAg8JoriZUEQqoEBQRB+LIri7F1sE7g1x3Z5MMXrzUQx7/dGabWT\nxQxxchXl5YXZIIvZ3HzD7y/l8YlEGpcEfDIZPhnlEA/JpH3F748ccQIRKioq8XovIJO5sFpLKSx0\n09HRilqtpbj4YRobZ+nrG0cQ4jQ2Po3DcZKiohBPPvk5VCpZ9oRTLr/A8PARgsFxZLIDxGJSUqlp\n/P4Ar7zyI6an38TtlrOwsAdwEg7bef31f6W8fBcSyRQlJWU8/ngLHs8ALS1qCgvVnDjxBoODIwQC\nZjQaAyUlWoqKoiiV05SWzpJKqZmfd5NO+5DJTOv2bO9V6d5Gxnreg9WCFA0Nq/NCrBUMWkoUfv78\nS5w+fZy5uUomJxNMTbVSURFBoYhgt3+IxbKAXC4jldpNa2sjLtcR7Pb3kMt9zM/7GB2V4/GYCQYh\nE6eWkBEi1DE/P4FEMoVC0QRIicVOsbAwi1qtQCK5RElJCTt3bmPr1nq6ukRKSkQmJpyk0xrq63fh\ncp0ECtm9+/bexdXvuyO/2XjAsd425U5LSZbOSY9nlOnpC0SjIyQS46TTtczPqxHFS2TKsnSk0ypg\nDCgkI94pBfyAF5UqyM6drRw+vJfDhzsQBIHjx7vw+z9GJGLB5RqgomL2nsmmryduNcCaKXsqxGhs\nA4IEAr2rEkuuppq51Cb6/UE2barFYqnOctAswul0IZdv4/HH93Phwo8oKYlcJeg8zsmTSfx+GQqF\nlL17cx3axaBFOCzS2qqgpUUCZIibNZoqJif7kUrLKCxsQBAqGBmxIYphNm2SkEq50OtHaGurZHJy\nCK9XgcWiwOOxIJHUkEpZcTrjaDQTpFI/xe0uIpVSMDHRz+TkBIcPd9DQ0EBz88jV6woMDMwgCCGC\nwVEMhgqKi7VUVcXo6NiZM1+W3/9oNMzQ0CiTkw1oNFMYDF62bKlCFMUcboc7TcfP+wEfDaRSGS6e\nX/s1KC6+O21IJPD978PDD8Ov/EqGiPlW5dlvFuk0/NEfwV/+JXziE/D667B1KwSD8M1vZrKK+vrg\n5ZdBdrssr/cQG6mUZjlut2+rBSeamtTX9d1mZgLodNuyvuNiNuNSNDQ0UFKSRqHQYbVWMTVlAjz4\nfAkuXuylsnILDz20cq1aGrBeqsi4PKtnccyL6O8fIBDQIIpX8HqnkclEZDIrlZUNTEwMMzfnQKuN\nIpePkko9TCqlJBzuQa1OI5cbUSpVJJMakskwIyPvUl+vwmLZjkKhprd3EJkswZNPduDxjNPSIllh\nY1dbswwGBQMDSRKJTKlyZaUry/G69nPIJZ6+nz70rU7JJuAzoiguhv3+moyylvUqN8/dQBowXP1Z\nR0Y7NXGX2srBrTi2K4Mp9ru6UboTQ3WNjDWWDbLcjEOxdsDnWoZPeblAc3MrGg05vzcYYszMeOns\nPAKkKCvT8/DDAu3tn6S+vp5jx47h8ZzH5YqiUChRqSRotT62bdNSWKilsFCWjZ5m6j4ViKKSgoIW\nKisfweXqY2HBg0ymYHT0EtGol3j8CSSSvUilSuRyJ0ajjo6OQwwPF+Hx2PF4xjEYpGzfvo0TJ07Q\n0zOJ378dGGNsrJ+6ujIOH96KRqPjwIF/z6uvduPxXKS+Xk5tbe26Pdt7Vbq3kbGeZQ6RSAiFIlc5\nbrW5fL0N1VKi8Pn5D5mdNeNyyXC5/FfLCIrQ6T7E79ejUrXj9cqRSC4BWykvDzI1FSYcLicQCJFI\nLFBZqSeVaqKgIEQkImN+fprCQil6vYNkUmRhoZhYLIVUWkBVVQt6/T5mZk5TU7OAxWLBYNAjit1M\nTc2SSJQhk00wNHSckhIJELvtd3G1+57fbDz4WG+bcqfZXUudPoUiQGGhjFQqQTLpJByuQRRNZE4U\nfUANGeUsFeAmUxluACqQyz0cOtTK1772tZyyJEEQiMcHGR8XKSvT09Gx64EsMbzVbA6z2YjB0IfL\ndYLZ2VEqK5NEIpVZbgRRFBFFkepqGYGAHb0+o4JiNhtzbGIoNItSmUIQqqmoKMRiMWXbWLSFo6NQ\nWjrHnj07aWxspKXlIoFAmvb2R+nu7sk6tIuEx9dKnsBiOZANrHs8dmy2USDGtm1PMD8/SDR6mUTC\ng0KxF52uAK3WRUnJNozGRwkGT6BUvkMoFKGgwIRcniASiWI0ypHLa/B6TxONbiEeV+Hz6fD5PMzM\nnOQLXxDQaHSUl++jtFRkdPRNFIpCCgoqMZlGePppM4cPd+S8R9eyf35IMjlGJNJKUZGG+vo2tFoj\n4bCSTZv8GI16jh51rGumdt4P+Gjg9ddhagq+9KW7245eDz/+cUZx63d/F77znfVvQxQz4/jHf8xw\nDP3e78HiNsNgyGTwPPww/PIvZ/72rW+tfx/WGxuZ++p2+7Zot4aHRzEY3NTXL3DwYMd1fbebWWsE\nQWDPnp2cPPk+fX02RPEKUmklCwvVuN0BdLpLDAwIOd9fXHOs1hgwRmWlnrGxyiUclhdy9qtLx3z5\nsheVqo7qah9OZ4RNm8ooKlKj0cj4+MdNKBRpamubuXy5iNdfTxAMLpBO7yOV8iOXzzA3dwW5vIVk\nshqPR0NR0RTl5bPo9RIaGydQqXSoVDKamtS0tzeu2DPn+r6ZNev06bMkk1wNZglUVa39TK4pdYlr\niqHca9xqkKcQCC/+QxTFpCAIcUAN3K0gz2eBfxUEYZZMUf4vi6I4f5faysGdOLZ3e6N0J4Yqt29t\ntxXJXi3gkyHbUqBWazGbjezZs4va2qGr2TeP0t19gRMnIrS2HiQcnqGqKnMNu93OwECS+flNyGTT\nHDx4gFgsSF2dhyee+DxADi/B6dNn0ek2c+BAAzMzR5idPU9BwUViMSkjIw8Rjc5itRpIp4NEIj9B\nJnPR2Khmx47aqwzrs6hUIsGgi2g0zMhIGcnkPIWFm1EotuH1ziGTnWXr1pYswbIoitTV1WUziZb3\nKY/7i6XzQaFI0tysyJEoPn367Iq5fL1F7qmnngIyp9ixWCXJ5E7M5lkmJt5FJhsHZhEEIxLJAcLh\nGHNzE+zYoWbXLqiqaqarK40glOPzQTD4AQsLTkymGCqVBJlsGrU6zC/9UhsNDQf5+78/w8SElaKi\nKAUFMpTKBPF4H0plirq6J0gmU6jVWh5/vI5wOEBp6RaCwWF27Ehx4MBjwPq+i/nNRh7LcaelJEvX\nnLExI6OjrbhcfYTD86RSdkAg4454EIRKRFGPIDyMKMaBYQThCTSaSkpLC/jFX9yRI/G9/PqrEYw/\nKLhVv6GhoYHnnxf52c86uXBBjtW6k4GBJLW1jqzK5NGjDlKp3VRWXqKlJZ49hcy1iSKVlWNksqeu\nOeqCIOTYwpqa7Tz55JM4HA4ADIYYKlV8hZLK8pKnRd9kcTxW6wV6exUUFGhobVUQiaQoKdlLY+NO\nvF4HVquUwsJ9NDfvxefzEY+HKCzcjCiOolBEiMUmqa3dRWFhErW6kqKiBFNTQQyGAiyW/QQCoSz3\nTygUIJHQU1g4DTzM5s2t6PX17N5tXfU9GhkZYWTEiUKRyVZubo7Q2mpkfFwkmYzR0bEVtVq7ITK1\n89h4+Id/gF27YNs9SCRsa4Nvfxt+4zfg0Ufh3/279b3+n/xJZjzf/W4mM2k1PPtsJrjzpS9lCKE/\n+cn17cN6YyOXo99u35baLav1USQSAUEQrrsG3uxa89RTTyGKIm+80cmZM3PMz5fQ0NBGTU2KlpY4\nVVVkxW1OnTpDJBJiYCBJMlmFUumjqUlOb+8AJ0/2kykpvsZhmfEHxkgkKq9WgowiioPMz1sxGCS0\ntbWiUPjYsqUIo7EGtVpLNBrG41GiUr1JJFKJSqUhmUwgCJcoKmrAbC4jGISqqhgWSzstLZnApCi2\nYzDo0GjAYll9vKv5vrfi++Te09XFUO41bie57jcEQVgqRyADfk0QBN/iL0RR/N933DNAEAQp8MfA\nL4qieFIQhB3AvwmC0CKKon+17/z+7/8+umVMZ5/73Of43Oc+d8vt34lje7c3SndiqNa7bzdDtrWI\ny5dPYrN15xB9+Xx+kkkL+/e309l5BK/XTlNTCQcOPLZq4MpkMhAKncTvV9HSkqK5WYXPV86lS1sw\nmR7h/PkYEkkvRqMXmcxPZWULjzzSxmOPVaLVwtiYhvPn20inSxkfv8KRI72YzXESiUECgVESiSEk\nEiXHjl3A7f7zrJpWY2PjqmU/QI5U6+1M7JdeeomXXnop53dut/vWHsTPMZbPB42GHC6L1eZyfX09\nTU0jOJ291NRUZlVnRFFkaGjoagZXbXbTMjMzjtEYZdu2BubmooCZVErLmTNnUSjcpNO1dHQYsFhM\n9Pae4NKlk0SjHrRaAwqFClG8RCIhR69/iIqKGg4ceJxQKExZWRNabRXRqIeCgtNUVydRqWa5cqWI\ny5eDqFSjzM5uz/L8JBJyqqrMfOxjjRvmBCqPjzZu99Biecbp3r27MRr1vPjiX3HqVIjZ2ScQRSei\n2IcgxFCrixDFbmIxH+l0GlCiUulRKGbYtm07Op1yVVXDj0pg8lbHIQgCTU1NzMwEmJ9nhT+waBdX\nO4XMtYkzGAx6BgdTJBLmHDEFs9mYQ9S8qLiyqLRVVeWmvf2aQ7tIeNzUtJsTJ165quJy7R1aDCCZ\nTHOUlLgwGGp4/32Ry5cDuFzv0NICu3fvwG6fyfL/Wa3b2LfvOU6ceIVNm0LU1lahVmsZGOjD5Zol\nmUwD3SSTUoJBGQpFjM7OBYqL25HLZbS3Q3Pzw9hsMRSKqWw202r3M5P9s/Nq/19DqRyjubmKHTu0\nWCzN2YykG/mGG7ksJI+7g9FROHIkExi5V/gP/wFOnoTf+i3Yvj1TSrUe+Lu/g//+3zNlWmsFeBbx\nxS9mJN2/+EXYtw+MK6fWhsFG5r663b4ttVu3q6S8FiQSCYcOHeLgwYNLBHtSlJcLtLe3ZQ/qr3Hu\nLfKy7mFg4DR+/xgKxQRqNezb9xyRiD/LYZlImAkG/fj9Qzidl9Hr5/nc53ah0eiIRsMUFWmIRhX0\n9fVz5Eg3ZnMbw8NvMzurpLW1GZvNTyJhRxCiVFfvIJWSolJNUVAQwWSqIhIZ4PTpAKmUkZqaJ/F6\n/dlDh0XRghvZ51vxfTaiH3KrQZ4x4DeX/W4KeH7Jv0VgXYI8QBtQKoriSchItwuC4Aa2A2+v9oVv\nfOMbtLe3r0vjG7lsYSMaqpsLPK0k+rq9FLcUgpCmrq6Oz372CZxOJxMTPcTjNhob5zAaYXQ0jVb7\nC7S2PsrCwjRarZ5HHtmDyWSgs/OfsNsVVFZakcsrmZ+3YzRaSSSkxGIaAoE0x4/PMThYxKVLPQAc\nPHhw1QwquHlpvbWwWiDyBz/4AZ///Odv6To/r7jRfFhtLtvtdrq6nAQCUlwuJzU1DpqamlY844MH\nG2huVtDT40KnK8HrlVBensZolHP69LvMzgZRKg9gs43zve99n0984ln27SvDaAxx7FiAWOxRiov1\nXLo0TjrdSlXV4yQS3XR2HiUcVhKNKojFHMzNDSCVGgiF2pFIJqip0dLYWIvPJ0Wt1m5oe5THRxu3\n67xkSP4zZVSJxDm2bu0iGAzT1zfA3NwuFhYaSacB7AiCBal0E0plELncw9xcFIlES1FRKwUF02i1\nw2zdWvFAcu3cbaxl/65nF6/HI7hUTGEtUs2lgaPFwMfSctkTJ15hePgKsJlE4tpa+eKLx7HZkoCG\n1tZZWloEUqkyTCYLLlc/sViU6upqYJSzZ99CpYohCDIGBs5QUVHIxz7WlrO+Dg5aqKszcOKEFI0m\ngFodJJGIEQ7vR6ksQq8XqK6uYu/e3ase0Kx1L0+ceI3h4T5gE8nk6hlJ17PFG7ksJI+7g//zf0Ct\nhs985t62++1vQ3c3fOpT8MEHd67o9fbbGWWw3/kd+C//5cafFwT4+7+Hxkb4H/8D/vqv76z9u4mN\n7EfdSd/u9p5wZVbntYPRpXu/pbysoVA/oVCKZHIr8XgfIyMXqagoBK4pVb3//iixmAe1Wo0gxKit\nrc1mWGaCRwO89948fn8hJtNpxsZAECopKvKxeXOKwsI5XK461Oq9uN2vUVHh5Vd/9bP09w9w5EiS\naLSJSOQKJSURJBJzdl96s/Z5IwZubgW3FOQRM1IX9xIuoFQQhGZRFAcEQagHNgGD96LxjfxwN6Kh\nupGRWYvo61ZT3Bavs2tX5qTt+PEuHn98H7/5myKjo25ksjouXSphcnKeSGSc8+d/zNatSkymzyOK\nIiMjI4TDcySTMDMzTUODiE6nobBQh1RqQhQFfL6zCEIbtbVPE4/bcDpd2T6ulJy+sbReHncXN5oP\nq83lnp6L2GxJjMaduN0fHRijcgAAIABJREFU0NNzkaamphXPeGYmgEajY8uWT7BnTxU2WxePPGJm\nZOQKXu/bSKV7qah4ApfrX7lwYQCjUUCpnOeZZw6zZctmOjvteL0BDIZKVCqR0dHzaLXduFwqksnt\nmM0xAoGLaDRqysufRxAMJJPHMRiigIhCEcDlAofDRENDA42N+dPgPB4MZJSdRAKBYi5cOM37709Q\nWFjG3JwFmWyERGIGmEClkiKR7MJolAAZ9aNIZJ5YzElJiR69XmDHDiWf/ewT+Y3yKljL/l3PLl6P\nR3CpaML1SDVX4zxbLJctKJgGNrNv37MMDp7NrpWBgBSjcSegJxDIlFSlUmPMzlpobd2OXh/j4sVL\nvPfeIDbbHPPzKkpLh3jsscQKngmLxURFxQyDg+MUF6vp6PgVbLZuAoEx5HI5ly51U1rqYmzsyWxg\n50b2c/H6mQykTezb91y2/4v34GZ8w41cFpLH+mN+Hv7v/4Vf/dVMoOdeQqWCH/0ow4/z67+e+fl2\nk8YcDnjuuYxU+9e/fvPXKS2FP/iDTPbPb//2vVH8uh1s5H3dnfTtTvaEN5t1ODQ0dDXbs4XBQR+1\ntUM0NjbmrAlLeVnHxtSMjWVKsQDq6jwcONCGKIp4PA4GBs6QSrkoLm5j//5P5uwLRVGku/sC/f0R\nVKotFBVFcLleQhB2sXfvczidb7Jrl57PfOZTfPWrL3L27EkkEgNTUykkEglFRRrk8lJqanZy+vTL\nnDz5E5555hOYzU3Z+7SWAthHKevyrnKhC4JgAw6Loui6ne+LougRBOGLwA8FQVggI0vzH0VR/Lmv\nY9mIhupGRmatINCtjmW1k7ZEYoiDBxvYtGkT7777PrOzclSqAoaHZ9FolCQSMrq7L+B0OunstJFM\n7qCuzoRMNoTZHKe4uASt9gNEcRiFwnVV3aWXoaECjEYPMlkzoiiuOYaNllX184bbnw+FiGImNXRw\nMITdbsdkMqBUOlZ9xpGIQFOTGqfzIj/8oQevdyeRyDBDQ9+ipCRNWVl7TnBo8eTj7NkPKCpSMzY2\njdf7HrW1aiornyEcLmN8/AplZUUkk1KGh99EoTCwZ08hjz3WSiDguqpMUInHkz8NzuPBgtlsJB4/\ny5kzb+Dz2UmlarFYLCSTw0CKggIV6bQSpTKKXD6AXl9FNDqH368jmXShUgVRKuvRaotJpRQ35Bn4\necVa9u9W7OLS9XupaMKNMoBW4zzTaODAgVoSCTuDg2ez1xBFkXTaw9DQ0at2rojt2/dhMDgB21XV\nTxUTE0N88MEIMzOlJBIy4nErVVUpRkZG6Om5CIjo9TrUai1NTXKsVoHeXgXh8AwGQ4yFhTkcDgfz\n81E8HjXd3aob2s/lG50nnthPIuHI6f+tYCNmW+dx99DZCePjmZKl+4H6enjhhQwJ8je+AV/+8q1f\nIxTKcOpYLPAv/3Lrallf/jL87d/CV7+a6Use9w53sie82ayWtQLXuWtCUzZI8v+z9+axcZ3pme/v\n1HJq3xeuxZ1FiiIlkpJbki3ZrXZsSXG6J0F3up1Jd89NBoP0dIKbyWBwg4sEmMkfg5nBxSDJzCDp\n7gmSzHTQabeDDNJuW5JXLZS1WRQ3iWQVdxa3qmLt+3buH0VSpEStli3Z5gMYFo6O6nx16vve7/3e\n5Xnsdit+f3kPqK2VcfTo8xtV9OvEzF1dnYyP5++wk16vl5GRMJFIipWV6xgMMaqqJOLxKRYXz1BZ\nGaGmppLr1wfJ5ycxGis4dOj7zM72b1Qa5fPnGBhYRpJGyWRS6PV+WlpeAbba52h0kLNn48hkJSyW\nm3znO9IdfG2fVXzSgncNgPLjfIAkSa8Brz2W0ezgE8X9jMzDRJrvFVm+PdP23HPf4MKFX/Daa6+T\ny1WTyzmZm7vMwsIiotiI0+kiEIjQ1xdHoZhjcTGJTOZnZmYcm20Gj6eDfL4OtfoKojiDXu/GYJCj\n1XoxGq/Q1PQc8bgDr9e78ewyybSSQGAVu93KsWOtO0TMnyIeB99BWQb4AtPTp5DLUySTBzh1qtye\ndfy4+455KknS2gEDBgZm8Pt1KBS7kclENJpRfvVXj6LTNW/ZrNYzH2r1i8Tjf084nMNg+Crh8Axm\n8wil0hI6nZfWVivJZC0yWQilcoEjR47y8ssvc/HiZebn7+Ta2MEOnjZstyZbW1upqHidUChKIvEC\n+byHUukqKpUPrXYPFsthVlb6EMU8NpsLrXYJhULCbHaQybgxGG5isazgdjeTzUoEAqs78/8Twt3U\nM+9XASRJErFYhJGRKwwMDNDQoMRmK1fkbraZ61w8VquVurrghp0rf5abhoaGtXvTDA76iUb1pFJG\nkskV6utlJJMu/v7vLxCJOEkkCsjlQ3R376W2VsuxY9309gpbRB7kcgmtdjc3b6aw2dz4fJ4t/EC3\n7xfbtelutw88KJ7GausdfHL40Y+gt7f835PCr/0a/Lt/V66o6eiA48cf/N/m8/Dqq7C0BJcvl9W7\nHhY6Xfn5f/iHZWl1l+vhP2MHnz4etOrwYRP1m23gOjnza6+9zvBwnHzewcrKAHv3Gujo2IXBIG0h\nRA4GQxiNe/jGN6z09f0cqzWLXn8Mvz9LPD7A3r2VTE3luXHDj9/fSSYzx82bb6FS+UmlKqirq2Pf\nvhLh8Fns9lZ0uh6Gh4NMTEys8avees7lyxlGRqxYrd34fBc2qvo/D/ikgzw72MEG7hUEuv2AIEnS\nmkSpjWi0j87OgQ1VkFtEz5DNerhw4RdMTt5ErYZEQuL48V4WFhaBICZTDV7vDKXSDB0dzzM56WNl\nJQ5kCYd9CIKWeBwUigTZrIWqqr3o9c8Qj/txOnM0NBzkyJFvbjJ825FMezl2rBWbzUJ//wD9/QN0\nd+9BEIS1wM/nq/zv08K9AjmPg+/A7Xbz3e8KvP/+WT76yLpxEAgGQzz33KFts+JlsjgbIyMrrK6u\nIklq5HIzSmULVquDpiYVer2E3V7e0M6cOY/PZ+Tw4Ve4dOnnyOW7OHLke1y79lNSqZPkcimMxr0E\nAlFUKjuvvvp9xsYuYTSWn1cmGT/DqVMjWCxFbLYvP/I728EOHgfuNsc8Hg//+39/wMxMHLk8yvPP\nN7Br124KhRI22z6gnmAwhUJxA5OpCqUySSYzQqEwRUXFHnS6Jvz+ErmcgCRl2bXLik63m2Awxs2b\nJdTqGRKJRzh57OCh8LA2xOv1cv78Aj6fnFzOg9FY/o3Wq67WCTZXVjyUSpNEInqOHPkmsdgqRuOt\nyqzN9y4uDmCzVWCx1LO0tIzdXkCrzTE9naVYdBCPx0ml8uzdqyabtbG6GubZZw9uaacKBDz4fCnU\n6hm83izh8BLlqt8794v11oDx8RhdXW5iMYlgMLRFSv5u72ir2uat9/WomfUdG/7Zg88Hb70Ff/EX\nT3ok8J/+E4yPlyt63nmnrLp1PxSLZWWu994rEyh/nPPtv/pX5QDPn/5pud1rB08/7ld1WCqVeOed\nd5ienkOnk9Hba8XhuKWodT87JUkSfX19DA+nCAQyLC+LiKKBuTkTU1OzhEJavvvdo1tsst1uRa32\nkEgIHDiwC6eznrk5F/X1NoaHz1EsLhOJKLBae7BYTIRCb+BwjKFU1rG42Mh//s8/IZeToVIdYHU1\ni06XJBBQ0t8/sOUc6XbD3NwcsAJEgBRgeKT3+DTa7p0gzw6eCtx+aHc6U2SzdRgMLvr6bhIOxzbK\nrddJHgOBVdralIjiHNBEY+NeTp16m5GRPhobRerru/F6J8nlxpAkO++/fxO1WoEo1mCzKUgkdpHJ\nrOLzjTM7O0dtrRKDQaSiIkRTUxKn04bfP8v58z+jpkaz0csJd0a+r18fZGQkvEYoqeXs2Tew2YyY\nTHt3SBcfEfcK5ASDITIZG0ajleHhEZzOFC0tLUxMTDywgV038tPT07zzznXOnRtYO0j2bHv/+m9u\nMLhIp12oVDlKpQUkqZZIJMK1ayny+TJBJ5TJuOfnHQwOnsPn85DN+igUQpw//wNEcYZ4XEMkUkc6\nbUClilBdPXuXTVYJaClvPo/+znawg8eBW3NsawC+v3+AS5fCJBLNrK5eZmysjxdecHDjxjjBYIx4\nfAxJmsBorEOrdWI0RshkMgSDTmZnl5HJ5tFoGlEoNGQyfubmrtHb20RLSzdudzfBoBa93vikv/7n\nCts5pVv5dcaZnp7eUNnazqYGAqvMzMRQq5sxmVoRhOgGr8LmffL8+Z+xshIjEjHg852mq0vEbj+6\n8TlbyTtngXH0eoFSqYbnn68jlUowOrrC9PRVYrECWm2W/v48hw5VYbcf3jKmrRW3Jqan55ia2p5f\nB9ZbAxL4fMLG2BKJhrVEzp221OPx8OMfnyEcllMqLWK11mA2735gm/tJJzB28Onir/+6zIvzCCK+\njx0KBbz2WrmK55VX4P/8Hzh69O735/PlFrPXXiu3aK11mD8yDAb43d+FP/uzsgT7o1QE7eDTxf2q\nDt955x1+9KPrZDINqNUz1NbW4nTa10QV0uRyfZw40cVLL720xQdfT9b7fCWuXLkG7MHprCIa/YhM\nJoZeX4XDcZBwOHaHTb59TJIkMTz8AadPL5DLFamtLWAyFQmFMoCWPXvs7N5dz3vvhfB4gszOxpDJ\n9DQ1VRMOj+P330AUmxgZCdPb691iU8tV/WcIh0eoqREfWdzhabTdO0GeHXyqWHduys5XDL3eiMNh\nW1P2uBU0gTlUqiDDwzNAiq6uY8TjIQKBVaanpzl50kMiYUSvj9HVpaWmRkM8HqKzU4ndvkxlZRXJ\nZImJCQmn8xXk8jihUITu7kZmZiIsL98kkUiQSpnQ6XQUiwF27foyNpuJlpY4DQ1tjI5mUakgl5ul\nvX1r2048HmVhwUMg4KempuycbSaU9PtPI5PJN0imd9psHh73KiG1263EYh9w4UI5qDYyksBieYex\nsRwLCxK53FVOnJjeIv17N+j1Rpqbm7DZXHi9y0xPz+HxeO440NjtVkRxnPPnB5CkPFZrBYlENSpV\nCputkdbWA2Sz5ZYBSZLw+UpIkkg8XlYTkCQXdXVKkskr2O1F0ulqstkwHo9EZaWP48fb2bWLLZts\nmWS84w6y8u1wt2z0zrzbwYPgQbNQm4OdfX03mZ6e5eTJMYrFCZaXqykWdeRyGsJhHaFQkuVlDcWi\nHI1GhSRZAQsaTQmzWcDvb8Dl+gr5/EVSqTH0+hCBQA0mkwONRkZtrZLKSiu5XISaGoFEIvZAmcMd\nPBi2c0pvD8zcTWVrHYlEjEAgyMKCDJnMR0WFAbv9BWBrhjiXm6OioptDh/YxPHyezk7ZXffU6moN\nL754AIPBhM1WDrp/8ME56uqasdszjI4G6O3tRKWSsNliBAKrgOeuVTQej4dcznNXfp1AYJVczo7b\nbWFx8QadnWb0euOG2tjt+89m0v6JiSnq6mK8+mr5vvWx3Gsd3S+B8WkRNm+35nfwcCgWy6par74K\nxqckBq3RwBtvwNe/Di+/XK6q+f73QSbbet/iYrmC5+xZ+F//q0y4/Djwe79Xll7/8Y/LCl07eDpx\n+/o/dOgAgiDcIS8+PT1HJtNAb++r9Pf/lJmZefR6I8PDk/j9cmIxPVC2Y2Vi5q3JervdjCRNYjLl\nSSTyuFwpIEIsJqNQSGGxqLDbrfcca2trK3b7SXI5BQ7Hc/j917HbV/jyl01UVenp6elmenqaiYmP\nWF5uQhCypNNhVKoadDo/FRUWTpw4Riy2eodNdbvdfOc7bLQWr7+bh/Uvnkay/Z0gzw4+Vaw7Nz5f\nisnJKZqbO6itLVfkqFS3yLd6evYiCAIOx3XOnQszNHQWq7VEPF7PqVMjDAxYyOV0iGKaUmmVvXtB\nrV7BZlMSj1fj8zlZWOjDaGzHbN6FxzOMyeTBZttFoRCloqKWhoYS164VcDjqSKX8ZLNRXK5qjh7t\nIRgMkc/D4cNlBa9Ll64SDkc3IrxjYzlEsYJczkN7exf19a2cPfuPG4SSra1ZLBb1Dunix8D95H87\nOwcIh0t0dR0hHp9jZuYGCwtOIpFKFhZSwDCNjY33jKSvHy78/kFGR6+TTgPUMTb2c06c6NoSJGpt\nbV0j/pzG6XQilwfR6eaor9+FRiPD6x1Ary8Qj7splUoMDJxlYSFOPm+no6OL5eU0jY0yPB47pZKS\nQGCQYlFNW5uIw9FEe3sHzz578IHfwe3YLhu9OVO+gx3cC/fLQq07hHNzc0SjCWZmZvD7Z1hZMRIM\nylGp5EQi02Qy8+RyfgwGDdevXyKblWE2P0c8nkUU9bS32+noaKeycpLBwRg+3wygQSZrpFCIkU4v\n0dj4IhpNlD17DOzb17ZGBiwyNpYjl+OpyZJ91rGdU3p7YOZuKlvr0OuNdHcfYO9eC4uLKl54wbKt\nutc6mXM8Pk9bm57eXveW6pXNe+quXbds7/j4OD/+8QWmp4v4/T7MZgmzOYpMVsBqFVhdNfLhh8I9\n58T9MtWJRIzJyZtrmeoIFksjDodti+212Vo3Dj5LS4tIkh4wI4oOlMrgxn2JhJJr11bJZKxMT/8D\nlZUlDh58hpdeegnZ2in7fgmMT4uwebs1v4OHw9tvw9zckyNcvhuMxnIL2R/8QTnQ8rd/C9/7HvT0\nQCJRJor+wQ9ArYbTp+9d7fOwqKyEX/3V8uf/3u89utLXDj5Z3G3Pv/26TidDrZ6hv/+nqNUzNDT0\nEI9HGRq6wvJyLTZbLfG4kZmZebLZzjuS9T6fH5stg9WqQafz0dW1B51Oz/LyMhUVTqxWM4HAKpJU\nFs5eXQ0Tj0fX9nsHKpWH48ehqqoaq9UAWPD7JSor7bS2ttDbW+Z1CwZDtLR0YjQamJurQav1cfhw\nLeFwDp1ORjweQq1evcOmricGVlY0LCxIXLr0NidOzDxQkngznkay/Z0gz+cMT2NP4GasOzd2O9y4\nUcJud5PNRtDrJY4ft21xwtYjyjduJAmHy+0q4XAUUazDaIzh8QRwuwukUiLDwylqap5hYeEqopjh\nyJGDBAJz6HTLJJOjOJ0T7N1bwwsvuEgmzWsVHylisSHs9iImk8jzz9exb9+6A+jdUPAaGLhIsaig\nvz/OyMgFOjv15HJ1HDlyS0lEEASsVisuV4B0epjW1g52766/g0xsBw+O+8n/9vZ24/d7iMfnUalW\naWhwMTrqYWEhRU2NHlGsu28kfZ1PYn7eTiAwikwmYLF0sLRkATxbgkSCIKxVnvXicAgsLIyzb5+e\n6uoqhoaGWFiIoFTuY2wsR7E4QbFowm6vZWlpAr9/HLW6xOJiAaji8OFjXLsmEY/PU1/voKamrESw\nOXuyTlx7t3dwO4LBECbTLk6cqLsjU76DHdwP98tCrTt+mYwLGMJoHKJQWGR+vgIootF0YjR60OuT\nxGK9OBxJ1OplJCnD6up5kkkdCkWa1VUlohjklVd+mVdeKWfPJKlira8+wvnz88hkRSwWGb293RsV\nGR9+eIlcboeE/FFwN79gO6f0QVW21rEuY57NKnG5arcEbx6UzDkYDJHLOe7YU2G9akbCbH6BQOAH\nxONBXK4vodPlsdtLFAp77zsn7sePs17NabfXEQzK0OuN27YLlNsTJFZWYuh0i2i1eg4eNHLkyC6M\nxnIVZrkqWSCdztPXl8RgcDI0dB2AY8eOAfdPYGx+7idpw7db8zt4OPzoR7B3LzzzzJMeyZ1QKuF/\n/A/45jfhP/7HMl/OOkwm+Jf/Ev74j8FiefzP/t73yjLsfX1w5Mjj//xHxdN+Rvo0cbc9//brvb1W\namtr11SrenjppZd47bXXkctd6PXVxOMrFAoBGhoOMz5+K+C9nhS/fn2AqioNlZVVWCwmxsfzhMMO\nVCo9NptyrfpHIBo9AygxmTpYWPAgihUbe0IgsIrZbMRsHmNpaQmns8Thw98ikQhvjNvhsNHVZWVh\nQcJikdBq63E6HdTWCrS3ixgM3NWmBoMhFhakh0oS346nkWz/sQV5BEEwS5IUue3y71BmM9rBp4RP\nsifwcRjHdedmnRAxGNRSWyvD4XCvMZ6Xn/Hhh5dIJGJMT8+Ry1Vw7NhXGR+/jCDMUVOjYXU1yPJy\nH5LkJJ8XEcXDa738fnI5D2NjF1Eq48jly0SjC9TX95BMJrh69QpVVVW0tZnYt8/FV75iIhKJAlb2\n7u1iampqrSy8htZWOT7fBVSqIlbrrxCPx7h58yNsNgOiqNnioAWDIczmbp5/3spbb52mv1/J/LyX\nEyfcPPvswS/sJnI/3G1OPchc2465v75+lEhkGJOpC4UiweXLl5ibm6OnZy9ut/uOzyjzSeRRqTow\nGGQsL7/JxEQz+/d/GVHU3nFoSCRiTE1Nk8k0oFIpyGRSXL4cwO+vY2XFj9MJQ0MTRKMXWV42Y7N9\nCavVyL59WVyuany+RZaXQ8Tjc3R11dLe3rTBdyFJ0rZr90HJO9fX1rrM++bD1g52sI6HOfBvRtnx\ns2EwuBgcHESlCiKKKUqly8TjKrLZFWy2EFptL3q9iZWVEmp1mkIhiUyWxOHYTWVlCzrdCqK4uFEO\nXVtby/j4KNFojIYGF7//+92EQpE72keexizZZwV38wu2c0o3B0RKpRLwDjMzIzQ0uGhpabnjs1ta\nWmhrm2ZmZoT6+lpKpRIXLlzcaMdeL8NfJyZebwlYx61WrWECgbk7+O/KSBGPe4nFVhGEvVgsh1Cp\nlqmqyuD3r247Jx50b2lpaSGRiJHLzREMQnW1mkQixsWLl7eM98MPL20cAoJBN6J4BqdzYkuVjiRJ\nTE9Ps7AwzM2b8xSLtXR3f4PZ2fPMzMxvjO1pOQxst6ampyefyFg+i1haKrdF/fmfP93VKs8/X/4v\nEoGJiXI7V1vbw0ukPwyOHi3Luv/wh09XkOdJ86Y8TUGmu+2pt193Ot243c9u+beCAFptJaJYSTA4\nj9GYp76+nro6iVOnThOJJJieVtDQ0IDfr6NQOEggEEQQYuRydbjdX+KNN37IpUuXyOdr2LfvV5ie\nDmA2t3DgQPksl82Oc/78z8jl5hgbsxCL2VEqjSgUg9hsBmKxVTSa0EaVpd8fRK/309hYxO2uRqvV\nI5PN39X/v/1d5HJXHypJfDs+joz9J4VHWuKCIPwhMLMmb44gCD8Dvi4IwjLwy5IkDQJIkvSTxzbS\nHTwQPsmewIc1jtspUASDIdralPT21pJMmjY4edadnLJCSx+Dg/PMzQ1hsxlQKOxIkoTLJd9o43I6\nU4hiDzKZi2JxklhsjFOnUpjNSb7ylU4ikXmi0QLRaBehUACDocR7710ll4tgNjfR1WXg3/ybr+N0\n2je+09mzrzM5mUWp7CKf76O5WYXB0EM2exmP5x9JJNQ4nU7Gx7O0tU3icqXp6dm7UflT5mt5l4WF\nLE5nD5FIjkeJBn+R8KDlouvXN2OzQfV4PJw+7SWfP0Bt7RBW6xJXr05z7pwOlUri4ME4/+JflO/f\nPC/Hxm4SCMwzNRUkkZjBYqlEqZxFkm6iVBaZm8tgt1tpbm7m3Xff5d13zyCTqThyZA8TE2EGB70k\nk80Ui0omJyeYmHiTfD6OWm0mkTASiYzQ0JChpqaJ6ekCoVAlsITLNc++fT1bNvgPP7z0sdbu5sPW\ndgeyp8m52MGTw93W1v3mj91uJRrt49Spq/j9K8jlClZWVkmlmpDJapDJJlEq/eTzc2QytSSTo+Tz\nSvL5/Wg0y6TTCwSDcTIZidHRSv7kT36EKJpJpUwMDQ2i0RhwOsf4t//2JY5vo/17v/Fth505X8bd\n/IL7OaUTExNrWdZOxseDNDZO3GGHN9/T1zdIX98iuZx+ox1bFEeBPCbT3m2JnG+1arnJ5WZpa9uq\n2tLdvYeRkbPcvHmRigoHtbVVLCxMkc16kKQ23G4F4fDsRgCnVCrh9Xp5662TDA4GcDr3UFMTAMrz\nfDNpssVS5PDhKcbH8yiVraysfIRcXiQQaMZsNm6sj9bWVuLxKLOzl1hZacbhEAmFXPj9FYyP5zfe\ny+bvotPNYbHMcPPmG8A4CkXnRmDzXu/90zyEbhdsunr16ifyrM8j/uZvQBThN3/zSY/kwWA2w/79\nn86zZDL4nd+BP/oj+G//Daz3plz51BAIrOLzlbDbzfh8fgKB1U/1UP6kg0ybcbdg84MEoU0mI+n0\neRYXPWSz0ywu9nD6tBe93k9fX4ZMpoXBwQEOHx6jUDh4RwvXG2/8kKtXx5CkJoLBGWZn38FkilEq\nDXPqFBSLc1gsYcbGVtBqWzh3bgGFIoZM1kIyKSFJNxHFKxw7dgKAkyfHGR6eZGJiFoejgWIxRUuL\nkdpa7YbN3S7Av04UbbNZOH68FRhBFOvWkg1PyaT9GHjUOO73gN8EEAThJeAl4ATwTeD/A15+LKPb\nwUPjk8x23iuAdD+Vjmj0AuuOnkqV5/hx+x2RYUmSeOutk5w6Nc/SUoJIpIpw2EpNTQqDYZhjx359\nYxyCINDUdJj29kOcO/dP+P0fotdbEYQijY2NrK6GmZ+vo6amluvX/ys3b14mkTAgCE4EoY6RET9v\nvXUSrVa/JnF9gIsX/4lAwMKePd1cuTJOONzPCy+0UVtbgyCMk8m00tr6DOfPn8PvX6GjQ0NPT9lR\nXudr6e/PIggJ5ubm2b3bhijWbRAx3k42/UU9cGzGg5aL3i/gsX7/rl0HGRsTSCTeZX5eQSTSQqmk\nZHh4mUBgldZWibfffpuTJz2IYj2ZTAKTqURj4zI+n4YTJ76NXL5MNnsJn89ALreflZVx9PrzvPmm\nH5+vmlCon3j8LzEalUhSBdXVOj76aIJ0ehFJKpFIaFCr69BqXahUN8nlQpw9e55YbD8225cIhTII\ngkBLSwtvv/32Wgmsi/r6elSqiUdeu/c7kD1NzsUOnhzutrbuNX8kSUKSJJTKRTIZL1brXiSpmpUV\nHyqVBkFwYzKpKBbT6HS1yGR5wmE5qVQFhYKJYjGGWh0kmRSJxRSo1RJLSyE0GgfpdIpAQEd9fQsL\nCyHefPMUBoNpi63LAbRXAAAgAElEQVRsaWnhnXfe4eTJYUSxjkwmt23A4XZ80ef8Vh6lMKOj0rac\nBHfD7XNlO1LhzfecOjUCaKmvr9tox56dTQEJDhw4yLlz/0R///vodC1I0hIvvNAGCORyLg4fPkhf\n3xtcvvwRfX2LmEy7UKk8HDvWyne/e5T+/gGGh+Pk8yJ+fz8ajYn5+Tpu3LgVRPL7vczMzHD+/Axn\nz/oJhSrYvTsPpDfm+WbSZJ/vKtHoKUqlgzidNXg8TuLxCMUinDhRRzwurLUweRkdzVIqiaysnCQe\nt2Ey1dPZeWSjXaC1dZ34vkhFRS2VlbtxOvsJhz0YjW7icQder/eu82/9t/rgg3P4fE4aG2sZGZnB\n6Rz4xHyFpzHz/FlBqQR/9VfwrW/tKEjdDd/+NvzhH8LPflZu33oasM6/deNG6p5qqp8UniZy3o+z\n/iORGJJUAtTkcnsJhzUsLKSRJC/BYAVNTQ1MTS0Ri8UxmwMbFTmdnbsxmwUuX76ESrWHqqr9BIMX\nMJlKmEwuIpGPSCSSZDJyCoU0s7MWWlpaiMXCwHuUSinkcjOCcJDZ2RQzMzPMzMwzPJxgZSXP3FwV\n4bCESiWnqUlifHyJYnFi4/y1meenrW16E1G0l2PHWvn+95s+V0T0jxrkqQTWa09/BfiZJElvC4Iw\nA1x+HAPbwaPhkywDvlcA6X4qHadOzbDu6N3NsHm9XgYGVlleXiIS0VIqtW9UQxgMegBOn/auBY3C\nQIKxMYF8fo6Kin0cOfLNDQWidSWka9euE4nMI0ldqFQi8XiOVMpHqRTm3DkfLS2/wtTUKPA6KlWS\nVCrE++//A+HwOWSyMIuL71Ffr+C3f/sZUqlKLl++it+/iMn0DMPDK1y/PkhbWxuCIGAwmNi9+5dp\naorxzjunSacjZLMWxsbifPSRk4UFicnJmzQ3N1Fbuwp8sQ4c2+FBy0XvdyhZv3909CKx2BDRaIDV\n1TTh8CT5vBa9fp5EYi9er5eTJ4fxeGrQ63MEAjMkkytoNEcQxTFisVEqK1X4/SoCgQ78/gCDgx6M\nxllWV1/CbH6epaUMk5Pv0N29n0KhiCT5qKy8SSIRIR5vBlaIx6dIp/3I5X7y+WoymSX0+hg2m5my\nHPpWWcp8/gwnTjjp6OhAr380Hqf7OQ9Pk3OxgyeHu62te82Pdfs+MqJgaipIqXQNQRDI52cpFEqU\nSikEIYfVWonL1ci1azcplVYpFHKUSg5KJT+S1ApUkUxGmZ29hiQZKJUSrK5KZLNL+P0uRDHO4OA0\n6fRlQqE0LS2714j5y4qKXm8tNTVlfrYHmb9f9Dl/a192AQnq6ubp7e1+YNty+1xZJxXevM9vvsdi\nKVL+beY22rEtlhRQZGzsEisrV/F6i4higqWlFaJRJ01NApCgry/A5ORN1GpIJKSNIMvqaphnnz1I\na2srvb3lRNLcnMD8vIv29kOcOjXLZt9iZmaEUEiGRtOGJOXxehepqhKw27s3fTMt0WiehYUgyeQi\nWq2foaEhRLGCjo5OBgaGOH/+Db70pRrs9jLx9+IiwLPk83kSiQEkKcL58wpMpgK1tc3EYhHOnBnl\n6tVZ4nGR2tpduFw1NDS0b/gm95p/t0QpjAwMXOTatRn0eoGREfEOyd8dPHm89x5MT8Pf/d2THsnT\ni8pKOHasrLL1tAR5tuPf+jTxsL7tvapRP6lK1QetpFcozOj1e5EkgXDYQy43h8NhIBKZ4eJFNSrV\nDDU1XbhcItPTM4iim76+RQShgEbTQzQ6xPy8j1xuifl5LUtLSQoFNXp9kGy2EVGUk0gUmJoaRyYL\nUlNjIxIZAZ6ltbWLRGJ0LfHjZmLiBqurKSTJRCjkQCYb5MKFGbTadjyeZW7cuEw0OgG42L//eXy+\nFKIYJZvt2vAP1veaz5OpfdQgTxhwUQ70HAf+eO26AMgfw7h28Ij4JDMz9wog3U+lY7OjdzfDFgyG\ncDr3U1eXIB73AROUSlrk8gjBYBvXrw+SzdbR3n6Q0VGJurp5XC6JsTEtQ0PLnD//8zUC2zZaW1uZ\nmpri1KnL5HImBCGOWi2iUHjRaCyIYi1LSwmam0UsliqamqL09DxLoTDG8PA4q6tmSqV9ZDJyIpEk\nsViM6mojNtsYDocdo7GLcDi+Zfx2uxW12gPY6Ooyk05nUakqGRqaRaVyYLe7uXEjhd1eRzbLF+7A\nsR0eplz0Xhva+v39/QOMjChJpRpIJq9TKmWxWv3U1zvQ640EgyFEsQ69PsyNG8soFHq0WpFnnmkg\nEtGyf38Os1lPNtuL3z/J9esBQI0oJpHLf45KlcdkCqPR7GP//q+yujpPc3OMb3zj6/zgB//A1asy\nRNGFICwiikNIUidu94vk81NotdNotQPU1Aj09OzlzJnzZDIN1Ncf4ezZec6fTyCX5zl+3LatqtH9\nNvL7OQ87nCZfTGxXonz8+J1rbj0wfv78z8nlZonH3RvtJWVSwjShkJpc7ghqdYBCYYpisQadrptc\nbpiODoHdu5+jv/8qicQMgtCGIKxgNF6lVFJSLHpRKBzo9TIUigwaTQFBsCGXx8jnRSRpErU6CDxP\nIFAgGrVsEPPPzIwgivXU1FSysDCFVuu77dC+Pb7Ic16S1itLYnR1uZGkXdTVCR+LSHKdVHjzPn/o\n0IGNe2y2L2/8OZEwrXHylPl1VlfDhEIl+vstFApqYrEqNJoqslnIZD4glUpjsXTT23uU06ffYXj4\nPG1t+o3fbLNvY7db8fu39y0aGlwMDFxmcTFOLudAr59lz57eje/S07OXs2d/zsjIJSBLqeRm3742\nPJ4YqdQ8s7M6RLGAUjlNe3vjRjt2ma9Bgc3WiNFoJxyeIhjMEQwm0evB77+Az6dEr/8Sy8s30OlK\nKJV1ZLOzDzT/gsEQmYyNxsZWrl9/D7k8xfHj3yceD+34Ck8hfvhD2L0bDh160iN5uvGd78A//+cw\nOQnNzU96NJuJ4qG2VovDYftUn/+wifh7BVweR6Xqulz6unx4T8/e+yZHJEnCbDZit4dIp6+g19tp\naytx4kQXOp2e6ekJVKoqslkt7e2tyGQyamqeWUv4/xRI8NWv/t9MTv4WhYKfpqZnCASGCYVClEqH\nWF5eRBQvYzbvxWSKks+HsNtl/Pqv/7/0958iHl/CYlkml4shinUcPvxVQqEwgnASjaaOigoryWQ1\nJpOBlpYerlwp4vfLWVoyEA57CQTs2GwB2tocqFTBz7V/8KhBnn8EfiIIghewASfXrvcAE49jYDt4\n+nCvANL9VDpstueAdfLF7Q2b3W6lpsZPTY2RcDiDXD6HSmXna1/7FlqtCZjfWJBq9Sq9vWUn/6OP\nnKhUKfz+y1RU2Dh3boX33z/L7Ow04bCZfF5DMlnE4RjnxRftJBLd5HI6Bge9XLjwEXp9EodDhtPp\nRKNJIQgWlMoWCoUG5PJ5BGGGwUE7hUItfr+WYrGf1dUkXV3NG+zxsNV419W1b2Qay2WKswSDrGU3\nZdTWaj+XBuVhsd2cultQY11KNxzWYjbf4MiRKQwGE/F4lEgkiiTB0tIi4bAei6WaiookKpUCubyW\n6urCxmZeUxNgYcGD1aqiu/sQc3PzpNM+KipkpNNJ0ukkSqWeYnEWSTKhVPaQStnQaH6Cy/U+FRW7\nKRREgsE5VKoIJpOFxsZGfud3vk42+xazsyYkSU4koiOdDjM2doa6uhxf/3ovHR0NG99pZmYGtfo6\nAwMryGQR9u49TjarvKuq0f028vs5D08L2ecOPl3cPn+OH2fbNVfmM5lkZWUJp7OXsbEcjY3eDT6S\nmZlLTE8bEQQQhBK53CK53C6MxhfJZovkckOAj0hkGb3+l7Hbd7Gw8D5q9UUUCiNKpYZcrh+dDnbv\nrmH//gquXVvG4ymh0QhYrctUVBzCYjmMx/MhgjBOMFhNba2MhgYXmUwOWEarDXDiRNcDzd8v8pz3\ner2MjCTw+QR8vtN0dYnY7Q+nk3ynffbcsc+vtyvDLZu9LjZwuy3v6trDlSvTFApQKvkJBMaZnw9T\nLBoAB3K5D4tlnK4ukc5OGb292/9m9/ItmpubuXHjJhMTq9TVGbFaj9DeXr8RGHe73bzwQj0yWRSZ\nrIX+fi9Xr76L2SwRiw0Si61w4MAx1Go5MzPzeL1eWlpaOHFimkjkHPPzWtLpVUymJvbu3c/Nmws4\nHPUsLs6RyxXRaKoolWaYn/eTyfjYv1+FyzW3ib9ve9jtVmKxD7hwIUep1I5cHmR6enDHV3gKsbQE\n//RP8Kd/+nQTLj8N+Gf/DAyGcjXPf/gPT3o0T35PeNhE/L0CLo+jUtXr9fLjH19geFgCUoyMnOHI\nkQZUqvxdCe3ffvttTp3yYrUexGicpLtbw4kTv4YgCFy/PkhlZQaj0YBancPhsDEzM4PPN86VK5dJ\nJCYwmeD8+Z+hVpdwOrtwu18hElmhUEghk+1HpZrGYllCpZpHFBuBBVpa7CQSYTo7mzAYDBQKfuRy\nDVNTq5w+/VcoFH4OHGhkaamIUiknnzeg1QKEEAQvsdgeqqpaEAQHu3e70OkctLXZcTrtn2v/4FGD\nPH8AzFCu5vl/JElKrF2vAv7iMYxrB58BbI0AS7jdpi2S4Q9rzFpbW2lvn+L69RKtrd0oFFEqKmxo\ntSbU6tUN0uXNC/Lixcvkcg6amlyMjyc4c2aYuTkJi2UPqVSIRGIVo/FF9HoFLS12du1S0tcXZXFR\nIpWaJZvNEYnISKfd2GwGCoUoxaIfhSJHobCEKK5SVaWgoqKbdFrNyIgOpbIdQcjT3Fx2bm+XvXa7\nhS2ZxpoaDe3tbvR6I4lEzx1k0zvYirsFNa5fH2RoqIRCYeLy5Q+4edNAa+szDAwMUSzaSaWWSSZn\nkcnaUCgSqFRJ2tsPotfHOX58F5IkEQyGaG8XcTpbuXEjidGox2QSsNmSeDwphoedQIqamkX27bPh\n8y0QDM5jtxcwGI7xS7+k48UXXyQWi3Du3Dk++ijO+HgtFy/OcuJEF7//+69w8uQwU1NpfD4JudxI\nOq2koqLE4cOHaW9v3/ieL730EgCXLl1leVmHRiO/h6rR/Tfy9fW2rlC3rg6zvhZ3+Be+mHiQ+eP1\nejl92svERCWRiJxDh3qIxVa5du06v/jFm5w/P4bPlyQcvkI2W082a0Um0yOXR0km36FQGGduro5k\nErJZCyZTiHR6gspKH9XVSkSxC52ujuvXP6KiIs3u3d3s31/DjRtvUyqtIpfbqa6uo7nZRKGwQne3\nnD17Omlvd2xw8jQ2TqzZ2fYHLkv/os759SqecFhLb68bv99DZ6fsY+85dzsgPSiBvttt5tAhK6GQ\njI4OO5WVOTweHUrli4CZfP4ULS0Bjh49ukGKudmOAXdknW9XTfF4PIRCJrTaPQSDKURxivl5GR7P\nLR683t5uRkb6GB4OUSr5mZubZHLSQjBYiyQ5CATOUVMjQyb7ZbLZcmD05ZdfpqGhgf7+AYaGEoyO\nTjA6GiOXyxIIgMGQw24Pk0gM0dAgsWtXBbOzcWIxN37/LfLPe73bzs4BwuESnZ2HmZ7up7nZz9Gj\nD95et4NPB3/912V58m9/+0mP5OmHVgvf+EY5yPPv//2TD4p91vaEe1WjPo5K1WAwRDisxWrtBiKE\nwyPo9UaOH7et8dgoN7jY1rlWT54cXmudbsJms3LggBOZTLalNdjlmsNiMfHmm28xMLDKykqEiQk/\nNtteotEA2ew5qqsPEYuNsrDwD1RXRyiVVGQy5Vbv+voaXK4O3O6DBAKz9PZCfb1APK5ibMxJLmdn\ncvJ9VlbCFItO0ukYLlclsdhNYJGWli8jikk6OzO0t+9jeDhFIiGhUGTRatOI4jI+Xwan036H4uPn\nCY8a5DkE/JkkSYXbrv934Nlt7n9kCIIgAv8VOAakgUFJkr77OJ+xg0dDOQJ8huHhHKClqyvJd7/b\ndF9iwbu1nQiCQCQSIxx2oFRWEghcor09y3PPcVvg6NbnxeNRfL4hpqZChMNZzGbIZttoaDjGzIyE\nWv0GpdIsxSJYLAKS5KCpqRFBWGZiQs38fIliUYbV2ojVegCfbxG5PIPJJFEoDOJwWGhuPoBSGWBo\naBpJKnDo0P/F7Gw/+Xx8jQzUs9ZKcEvBY6sz3LZDsnwfbJ4bc3NzZDKuNRLlrYfSZHKWRCLN6qoS\nSTLR0qIhkahFqawgFpMRCuUwGAzodAqczhgvvqjGYqnk5s1RfvKT91EoKikUlunuruLw4V3o9ZBM\n1jA9XSQWU2OzHQYiyGQjvPJKBzrd+/zd350mn9ciSRqqq1/k2WcP8vbbb3PxYpS5OSeSlMfh0CEI\nXv71v36Z3/3dJvr7Bzh58hqBQDe1tc2YzcuEQpEt31kmk3Hs2DFefvnlTevizmzCw27kX3Sy2R1s\nxXbz53Zb7PcH8flKaLU1JBJLDA2dxWotce5cjCtXMiwsGFAoFGQyOVQqPXK5GqVyD1rtIpHIFdTq\nEpWV36ZU8iMIK9TW5igWr2IyWdFoejlz5iqJRJBSSY7B4KZQMHLlyjUWFjQYDN9AJlOjUEyxZ4+V\nujrntoGcz5Jj/jjxKLwL5SqeMD5fDp8vSVeXQG/v4Y+9B93tgHQ3xZr1AGNb2wH6+l5HFKMcOdKw\nluh4AUmS1nyIjyj7ECaOHj28oYJ1ux0DNrLOkpTk7NkxXnihfYNnaD0JZDLt4sSJOs6ff4N0Osrs\nbC0jIx/Q2TlAb283LS0tawGVGG73lzh/3kgikUcU27FY9KRS76PTqXjuuV+hr+8NfvrTn+F2u+np\n2bsWIEoQj8fIZv24XEmqqpYQRRsGQwt+/zVyuQLh8ApQQWfnYRIJ332z7OvBJ7/fQyLho7ZWxtGj\nz+/Y7qcMxSL86EfwG7+xQ7j8oPjOd8pKZB9+CM8996RH89nCvSqPtlOcfNj9wm63YrHcxOe7QDnB\nKeJwrFMGeNY42IQtXKtl9SntWut0ALu9fWMPkKQCi4s5rNYoIyNxTp0KsboaQa8PUCo9S0fHN/B4\n3gBmcbk6GRwcRKebx2rVkkhIpNNLiGKAI0c6MBiayeXA5dKxb58bt9vNhQsXWViYR5ICXL06jyi2\n43DUEY3m0WgUBIOdyOURurtr8PsXEASB3/qt32Ji4hb5cigU4cYNJfPzLvz+z7eP/KhBng8oV+34\nb7tuWvu7x8nL81+AkiRJbgBBEJyP8bN38DFQjgDLsVqfAcyEwwMPRCx4v8NnMhknkdCSSNSzuBjd\nZHDu/LyxsRzJpJ6VlRnk8kpWVwPANWZmVFitAXp7n2FszMPYWI7V1V48nhw2W5hSScJkMtDY2MH4\n+BCx2BBzcz5isX5isRz5/H5KJSuimCOfNxKLDaPVRjCZVNy48QsEYYLV1RpGRyNMTLjQ6UQWFmao\nqEg/UhXTFx3l7MA4CwsSKytj5HJ9zMyMYLWWNngeurv3YDS+w8oKuFzNKJUZFhcn0euDrK6ukM3G\n0etTFAolXC4zVqueDz+8hM+nYHbWSCwmQ6kcIZ+3rMmZL3LkiMD4eB6fz0QgcJ1i8W10OlCrI/h8\nRvbt28fISJTRUQml0s70dHmsMzPzSFIren2UuTklVquIKFZtIQm1WExrAUDdGlfU9nKM95srD1pe\nvFWdpawYNz5+eYfP4QuO7ebP7bZYp1thcjJAJtNAJjOHQiFhszUQDtcil4vkclMkkx9QLJoAA5lM\ngWJxiHTailzeSqEwy9jYG4iiFoslTGenE7W6mUSilVJJIpcrIJdLSJKZ0dEFZLJR9u6tRKmUk8vN\nkkhkUCjS9PZ+5XPrbD0qHiVoGwyGMBr3cOKEjeHhc3R2Gj7RapC7KdasBxj7+l5ncnIK6CCXu8U7\nJkkS3/62xMmTp4jFljhwYD/Nzc2Mj4/z05++jsdj5/DhbhIJaU3lio2sczQ6xMjIMjJZiZWVW9Ls\n8XgUUcwRjws4HHkSiSqCQR/9/SuEwyb8/nJlTm9vNysr4wwP+9YSQRLFYoRMxklVVYHm5gouXPgF\ng4PnKBZNXLsWZ2TkAp2deiIRHXV1zwERtNoRdDooFHZjNNpYWPCSyfjRaGpJJoNMT/dTWyu7a3B+\n86HMZrNw7FjrPdvad/Bkcfo0zM09PUTCnwW88AK4XGWS6i96kOdhgzD38g+3U8QEHmq/aG1t5Tvf\nkdaqIw1b2kpvD9K///5ZlEoZ2WySUklJS0uCEyf2bKgLDwxcZmHBiUzmI5WKUCy2Uijsplhcwe/3\noVZf4MaNItnsVSDKG2/kSKdbaGy0kkxOYDCkOXz4OUDihRdqSaUSWwJYsL7XTLG0ZCIez9PcnCcW\n85PPjxKLHaa2toH5+QHeffckVmsVw8NKLJZ3MBhMOBw2nn32IBcvXsbn4wshyPCoQR4BkLa5bgOS\njz6c2x4iCFrgt4Ga9WuSJN0eWNrBE0I5AlzE57sKaKmuhng8yocfXtrWeG1uGxgdvUh//8Adhq6n\nZy8u1yAeT57duzuoqEhvyJN6vd4tMuTz8/Pkci7cbgdLSxY6OmpIJn0Ui2cwGicwm/UkElZGRxXM\nzrrw+ysZHx/k4MGbtLVVE49LKBRO3G4TNpuPWCyHXt8J3EAuz6BSWfH7F0ilzlIqVaJSiRgMS2i1\nIjU1B/D7oySTJbTaJP39XnS6KEajlZ4eD21tbU/sd/ksokzsKhGJVDI7W0MqNU1rawKr1bRxjyAI\nVFY2EgzmyeUy2GxL7NvXyK5dhxkdHWNgIEUqVUkgMI1KZWF2tsjSUnRNacVJPq9mZWUIo9FKsVjN\nzZt+YrEh8vkOKirqsNk0yOXXMJvNBIM6zp8vkUhcRSYz0dv7S4CZSKQ8ZxsaXCiV7xMITFEqRUil\nmlAonsFuL7djrXOcWCxRjMYpjh07vrFxPs5NfjNuqbM4mZy8Cby+w+ewgzs4U8C7RqC73sJ1kVDo\nOmq1HrM5SzptJxgsMT8/xvLyVWZmVKRSMSQpgELRgcGgJJ1eQK0OEAq1YjA8RyJRJJO5is12lFis\nRF/fDJWVbfj9Z5DJUmg0tQhCBcvLHgqFEIuL7bhcZtzuDPF4FKUyzquvHt051G6DR+FdWBcBiMcF\n2toq6e11f6KVpOuKNTabC693menpOcbHx5EkCaczRTjsobl5D4cPf3VL4FkQBGQyGTJZM8lkmpMn\nh7l27Rrj42m83jSJRJrl5X/k0CE9dvthgI2scyh0A1F00dl5mGvX3uPChUEaGr5MdTXs2qVCr5c4\ncybG9es+otFpCgUnzz/vJpvNbRBGT09PMzkZp67OSTw+T1dXgooKGQ0NLXR0tDM762NhwYJS+RVi\nMTmjo5ew2WKYzXrGxk6SywXo7FRTX/8l+vqG6OvLMjGxSiYzT0+PjtpaJ01NK3zlKy/cdW5vDeJ5\nOX7czbPPHvzEfqsdfDz84AfQ0wP79z/pkXx2IJOVyZf/5/+EP/9zEMUnPaJHw+NQs3qcldbb7Q3A\nQ+0XgiDQ1ta27Znl9iB9KGQiFIpgtZrR65McP95FQ0MDFy5c5P33P2B52U+pVKK6ugm1OkgkMk+h\noMJikVAqm2lpWSQWGyESqSeTyZHNanC5ahgfv0g0OoZcXsXi4mlstiCZTAOFQi2Njc8xPh6isXEC\nt9u9ttd00Nhopq9vlkJhgvp6E62t7QSDeUQxh0aTo1DQcuTIMSYnywpcNTWHt1WEFMUA8bh413Pr\nZx0PFeQRBOEf1/4oAX8rCEJ201/LgT3Ah49pbADNQAj4I0EQfglIAX8iSdL7j/EZO3hEbI0Ag9ls\nZGwsRy4HKpVnizKL3W7FZrOgUnkZG7tELDbE8LCC/v45crk+Tpzo4uWXX8btdvMbv/H8WgVEeqMC\n4tYBtrQhQy6KYSQpzspKjkBghPHxeqqrJQShmlSqhkDASz4vIpNVkstBKhUEQvT3S9TVNfPqqwKF\nQgqFopOhoWri8VpUqjS53CXS6T40mm4KBQ+BgBVB6Eah8BMKebFaZVgsaqLRCFVVOVZWhimVMjid\nL7KwEN2QVd/Bg8Nut66pl6QwGiUkaQ979x5CEMqEmlD+f2Pjl1EoVjh37j0KBS2C0IRMJuPAgYPs\n3h1DpzOQTMaZnp7jzTcXKRQayeVKxOOjKJURIE8isYzXe41wOMXERASZLEKh4MFgMKHTVeP1TjA3\nV6Sx0YZKZcRsvkEyeRVJ0qBW+5mbk7FnTydW6zSCEKe2dg9msxKHI7GhAvY3f/M3/PjHY0A7Vquf\njo5Z2tra8Hg8awpgCUymXduuk0fdZNY3/MOHy2o3O3wOO1jH7Y5lW5tyg1gxGh1ldVUikVAwN7dE\noRAjFLLh9VpJJgdJpUQ0mmdRqczIZCsIgh6VykAiIVIoZAmFAmSzfgShSCZzg1JJQyRiJh4vIYqt\n2GzT7NunYH5+mUhkDpPpZURxF/H4Al/7WgOSBMvLS4RCEU6fPr2RcbvfOvik5GOfNjwK78KnTS5a\nVmYbYmjIQyCQxGo9tFb+n8dk2ks+H0YUg4yPX97yHcrcQdd5990xUikT8biKfH4ESTIjis9SWSkg\nCBcQRQeSJG3xORYXXXg8Kfr6/h6v9wZq9R5MpgpCoX40GiUNDS78fgOCsB+rdYl0Oobf78Ht1hGL\nKXnttdcZH/ewuJgnl2smm21Bo5nBZGqkVOrA6w3S1laHz1fi4sWz+P0STmeBQMCBVruMKM6i1dZi\nsVTT0NBAJBLlwoUbRCJ6IhEXH3yQZNeuCb71ra9tVC3dzt+3bvc/LnnqDj4dzM/Dm2/CX/7lk+eW\n+azh29+G//Jf4NQp+NrXnvRoHg2PI0DzONf73faG++0X99s71/8+EFilrU2JKEaBDmw2B+fOzeJ2\ndyMIESKRuf+fvTcPjvM6z3x/X+87ekNjaWyNpQFKABdQXMRVtC2RVCz7urzIsuWZuO4kuam5k8Qz\nVZPJUlNzy5lbmUoySU3NUuM7uRXbcSQncW5iWyIpWRIXkBRFETsJoBs70Fh639H7d/9ooAmQIMEF\nNEUKTxWLhaocxJgAACAASURBVEb31wffd8573vMuz8OZM276+0d5//1RQqEKcrkCS0tXaGpy8JnP\nbOftt/tIJMpwOGy0ttbQ1RVHrd4LFPD5PiKb7SEQWCCdPkQqFaFQuMHY2CJjYzoEQcm+faM0Nhq5\ndq2b7u5e5ufnkMtVZDJJDAYp5eW7qK1V8JWvHEAikeDzBRgettPfH2R8vJdMZgGlsu42RUhRLO4j\n8/NznD+vx2g0PJX0BvdbyRNZ/l8AYhQ5claQAT4E/p9NGNcKZEA9MCiK4u8JgrATeFcQhGdEUfSt\n94HvfOc7lJWVrXnttdde47XXXtvEYT19eBCH+dYI8KVLH5LJ3CyB6+npw+vVlAzi8eMtnDjhXOZd\nMdHdLRIOa/B4agAXDocDp9PJSy+9hMPhKJUvi6LI2bMXmJ01YLF0lGTIoRa5/Aqzs14kEjmzs0PM\nzU2TzTqx23cSCg1RWTlDoVBAEELLal1qLJZDhMNatm1r4MCB/XR1XeLUqXO4XG+zsJAgkylDLjch\nl48hkeTI5arJZGQIQgRRDBAOB/F4JjCZxtm5sx6r1UoyKaWmpoZgcAEw3Pf9f+ONN3jjjTfWvDY7\nO3vf1/llYjMPWS0tLZw8OQEMEI9rkclS+P3TaypRiuojXfT0eInHFfj9WX7605/R21vFs8++jFKZ\noa0thl5fhsNRh1TaSyRShVxegShOYrUuUlv7bfz+GJGIG43GQDy+Ha22G7ncRkNDHYODH7C4mCYe\ndzA2NkZVVYxnnzXT1JQHYvj9FczM1HL27M/p7U2TSj2P358CwkAlsEJi28P0dBNW6zaSySQTE9Ml\nB2FkJMrsrMDJk3XEYsJt6wQebJNZ2fBHRq5s8TlsYQ1udSx1OpETJyzLtljH5ORnqayM09X1E0Kh\nGUZHq1laKkcUj5HJuJFI4qRSUlSqGRQKDTpdDYLQilotEI2+T6GQAI6ytDSLVColl9MwN6fE6TRg\nt+/mmWdCaLXDBAJVZLNLeDzXsNtjGI0v0tU1x8CAnnj8OlJpjp07n6emJgDcfR18Wrin1ipJFYPI\nG2UdH0+7sJylJZF8vgqHo5PBwS4gzr59+xkaEqmrm6GujtsIm8+dG+P69UkSiVbKyrSoVI1YrUkW\nF4cpFBKYzTri8e2cOeMu+RxOp5MzZ87Q1/cRU1NBEgkFZnNuWZVtDrP5MENDLhIJOS0t7YyMRDAa\nh2lurqK1tY0LFyYZHMzi9crweD5CJtNSWdlIMAg6nYaamloGBiax2QRef/0oCsXfMzws4nTuxeXq\nJxQaRhB+haqqJnK5It+a0VjGwsIwkYgRubwRjaYKrXYGrVaPy+Xi2rUezp8fQRCqMJsLfOtbIq2t\nrZtCnrqFXw7+638tKkV94xuPeyRPHtrbYfv2YsvWkxrkuRdp8Y184s1c73cL5t8twL/R3rny+1TK\nQjQ6icWyhEIxj9+/tKwQrKGmRgIUq4YUigVyue1UV28jmRyhvHyRo0fb2LVrB1NTBUIhKYWCF5cr\nSiSSY3HxHDqdQFVVAKk0jN2+h0CglkikD8hRKGwnEAhTKEzx/vtRxsdzXL+eIxqtRqEop6UlSlWV\nn7q6GlpadhAIzBAIhDh48HlEcYTxcfD79chkwxw+XE0ioWZo6PIyLYepRJ3g9WoYHdUxO0vJH3/a\nguz3FeQRRfHbAIIgTAJ/KoriprVm3QHTQB74m+Xv7xUEYQLoANat5vnzP/9zOjs7H/Gwnj6st+hX\nuBvuh8BrtfGCtWWDK3wlTmfxvR9++FM8niJDu0KhWVPCveKgrshmT0zk8Pn6qKsLoFJFSjLkNls1\nbncFen2ciYl+wuFK0mkv0Wg3MlmBI0c0HD5cwalTV/B4coTDEaanz6JUyolEvoooioyMDHHtWi/z\n8yKZTD0yWQKjsZFs9jp6vZLychga6qFQCCORWDAaHdhsDeTzMSwWG8eOHSGTOUsodB27XbFGVv1e\nsV4g8kc/+hGvf4LlGzb7kNXQ0MD+/RFAxGh0lDL6zc3NuFwufL4AZnMEmewGuVyQkZE6lEo1qRQ8\n/7yF8fFpurt70OmcGI0J2toMzM4uotVaiUQ0GAxWYB6LRUehkCWZzKPRBJBKy9Fq58nlRIJBL+n0\nfuRyKUtLY0Sjs6jVX0EqlWKzJcnlihmBd999j0SiHI2mlUDgOlrtHH7/jtJ6EUUDojjJ5KSIwXAD\nufz5koPQ0eFkdvYMAwMXaG3VAWvXyYqSwep1t3K/77YW77Thf1oqHrZQxHrP+1bbvEJkD26mp6eZ\nmnoPj8dEPl9HoZAjny+QyUiQydRIpTZUqhy5nB+5vByptJmZmRGk0lEUCj35fBSJ5HNIJDvI57NI\nJMMUChKyWTfB4A6GhmLIZCYEoY10uo9k0o9CsYhSWUEoFClxrORyIqFQAovFyeysiw8+OA9wxyzj\np4V7avV+uB4Z8aMMbN2r7QgEQpSVPcNLLx3i1KkzDA52YTIlgTzDwx/epo4JblpaWvD5AkQiJiyW\nZnK5UdJpJQYDOBzN1NYuUFaWQaU6dFubl8vl4s03L9DfbyWVqiCbVeDzjVNRkaa6+igORyddXXPI\nZNPI5SCRzGO3v4hEYiYcjhIOy5bnXIZweAGzOUQ2e51sdpbJSR99fdMolXmMRhO7dgns27eHsbH3\nuXDhI9JpNfl8JbW10TXEo1NTUyiVSlQqP0tLGQTBT1NTBYlEkXz0ypU5+vtjtLTsZGSkF4Xi7/j6\n179Gc3MzJ048PknnLdwb4vEi4fKv/RrodI97NE8mXn8d/v2/h0gEbsnFPxHYKEBzLz7xZlZZ3imY\nv1GA/27BqhVlxpGRAjZbGQMDGWpqKikUZqis9HLyZBUaTYLFxUXm5kTC4SDp9BIazRTptBSdbonO\nzhbMZiPnznWRyZg4fvyrnDnzY0Qxxle+coS33/4f5HJ5WlpeJhrtZ35+hlTKiyD0I5NZSaerSKcr\nkUguI4oRfL4M8bidsrLtZDJa5uaGUCj8TE8nmJ83LfPAFSdUT08fg4NgNr9AMHgRnU7HkSOtyxX0\nN8mWbbYk6XQdHR1OZmZOc+HC31JenicW60AUxdLzfNL95gfi5BFF8f/a7IHc4XsCgiC8B5wATgmC\n4AAagKFfxvd/mrB+b+f9HeJvNV6iKOL1um8ziCt8JfX1MkIhF0ajZl1iWlEUefvtU5w7l6K8/CDZ\nbIJ0+kPsdhOVlUpefPEEU1NTzM//IwMDY8TjzyGR1JFOjxKJTGAwSBCEKvbu3YfBoOfs2XN88EGA\nSMTCwECSv/qrMzQ2NpLNFpDJ9BiNzxCPq8lmx0inr1BdLeWZZ2pZWAghlwdRKhtZWpKSyYyxtKTH\nbi/gcNThdDr5Z/9MuO1Q/rRjM8tOVySc0+k6lEo/nZ03VdpcLleJlNntniAQyJHJNKFQlFNZWUk0\nOsobb/wJmYyXdLqdhgY7s7Mujh61ceJEAxMTPhQKNbW1XyKfH6eqysfkpJ7ZWQX5fJjmZhVHjz7L\n7Ow8Llc16bRAMhlDoRjDYHDS2LibeHwWUZwiErnB6dOTiOIMarWUdHoSufw6TmclBsP2UvWZWp1F\npUpjMk3R1FRDa+u2koMQjYp0dChob5fQ2Xn7OonH5cuKBmtVZTZai3fa8D8tFQ9bKOJOAXu4E/ly\nLUtLfeh0csrLa7lxw8zu3TA05CIanUKrlVFfv5NkUksqNUUwmCUeFxFFNWq1EkFwIJeHyOX6EcV+\nZLIoOl0SQWjGaq0nmXQRjUrYsWM/165FqKw0UVV1GLM5giAImEwJZmcvkkpNodPlcLuvEArNA42k\n03fOMn4auad+2a0992o7LBYT4fAH9PREkUgmaWzM8swz24hEosB0KfFx67Xi8Sh+/yzBoMjSUgSb\nzUhLi57Pfa6a3bt/BVEUOXPGfVubV09PHzMzGjKZPIFAlMbGNE1NNTz3nA6/P8/p02cQxQwaTYxk\n8hwGQyednZ9hcrKHcNhFoSAhGLxKKiVSU6PCaBTwesNAE+Pjg8AYDQ3PMTGR4+23TyEIjeRyVtJp\ncDjqmZjIs7Q0RHOznZMnt9Pc3Mxbb72NTleD02khGLzG3r1+fvu3/wWBQIh0WqC6ukBvr4RAYIlg\nUMbIiJzTp4sk0FsiDZ98fP/7EIvBv/pXj3skTy5eew1+93fhH/4Bvv3txz2a+8dGAZp7sc+fBFGW\nuwWrVisz9vf3o1BUYrM56e5OIAgFFhbmWFiIEo3WodWC3R7ks59tZP9+HX19g0QiYYzGKs6dmyGX\nu7lHm0xJRDHP2FgP4fAEiYQDu71Y+alW91FdnUUiiSOKepJJgXxeIJ1uQS63kM1OoFBAOr1AMBgh\nmXSh07WRz5exY4cdQdAQCoW5dOlD5ufnKLLHhCkyvOhxOosdJDMzNztNYBql0k80KmK3h0kmQaHY\nyfBwBofDDdwfgfUnFQ8U5BEEoQL4U+CzgI1i+1YJoihuprrWbwJ/KQjCf6JY1fProijOb+L1t8D6\ni/5+HcpbjddKNHSFs2cluLNyoM9m91FT04fVOk5FRXXp9yvR0pGREd566wpDQzGmpqZRq+PE4wI2\n2348nknKyi4Rj9vQaHai0QRQKtOk0wkymTwyWRup1DwffzxJPj/D2JiPyUkF4bADqXQPS0tL9PZ+\nzNtvnwJAr88RjXqQywOoVMNs26bkW9/6JocPH+bP/uwvmJ2tob7+FSYn/57m5mEOHEizd+8R6uvr\nuXz5Clarmeef3/dERnofFJtZdnq3ubaalHlhoZx8Xo7NpmBhYRif7wbZbIp43EgymUWtDiOXu9Dp\nPFRVtfL5z+/igw/OMzZ2k/TTYBjEYnmWo0druXDhZxiNI0SjMYaHvSQSEtLpWQRhgpoaHSZTFYOD\nXbS26jCZyigUgkxP95NKzWM05ojFkkillaTT5fT2vkkqZUMqhUgkilarwGBoxOnUYbNZb3EQjpUy\nA2s5eZzLpLjCQ5Hp3eu9vVdsVQM9OShKmSaxWmF2NrksZ+28zbFcPS98vhkWF4eZnJQSi4Vxu6Vk\ns6NIJFGkUj3B4A0aGmB6eoF43IAo6sjlXiCdnkcUBfL5eURxBLkclEorTU01BIPN6PU25HIfMlkI\nt7sXudwHSMnlJJjNxarHXbuKe4QotmMylTE5OcP4eCOHDn113Qodvz9IKmXB4TDj8Yyg07l46aWv\n3FMb05OOh7W597uO78d2BIMxZmYKKBSVuN0xgsE5stly0ulJEokY2WyB2dmyNZVXOp2BnTu3Y7VO\nMzS0h89+9nkqKmTU1wslHpsV27jSqnbx4mV6e3sIhQJIpTLk8hmUyipksgKiqMViiWK366ioaOXc\nuRDRqJp02scPf/h99PoEO3bsxGQKYjTOoFJpsNubyWYLXLumZHFRTzqtQCodxe32UlWVQy5PUlHR\nyOHDX2Rh4U0mJ6dQKkXMZj0vv7ydl156afme6lEqJWQyIT7zmQ5+53e+jNPp5J133sHjGSAel1Jd\n7UMQYthsUg4d+gLxeGjTA3VbtnrzUSjAX/wFfPnLUFf3uEfz5KKmBl54AX70oyczyLNRgOZJab3c\nqM1rRZnxwoW/RSYLL8uMJ6mocPKLXwwRCpnQatsoKxMRhGkkEgl6fRn5fAWRSAeTk+MoFIt85Ssn\nEEURnW4Ap7OFeLzAz39+jrExGZFInLGxs5jNbgyGOuz240ilF2luXkQqVTM9ncXtVlJVVYdUqkWr\nHScSmUOnW0CrLaO5eTcTE+9x9eoEFRVSpqbSZLO9KBRxKisrkMkGS50VoigSi0XweFz4fF7sdoGd\nO7czNTXF5OR1nE4D2exetm07sCk+92biYe35g6pr/RVQB3wXmGd9pa1NgSiKE8Bn7vMzW5vcfWL9\nRe9+KAIvQRAQBKHEN+L1utcQDW7btp8LF2aYmlokl6sr/X7Fufv+93/A4GCGpaUWEolF9PpRDIaX\n6ez8Ot3dbzIy0kd5+bMcOrSLsbFJwuEBJJIMhYIFvd5IKhUgFFLi881y9epVotF5Uik1gmBDo9GQ\nz6s5f36UiornqawU0Wo/Jhw2otV+HqNRT0/PAgbDAPv372Fq6gbx+Hs0NQl85zu/xYkTJ+5aOv9p\nmIObVXa6ngG2Wm8SV68mZa6ttQE+otEcCoWVdHqAbLYSq/ULRKP9yOXDxONXqK4W2bXra6W5NDNz\nljNn/hKTKU9HRz0uV4CxsUWGhn6B1xshn59AFJdQKqvRam1otTvR6ZTU1SU5fFjAZJIzMTGNy7XA\n7KyKYHAPMlk327Y1sWfPF7h69WeMj2eYn7cyO3sFs7mJxsZq5PI5OjqqaG5uvus6Wes4uB6ITO9O\n2AzHY6sa6MnBisTo9euFNWXMq3HrmquuVlFVZUCr1fLMMxW88847RCIxcrlKcjklsdh10mlIJJZI\np3uAbYhinEymGoNhgmQyg0zWhFzeSCYTZ3Z2BpPpBtlskpaWMnbvbmFgIER9vYF4fIxnn63i4MEj\n+P1BysstvPrqV0vrweVykcm4bqveWEGRm+sDLl7MAGYyGYGpqallKdmne34+rM2933W8nu1Yb28L\nBEJIJLWUlztIpxcZH3+HaLQCna6SkZExensHsdka8PlcBIMBOjpqSja+yL9UTzo9jkQSQqm8KTe+\nWhmuWG4fIp02cvFikGAQBKEMo9GPXJ5jdraGUAi02kmUSjkjI4tEIhE0mm0oFBPE41coFGREow1M\nTd1Ary/gcOwkkVDT1qZgZMTF6OgSFRV5wuEUCsU8n/vcq8Tjc2QyU0SjVgyGORIJAwcPvoJaLUWv\nl5R8GqPxGb761ToGBi5w+LAEp9OJy+Xi/PlZfD4dMpmXV19tRKfTMzgYJhYLolIFNv0guGWrNx8/\n/zmMjsIPf/i4R/Lk45vfLLa8eTxgt2/8/icJv2zC+wfF3YJVq5UZ9+7dQVubglAowuCggsXFaRQK\nC7W1Wqan+/D5kiiVEU6dMpLN2nC5Ami1apTKGubmzvPjH/8ZVVUCjY3PMDNTj8dzFZ8vSD5fRz6f\nIZNxk80OEo2qyefjiKKBmhopO3a00tfXi9GYR63O0NBgx2o1MDamx2Z7hWvXRuju/oBQKIxa7WBu\n7gqZTDnl5QdZWvqYV15J8sor7VgsJgB+/OO/Y2AghkJhI5Nx0dbWgSAIJfn5SOQGMMDwsGRTfO7N\nxMPa8wcN8hwCDoui2PuAn3+k2Nrk7h/rLfp7MVgb3ev1MoGrHcdMZhqFwnlbtNTtdtPb6yOTcaJQ\n7EEimcVqFdBoFrl27Q1yuY+RSpVEIn14vZMYDBLU6k6i0UG02ihy+SQtLRWEw3nee+8d5uc1FArP\nIQgDSCT/gFbbRHm5hkhkO4JgZnraTlmZHInEgsHQiVweY3BwEYmkQEuLjVdfBY9nAYOhloaGBkRR\nvEPG/N7uy9OAzSo7dbvdDA9nUCgqSgZ49VxbIWUWxX7icRllZUHSaSkOx35CITlTUyMEg/0IwjUE\noRyzuQWVKkxPTx+CIDA+Ps7MzCK5nA2jUU5DQwMOh8Af/dH/zfh4jnT6KNmsC1H0oVBIkMk8GI0S\nWlsb+MY3PkNDQwOnT7sYGEhw9eppIpEXsNleIJ1eIp/3oNFk0GgiqNU7aWh4genpJRSKHImEhpYW\nFZ2dOxkdHb3n+fCgZHp3wmY4HlsKME8OViRGi9WYGnS624ng3W43Q0Np4vE80ei7OJ07sNtbmZq6\nztjY7DI3Tznh8ByFghZowuv1A3okEgFBsCMI0ygUPSiVdvJ5FYLgZWmpFpXKSj4fQaWap7m5GZOp\nQCwWJxDIIAgtSCQ7mJtzcfHiNGVlptvWw0bztaWlhfb2XkKhAh0dh4nFppmcvE463f7Uz8+Htbn3\nu47v3uZ305ZZrWYKhQu43eMUClmMxiRa7SiRiBGjMc/8fC2pVC2gJBq9Tltb45rn6vMFiMfL0OkM\nJWU1KAYj33nnHU6dcuHzyYnHszidAqJYQ0NDExqNnUjkNNlsYLnSJ8rs7Dx1dfUsLY0iikHm5xeJ\nRDwIwhKplMDU1Edks0vY7c2YTBogyXPPWTl50oko9pNIqMlkKtFqy1GrpWQyIaqr84jiFZRKOT6f\nlPPnP2b/fgNW62HgZrtab+97yOUxjMZjwHr8EHpeffWrdHa6H9lBcMtWby5EEf7kT2D//uK/LTwc\nvvxl+Jf/Et58E/7Nv3nco9lcPI5WrM1OKK+1+a2lnzs7i4F2k0lCJqOloqKHqiopHo+MqSkbqVSW\n+XkBuXyKbHacTCaKKFaSSATQamXs37+fkZERotEMkUgP6bQDQXBSKIBUKkEUR5HLR5mfb6FQUNPb\nK6JUliGXhzh8eBuCIDA15WJmZhCTaZqFhUGgmoaGFrq7B8hkrJSVHSKZXESlinHgwP5SIv6m2Mkh\nYrEZ9HqW22hX7KRIbe3twgA378PjC9g9rD1/0CDPDLe0aH2SsLXJrcWDGoF7MVgb3ev1MoGrjUg0\n2s6FCx5On34TkymJxXKw9Du7vZOKCg+Liz1oNAEOH97G3r1VeDxjzM9XYjQeIBodJp3+EJWqGomk\nlmRSj0QyiFzuo6amiooKDYuLeSSSFiSS/eTzWfT6KHv2HEEqXSQSSZFOe0ilcuh0NsLhFD7f+5hM\ni1RU7MJmc+J2u2hujmM07iCdtvLXf32O9vZ+EokYo6PedTPmW3Pw3uH3B8lkyjl8uHiv9HpK83Nl\n7up0BrZvNzMwkESv34PL1YvX66ZQWEStDqHTBdDr0zidLTgcO+jp6ePnP59mYCDG0NAVFhfbqamp\nZ3FxkbNnLyCXS3C7/WQy28jndyIIcxQK5ej1+5FIbtDevsDv//7rOJ1OLl++gsezBDRSKNjIZMbJ\nZK6h04ns3FnOwYNgNj/LW295mZw8i043QVWVHbvdx8mTxYDV5ctX7nk+3GndrWS0VxOXbtY63ghP\nShnyFqC83EJNTYB0OkxNjYTycstt7/H7g8zNpZBImkkkKrlw4To1NQIKhZNcbmSZrFxBoaAEtEgk\nSxQKacADNCCTqVEoltDpvJSXGykU5GSzMRYXr6PR7CCb1RKLWenoOMrERB99fcNMTS2xsDBMXV0V\nwaCIVith377b18NG81UQBHbt2sHg4FkGBk6tqs7zb83PDXCv6/hWn2F1K/J6e9vzz+/jyJE6olE3\n1dXbEMVWqqvnmZycxuUaIxgMkEqF2bv3OcxmM3p9Wel6d3vWbrebU6cGcLtr0GqNxOMu5uZc6PVh\n8vkp0ulFIEUmY8Pt7kKpnKOsbDuHD7/CwMAFcrnrqFRy/H4QRSOZzA50ugUUiloMhko8njhq9Uwp\nwPTyy9vR6QxYLCYmJye5cuV9gkEJZWUvcP36L/B6y7DZtuPzfYjVWrfG8Q8Gg0xP51Eo7Fy44KGx\n0b38mySr+SFWVyfdry2/F2zZ6s3FuXPQ1QU//enjHsnTAaMRPv/5osrW0xbkeRx4mITync6GdyJz\nbmlpKQWoLZZdy9WVl4lEpggE1EgkS7S2WhkY0CCK7ZjN28hkbhCLuZZVPaPs3fsiqdTPmZjQoFLV\nkE6DXj+HwVCGyQQVFTsJBkXcbjnl5TJCIZHz5y9QUbGfRKLA6KiL8vIGfD47gUCKS5dGUCiSmEwz\nBAL/C612iurqA4yMjJRUmdvbDzM7+05J7OT2Sp0AnZ07b7tvj5s7CR7enj9okOd3gD8WBOE3RFGc\nfMBrPDJsbXJr8SirSja61+tlAm9Vz+rqmgLiFCmXbl63vd2OKIq4XGcxm7O0tjZz8OBBAoEQFy+C\nwWChv/8SyWSCYDCJx9OPXm+gqek11Oopamv9GAw2PvooSS7nRRD6KBTG0Gj0HDjwCqOjVzAYbpDL\nLWA2L5BItKNQZJDJJrBYIthsfrq7e4Ak8XiAiopqGhstXLyYIRQqIJcnMZuNOJ07b8uYb83Be4fF\nYiISOcupUwOI4jy1ta2lDWf13PV4QigUThoaTPT0pLFaC6RSEqqqyjh+/P/g2rUfE4+Pcvmyl2RS\nT3V1OwMD15mflyCVSujuvoJaPcviYi2Li14ikRrk8gWy2Z8giv3I5UbKyqSo1VoOHtxPa2traXyL\ni/8ffX0ptFonuVwGmewq27dX8M//+a/T1tbG/v17qal5l4mJaeTyHbS2bivx8AiC8MS3TD0pZchb\n2PhZrbRqTU5eYHGxEafzAMnkDOGwlhMnvgAskUicZm5OjVIZJ5vNAmEKhXFkMgGpNEcud5lcbol8\n/hB6vZ72diMdHTK6ukYYHY2i09WTSql5++2/Rq1OYDBsZ9cuOW+9dYlQCGSyDKI4/5D2UQ4UKzEa\nGhpobJRszc8NcK/r+G62Zj1bJggCu3fvwufTLn/Gz/HjL9PV1UVfnxeNxkYiMUwkkqOj4/l1RRZW\nDhsWiwlRFOnt7WdkxEU0qkWjSTAzs0Bl5Sy/8ivPYTYbCYUiuFxu4vF9OBwHOX36DRSKMazWLNHo\nFPn8NMGgj/l5SKXmUCi2IZGoSaVkmM1jVFWZsNt9dHSYGR7OkMkIKJVZTpwoBkVdrhxebzNzcz52\n7LCSy9nIZqcpK9tOPh+jqkpfCswU29VsNDe3A0bC4V58vgBGowGj8RqZTIT2dmuJgPpR2vItW725\n+O53YefOYmBiC5uD11+HL30JbtyAZ5553KN58rDaXk5PT5NO1z5QQvl+7dCtSo/XrycIhSqIxeao\nrk4jCCry+SSCYAGsDA+P09g4y0svvcC2bRCLORkezhCJ7CEY7CedlqNUxigr0+B0Bjh8+CgffzxM\nV5cHny9BIFCFVhtHpwuzfXsKp3M/8/OVyOUCmUyUysoMOt0OzGYFNTUTjI5OYjZvY2ICpqbOkslU\nMTZ2A1FcK3bySarU2QgPa88fNMjzY4re1ZggCEkgu/qXoiia1/3ULwlbm9xabCSX9zClfhvd642y\nssUqjirq6534/UXZ6NbW4nVffhkqK1MoFO14PCbOndMQCFyksRFu3HAxM6MgndajVNaya1czS0vn\nEYQgSDnuOgAAIABJREFU+Xw5ZWUxstlystntmM3vodV6EAQJ2Wwj6fQ8P/nJD9BownR2qnA6bdhs\nAT74YIh8fhsVFc20tLRTX59gcVGko+M4Y2NDZDJuBgaigIaOjsOMj19Dp3MhCLdnzLfm4P1CTiQS\nwedLo9erl4nebiWHnSadnmRsrJt0uhuTqRGVSkJtrY5gcIB8XolM1sLS0hBlZVEWFgxoNDPo9duQ\nyVTMzXUBdeRy+1hcvIpMlkGjmQPGKC/fgVKZwW7vp7m5gpMnT6wZnUZjRRSnyOXK2bGjCYslwiuv\nmEuBIIlEwvHjx0vvX1lXK6TcmyGT+zirwz4JihBbuDds9KxW2iMNhufwegcRxW4aGvRAggsXfszi\nYh9GY5jy8iQKhQGfbxGZbByZLEM+vx+VykAkEkEQ9iGK9czPu2hsHOfVV/+AVOoHeL1z2GxOotEc\nudwMBsNzBIPzqFRSKiqqcDiq0WhMHDmior7+9vLoe8GKZPdKJVAwGObAgf1b83MD3Os6vputudPe\ntt7rZ89eQKd7jsOHX6Wr6/+loWGUtjYFPl8AcJX8jdWHjUjkLIFAgLk5PfG4nlCom0wmhVJZic1W\njtlsxGAw0tjYSGfnTs6ccTM52YNcXsDh+BJKZZi6ullkMjkuVw0GgwSfT4dcPo9KlaGhIcoXv/gs\nR4/uwWaz4vX6+elPZ9e0XQuCQDptpaNjF7OzpxkYOE9DgxyDQYdE0ovdLpQCNlAMfJlMeWZnrwJF\ntdB4PMrISJaKioNkMlMcOeIoHaAepS3fstWbh0uX4P334e//Hp4ySsXHipMnixU9P/oR/Mf/+LhH\n8+Rhrb0MAXGGh4X7Tpg8jB3y+4OUlW3jxRd38otfvEdtrYjDYWBq6jKTk1pksgDx+Mc0Nhr51V/9\nVaRSKaIo4nC46ew0Y7EsMDwsYjR2IJEU2LlTwsGDBzl//kckEjNksxEKhQIKRbHtK52eYmTEw/T0\nxywtmchmoygUamy2KerqCiSTdlQqJyaTjqkpN0ajnuPHXwGgqcnLsWPHbjvfPgl28mHt+cNU8nxi\nsbXJrcVGcnkPk1F62HtdJAm9wfXryeWWp11rruv3B5FIolgsxQzZ5OQpEgkZ2ayDTGaRXbtamJ4O\nUigkOHFiD1ZrjKoqA6KoZ2amjm3bnmdk5DMEgx+QTDpQKAwIgh6lMs3SkoPubi9yeRnBoAmjMYdK\nFWVpKUY2q2Tv3s/gcuWIxQIoFH6qq2VAHKNRTyw2jd0u0NbWgV5/+0Flaw7eO1YObDt2wLlzk1it\nTtLp8G38TXa7Gp1Oy/T0KFJpHX6/nqqqIE6nmWi0B7O5jZqadiYmsqRSEZTKGQ4damBmZolr1+aQ\ny2vJ5QRyuQWk0hkUijKqqsrIZF7my19+hUDAvbwZHFnzLAOBEI2Nh6is3M8vfvE+FkuEPXuqMZmU\npSDOrZvHretqM2Ryt6rDtrAZWGmP/MIXPk9X189oavLywguHmZiY4I03PmJ2thzQoVSOoFRGMRhy\nWCx70OnK8HhiyOUZkskGBMEMRBCEIWprmwCQSJqwWstJpaYxGBYwmVrZvfsk4+O9pFKX8fvVRCIi\n6fQCZvMuDhx4MJKLrbXwaHG3+3unvW291xsaalGpeujp+TEWi4+2tuZlskthjb9RPGxY0OtruXz5\nXeLxGHb7MaRSCR7PBDKZgqamF8nnRzl92o3dvgel0sXx4y2cOOHkgw/OAzcV2VYUkHS6RdLpAhIJ\nyGQxTKYkX/jC8/ze7/0eEokEgImJiduIyh0OB0qli1hMpKNDoL1dXwrqBAKhks1fQUtLC9/6llhS\nEt21a8fyOhPWbUPemr9PBv7oj4qVJl/60uMeydMFpRK+9rVikOe734XlpbiFe8Tq4MzQkEhd3fp8\nMhvhYezQymfBwtGjFtrbdXR27uTaNSNjY1eIRhXI5YdRqQqMjY3hdDpX7RFOKirK+cEPuhgYECkU\nkgQCCvr6BlAo7MjlAqKYQyodIJtNIYpKyssrcbncpFIycjmoq6ugrCzDnj1RWltb6O5Wo1RW4vGM\nU17ux2TSMDJyhZoaCceOHXnqOFHvFQ8U5BFF8fubPZAtPDpsROS6UST3USpFFUlCG7Fa6/D7JbeR\nhN6aITOZ/CgU+zh8eDenTp2mUPDT0SGlvb2Mzs6dpbG5XC58vqLx6uhoorExSV9fnGhUYGHBRybT\nSEVFM7GYBVFUMzurx+frJRAIolZbyGRk1NfX09gopbu7l0gkRza7D6XSz5EjCvR6oURK9rSpZv2y\nsbJZzM4WA31+v4aaGslt/E1Ways+n5Xu7gKCUEc6rUYq/RCfTyCR0DE62svi4iIVFRI6O48hCFle\neMHK1asfceOGkqamk0xOvgVcZt8+FQqFHLncTjC4RCDgvuNmsDI+UbRw9Ggl7e0mTCblcok/y79b\nLYNuXpZBX7uuWlrWtiTA2gPDRvNoqzpsC5uBlfl8qwMUCITQ6ZzU1e0EQkilxWoeqXQnU1NBksmP\nEcUkmYwGjWYJhWKJfD5BdXUTFsseenv7MRqf4StfqeXUqb8hHB5hYUHg1KkzdHQoqKqqJxhMUF0t\nARzrEkLfK7bWwqPFZt3fF198EYDJyRkaGnah0ej42c88t4kVWK1mIpEuurpuEI9nSKUiTE+fJZOR\noVJlMZuteL3TgBuz+YWSXQ0EQqVAYTq9VpHNYjFx7tyPmZwcQ6erQi6XIAh63O4Cbre7VIW5HlH5\n2r//0F3t84p/FAiE1vgggrC+SuJm3t8tPDpcvQqnThUDEVtBiM3HN78J3/tesVrq0KHHPZonC6uD\nMyrVTT6Z+z2rPYwdWs9GAoyPj2M0xkml6nj22WepqEit2z3i8wWwWKLY7Vq2bz9ONBoAZtBq48jl\nShQKJdlsE4XCKOFwjIsXh1lYqEajeQawkM+P09yc5bXXvgDA4uIIsIBG4+PEicM4HI5l//rTbV8f\ntJIHQRCagG8DTcBvi6LoFQThJDAtiuL1zRrgFh4eG8nlbRTJfZT94zdJQqGmRnMbSeitGTKj8TAj\nI1lisenlDNva4M7qz8GKAWqjufnzvPvuu7z9dj9gYGHBRTabwWTSMjcXBaLk81ISiToUijq83iX6\n+gb4+te/ht8fZGamruRYarUFYrEIAwODTExM8OKLL5ayglu4N9zKwXD8eAt+f/A2hZX15MVNpgKz\nsy5kMg1GY4pEwoAgNCGKIrncAE5nM+XlRlSqwKr5lESvz1FXZ+Pw4TyvvvpVoKjqMjIyRDa7iMNR\nR1NTEy6Xa80muXYuHSsRKWcylOZET08fXq+mtEZaW+Uoldk162ptie1FIEtZ2Y57XlNb1WFb2Azc\nybErBtRvMDt7EUhisYBcbmRpKUF9/TTpdJBk0olK1U4q9RGtrV6Uyh20tu4nl0tRKBSIRIbo7e1j\nYWEKtfowVms5crkPqzWF328gHjfgci3S0aGgvHzXA/8NW2vh0WKz7u+tbaxnzpxZUzUTixmWEzI3\nHf6OjtcZG+vBYBhlaSnGxx8rSac1SCTX2LHDjk4n3Oav3GlOHz3aRjRqY2wMJiZiaLUwOyujp6cP\np7Nok2dmZlAo4ghCeant+n7+/jv5RytjKCqHyW9rUVu5/qNMom3hwSCK8Lu/W6ziefXVxz2apxOH\nDkFdXZGAeSvIc3+4k717GI6d+8V6n3W5XIyMZLHbn2VpaQqDwYzdbi5xsK1WS1Qo6pHL9ZjNOWKx\nICpVgF27dmAylTE3d5Z8XkI2a8JieZ6lpXkmJnIsLc2RSkWX7aSKEyf2Iooifn+QtjYFzz1noLy8\nbcuGrsIDBXkEQTgKnAIuAkeAPwC8wA7gfwe+slkD3MKjxb1Ech9l//i9cPq0traWsm6iKNLY6N4w\nw7aeAdLry1Aq66mtbSOV8mAwTPHSSzai0Rj/+I/XCQZNyGQ6stks0egMomjH5XIxPT1NJBJiaEhE\npQowMrLI22/7SKUaUKl6ANY4slvYGGs3IzcnTjg5ePD5O75/dfT/0KF6nn02giAIGI17OXVqgNHR\nBK2tBzEYHNjtk2g012loqF3eAFQoFAF8vvO0t+t49dWvluaTILjo7q4gnbYyMuIHfrHcTrB2k7x1\nLt0aHAXWrBGdTuTECcuaeb1aYev06Ukgvq660Ba28ChxN/W2lYD6/HwMn8/B4qLI9PQgzc1OZmfj\nyOUGams7mZvzolZHiERSfPzxPGZzCIMhz8xMGp8vhFRqwGZ7lkQiSEtLnqqqOnK5Wk6erGNg4ALt\n7ZJPdXbtacbdgha3Vs2Ew5FVgW8DZnOWeDxEXZ2OEye+hs8XIJ+fWa70reHo0RpsNutt/sKdgiYm\nUxl79qiIxYbxesew23eiVueAm3tQUdq9n9ramVLC6H5wJ/9oZUzg4tq1wG0tait4nIT6W1gf77wD\nH3wA//RPIJU+7tE8nZBI4BvfgP/5P+G//BdQKB73iJ4c3GkPf9yqvmtbwf+OpqYoL7zgpFAo8Oab\nf8v8/By9vXP4/Z3Y7ZUYjdDZmVrTarZi+9544zwzM3LS6SzxuEguZyUazSOTzVNVleC1176Jw+Hg\nzBn3su0skuZv2c61eNBKnj8G/lAUxf8sCEJs1evvA//nww9rC78s3Eskt6h+dJHTpycxGhNEo3Yu\nXrxMPB69reriYb+/qKblumNW62Eiz1armUymi7m5GpzOTozGanS6FIlEBWVlUygUPnS6MKI4QW2t\nApOpbNn5qkUUY8jlV7DZqhkZmWdpqYndu7/Oxx//DW+9dWq5HL12q6rnHnG/m9FaRzjHiRO7SuWp\ngiDw9tsjJBIhvN4JEolyGhufZWQkQDDYRyZjorPTjMfjoqVFjd8fRBCKGdVbxzE5OUg63V762ev1\nMzExweTkDPX1NTQ0NBAMhkvVRyvloKIo4vW6S0Gf8vK7B4ZMpiSQL73fYmm567zfwqcLjyK7v9E1\nVwfUL136kK4ukWw2zI0bAUymagoFOYHAR/h8f0MuN4DHo0QQatDptIRCc3R1TSCRvIzRKCefd6FQ\njGO3Zzl5soOGhga8XjexmEBrq47OzmJ//lYVw9OHm8ETC9HoB7S395aCJzcrd4tiBSCQSlnQ6030\n9HiQSEZpafHR3r6bQqGwXGUTAmqpqdFgs1k33P9X7xUKRYZt25RUVtZz7lwKQZBhNktKnDnptJVt\n2/YzPCxQV3czuHI/83Kjauj19rrVrbsPo46zhc1HoQD/7t/BwYPwyiuPezRPN15/Hf74j4ttcV/8\n4uMezZOPzeT6ut+9eUW10+MZwOebxm5Xc+zYTgB++MOzDAxkCAZT5HJ5amuTeDzjaDQ+OjuPrwnM\niKJIQ0MDx4+HmZ+fw+fz0tOzxNRUmsrKVmprX6GlZQm9voyenl6uXAlRXV2GIBTweosJ1y1/4iYe\nNMjTAXxjnde9gPXBh7OFTypEMUM4PMfc3BSBQAsGQxtjYzdoamqkpiYAbE726W5ZrXsxOre2AcFN\n3pPm5mZOnuwAXCgURQUMgEymnJdf/k0SiR8ik8WoqrLw2mvH0OvLSKcF2tr2c+HCDFNTSXK5OhYW\npsjlPqa7WyAa/QXXrpUxNqbbquq5BXd7Xve7Ga0lmrtMd3dv6borvA+nTrnw+cqZmzOzY0cdsRj0\n91/i6tUloBWFIo7bLSGXo3T4MJnKUCgypXE0NNQyMuIv/by6aiubvUBT00c0Nr5Uqj5a4YNYy8mz\nfkXc6qo1i+UgwJog0VY2dwsreBTZ/Xu95oqzdv16FyMjEAjk+eCDC+zebeGLX2zh4sVFRkd3s7AQ\nQal0EQrF0GqTaDQmamujxGJ6DIZZnM4C+/fv4cUXX1zmKLl9fWxVMTwd7Tq3SvqmUrUYDBYuXswQ\nChVKaom3Vu6Kosjg4FnOnFlkZiYMlDE/r2VhYRCLpShXDnHq6u69ymZlr2ht3UdX189QqWZ44YXD\n7Ny5g97e/tL7LBYTSqV73T3ofublRtXI6+11m6WOs4XNx5tvQm8vdHVtKWo9ajz7LOzYUeQ92gry\nPDzul2PnbnvP/e7NK6qdCoWTTGaKtrbi91+69CETEz5yuWbU6joSCQly+RwtLSpOnuy4bYwr3+vx\nCCwuLqBWW6ipaSUYvIhUOotabcFkKqoXnjs3Qn9/jN7eNHa7l9bWRq5ds+HxiGQyVzl5coKXXnrp\nidtPNxMPGuQJA1XAxC2v7wI8DzWiLXziEAiEyGbNaLU1jI+L+P0C+/ebSKUasFrrSKfZtOzT3So8\n7mR0VhuqWCyyTIhrZXz8JySTOSoqdmK3+zh58lYiyFrq61vwekeJxUQOHKilvd1UcibdbnfJOctk\nplEonLS17UcUCzidH6HRxLl+3cDY2D46O79Od/ebTE7OPPxNeEpwt03iXjejlWe7umUuGu1ncFDO\nzAwoFCO0tRUrbRSKCg4d2sHp0+8wMHABkynJ3FwOaMdgsAFRJBLTmsOH0TiL1RqjtnaJXbt20NLS\ngsMxWhrX++/Pk0o10Nn5dd57L8Ti4jQvv3z73LyXCrO7vefSpQ8fa5ntFj5ZeNiy6/Wct9UKRgMD\nk9hsvesGFFactVxOSSaToqpqG7lcnHR6lqamNj76SEGhUEMuFyWd/gVmc5QjR77G1FQAuXwBm20c\njcaBRnOIkZEADsfoui2Pm/F3Pg14GgJda4MWcaCfqSkpoKGj4zCx2Mzys729cre9vY+hoRS5nJ1A\nQEoyqWJsbBSJRMK+fc+vqbLZqNIXbgZVurp+xtjYDaCRdNpNa6u8xJvm9bpLylz3Ikixwqez3vdu\nZPvX2+tWt+4+jDrOFjYXmQz84R/CF75QrOTZwqPH668X73kkAmVlj3s0Tzbut9PhbnvPRhWIt9rB\nlVatoprgZUKhGS5fvsLQ0HUmJ6eZmwsjl6vp7Mzzyis71+VSXbmOx7NEOKzB5dIhkwl84xufw2w2\no9X209qqL1ViCkIVLS1tpNMFjMYC2WwBj0ckHK7E40kCAzgcjiduP91MPGiQ503gPwmC8FVABCSC\nIBwE/hT4wWYNbjUEQfg28JfA/yaK4k8fxXdsYX2stDl5PDXU1m4jEHAzN3cdlSqM3y+hpkbzwNmn\nWw8jq7NrCoWPWEzBpUsf3lWxqEjkNYBCUUc6PYVS2crSUox33x1CoajhwIEKYBG/P0ih4OIf/7Ef\nr1eBzdbPb/1W3SpH79gao7PaOYvFOhgeziyz2Qc5ceJlnE4nZ86c4Xvf66G7+01UqkkaGh6cTPRp\nw50OcHfKHhQKBd59910mJqaRyyW0trYxMjJMf38QpbIOuVxGXd0MYGJmpna5wupvmZiYRKGoZ2zs\nBqIo0tGhoL1dAuhIp3ejVGrxeOJYrSlMpgIDA+cBDTabk+7uHmpqdEilGgRBQCKRrNkkJyYmUKmK\nz1cQXBQKKf7pn/4HWm2cWGx7qYLnYbElqbuF1bjTfLjXqg+3282pUyNrMloNDQ1EIhfp6roBJBkc\nVNDZ6b7NAVpZt07nHgYGfoLfr6WpyUoiIefSpcsMDIzh9z+DXJ7BbBZ45plyamsrKCsL0d5evFZx\nfT6/YeBma95/8gNd6805YM1ra/dmkdraYrJjcDBOLDaNUhm447M1mcrQ6YYZG5smEEiQSlUikfjI\n5wUuXPgpmcwUsdjNZM5GAbGV8RVl1R04HAcYHOwiFBpFo/nsGmWu55/fBxT/DnCX1tOt8zIely/z\n6tx/IG69g9ed1HEeFk9DVdjjxH//7zA1BT/72eMeyacHr70G//bfwj/8A3z72497NJ8u3G3vuWmj\nLhOJDDE9rVuVRC9foyrr8wUYHr6Bx5PE5/Mil/uIRHLMzNQxODhOPl9LXV0j8fg19u6tZdeuHfh8\nASYmJm6j/Fg5b87O2jEay/B6h+jq+jv27m3m5MmvleykILgwmwt4PIvIZBocjjIcDjvDwy48niRa\nbQ6fr6iO/Gm2gw8a5Pl94L8BM4AUuLH8/98Af7Q5Q7sJQRDqgX8BXN7sa29hY7S0tJTanOTyOlpa\nTHR0mDCZHGsW6IPgVqdtdXYtFlOskam+k2LRqVMu3O4a7HYNhYKc6enz9PUpCYdVqNVe+vvPceCA\nGqu1jZ///C3eey+ERLKdgYF+WlpO86//9XfWdapvJXN0ONzcmvW7VSJ25ect3PkAdydH/d133+V7\n3+vB71cSDk/idMbx+WYRxWpaW7UYjQJ1dXVYrWa83rUVVocOFZvnm5q8HDt2rFSJtbg4giAk0Whm\nOXFiLw0NDZw6dZp4PMrISBZRzNLRcZxYLLju4WrleX744VXm541kMnpGR100N+9keDiDw3H7IflB\nsCWpu4XVeFj1jGI2bG1G6zd/s4H2dh2hUJSOjqJk6Xpz3mIxMTHxYwYGwmSzMeLxD5maqgMEpqfl\nRCISJJIh8nkV9fU6fuM3XsZgkJSI8N1ud2l9bhS42Zr3n/xA13pzDljz2tq9OVDK0nZ23r5n3nrt\n4eEMNlsrlZWnMZkK7N69DWijunqe6WkXCkVdydbeS0DsJuExzMx0cfr0GSBJoVDAYhla0xa1kTLW\nytiLQSzhnrPaG+FRzfunoSrsccHng//wH+DXf73YRrSFXw7sdjh2DH74w60gzy8bd9t7VmxSd3cv\nkUiW6elaPvzwIgqFc7la56aq7OxsgdFRL2azGp3ORVWVjGx2H21t++ntvYxc7qOxsYlgMIgg5Dlz\nxs3MTJ6+vvOUl5twOMr51rdEWltbS+fNUKiL2Vk1RqMTmSxGW5tijZ28VXl5pRIfIBw+z8yMBq1W\nz+BgaN1k1qcFDxTkEUUxA/yaIAjfBdoBHdAjiqJ7MwcHIBR3zf9FkdD5P2/29bdwb2hoaGD//giQ\nZteuYzidzk2JjN7qtAUCIQ4c2I/TWWxhWS1TfSfFIoWiHru9Eo9nnObmLGp1jslJBUbjCebnP0Qq\n/YATJ36blpYWJieniEaz6HQQj0eYmEjeE+Htncogb5WI/STjl53lu5MjeydHfXJyhlSqgcbGBi5f\nVpHPawAdRiN4PHE0mlms1p00NzfT2jrB5OQgZrOJWAxGRq5QUyPh2LEjd2gJu9mCJ5E0UVGxhNfb\nh92uJBoNoFKtn2leeb56fRkXLxalVRcXJ3E6d5LJhDeljWaFr2RLEnoLK3hY9YxiNuwqHk8Su12H\nQlFXUhuSyxcZHx/GbhewWm+qFq7My0gkxMJChEikirIyKzpdjNpaCAbrkctzyGRWqqtVJBJjPPOM\njOPHj6+xI/dzgN2a95/8QNd6cw42VhO8l2e7UuJ/5Mh+BEGN13uFpSURkylJdXU1+Xz9mu+91wq3\n5uZmRFFEoZhDp4NDh75KNBqgvn52TVvU6rap9ZSxbo7ddVdenc2o7tkMfNKrwj7J+IM/KHLwfPe7\nj3sknz58+9vw/7P35nFtXlfC//eyiH0X2JjdNosT8EIWx6mdSZMmsZtpp/uv/k2SztZ1Ov3V7dvO\n9P3NO0v7dpZ0SftOt5lpO23TxFnaaZK2tpO0sWPsxI4TwAbbILDBIFYJCZBYJJb7/vEgkEACSUgg\n4H4/n3xiJD1XR88999z7nHvuOQ8/DC0tEGHmb11TWlqKlHOOEinlbHSOy0aZzRY6OwupqLgDs7mD\nvr56TpwYJSNjlPz8JBwOPXp9Opcvj1JWVowQkJvbQX//AE1N5yguTiU11UZUVCN5eTo2b07HaNQj\npZXr12Ox2VLo7e3j5pvrKS8vRwjB/fffj9U6RE3N9Mxx3w5SUoTPQhHuzF07TFXVXT43szYKwUby\nACCl7AA6QiSLLz4H1Egp6zZquNVKM3/BJKWcKVNXSFycedYAhILFPMnz3/NVsSgvzwT0kpho4tCh\nnUhZRXNzDdevXychYZTi4h2UlJQghKC4uIjU1E6ioqykpsaRlBQX0EJtLYdDh3KXz5/74Gsh66vP\ni4sLiI+v4/r1HuLi2omO3kpm5iiZmekkJ4/OJmlraWmZKXNeiU5nYscOHSkpC/MZePt+z3PDBRQU\ndFJYKJZ8uHLJbDSOEh/fjtmcSH5+VMC77qHog7Wsg4rl4W/UR2lpKQcPXmdwsIaRET3Z2anYbEM0\nN0+g023C6TRQUTGX9NBdLy9fPkVvbwaJiRWYzU1kZnaTmbkHIQaJikogM7ON2NhsSktTePDBP/B7\n3Cu99U6kO7rcdc51hNpqHZrNkRYfP+B1bl6KuWoshpkQ/34SEuIAOzA1E6pv9tB1fyPcysvbaG6e\nwG7fyfj4FdraLpKfn7jgWFQg42n+9/pyEK0mkR4VFqnU1sIPfwjf/jboVemYFecDH4DPfhZ+8AP4\nxjdWW5q1STDzq+tZzj1XmXskJHjalNhYO4mJ4LLRGRlpmExmjMb+mXWxlr5jz55ds4UWsrL2A3MF\ncKSUmEwtNDefZ2QE4uOLsdsv09vb4yFXdfVu+vsN2GydxMUN+F2B1vNai88N3I1CUE4eIYSviBoJ\njAOtwPNSSkuwgs18z83A+4ED/l5z5MgR0uZl7zp8+DCHDx9ejigbivkLppycURyOwrAsZhbbxfRn\nh9PzMxWUlpYyPT3NqVOvYrVeoKjoZvLyNG90eTm8852HaGn5Nf39TnJyctm5s4CurmBLeYcuHPro\n0aMcPXrU4zWj0bjsdt0J5S7fcu6Dr351HY3ScvLspLy8gpER+4Izu/N/R0oK7Nu3l5aWFl5//fyi\nE8D8c8YFBcl+TYguGU2mAez2tKCPKYaiD1RI/sbF36gPIQQlJSXk59/Aao1GiEms1iGczqLZUOuU\nFGbLmNfW1tPcPExVVRlOZwrR0ZPk5kp0Ogv79+fx4IO3MzJiIzExidOn7QwO2qioKA3oeKrS27WJ\nZ2461xHqAgKteuWOlFouvWPHLjEyEktSUjO5ubGkpd3Hjh37ZvTT/+ig+Xa1vb0Rh6OS/fv3Aq5j\nvAvlDGQ8zf/erKwMhobOcuJEOxkZo7MVE1eTSI8Ki0SkhM98Bm66CT75ydWWZmMSH69F8/z4x/DN\n+tMMAAAgAElEQVS//zckJKy2RGuPYOfXpdak7jaloyOFjo77qKi4gzNnnqW9vZPy8kKqq1MYGdmz\nYK3unmDfverxAw+UYrXWYzY7ycgAh0OweXOuh1zeKjGGquLhRiLYSJ49M//FAM0zr5UBU0AT8Cng\nG0KI/VLKK8uQ7wBQBLTMHNvaDPyHECJXSvnv3i547LHHqK6uXsZXKuYPeuggLs4clt2hxXYxA6lY\n5Dof//rr57HZhhgcjGd8vIirV9MZHm7kvvsyASgvL+fIkSjMZguZmemcOXOGCxeeobm5jsrKPPT6\nikXlDVc4tDdH5BNPPMFDDz20/MZnCOUu32LVR7KyMpBSzpar3bNnl8fxvuUefVuqJO1iE4C3c8au\n8r6LTYih2m0PRR+okPyNy1J6OL+UdWrqTm6/XVuQGQwGJiYGZ6Mv3HNkNTbaMRoFRuOLbN48SUHB\nKA7HRSorU/jIR95HRYVmFw0GAykpu9Dp9IyMmLl27Zrfjhqlt2sTd53zPEI9V/UqUFy59FpbC2aO\nE44APXR3n8Vs7iQvLyEg2zg/2igmRtDVdQaTqYO8vASPY7y+fltwTODa1Y4EIj0qLBJ5+mk4exZe\nfhlilnW2QbEcPv5x+PrX4dln4ZFHVluatUeghU5cLLUmdbcprnyYZ848S2vrNSyWdJqaGjh0qGrR\nUuXu63OdzkBFhY6yslJ6e5sRop/MzEyqq3f7/F4IrAKtsoNzBGvS/huwAH8qpRwGEEKkoeXOOQP8\nJ1oS5seAoBOWSCl/APzA9bcQ4iTwmKquFV7mD3r30LtI9Yq6G5GuLgPDw9GUlh7A4YgnPT2O5ORU\nwHPwv/jiixw7ZsJiKaO/v5l9+3SUlr5r0e9Zy+HQofRuL1Z9ZGjoFAMDw3R3Z6JV8TnFI4+IoB4G\n/P0d/obOeztnvJIPnKHog7Wsg4rw4q2U9ZkznVy7dp1t23ai05kXRF+YzRbS0nZw6FAhDQ01bNs2\nycDAZgYHY8jImPJYuC3HUaP0du0Tqj40my0eufQcjjp0ujJ0umyczhtUVGjtBrNza7PpuHo126Ot\ncKxZBgaspKXtYu/euXyCirXFyAh84QvwnvfAO96x2tJsbLZvh/vug+9/Xzl5giHQQicuAlmTulcu\ntFjSESKflpYRwLBoqXL3dYOrIm5e3q1kZY1QWZnsVzSoWj8ER7BOni8CD7gcPABSyiEhxD8AL0kp\nvy2E+DLwUghkdEeGuD2FF7wNevfQu0jE3YiYTP3odGcZGbkxU1pPR3Z21oJr2ts7cThKOHDgw9TW\nPsXkpH3JM6xrOQwwlN7txaqPnDjRSH+/jszMtwGDWK2NIXWiLFWS1p8JYLUmjFD0wVrWQUV48XTC\naKWsh4aGgZvYv/9dNDefXxB94RoLNpugvDyZnJw8pqYKueOOhQ+vyxk3Sm/XPqHqw/m59IqKcpmc\nvImKCtdRLc2JEszO7WuvnWNiggXHEkONeuhY+/zzP2tVtVQemMjgk5+E971Py5GkDmQERqCFTlwE\nsiZ1z9dz9eoLtLSMkJe3FZ0ucVH77G4rXRVxNVvvfzSoWj8ER7BOngwgB610ujvZQOrMvwcBXZDt\ne0VKeU8o21N4Zy2Gurkbkbw8wT33vJ3BQc0H6V5azx1Xot/a2qeIj2+nuHjPkt+jkopqzC8v39bW\nRldXAyZTB+npk0xPO+nuPguMkpenQ6/PDKs8gU4Aa3nCWIvjUxF+5hLZNsweU3GFQDscBpqbz3t9\nGPV29r2/v2XRsqrBjBult2ufUPXh/Fx6ruIO83VuvhPFn3l2pZwva3kOUcDVq/Doo/ClL8HWrast\njQLgXe+C4mLN6fbEE6stzcoQqmeHQAudLAdXmXMwoNMlzlTq9L3G94y0rKKpyRmwPGr9EBzBOnme\nB34shPg8cGHmtduArwPPzfx9O2BYnngKhX94LrjK/TKUrqSh7e2dFBfv4b777gva4G7kpKItLS00\nNTnR6cpwOm9wzz2lFBcXz+TkSfHpZAslgU4AoZgwNppjTxHZzB+H5eVaeVQt6XwsycmS7OyFD6Pz\nx4KrhKq3h1e10FKEgkB0zv01f+bZUDlflrLvaiysXaTUokaKijQnjyIyiImBz30OjhyBf/onrX/W\nO+F+dgiHM9pV5rykpMTDPi72efdN4ZKSFr/kUWvs5ROsk+fjaPl2nnJrYxL4KXBk5u8m4C+WJZ1C\n4SfBLLi8Jfo1GAxhyVC/nvEsS36O1FSoqKiYTda6XtnIjj1F5DF/HA4OdvDiiy0z+jnBwYNZfumn\nenhVrDS+dG7+a/7Ms6HSX2Xf1y+PPw6vvgovvaRVdlJEDn/2Z/AP/wCPPQbf+tZqSxN+wv3sEK75\nPNh2A7lO2eDlExXMRVJKu5Tyo0AWc5W2sqSUH5NSjsx8pl5KWR86URWK0CClxGAw8Npr5zAYDEg5\nl+rJ3eA6HHrMZotfbWohke4VyMJ7PGklWex+wfr+7YsRrK4oFP6y1NhzZ/44BJR+KtYVS801gYyX\npVD2fX1iscDnPw+HD2uJfhWRRVISfOpT8MMfan213tmo62d3fNltZYOXT8CRPEKIWGAM2C2lbAQu\nhVwqhSKMLOYdDvb86no+nx/K7PzrCZV4UxFuAtnJCiS3jkKxFllqrgnlzq+y7+uTv/kbmJiAb35z\ntSVR+OKv/gq+9jX4znfg7/5utaUJLxt1/eyOL7utbPDyCdjJI6WcEEJ0ANFhkEehCDtms4Xx8SxS\nUzNpaGgkJ2d09qxnIAbX23nRsrL1d140lNn51xPLmZxdOxd1dRcBLTl4WVmZOm+s8CCQUO5A8pys\nJP6eq1fn7xVL4W2ucdebjo4OxscL2LHD93jxV8/Uw9f649Qp+M//hO9+FzZvXm1pFL7IyYFPfEJL\nwPzpT0NmCINbIm2e2ajrZ3d8rXOCtcGR1serSbA5eb4K/JMQ4mEppYqfUqwp9PpMhodPcvasE0ik\nsdFOdXXL7EO2Oi/qifKme2c5k3NLSwuPP36KhgaXDp7lkUfEutQfRfAsZ+xFyuLRXzu5UeypIrS4\n683QkB24RFOT8Dle/NWzSBk/itBgt2v5Xu66S3MgKCKbL31Jc8h9/etaEuZQoeaZyMPXOidYG6z6\neI5gnTyfBrYD3UKIG8CI+5tSyurlCqZQhIvS0lIqK+uxWqepqjqAzdYRVLKzjZJsWe1ohh6z2YLV\nGk1m5m1AOlZr/brVH0XwrIex56+d3Cj2VBFaPPVGUlDQSWEhPseL0rONyd/8DfT1wcsvQ1RQ2UgV\nK8mmTfCZz8C3vw2f/awW3RMK1PiPPEK9zlF9PEewTp7nlv7I6qFCtRSLIYSguno3/f0GbLZO4uIG\ngopO2SgRLoF609X4Wxq9PpOMjCmMxgtAInl5YkMm3FMsznqIJljMTrrbCpttCJ3Oue7tqSK0eOrX\nANXVuxfdtY3EeVvNmeHllVe0I1r/9m+wbdtqS6Pwly98Ab7/ffjKV7S+CwWROP7XO0vZt1Cvc1Qf\nzxGUk0dK+Y+hFiSUqFAtxVKEwnO8HnbZw4Eaf0tTWlrKww9Lj5w8Sn8U65HF7KS7rdDpnFRU6EhJ\n8R2FoVDMJ9B5OBLnbTVnhg+rVTumdffdWtUmxdohMxP+9m+1KKyPfQyqqpbfZiSO//XOSts31cdz\nBBvJgxAiHfgAsA34mpTSIoSoBvqklF2hEjAYVKiWYilC4TleD7vs4UCNv6URQlBeXk55eflqi6JQ\nhJXF7OR8W5GSAnfeecfKC6lYswQ6D0fivK3mzPAgJfz5n8PwMPzkJ+qY1lrkM5/Ryqn/1V/ByZOw\n3AC3SBz/652Vtm+qj+cIyuQJIXYCBuCvgf8BpM+89T7gn0MjWvBooVpmt1AtdQxCoVgp1PhTKBT+\noGyFQqHGQbj43vfgV7+CH/8YiopWWxpFMOh08H/+D7z6Kjz99GpLowgGZd9Wj2Ajeb4J/ERK+UUh\nhM3t9WPAk8sXa3moUC1FqFFn5v1no48/pSsKxUK8jYuNbisiDWW7Vgc1DkLP66/D5z6nRYK85z2r\nLY1iOdx/P7z//Vpf3nsvZGevtkQKF/7MGcq+rR7BOnluAz7u5fUuYHPw4ngihIgDngJ2AGNAP/Ap\nKeW1Ja5ToVqKZTM/KWhTkxOnM3vdnJkP14J+o48/lV9BsVzW48O2r3GxkW1FpLFRbFekja+NPmeG\nmhs3NMfO7bfDo4+utjSKUPDd78LNN8MnPgG/+MXyj20pQsNGmTPWKsGeUHUAqV5eLwNMwYvjlX+X\nUlZIKfcALwA/DHH7CoVXXMbr7Fk4fryBri5JRcUdOBx6zGbLaou3bNx/34kTBlpaWlZbpHWB+/nj\n9aIripVlPY5NNS4in43SR+txfCk0hofh3e+GxET47/+GuLjVlkgRCjZtgh/8QOvTn/98taVRuPBn\nzlD2dvUI1snzAvB3QojYmb+lEKIQ+FfglyGRDJBSOqSUJ9xeOgeok7WKFcHdeOl0hTidN9bVmdKN\nsqBfadT5Y8VyWY9jU42LyGej9NF6HF8KsNvhne+Ejg749a/VsZ71xgc+AA8/rEXzNDautjQK8G/O\nUPZ29Qj2uNbngV+gHZ9KAF5FO6b1OvD/h0Y0r/x/wHNhbF+xBJEW5hxONONloKnpHHl5CVRUlK1a\ned9w3Hf336cZZxViGQrU+WPFUiw1ntfj2FTjYvmEe/7dKH20HsfXRsdmgz/6I7h0CV5+GSorV1si\nRTj4/vehvl7L0fPGG5CWtjpybKRnocXwZ85Q9nb1CMrJI6UcAu4TQrwN2AUkA7VSyt+FUjh3hBD/\nE61c+8cW+9yRI0dImzfqDx8+zOHDh8Ml2oZiI52/9DRe5WE14kePHuXo0aMerxmNxtl/h+O+b5QF\n/Uqj8isolmKp8bwex6YaF8sn3PPvRumj9Ti+NjI9PfDgg9DaCseOwd69qy2RIlwkJWlHtm69VYvs\n+e1vtQpcK81GehZaDH/mDGVvV4+gnDxCiEeAp6WUZ4Gzbq/rgA9LKX8WIvlc7f4P4D3AvVLK8cU+\n+9hjj1FdXR3Kr1e44R5219R0DrPZsm4XhCu54PXmiHziiSd46KGHgPDc942yoFcoIo2lxrMamwpv\nbKT5N5yo8bV+eP11+PCHYWoKzpyBnTtXWyJFuNm+HZ57Dh54AD7yEXjiCYgKNvlIkChb7D/K3q4e\nwQ6L/wK8BcmlzLwXMoQQnwM+DNwnpbQt9XlFeAnlmX0pJQaDgddeO4fBYEBKGUJJ1xcbJVeCPyi9\nUax1NuJ4VuN2+WxEvXFH6ZDChdMJX/0qHDgAeXmas0c5eDYOd98NTz4JTz8Nf/ZnMDm5st+/0W3x\nSqLsfvAEm5NHAN7ucj4wFLw4875EiDzg68A14KTQzsqMSyn3heo7FIERyrA7Fe7oPyrccQ6lN4q1\nzkYcz2rcLp+NqDfuKB1SSAkvvQSf/Sy0tMAXvwj/+I8QG7v0tYr1xfvfr0XxPPywlnT75z+H+PiV\n+e6NbotXEmX3gycgJ48Qog7NuSOB3wsh3H2n0UAJcMLbtcEgpewi+GgjRRgIZdidCnf0HxXuOIfS\nG8VaZyOOZzVul89G1Bt3lA5tXJxOeOEFePRRuHBBi+B55hmoqlptyRSryeHDkJwMH/qQphO//CUU\nFob/eze6LV5JlN0PnkAdKM8Bz6NF8rw482/Xf08BHwceCqWAivWLCndUBIPSG4Vi7aHGrWK5KB3a\nWIyMwIkT8KlPQW4ufPCDkJAAx4/Dq68qB49C413vgrNnwWSCW27RkjEr1g/K7gdPQJE8Usp/BBBC\ntKMlXl40CbJCsRgq3FERDEpvFIq1hxq3iuWidGh94nBoD+jd3VoJ9IsXoa5OK5E9MQEFBfDRj8JD\nD6nS6ArvVFfDm29qiZj/8A+1KK8PfnC1pVKEAmX3gyfYEuo/FUKkCyEeQitr/jUppUUIUQ30zRyz\nUigWZbXCHaWUtLS0zBiMzAWl0Zd6XxFaAr3f3vRG9dnaQ/WZ/6yHe6XC2xWB4EvnV0KH1sN4Wy2k\nBJtNc9qYTGA2z/3b1982t5IqQkBZGezaBd/8JrzjHVBerr2uUCyGXg+/+Q089ZQW3aNYW/iyu/7Y\nfWWzvRNsCfWdwO/QkiwXA/8JWID3AYXAIyGST6EIOUsl8VJJvlaWUNxv1WdrD9Vn/qPulWKjsZo6\nr8abJ04n9PdDb6/2X1/f3P/nO27MZu3z80lLg+xs7T+9XovIcf87Oxs2bYIdOyAxceV/o2J9IISW\np0ex9liO3VU22zvBVtd6DPiJlPKLQgj3subHgCeXL5ZCET6WSuKlknytLKG436rP1h6qz/xH3SvF\nRmM1dV6Ntzmeew7e+17P14TQHDM5OXOOmrKyOWfNfOdNVhbodKsjv0KhWBssx+4qm+2dYJ08twIf\n8/J6F7A5eHEUivCjJfEyuCXxKgvofUVoCcX9Vn229lB95j/qXik2Gqup82q8zVFdDT/+MWzePPdf\ndjbEBPv0oFAoFF5Yjt1VNts7wZppB5Dq5fUywBS8OMsiB+C5557j6tWrqySCYq3gdPYwMjKCEElc\nuDDEhQsXAnp/JfjtTImAJ598ct3rdCjudyT0mcI33vRZ9Zn/qHsVeWwkG70arKbOb9Tx5k2ndTqw\nWLT/rlxZTekUisBRdnrtsBy7u5FsdnNzs+ufOYt9TkgpA25cCPFDIAv4EFounp3AFFqJ9dNSys8G\n3OgyEUJ8B/jLlf5ehUKhUCgUCoVCoVAoFIoV4rtSyk/7ejNYJ08a8AvgNiAZ6EY7pvU68E4p5Uhw\nsgaPEOIgcPznP/85O3bsWHZ7R44c4bHHHlu+YGtYhtX+/kiX4caNG7z22g2czgx0Oit33llEUVFR\nyL73+eef58tf/jLuOh3u+7GW21/Lskd6+/7o+lLte9Pn5RLJ9mGjybCacrjr529/+zW+9rWvhNQW\n+yIcOu0iXPdStbu+2w10XTK/3XDpdKTYKBcrIU8gfbER708gLEee9br2cCeS5IkkWWB9ynP16lUe\neughgENSyhO+PhdsCfUh4D4hxNuAXWiOnlop5e+CaS9E9APs2LGD6urqZTeWlpYWknbWsgyr/f2R\nLsP4uJOcnNzZRF+bNhFSWV1hpe46He77sZbbX8uyR3r7/uj6Uu170+flEsn2YaPJsJpyuOvnyy//\nkE2bcldEjnDotItw3UvV7vpuN9B1yfx2w6XTkWKjXKyEPIH0xUa8P4GwHHnW69rDnUiSJ5JkgXUv\nT/9ibwbs5BFCRAF/glYuvRiQQBvQK4QQMpjQIIViDaISfSk2CkrXFZGMu35GRzvR6zNXWySFYlVQ\ntjpyUH2hUChWk4CcPEIIAbwAvBO4CDQAAtgB/ATN8fOe0IqoUEQmpaWlgFa6T68vm/1boVhvKF1X\nRDLu+nn8eJLST8WGRdnqyEH1hUKhWE0CjeT5E+Au4F4p5Un3N4QQ9wDPCSEekVL+LETyKRQRixCC\nsrIyytTmjGKdo3RdEcm462dycjLafpRCsfFQtjpyUH2hUChWk6gAP38Y+Kf5Dh4AKeUrwL8AfxxI\ng0KIbwsh2oQQ00KInW6vZwshjgshDEKIS0KIAwHKuiwOHz68kl8XkTKs9vcrGRYSblnWcvtrWXbV\n/tr5TiWDbyJBjkiQIRSE63eodlW7K9Huan2Pvyh5FkfJszhKHt9EkiywseUJqLqWEKIXOCilrPfx\n/h7guJRycwBt7geuA2eA90gpL828/iPghpTyy0KIW4FfAcVSyikf7VQDb7311lsRlWBJoQiWJ554\ngoceegil04r1gNJnxXpD6bRivaF0WrHeUDqtWG/U1tZyyy23ANwipaz19blAj2tlAn2LvN8HZATS\noJTyDMzm+3HnQ8C2mc+8KYToAv4AeCWQ9hUKhUKhUCgUCoVCoVBEPlKC3Q7x8RAbu9rSrE0CPa4V\nDUwu8v4UQZZld0cIkQnESCndS4PdAAqX27ZCoVAoFAqFQqFQKBSKyGFiAr71Ldi6FVJTtf8+9CG4\ndm21JVt7BOqQEcBPhBAOH+/HLVOeZXPkyBHS0tI8Xjt8+HDEnclTKNw5evQoR48e9XjNaDSukjQK\nhUKhUCgUCoVCsTKYzfC+98HZs/Dww/DVr0J3N3znO1BdDc8/D3ffvdpSrh0CdfL81I/PLLuylpTS\nIoSYFELkuEXzFAMdS1372GOPqTOXipAjpaSlpWWmFGYmpaWlIa3g4s0R6TpHrFCsJOHWdYUiHCi9\nVYQDpVcKhYYaC4pwYrPBoUNw4wacPg1ve9vcex/9KLz//fDud0NNDezatXpyriUCcvJIKf/U9W8h\nxL3AvUAOgR/78odngU8C/yiEuA3YArwahu9RKJakpaWFEycMOBx64uIMAJSpupiKdYjSdcVaROmt\nIhwovVIoNNRYUIQLKeGhh8BggFdfhd27Pd9PS4PnnoP9++HwYXjrLUhIWB1Z1xJBOWeEEH8PvITm\n5NGjJVt2/y+Qtn4ghOgE8oAXhRCGmbf+Brhz5u8fA3/sq7KWQhEqpJQYDAZee+0cBoMBV/U5s9mC\nw6GnouIOHA49ZrPFr+sUK08k9EUkyBAsS+m6QhFqljtepJTU1tbT3NxLSkom4+NZSm8VIcFstjA+\nnkVKSibNzb3U1tYzPT29Zu27YuMRivWIsrGKcPL978MLL8Djjy908LhIToYnn4S2Nvjyl1dWvrVK\nsEmSPwH8iZTy8eUKIKX8hI/X+4EHltu+QhEIvnYq9PpM4uIMNDWdIy7OjF5f5td1ipUnEvoiEmQI\nlqV0XaEINcsdLy0tLTQ22jEaBUbji1RV6dDr3x4ucRUbCL0+k+Hhk5w96wQSaWy0k5HxMs3NE2vS\nvis2HqFYjygbqwgX7e3w+c/Dpz6lHcdajJtugi98AR59FD7xCSgqWhER1yzBHrPSAa+FUhCFIhLw\nFcVQWlrKwYNlvO1tcPBgGaWlpX5dp1h5IqEvIkGGYFlK1xWKULPc8WI2W0hL28GhQwfJz8+msjJD\n6a0iJJSWllJZmUF+fjaHDh0kLW0H7e2da9a+KzYeoViPKBurCBdHjoBeD//6r/59/gtfgPR0+Lu/\nC69c64FgnTw/BP7fUAqiUEQCWhSD2S2KIRMAIQRlZWXceecdlJWVLUg25+s6xcoTCX0RCTIEy1K6\nrlCEmuWOF+36AWy2TsrLk6mu3q30VhEShBBUV++mvDwZm62TuLgBiosL1qx9V2w8QrEeUTZWEQ5e\nfFHLtfONb2jHsfwhJQX++q+1o1udneGVb60T7HGteOBjQoh3AJeACfc3pZSfW65gCsVq4NqZ0KoH\n+B/FEOx1itATCX0RCTIoFGuF5Y4XNd4U4WS+fm3fvp2Sklalb4o1QSjso7KxilAzPa05a+66Cz74\nwcCu/Yu/0PLyfOtbmoNI4Z1gnTw7gfqZf1fOe09loFOsWVxRDIEerw/2OlBlKUPNcvpiPcngD0r3\nFJFAsONlvv7u27dX6a8i5HjTz1Dbd2WLFeEiFOsR9zaUripCwXPPwcWLWrn0QNUnJUXLyfO978FX\nvgKJieGRca0TlJNHSqmybSkiirU86azlJL2K0LEaOqx0T7HaLEfvlf4qFmMtrQuULisiDV/jR+mq\nYrlMT8Pf/z3cdx8cOBBcGx/9KPzLv8AvfgGPPBJa+dYLwUbyACCE2A5sA05LKceEEEKqWpKKVSCc\nk064F4ruSfGams5hNlsiPgJEEXoW0+Fw6aDSPcVqM1/vpZQIIfzSdaW/isUIxbpgpRxFSpfXN2vJ\n4ejC1/hRuqpYLs8+C42N8B//EXwbW7fCPffAj36knDy+CMrJI4TIAp4B3o52PKsUuA78SAhhlVJ+\nPnQirg0i3YBHunzLJZyTjj8LxeXcX1WyeuPirjcdHR2MjxewY8dCHQ6lE9P9O222IXQ6Z1C6t95t\nimJlmG+76+ou0t+f6FPX5+tvbKyDmpoXcDpvYLOVzTqJAkHp8sqwnPsczLWhWBeEe/53odYB65u1\nGP3ia/xkZWUwNHSKEycayciYIivrbp9thMq2Khu9fpBSi8C5/37Yt295bf35n8Mf/zG0tIBKE7WQ\nYCN5HkNLtlwIXHV7/Wngm8CGc/JEugGPdPmWSzgWSFJKDAYDTz31LAaDnv37d2O3S0ymAcDgMdks\n5/6qhHZrn2AXIO56MzRkBy7R1CTQ6UzYbDpee+0cen0mJtPAkg8r/srg/p06nZOKCh0pKQSse+vd\npihCw1J6Od92A151fXp6mpdffplz5y7Q2xtFScndxMU5SUkx4XRa0ekKaWpyUlLSErAeKl1eGZZz\nn4O51tu6IFBb7Y+jyJtsrnWBv9+zGusAb/dCER5WIvrF1Z8m0wB2+zDJyalkZ2cF7RDxNX7a2tro\n7OxjcjKH9PTYRdsIlW1VNnr9cOoU1NfDyy8vv633vleryvX00/C3f7v89tYbwTp57gcekFIa5xmO\nFqBo2VKtQSI9fDHS5fOH+QuS7du309qqVbjIzEynrCyGGzcaKS4uYPv27bNOmrq6iwDs3r0TIQQD\nA1a/Fl0Gg4FvfeuXXLjQx/DwIL29v2TfvhTs9jzeemvAY7JZzv1dK0l6FXPM10UpJS++2LJgAbLU\nA4Wn3kgKCjopLASbTUdTkxOnE+LiDJSXxxIXN7GoE9PXg0ZzczPHjh2nvf0GJSVFbNqUy/h4ERUV\nezlz5tfEx3fy9reXBLwQXA82RRF+FnsANpkGsNmGyM4eQYhR9uzZBUB/f8sCXX/55Zf5j/+oo7s7\nmYGBJg4cuERWViZbt06Tl7ef8nJNn0+ePI3r1PjAgJWsrAyklNTXXwJgz55dlJWVLTIOlS6Hi0Dv\n8/xIR4ejYMG1i9nY7du3U17eRnv73LrApY/j41kMD5+ksrKePXt2+dQRXxtIS0VhQmAPpauxDvA2\nNhXhIZDol2Bx9afROMq1a9fZtu0m8vMHgIXrkaysDIBF18PeHI/adzRiNpeRl7eViYleBm9buwwA\nACAASURBVAasHte5O5veeOM8ra2bqarag80m/bKt89fue/bsUjZ6HfGNb0BVFdx77/LbSkiAd71L\nO/6lnDwLCdbJkwSMenk9E3AEL87aJdJDbSNdvqWQUvLSSy9x/HgDOl0heXkmKiraaG6ewOHI4vr1\n/2Z0dJJNm3YzPu6kpKQVgMcfP0tDgwRGefXVZ8jKyict7Sa/Fl11dRdpbLQD7yA+foDo6CZuvvkW\nrNZBmpulx6S11u+vIjBaWlo4fryZri6J03mBoqIpJiZuJzW1gIaGdnJy6hdEeOl0zbS1tZGSkja7\nqPLUmwGqq3dTVlbGa6+dw+lkdkGTnCw5eDBr0V1eb4sgaOHb336G3/++m+HhTaSmdnHLLT1s2zbE\nmTMmrl27AmzF4Qh8Z0zp/PrHn6iHwByZr1NbW09tbT2NjXacTj3Xrl1h27at5OcnIoSYvX6+rre3\ndzI+XkxJSR5tbTc4f95Eefkg5eXZxMWZOXPm17P63Nl5FpggLW0XQ0OnGBgYoLs7BUiksfEsjzwi\nPHRd6fLK4CsyYP4DncvB4hnpaAXsNDUJjz4yGAw8/vhZrNZEMjKu8PDDkvLycgBaW1tn1giVNDeb\nZ8ueOxx6UlMzOXvWidU6TWPjKQYGhunuzgRGaWw8NasjviJsfEVhumRbCw+l3ucMRfiIBRJxPT4t\npvtL4c3uuvpTr4fLl6fR68twOAZndc9TZ08BsYuuh705Hs1my8waPJGuruskJprQ6ys8rptzNk1T\nX9/J1NQwRuMIVVUCvX7/kr+tpaXFY+3e2HiKAweKl9zoUkQ+TU3w29/Cf/1X4BW1fPHBD8LRo9Dc\nDDOmXzFDsE6eGuAR4H/N/C2FEFHAF4GToRBsrRHpR27CJd9yz8kGcsTk+HEDLS355OVpk2R8fB8O\nRyUpKQU0NtqZmtpEXNxmoHd2sWK1JpKZuRsYpK/veaKiEtm71/9dxMnJQUZHX8XpjGHz5iQyMtJ4\n/vlaGhsnaGrq5447ktDrD0R8/ysWEozuuq45efI0DQ0TCFFNd/cog4MNJCScort7E9qiREd1dYvH\nIrqm5hna2trJy7vNI6IBmAmvjp09CpiVlUFc3Fw0Q3Z22ZK7vK4HqKtXX2d4+BIdHRl0dHTQ1zdG\nVNQOUlLuICqqFYfjOpWVGQwN9QNb2b//gzQ3nw/4IUTp/PpnsQdoF94iI6qrd8/qg802RFeXAZOp\nn9hYE0NDk1it0RiNgrKyDMbHi9HrC3E4mNFB7xENxcUFxMfX0dbWQmpqMnfcsZPMTEF5uZ6cHD0n\nT57Gpc8vvvg0YGfv3js4caKRvr4pMjNvZWhokqtXa6mtrfcY75FyVGa955jwFRnw+OOnaGhwMt8J\n524/r16VFBZqkY5ZWaVIKXnttXOcP3+OS5eSycrajdF4lrq6i7M66s2J4bKTDQ2NQCJVVQdoaDhO\nf7+OzMy3AYNYrY2z9nD+g67rwfzkydMYjans37+X5ua5KEzX75LSwNDQWU6caCcjY5SsrLetyj1f\nDG9Ot7a2a6st1rpg/vg2my2kpd00u/4cGLD61H1/jvp5i8Jy9afROEp8fDtmcyL5+VGzDhH38XDi\nhKb/t98+FwEJLGmH9PpM8vJMwCiJiUYOHapaYC/nnE3pxMSMsGtXNKOjw1RWpsx+djH7ZzZbPNbu\nVmsjycmpS250KSKfb30LNm+Gw4dD1+bBg9qRLRXNs5BgnTxfBH4vhLgV0AGPAjejRfKEdCYTQrwT\n+AoQBUQDX5dS/iyU3xEKIv3ITbjkW+45WX+v13YPisjL2zyze2CkuLiK5mYzDQ3t6HTRZGWlLNhZ\nyMi4gtF4Fhhly5YEMjJG/d4JyMhIIyUllfHxZFJSbnDXXWVYrUN0deWQnZ2HyVSDXp8zOzlFcv8r\nFhKM7s7tUOXQ2lqDlOOUl5eSnr6TpKQWoqIkVVUPMDw8sCDCy+nsQKcrm7ez64ooMMwcARTExRl4\n4IFSDh4sC2hB4/qMFiURS2dnAUNDV4mLG2F6+io2m4XU1BE2bcqkuno3AA6Hgebm80HtjCmdX//U\n1V2koUGSmbnwAdqFt8iI/v65ox9NTU50uk04nQZyc2OYmNhLfn4WRuOLdHdfJj5+ELM5ivz8xEV1\n8L777gPg/PkL9PSkUlKSTXy8hZwc/ey4delzRsYoMEVT0zkyMqaYno7GYHiZ/v4YcnIEjY1Wqqvn\ncvdEylGZ9Z5jwldkgNUaTWbmbUA6Vmv9rIPF3X7Gx89FOhoMhtl719g4zMjIAFlZlWgREimzbXtz\nYrjsZE7OKI2Ndmy2jhkdcdLdra0V8vJ06PWZXn+D+xygRY49S35+4qxsnkwAdmAqZPcwlHhzul24\ncGGVpVofzB/f3o5c+9J9f476eXNg7tu3F3BtGqV55OQBz/GQkTEFjHpEQPoT0eupM7u9OoXmnE39\nJCTcQIitlJdvprp6LkppMfun12d6rN3z8nRkZ2ep9cYax2SCn/5Uc8TExYWu3YQE+MM/1EqpKyeP\nJ0E5eaSUjUKIMuDTgA1IBv4b+K6UsieE8gE8DtwlpbwshCgCmoQQv5RSjoT4exRB4G9Isi+vvb/X\nz+0e9JKYaOLgwUqKioqwWi8xOdnD5GQ0Nls3er2NgwffPjsRPfywnAmFTWH37vvccvJ4Pjh7y/dj\ntQ6RnZ3Frl2VQBU7duTQ2dmJEGOkpWUwNZVLbu6mdb/7Gon40qdAdseDCad3XbN//14sFivDw2+S\nnp5HXl4iFRW30dw8gc1mIT5+wEPHtEpAVTQ1OT0ibeaHWbtkGRiwcuedd/h1dt1byHZnp+uoF7z7\n3YncdlsPbW3tJCcnsnPnVqSUlJaWcvCgisRRLMUoMMj8B2hXRMP58+e4fLkHpzMFyKWq6gA2W+ds\nNKXTmc2BA5pe5+Z20N8/wPAwVFXpqKxMJyOjZPZhZPv27RgMnkntgdn8DgD33HMPIyM2kpMF2dlz\neus+1lxRE1pOnruRUvLMM7+guTmW/fvfjc1mWfXjM2vhOE+o8WavtAe6KYzGC0AiW7Zo0V+vvXaO\nrKwMHnigdMGc7X7vTKZ+hDhLYmIjeXm62bxO4N2J4XI0lZaWzkZbunSkvv4iPT02Nm9OR0rptVKb\n+xwAsG1bP29/++4F9nNgwEpq6k7y87NoaDhNbW397OuRErmlHPXhY/74dj9y7YpE6+joYHq6m4GB\nMYRIJC9PzEb9eLMN7rlumpquYDRaMJk6yMtLQK8vX7I/PW3k3QCcOlXDUhG93sZtaalml19//fwC\nffaMUN6zwNnk7f64f29paanH2n3Pnl1qfbIO+MEPtCNaH/946Nt+97vhqafAaIT8/NC3v1YJNpIH\nKeUQ8NUQyuKLaSBj5t9pgJkNmvcnElksl8H8UrdaItlsD6+9+/XzKwrNT6BYUdFGfHwnRUXaBPmD\nH/wGna6QmJh4oqImycgoICNjlJKSktnrysvLKS8vX1B1wLWAcyVb7OnpxmyOJy1tJ8PDZ8jKOobB\nMIHdnonB0MqWLTY6Ox2kp6dSWWlhcHDhgtKdjRiKv5L42gUKZHc8mDwcrmuam89TWZlBSspuJieH\nKSpKpbCwEIvlEr29reTk5DI9PY3BYJhd1N922y28+eajnDv3JtPTWSQlfYSGhhr0+mMADA6m0NQk\niYsbICurdMHD7lKVsuLiDEgpPY7H5OUJbrml2mP322jUYzK1qAW+Ykn27NlFY+MprFbN3u3evXNW\nL222IU6fbqOxMRq7PY/U1Fa2bInDZuuY1eH29naMxks0Nb3OxEQPFks02dk5FBSMUF199+zYNBgM\n1NbW89vfHvOww5WV9aSnp1JT00V7+wQmUyeFhfkkJ09y6FAZd955h9dx4Z7bx8WHP/whTpwwYLdb\nZ52wq8lq5AFaqePVvvCVhHvugQ7S01Pdks63cPCg1s/uaElstaNQU1M3yM2NIiGhl9tvv3XmqJSn\nnPv27fUqp+tBu6Ojgz17drFnz276+5MwGvX09xtob2/3yKEGc8cPm5ubSU4epri4zOt90OszGR4+\nydmz2lGc06evcfnyiN85ARVrG70+E52umZqaF3A6b2C3l81s3Ai3SLQCMjNtlJXZyM1NJj09bXaN\nqtM5F9gGg8HAz352hoaGAXp7b1BUVEBeXh8VFb43abxtYELr7N93330Ah6OF5ubzPtfg3nILWq1D\nNDZqjsz4+IUV5bKytE0sV/Ly+WNksUTUQojZtbtifTA+Dt/5DnzkI6DXh779Bx6AqCg4dgw+9rHQ\nt79WCcrJI4Q4CNillGdm/v5L4KPAFeAvpZTWxa4PkA8DvxJCjADpwPuklJMhbF+xDBbLZeA+MXR1\nGdDpNs3u6Lq89p6RDnMVheYnqZVSziZQPHPmIp2dfTPZ/RMZGTGQnr6dgwc/PBsFMR/3RHCtrZeJ\njrYxMtKJEDFER+/BYhlnamqAHTtSqK01IOVFYCe33lqGydTM6OggHR0F9PaaKCmJwWjsweEYo7a2\nDmBBsjx/clkoNIJ5cPC1CxTI7nggeTjcnYTl5bEkJU3T3Gzi0qUR4uKK6eho58yZbpzOZK5dG2fb\ntgQaG1/DlfxV0+fv8atfmRgZuQkhjKSl1VJX9xbDw83o9RXs3budqqoUqqt3I6X0qyTv/N9bV3eR\nvr6E2eMxFRVVHr/T/bOu/D/+3nfluFw/+NuXZWVlPPKImP2cu152dTVgMkkyMw+QmZlOQkI2d90V\nTWGhmE2o29TkZGQkmUuXLmKzJeN0DrFp0xC7do0ihJiNvnv88bNcujRNd/c1xsb62LGjF4slhmvX\nJEbjm/T2biUxsYr+/ijM5h5SU7cg5SVKSkpmH5SXcvD6yn/lrx6Hutz0auQB8scJvlgVS2+bNYGU\nCvdun8Xs/Gk2u6po5c8msZ+aOobJNOClFPQEg4OdtLe3EReXT0pKGk7nDUpKWmhvb/co0uCKyHGX\n0Vty18rKDByOwpkcai9QV3eapKSq2TlcCEFTkxO7fYrW1vNs365FZ5aUtCy4j6WlpVRW1tHWZmXL\nljK6uy1+5wRUtnbt4r5WSE7ux+GwEBdX5KEnnuNAsHev5hTSxqZAp3NSUaEjJQUP21BXd5Fz5+y0\nt6djtY4RFTVBSUkRKSlpPhPiu5Lcp6ZWMDx8kqysYwwMJJCaWsXw8BluuimRpKQRYmO7sVhM/Pa3\nscTHF89Ezmv2wWQawGicRq9Pp6Ghjra2SSYmsjEanRw6lIXNJhYcMxsa0pLfp6buXJCrbU5Wz0TU\n3uQPdAyE2k4rQsOTT0J/Pxw5Ep72MzPhzju1pM7KyTNHsJE8XwP+GkAIUQV8E/gG8PaZf/9pKIQT\nQkQDfwu8R0p5diYH0AtCiEoppSoDsML4Mrq+ogHmh1Q7nQt3Ld2vd68oND9JbU7O6Ozi68SJRiYn\nc8jL20pX13Wys20euXZcURCuHZHk5FQ6OzsZHy8gKyuDEyfqsNm6GRnZytTUm5SXS6CAGzfe4Nq1\n3zA8bCEhwYbD0YLFMkR8fBfbtm3hve+9nd/85t/o6rrM4GAyNls0b7zRw759owuqtdTV1fP660PE\nx+fT1NRDZWW9cvL4IJjcFL52wf3ZHQ9kl9dV+aKnp4umpiFsthhiY4cpLU2lpuYKHR0x5ObaSEiw\nkpa2hfT0aQYG0rn99lIuXepmbMzE/fcXcP36DV5+uZ6BgXtJSnoAu/15XnnlJwwNFQP3Y7d3kJFh\n5E/+5D7Kyso4e/b12UWV0dg/e1TFV6JF1+8Fz+MxKSnM/rb5n7XbY2fyAPl33zdiDpH1ylJ96WuM\nuOul3Z7E6OhVOjpeRKfL4I47kqiu1pLQGwwGnnrqWQwG2Lx5O3Z7OkNDm5Eyir6+Zt58s4Po6E30\n9jbR2/s6r7wywfh4ETZbOhZLLF1drcTEDFFcvIXOTv3MEchmxsZamZrayvbtg4yMxHs8KLs/iLjG\njLt6uuaa+fmv5v/2QO7Zcpg7NiR9HnsINf44wRfmEnFVsdQcezpdmcdmTSClwn3Z5/lVtAYGbtDd\nfRW7vZ+WFjM9PVs8SkEPDFhJS9vFzp3pXLlynJERmJ7Ooq2ti7q6es6d66epKZfR0TOMj3dy5UoO\nO3a8k4mJTbMyekvuCqDTmTh9+nnOn3+WgYFoysr209lpp67uIoWFhTid2ZSVZdPTs5myst04nYMe\n99F97IyM2Bkbs3LlShdOZy/T04OcOMGiiZjnKokaZvIQzj1sL8V6dg6F87cFWlp8sevdHaFdXVbi\n4so5cODds+OltFQyPDxIY+Mb1NfXU1wcS1bWfsxmC+PjWaSmZtLQ0MimTancd999tLa2ztoGKSVD\nQz2Mjm5Cyn6Mxkn6+iQ2216f0TfNzUM0NY1RXNxOe7uFtLQEpqacVFdP0dAgaWtrZXw8hoyMXFpb\nB5FyC+XlicAItbVajqCmpiu0tvZz+fIoIyMNbN9+OwUFZVy61E5NzTPcfvsu9PryeYmd2wE7+flZ\nC3K1zY1hz0TU7gS73gi1nVYsn+lprWz6u95FWCPHH3wQvvIVLWooPj5837OWCNbJU4IWtQPwfuDX\nUsr/KYSoBo6FRDKN3UCulPIsgJTyTSGEEdgD/N7bBUeOHCEtLc3jtcOHD3M4lKm81wDhmBADNbru\nC7q8PEFFRdWCnQlvn7969XX6+99iYqKEiooCbDZtpy0uzjybMC4tLYb+/rdISmph//6b2L//TiyW\nwdkdZC1qZ5Rr166zbdtNxMbasFhOYjTG0NV1lvHxLGJiNjMxkcWVKy8QE7MdKe04HB1MTOQRFVXI\n5KSBkREdsJfW1ms88cT/wmQaY2joJhyOfqKiioiLK6Gt7QonT55GSgloi4OLFy/S1+ckISGXsbEu\nLl40UVhY5LMvjh49ytGjRz1eMxqNy+qvtUIwuSl87YLPf91bjg9/d7Nfeukljh49TWdnIoODwwwM\nXCM1dSejo4mcOXOR4WE7Y2N6enrM5OR0otfbmJjIxGK5xm9+U8/4+CgxMckcO3aczMw2kpO3EBvb\ny/j4m8TGdhAbO8jU1GaEKGJkxILF0khWVgYGg4E33jhPfb2J2NhRJiYayM3NJjd3C2Nj+aSlaYvA\nnJxRPvShD3jk1ZFS0t/f4tXJNf/emEzag66/930j5hBZT7jPCR0dHYyPF7Bjh/e+9DVG7PZhrl27\nwuXLozgc7cTFDZOQ4CApycj+/e+bHV8/+9kZXnkF+vo6iYu7wOAgjI0lI6UZp9NIQkIMN9+8n5Mn\nf0ZtbR0WSzpjY0aiozcRG7sFKTMYG3uTa9fMxMbeRlxcF/AWsbFTZGVtYWJinKEhIzbbDqanp2lt\nbZ03Zi6Sm7vJS/RH8Hrs7bpQsJLOU3+c4PN/Z3t7Iw5H5cxmTQdO540FyWN93c/5x6STklJmIyFH\nRuaiqTRbNFdFS6f7PVFRksTE3Vy+PIir+prr8x0dHQwN2entjWJoqJ7h4QR6e7uYmLDT0xOLTreV\n0dE3qKsbIjb2Fnp7a7FY2nnkkT/yqLI1P7nrnj27aG9v5803f0d7+whWazJjY8coKkqlpycbgKEh\nK+PjaUxMXODixU5KSlI9jppoUbynsFqjsdnaycjIory8mObmHiYmBlgqEbPBYODJJ1/BYEimoCAX\nKWP91tH17IgP52/zVlo8NXXHIhEovq93j1r3Nl5aWlqoqWnHaJzA6ewgNTUZWHi8r7HRTkbGy7MO\n1rg4A6WlqWRkdNHZ2U5S0gQJCROMjw9y7FgCcXFFXqJvRhkfn6Kz8wq9vXFMTKSSkZHH0NAgFy+e\nAtLZsqWMK1emiYvLBCZJT4euLjtOZwMNDQXU1kJbWx3R0XruuquIlpYyJiY6qK2dQqeTxMQ4SE7u\nx2TSY7cPExvroKbmGUZGGkhIiOPSpVdxVbFz5WorLV14rFyv957QP1LstCJ4jh2DK1fg3/89vN/z\n4IPwpS/Bq69qx7cUwTt5NCuk8Q7AVe3KAqQuVyg3OoFcIUSFlLJJCLEd2Ao0+7rgscceo7q6OoQi\nrE3CMSEGanQ9HyrLFyTHdY+0ce1S5OSM0tPTSnx8KgMDDn760++Tnt7H+9+/l/vv34nFMkhm5h9w\n5swZrl3rJDV1F3Z7Ou3t7QwODtPR0YGUkvHxQvR6PZcvT8880Ep6e1+nre0GTucgk5OpjI8/T3x8\nLLGxm5ia6iUpqYqRkRyE6GZ6OhowExNzH0VFDzIwcByT6STJyXuZnh6jr6+H6GgDFksZQ0PjQDn1\n9S+QmZlCevpuurriSEkZIzMTLJYpurvjOXsWn33hzRH5xBNP8NBDDy2rz9YCi53N9oV7BJg3h2ZZ\nmbYYc6/C4r6D63DoKS/fS03NCzz11DOUlZWxZ8+u2WMDLS0tHD9uwGDIZ2oqlujoeByODpzObHS6\nJIaGBnA4rjM5WQUMImUUU1MWpqbicTp1XLvWS2pqBSUlmSQl9ZCbO83AQDy9vQampjrZti0WqzWV\n7u5OhMgDesnPTwLg+PFmLlxwYrFMUFzch8UCx451kZjYweBgG4OD8SQmbiYt7Waqq1sXlPedO5bg\n6UxdGHVnCCgnyGrkEFFohMJp7/kgYwcu0dQkvOZSq62tp7l5mqqqPdhscnZhbrEMEhenIz3dytWr\n7fT0JFJUdDfDwy0MDg7P6l57+wTT07tITCxgdPRF9Pohxsbeor9/jNjYNEDw/POPcf26CZvtNlJT\nM4mLe5WJiUZgithYHVNTTsbGbjAxIZmcbCcqSpCQcOuMjDew2ZL50Y9+zfHjxxkYSKe3dwS7XcdN\nN1lpb4+hpWUTJ04stLfB6nG4yk2vpPPUnyNi7vluMjJGqarKp7nZRE3NMzgcN9i5M5OKCumW9LrF\n5/3U7GgzDQ3XaG01sH17FVVV+VRU2GhqctLV1YnDcYacHCf9/brZJLJVVbfw3HNv8bvfvYTZ3MXo\n6M3ceeftDA1t4ec/f5ne3lHi40cpK9Nz000ZDA1lMT4+SkKCDiklW7bA+HgzsbF7qKr6Uzo7JxkY\naKSm5hmczg5stiruuOP2eYUZdgLQ3t6J0TjC+HgpU1Ob6e+/yObN1zGb38fkZAFgZ8uWHkZGNhMV\nVYD7URMpJceOHefVV/vJzr6DoaF+8vN7EQJSUqbQ6W7nwIF3c/Xq69TVXfQaLVJXdxGjMYnp6S1c\nvnyZhIRJ9PqH/erfUOtSJEUGhXOceEagaKXFfUWgzMdlL5uahti0KXbGxr3F1asF5ObGMTo6TH//\n86SnJ9PXl0FXVxeDg9EUFj4IpBMVVc/AgJV9+/ZSWVmP1TpNZeV+2trO8vvfnwJ2U1Kym8bGdqam\neti2rZLubhPDwyYSExO4fj2atjbJ5s19WCxT3HqrnrIyZhzy1+nu1h7J8vPHaWtz0NWVS0pKD+Xl\ngqiobHp6TJhMtYyOphIbG4Vev42UlFGKirLp6kqno8NKa2siMTEdpKS8ztRUL1NTfSQmxlFYWEhT\nUz2/+c0FBgZ2EBfnJCXFhNM5SkxMKaOjHWzZ0kZGxrbZXG16vZYf8PRpIybTJLGx57nnngMLbFGk\n2WlF8Dz6KOzbB28Lae3thVRWQkGBdmRLOXk0gnXynAG+KYQ4C9wO/D8zr5cBIQs/kFL2CyE+Bjwj\nhJhCK6P+l1LKjRHisAzCMSH6Mrq+FgK+jnK558e5du0K27ZtRae7BMSSlraDxsYmJiaiSEub5PLl\nfsbHizh2zERBwQ0eeOABDAYDjY2D2O07SUvbSmPjVerqLtPZqWN42ER6+ijbtm1jcjKNkZEODAYH\nExOt9PamMza2BYfjKlNTw0xPjzMxEU9KSjLj44lER7cBfURFOYiOziUlJY64uAt0djqIiTHS35+M\nyWRkZCSajIwctmzRkZjYhNG4i7Gx3XR01FBYaObDH9aOp0VFnScpCbKzE8nJ2a0iIBbF99nspXDp\n0/h41oKdN2/jwKXHZ878mvr609hs8PzzDRQWvsHHPnYvW7du5dSpGuz2GLZs2Up9/Wmio6+SkeEg\nIaEFnS6TyclubLYkoqK6mJpy4HAk09Fhx+lMR4hJnM5UEhK20tExRHx8BxbLdkymKKKiLKSm9pOU\nVE13dyoxMTHExDjR6TIoKcnDbLZgNE5jtcYzMGDBYullaiqdtLTdmEyvMDo6TlxcNVu2TNDfb5t9\n+Pbl5FqMpR74vOXmUNW4VodQOO09x4KkoKCTwsKFkZUtLS00NloxGp0YjSeoqhLo9ftnX29ra6Wv\nb4qpqRSGhycYG2smJmaYnp5uQJsnYmL6sdsdJCcnER2dy9hYN1YrTE1lExWVxMTEGFevNjMxcTMT\nE+BwdJGRkUB5uWBgoA6zOQsoBqIRAiYnbyY6epSUlK04HFcQwkhv7x0YDDmMjr6KTmcnPf1Oxsev\n0NnZRnJyOTt33sXwcMfskYO5qjC+9X6xh9pwlZteSeep/8nW50p/FxUV0dX1Gu3tl0lNLcVmy54t\nZwyL5zoymy10dY3R3x9Nb28VqamxdHWNER/fR1dXKoODiRgMKYyO1pOTk0JsbBubN5diNCZz4UIL\n169vwelMZ2xMi3w0m9M5eXKK6OhipqdNFBUlsWtXBa+8comBgTFiYvIwm1P4gz+I4957Sxke7qCv\n7zmSky3s2pWM09mHTlfG1asOpHyJwcFhgNkCCi++2ILRmEpHh4GRkVuIi9vC9PQ1UlPNpKffREXF\nPpqaBElJjWzdWulRDRG0sXPxogmLZRMOB0RH20hLc1BQ0EFVVSXNzVoJ7aGhi7z6qo2oqGnS0y9z\n4MB1UlPTZze7kpPzSEsrw2QysXt3mt+2NtS6FEmRQeEcJ/NLi0s5Qk3N81gssGdPKUZjFydPngZY\n4OjS7KKd5mY7NTW/IycnnbIyPYWFnYyM2KipicJi2Y7Veom2tgts3pzA9PQAFotWTc5VUUsIQXX1\nbvr7DbS1vUZr63WiozfT0XGSmppzZGeXMDLSS07O2zh0aB+///0r6PVm+vq2MD2dnEBULgAAIABJ\nREFUjMEgGB6+it2+A4Dk5FS2bbuJrVszqK11kJjYR0FBCnv25DE46KSwMBGdLpqOjmtER2fgdGaR\nmHiDwkILe/feipSSF1/8OVeuxJGUtBXo5eLFGoTYSWysnvHxWqzW5pljrw527ZpEiGwmJ/vQ6YqI\nitqM2RxPenon73xnPikpYtZuPv30szQ2QmbmISyWs1itQ16qd3m300s5HsNlpxXBce4c1NTAr36l\nVdYKJ0LAoUPw0kvh/Z61RLBOnk8D3wM+AHxSStk18/oh4EQoBHMhpXwaeDqUbW4EwjEh+jK6iy0E\nXAa5v99Mc/NVJiamGRsbYWLidvT6TC5fHkWvL6S9fYihISe5uRPU1w8xPt7N2JgdqKSi4j3cuFHD\nuXMXuP/++2cWk0lER9sx/F/23ixIrvO68/zdJfetcql93wHUgoUESQiLxJ2gZFmtxZI9tux56WiP\nH+wXvzgmoidiPB3ToWhPhDvc0VbbM25pxqYkemx6xEVcRBL7XkBVAVWVtWRWZWZlVe7Lze3mzXvn\noYAiQAIECW6Qhf9TIauQ98svv++c853vnP8/OENLyxKVikoqZSaZbGJ11crq6nHcbj8eTy/1+jzt\n7bC8HEAU2xHFDLouYbFYMAyNdLqA3R4gm40hCDVsNjctLWWcziex2+soSoS2NguRyG7MZoFyWeDA\ngd34fAJnz/4t6bRCqTSFJMUIBKrMz5+ms1PgySeP4HJ5KBa9zM9/UCnhAbZwt97s9+P9/fNbVQdF\nWlpMTE/XCIUynDnzC44eDdHX14fFcmv70g31lRde+BnlcoxsdpxKZZBMZpUf/vAlxsYeQVVbyGSu\nIoqnsNliuFwjeL0l+vs1nM4S0aidixedGEaNYtHOxMQAoVCDSsWGponU66cxDNC0Ao2GwspKgGy2\niXz+YTY2ThGLJejtfQSPZ51KpYrFUmN93cz8/DU2N0OsrspYLEPkcieAJMXiAKXSBo3GAZqaHqNQ\nmKVQWKZY3HU9YFLweHZ+rED8bge+9+/r557jgRrXF4RPI2l/q09Is2/fntuuk1Qqg8s1Tk/PKtPT\n79BoBBgc/H3OnDlHPF4hn8+RzXZhsUjoegFNqyHL72khDA8P89u//QhwjEzGQja7QS7nQ5LGaDRy\n5PMSuh7BMFyIog3D0HE4gjz6qI2BgeeZno4Sj19A08JUKh2IogfDGETXL1AoXMFsNlGvOymXbTQ1\nDaGqcazWVcxmP2ZzjdFRCU3LMDNzHF1fIZ9vJRK5tYryTuv4w3zZZ6VGd6us8ZZtup3C5L3gXiox\nbvDd3LDHV67MMDNTplR6hKYmJ+vr5VvW3524jm4o/YXDZ9jY6MLrbaNQKKCqa/T1TTA3N0Ms1oUo\nWslkurFaTaytbRCLTWOxlEinmzGb92EYRTRNZ33dwdzc26TTj+ByDSGKeaLRGHv3tlCvZ9D1YQzD\nRiJRx+l08+d//r8yNPR3LCwsMTq6m9HRHZw+LW1z/k1NXSaX68Qwyrz77k9oaxMplUY4ePDbnDv3\nc7LZRSwWO4JQIBDwkc9PMzcHVmua3t4uTpy4tl3t5PN9iYWFBV544Wek0zo9PSY2Ni4BBazWZ0kk\nRPbu7WdgYKvS7ezZKrOzPny+PczPv0ostsLY2G9gsQQZGfEwMVEim42xa1cLzz9/8COvgU+bzPt+\natH9LInK3y8tHgqFiEQW0DSBf/mXf8FmKwCPUat90L+mUhk8np3s26dx8uTs9SRKhkuXpqhUyqTT\no0DH9QtCFZdrPz7fOdrb87hcDZ577tntPe/3e3nmmSF+8pMX0TQzsrwTVdXR9Ss89NBzKErrdaWu\nGLqeJZ9vplxewW7vZmSkk5aWCZzOrcqd5mY/XV1pajWZAwc8+P0C6bSbWq3C2lqSSqUbWd6g0fCw\nY8dT5PNZkkmVRGKIEyfW0fUamYxMJlOgXM6g60WghNO5E5ttDV2/QLW6k/b2p4jHT/LGGz/i4Ycn\nEcUQ09PnKBaHmJzcgcWyRQz9foW8rQu9HFAmHi/wox+VPiBU8mGXxHdKPD5QDb2/8IMfbPHwfP3r\nn8/znn4afvhDiES2qnp+3XFPSR7DMNaAr93m9c+IN/sBPi4+C4d4J+N5p0DgPQLBGWKxBgsLMbze\nfjRtgZaWKH7/BGZzjGBwg3T6KomElatXV1lbS2G1jlKvX0MQLnPypB1ZjjI/byEYDFIs5lldjZBK\nmTGZVpmcHCQY1Dh7doFCoRfD6KVYDGGxtNDbu59KZYpGI4bNlkEUN7Dbq5RKOo1GN2bzBrLsw27X\nyOUG0LQSjYZBKjWLw/Fldu48RCi0gq7PI0lmAoFhNO0ylUqczc0EuZwLXS8Qj5+iq0umtbWP7u7I\nLT3chmHQ37/4mQQn/xrwcROS7++fT6cLrK/7mJ7+BZrmw2p9mMXFHDDDH/5hH889t8Ub4fMNsbKy\nwttvH0OWBVS1jVotQjK5iMXiRpbrTE/HSCYX+Z3feRqAdPplWlr24fE8yuzsz8nlwoBKU1MnXm8W\ni6WB253GbnfT2amiKBqFQhhV1SiVRBqNGtPTaWR5jlisl1qtH5hEVa+wtraA11vG4UjS3f0I1eou\njh2bxTBi1OtOdH0XgtBLvT5DLvc2miZgs22gqmdxuebo7Gxhbq7G4mKBaFTg6NGebZWLT0O15X4K\n8H/d8Wkk7T+qTwgEfITDL3L8uEK12sHPf75MJvM/4fX6OH9+jlgsQK1WQlFUJCmPxeLF6XSTSCQ4\nceIUilIgm83R0QFQQlFkyuVu6nU/mmZgtS5TrzdhGFkcDgtud46urmZaWraq4WZnM2SzOzGMFWAJ\n6MYwTOj6BuXyOlbrIYaHO7hyZYlUqkCjcZVGI4fFcpqeHhN9fd0sLRUxjCKVSp56ffy+5p262a/e\nrr30k1RO3IvK4+3I3LcIgNuIxVaw26MEAns+8P9unbvTvPLKq4TDdQzDitW6RmurhN2ep7fXTW9v\nL889Z2AYQc6cWaNcVlhelshmXTQaPajqccrlPPW6k3p9EVleQ1G6SKed1Os28nkVp7OCopi5dKlE\nMtmJothJpyNkMr/kW9/qQxRFDh8+zM6dY9sVMjcS/qq6Rr3egiSNkMlcJRaLMDr6ELXaCvAio6Mj\nFApzpNNzlMs5otGHcTrzjI2t8dBDe9F1nRMnVrlR7RQOhzl+PMYvf1liY2MNjydOezt0dj7OoUO/\nwcLCWdLp7HUJbVhbWwM2gRyqmqReb95ecy6Xwfe/P3BP6kCf9gH3fmrR/SwP7+9/73Q6S2vrQarV\nOlevvo4ouujvP4iiRG+JbxcXF1ldXWVlZY183oXTGWV1Nc/MzCJWqxNVXSOfj1KtPky9vsDcnBlI\nYTY7aW3dg8cjsLa2dhPvziIjIzIbGzrh8BLlMnR0iJTLfoLB8+zfP8nOnSOsrKySz3fg9/cQDheA\nRVwuidbWwDav3w0lUKcTAoGDGIbB5cvTnDx5Ck3rwWT6CpHI67jdMyjKeWKxJapVJ7WajZWVLMXi\nOooioWluSqVuDCONrkeo16Nks2Ha2sq43c1IUgtWqxlJSrKwcJVgMIMsB6hU3sbhuEZr62P4/btv\nme+9e3czM/M24fCbeL1FEgmRuTk3Pt8eotGTTE1duaOdehCX/OogGNyq4Pnrv96SN/888PjjWxU9\nb70Ff/AHn88z72fcq4T6PqBuGMbM9X//JluKWteA/8UwDPXTG+ID3IyPekj7qA7x0+i5/jDFjFdf\nDbK42EWhEEVRfAwN7WJ+XsBun6O7exOXK0ksJlCvd2I216nX51DVFmAHFouBqv6MQmGN/v4nKBQG\nmJq6gq7rKEoFq9UGNDEwMEhbW4m33z6NrtsxDB+iKAEFstlTRKNXWVtrxePRsdlmsVrrlMsO4BJW\nqxtBqJPJaNTrMibTfkQxcr0tJ0M8XkGSUvT1gdOZRlUl2triiGKUXK6AoowiSa1I0jw7dw7Q338Y\niG6rjtxNgewBPn5C8tb++RkKBRcjIyPMz0fRtA0SiTBudx1FkUkm07S0BAA4efIkL7+coFbrp1Q6\nxtDQI3zta/8DL774Q3K5t8jl/NTrdtLpID/84V/x1a8OMz6+k1RKIJNZJp8v0mgYZLNFBga81OtV\nGg0Nn28nhqHw5S87GRwcIhgUePvtLiKRQVKpMJubGzQ1hWk0QhhGFVF0IIoWTKaL7NkzTL0+Qjbr\nI5OZYmkpjNNZo1QqYxhtOBygaU4EQUBRurFaEzid6/T27iQSkYhG5+jtnURRLjMzc5zRUecH+FVu\n3t9bJdiLn0gJ5wE+f3waSfuPaoeGh4dpbW3QaJSRpCbC4SZisVna2lpQlDqiGMcwAghCFcPIkUis\nIstNXLxoJpU6x9pakkYjQD5fwzDSBAJWzOYSshymXL6KJOlIkoHdbkfTrFSrVTKZCu++m6FcXmNz\nswfoRpZB0+LAHLKcxGo1rkunr5LPD+HxbFIqrVCvd2EymRkbyyKKg5w8KZDPm/j2t48QCnk+QHx6\nA7fzfZ90zd/Nn97t95/2AWZq6gozM8ZHOjzdwPvXmmEYbG4GgQ3s9iQTE94PyM/fqNq5QaRqMiWJ\nRtOkUmO0t48Cl/B4riHLPayv9/Nf/+sbPPfcMOPjNt56a4laTaZQyCEIo1QqPioVDx6PHVlWSCZB\nkobIZMpIUgfNzX7S6Us0NS3j8z1DIrFBNruAqurIsplCwcXc3DyDg4PX23h9rKz8DJMpgdPpYHJy\nkomJcf75n6eZmTlOsbiO2exiZGQ/5XKMwcEEbvcwmuZgamoaRRkikdiFKG4wPLzOxkacq1fnMIwd\nfP3rf0wweI7V1VnC4SK6PojDMYSun2XPngBtbT4WFs6Qz8+xtubc/s737Jnk3Xd/yubmS3R1lejt\nHdhec83Nd640+7zxWVbPfBH4qPFuIOCjXj9PqdTM2NhDpNObnDjxc5qb6xSLI+i6zhtvvMGrrwaJ\nRhusrl6ltdXDwICPZHIKTWvB7/8ey8v/hNN5ke5uK6ragSguEo0WEMVDZDIJpqevcPZsHrt9H7/x\nG88TDJ7j7Nk3icWaaG11Mz9/gnS6ndbWdmS5ws6dFp555hlef/113nwzQyQioOtWfL5mIEA0muDE\niROUSq3UagEKhTDj414UpXBd8aubaFSmUAhRKKzicMDhw7sQhAavvLLJ6mqNU6fCWK0zaJpCNutE\nkszIchOS1EK1uonLNY2irGK1qvj9UQzjDbzeHN3dX2Z+PkE67cbhyKJpHnS9CzARCoVu4Z8aGRnh\nyJEwpVIds3mSePw8ihLD59uq7AHXHb+7LdL1LHNzBlZr+kFcch/jP/0naGmB3/tolGKfCvx+2LcP\n3nzzQZIH7r1d66+B/x2YEQRhAHgB+CfgO2wRa/zJpzO8B3g/Pq0e6RsG89Kly8zOZnG7J7Fag+8j\nbv1oSZ87KRq9/fYxFMVNR8cAyWQSUTxPKASSVOLQoW+iKDlmZyPk87vweKBaXSOfr2E2azQal8nn\n59B1L5J0kM1NG1brJvE4hEJh0mkdj2eYavUiMzMz9Pb2Mzg4iiC4yecraJoTWV6lVEpTq42hql4q\nlQayvImmFbDZxqjV4jQaq7jdLchyg1JJoF7PYDan6ejwMjm5g5GRPoLBDazWFmS5yvz8ecBxXWnD\nRKORprm5DcMQyOfzhMPvUCh8sD3gAe6Mj5sEu5moOZOZI5UyEYuBYWTp71cIha6Qz49c/76u8dpr\nItmsnZWVy5TLAxw58j2OHYtTLAax20c4dGgn8/PvsLjow+X6FtXqVdLptykWqxw69Cyp1Crnz1++\nXkXTT71uJpFYwzCyuFwHqNU6UdVFyuVlHn74Yb73ve+wsvITlpaW0LQouj5CNisgikFE8SK63o1h\n5NH1djyeo5TL06ysTJFI2CmX7Xi9gxhGApPpCtlsmXo9js/3fQKBOibTOfz+3XR1fZXp6ZNkMmdJ\nJNxYLCmGhmw899zzH+BXudletLSUqdV6bjlE3o7TRxCEf3UB/q8yPs9EsSAIdHd3UK+vkEg0o6oV\nZHmEYjFHsShRqxVpNCRstseQpBlEMY3DMYGquiiXFeLxJmy2JlTVTDqdYXNTwWTyUCrN0GhUKBb7\nEIRFrFaJkRGBjY02BEEhm+3GbH4TkymEplXQtAJQR5IMbLZ1LJYdVCp96Poq8fhVyuUVGo2v0db2\nbQzjGNnsDKrqR5JG2Nw8xiuv/N8MDDQzOel4H1HwFm7nSz/pmr+bf75BRByLGajqeY4eDfHMM89s\n+9ibk0xmc5Ji0fwptG691xZxu8PTDbz/AHzgwKPbCZwbMUGxaGF+XuXkSa7zn03h9TaRyeSYnc1i\nMrWgqkHa22VU9WEqFTsXL85iMoUYGhpmc9OF32+hVGoGZtH1KLr+Jdrb+ymXf4goBqlUJESxxtDQ\nGBsbFWw2nZ6erxGJvImuX8AwhmlqWmZy0kYkkiIUcqNpFXQ9SlPTN7BY2ikWS9sJs3JZ5dVXNygW\ndWR5mf37Y/zRH32X9naVvr4azc27CYeTJJOLjI46efzxIwCcPRvBMDpwOpsQxTr5/AL/+I8lNjZ6\naTTcWK2XEIS/ZHJyiL6+bk6fPoaiiDidAzidO5mc7OChh0a5dGmKlZUNjh3rZ3b2BL/3e1vz6fd3\nIYp2mppKHD7cidt9Z+XRLwqf52Xh54GPGj8PDw9z9GgImMFk6sbnS1EurxCL+fnbv32HCxcukEiY\nuXLFRSplo1zeS0dHHbe7B5Mpw8xME7FYFpDo7m7BMMqUSgJm8yTF4gaCkGRlJU6lkqajYxxBCAFb\na0mWnQiCg87OL5HNRvD5anzzm9+mUEjjcm3NaTabw2ptYmCgk1gsBxRwOPYRi63w+uvn6OtzMzDw\nHnG0ybSl+DUw0EOh0IlhzJBMvsv4uJOvfvVbpNNZgkEb5XKNfL4GiPT0dBMIeJibmwcu0tSkUSxK\nlMtJNK2NWGwnuVyE3bvddHX1sLFxjUgkR63mo1y2AQmy2SQLCwEUZYaursO3zLnL5aGzcz87djzG\nsWMGcAq7fZbOTjN79kx+iCrqFvl5T897FfMPcP9hYwP++3+Hf//vP38586ee2nq2YXz2PED3O+41\nyTMCXL7+83eAY4Zh/I4gCAfZSvg8SPJ8Rvi0bvpuGMyFBZ1oVOXoUT/FosDU1BUSCfvHSiK9dyDc\ncvKh0BvXlTPcZDLL+Hxw4IBBc/MEGxtJYrEyxWKWZPISuVwrut7F2toKfv8aw8MTtLaKXLu2ga4X\nsVgew2zuolpdRdOCJJM9pFIBDKNMtaqQzRZ5440wu3d3YTJ5aG+XMZuzyHKW9nYT+fwQq6tt1ysj\nQqjqBpLUjNPZQ61mxWZbxeOxYhi9OJ1XKRZPoOtpFEVAkhTAwOnUKBYDpNMS6XQrgpDDbrfh9zdh\nNqcxmc7jchWwWCyUyxou10dvD3iAe8UWUbPJ5EEU12k0rlKtOikWDWy2Zux2H6KY5cqVGaam7Nhs\nA8RiVSTpGO++q1OpXMDj8SDLZ/H7/QwOPk8odAFFWcFiKSFJg6TTnQSDGkeO9DMx4eWFFwosLFgR\nRfP1Z5dR1RThcBqTKYmitPAP/3COP/uzfr73vf1cvfqXFItmZPlRRDGAIDjQtAVgE4vFwOfbx/Dw\no0QiddrbfWhaCU2zous+6vU8ilIHRjAMCzbbIvV6H3a7n3I5ztLSLG1tbgxjgLExE07no+zf3wXA\n6dNntwOjLXvhx+XqZmYmTKOxgdls+4Ck6+0C3wcVaL/a+CQHr9HRnezdqzA9XSUeD2Ay5SgUctRq\nLszmUSCO1XoBq9WB09lJqbRBoXCSaFQgnxfRdSdOpxu/30Kl4mbPnlHeeWcZXR9Akh6h0ZDY3Ixi\nNqepVmcpFg1EcRWLxU1LS4FcLoyieBDFIVpb+xGEMzidLcjyw2QyQ1SrszQaFur1Ter1y7hcZSwW\nC6paxuORcbmyaFoai2WclRUFhyNCc7P/ls94e1+6teZvJD5v3ksfZe7u5p+3iIgNcrk2YrEyMEN/\nf/8HSIy3Eirm67fv935hcHPFSEeHjT17nr7j395sB8zmBUKhEC6X5xYy91OnzqCq4Hb7OHlSJRTK\nUq2GsFotKIrM0aN7KRZ7aW9fI5VKkU4XaDSWsVodjIw8TCRylmh0gbGxARRFJpuNUyrF0bQYgqDj\ncpXp6KihaU0Iwga6fgGTyY0k5WlrkwgERIrFizQ3j+B0WkkkdLzeFgRhD4nEZQThKm1tZR555Nnt\nhNnrrx8jmSyjaS3oeo3jxxcwmV5iZORJzOYV/P4W2tsbBAIbtLR0YBgGw8PDPPfcOOHwy6jqOhaL\ngNerEI12oKoHsds1RPEdfL5NnnvueYaGhjAMA8M4h6bF6Otzb3NeXbp0mfX1Vny+vczMbFVT9fT0\n3MRDd5pcLoLb3fSxvtv7CV8kQfNn0YIsCAJPP721V8LhCOWyg5mZDmIxF+l0gpmZl2lra0eSeiiX\nndhsNeJxFYvlOJOTrTQ3x8nnT9PZWeC7332C9fVNgsFBhof38+abL5LJSJjNRarVXXR0HCSTmaap\nKcbo6E4ymTY6OlYQhMvs39+Gz+eiWMxsV60Eg0HefXeB1dUKKytJWluzlEobhEJVurtbcbmGSCSu\nsLS0gKJ4rit1XUJVg8zM6DgcMocP/xaLixdob9cB8PmaWFubYn5eA1pwuwuMjHjYuXOCrq4qHR0N\nmptbmJoqc+rUBsXiBBbLIyjKm7jdbtzuITY3s5jNOpJkQZb9VKsmVlbi5HLv8OijB3jqqVvn/L2E\n9mnM5hR79rTT3u7eJkG/kyrq1ncn0NNz6xr7VUk0/rrgP/9nMJng3/27z//ZTz4J//E/bsm2j419\n/s+/n3CvSR6BLaUr2JJQ//n1nyNA4JMO6gHujNuVk9+LcbthMCcm9hKNvsbMzDFGR9sAPuAE73TT\nfzPec/J+ZmfPomkuDh36DmAwOFjk8cefwzAMXnstiN1uoKqrdHTIZLNuZNkgmdzk4MFeWlsf4+zZ\ny6yv56jVrGQy16hWF7DbDWTZgqp6OXz4Ca5d+0vW189RLqcpFGRsthxDQwOkUm+wvh5HVZvZ2BCw\nWitAAk2bQZajSFIAkMjlXkSWCzz66DNIkkAkchUIsbUlxtjcbGNlJcrjj0eYmBjjL/7i75mZMVBV\nkWpVRVHSGIbO2Fgdw/BhNh+mvb0Tw1i+Y3vAA3w6SKUyqKqT3t4ezp9fZXMzT7X6ZXw+nUTiIvF4\nAVn2YxgXWV4uk0h0U68fR5YbtLbW0PWLKIqNd97ROHXqFXp6dvLww8/R1zdFLvcmDscgFssQhw59\nHUXJkMmsXedzyAIVrNY+6vVNVHWNXK5ItRrHMB6hXu8lkykzNXWZeHwdr7ed5maNTGYBkylDd7eZ\nzU0btVoJi2UvtVqUkyf/L7q6nHi9Febn16nVChiGC7t9DbN5N8PD32du7v8Dpmlvt/Lkk/+GSGSO\nYnFL6UaSXKiqgqrmWFgocvFiC6ravB0YbRGGnuDEiWtAmaYmK0eOmHG53rs1Pn367IMe93+F+CQH\nr5aWAAcP9gMhRDGMrm8Si2VoNEwIghNJUnA4rlKtQjzeh83WjWGUUVUnkmQHChhGHEEYAhxcuzaN\nqkYBnUZjHrAgis2oahpFiVKpjCFJXiQpzvi4DYfjGa5dqxAOJ2g0VrBYvFgsaWR5hXo9RK1Wor19\nglwuRFPTSR57bIKHHjrEyZNLqGqeoSEBs3k/hmHjzJml28ogf1hr1r3O3d3avQIBH6p6nlisTGen\nE7O557YkxiMjbCdUPsm+FAQBn6+TQqFOuZwgHA4zOjp62/gglcpQrfpxu30cP/4mly7VGBt7Hovl\nvYRPsZjHbFaZmZnFMGxYrXZWVpLs2uWhWDRtxxF79+7GMC4TDsfp6xsjFEqzubnG+LiJSmUdwzDI\nZCqI4gF0/V1UtYDNNoLdvk4gIFMsRohGZWy2p2g0FrFYXqatTaTRGAbGcLttLC1do1jUSKdXkOUK\nbrdAT0+Eyclh+vv7GRoaYmRkhUrlLLVaEl3vB9IUixtMT2v8/u//FfD/MjCQwGQyMT1d5OrVdU6f\nXuX55yfp6+tjbGwPDkcdWU7Q0VGhVFKpVKZIp7O0tMQYHX1mOx569tln6e/vv27/41y6tHUPahgG\nN1dTGYbzA61t+bxGJNLzK1v9+0XypHycvXq3+Nnv9wJbnDyFQo7jx2Pkck50PUs8foZMZg/NzRJr\na72sr2vI8ix2ewmLxU86ncZsbiKfL2A2Czz77GFyuTiNBjz22H6amlRqtRoeT5J0OomuOyiXNzl3\nLofFskIkYuLYsWE8np34/WXGxyX27v36NpcOvCfXHo160PUq4fA5dL0FSWpGVeuk05t4vSJms4V6\nXUBR4oRCl+jsFNixY4JsNs/srJlSKU+1KqMou/jFL7Z4gHRdx2yG5uYGZnMfO3c6eOqpFhTlMNls\njtnZHO3t38Lh+DtSqTCqagI2KRRqqKqV4eEjdHVp/OQn/0CpVMdisdLWthtJukaxuMwLL/w5slxk\nYuLx7UQqwKVLl8nnNer1R0kk0ttVg3dSRb2Tbb2flOB+3aEo8F/+C/zbfwte7+f//EOHwGLZatl6\nkOS5N1wA/mdBEN4Evgz84fXX+9lik3uAzwi3Kye/F+N2w2AWiwYTEwLj4y727dtyeInE4ke66b8Z\nN4yyy9VNNOpCVSO8+uprdHYm8HiGtv9GVZs5fHjLcHd1rSJJObLZBLt29fK7v/tlBEFgbu5l6nUX\nqjpIozGDIGwpYSUSJYLB18lk1lHVy4AJt/sAhYKJq1cvY7XKZLMG2exurNZxUqlf4HLFkOV2TKZ2\nRNGHxVLEYumgUNhNvb6VBGhrM2G3+9B1H7quIssjNBodrKy8walTpxgf30UolKRc7qfRKCIILbS2\nNuP1agwMFLHZnrx+M7vC0FCdo0d33nKIfoBPF8VinsuXz1IsLtBohGlt7cRE1YS7AAAgAElEQVRs\n7iQcPkexOEWj0c3EhJe5OYFyefA6ueY1mpurSFIL5XKUfH6QQqGJajXG0tIFLl4Ms2vXfr70pQlG\nRkyk0zYKhTTh8DucOhViY8PGxoaNalXG6cwgCD0oSg5RtGE2dyFJJXR9iXw+z0svpVhbk1hbc2Iy\nJbFaE7hcOrLchNUqIsuHcLsbqKpEoaBiGBJ9fQYzM1agg0YjTnOzQblcZnPzDF7vKpOTMjabCUXJ\n0dpqZXy8h/Z2H4piYna2gtk8wPT0AhbLe/srlcpw4MCjjI9fJpstMDHx7HbJ981KF18U986Dm7fP\nFh/34GUYBsFgkKmpKxiGgcNRwGaL0dbmY3W1gGH0YxhDlEpziGKGZHIf5XIe2EG5XMdkakEQFETR\nj9PpoLm5hN/fgSyPsba2hNl8BogCXqADUfRSqbxLo9GDJB1G1y0Yxkl27epCFM0sL2eR5VkKBR2z\nuR2zuUpHxxS7d5eYnTVTrzfj86U5ejTAV77yMHNzNVpattRnmpsFLl7Mc+mSQj6/zK5dbVSr/lvm\n4MNas+710Hq3dq+b20DM5h46O20EAr7bvtensS/T6Sz1ejMOx5Z/eu21WQYGBm4bHwQCPgqFtzl5\nUiWTkTGbJQ4c8LOyEiEUCtPZuR+zWWXHDjOtrW7efXeJYFBAUSTC4SQjIzKHDw+xb9/W5w6Hw1Sr\nMrmcF1mOMjJS5vnnvwXAO+8cZ3l5AL9/mKWlTYpFEUVpRlE0FhfDQAvl8gDt7fux213s2rVMvd7J\n6mon9XqVxcU5nM52Hnmkl6mpWQKBJnK5rzA+3kwqFeYHP/g/aGnxk8nYqVQeRZbDqGoW2AOUWV9f\n4K//+o84evRr9PW5+Yd/OMn0dA3DaGAyeYnH32FwUKBQmOTQoUOsrJygWDyF3Z7Abp9Flovs2nWE\nQiHA66+/vl3xBDA7W2JmxoVhbHLs2E8YHnbR0VFEEGaYmDDj9XqYn1cxm1u3W9vq9UfvyyT7x+Gw\n+aL42z7OXr1b/JzPnwTqeDy7uXr1OJFIgJ6eg2QyJbq7BSqVGXI5E2azmdbWAep1O9XqaySTEcpl\nP7lcGklqxelsp1I5jyRlqVZ3Eok0OHy4j2w2gtlsx2odxTDiSFIQTUugqj5OntRYW4vz/e8/iyCI\n9PTA6OgoCwsLzM5myWRE3n33J8hymlTKTiJRo1Y7gKKUaG4e4EtfGiEev4qmTeHzPcFzz32Hkydf\nZHAwweOPH9n+7Pv2LfL228cQhF3bpOCrq7N0dh4kn3eQySTx+WZ47LHHaW72c+FCinPnsqytrbJn\njxOLxYNhzGIYKRyOEmNjbTzxxATz8yqRSI1AoIZhhFFVGV2v09IiI8sW1tYsmM0Sx4+HGRhY3B5P\nPl9AVb3s2PEYCwtn75jQuZttfUDIfP/gb/5mK9HzJ19QT4/NBgcPbiV5/viPv5gx3C+41yTPnwD/\nD/AN4H8zDGPp+uvfBk59GgN7gNvjdi0U92LcbjWYh24hUHyPk+fDb/pvDgDeu+EL43DIHDnyLMHg\necplnUikm0QiyOioCYulvm249+3bw0MP3cr/s7i4SDZrQpJ24PM5qFZrgEG53EOtdo1IJMrGhg1Z\n/gaq+haVSh5JGsZkGqZWC6LrdkRxhGp1H6p6nmx2FVHchSim8Xg8aFoKTevG4Zgkn9ep1dawWPpw\nubrZtauL6elfUK2+TL0ukki08dJLEm+88SKFghOLxY2iNJDlCIOD+7HbiwwMBBBFgRuklEePTt7C\nsXAzflUPtffbuLPZPI1GAJ9vjExGpbW1RqUyRz5/jWr1YapVBxcuHEOW5xEEAavVi82m0draidtt\nJ5WaoVoFTcuj691o2jj5fB6zuUp//5O0tq4BG4RCPyUel9jc7CGfryDLvVitEVS1B5MpRa3WjSC0\nAVkcjjlaWkq43b1EIlv8T4qSRVVdWK3tPPnkY2xuBikWa3i9X2J9/V0EQWDnzqPE40FMpiR+/xB2\n+6NI0iIDAwP09VVpNCJ4PIPY7ePE4wKbm5ex22W83sdJJNK0tAh0do5vywK/v4pMEAT27dtDIhG8\npeT7ZnwW3Du3WzPvx4Obt7vjk+y9j8vvsri4yI9/fJKZma3KA1FcpFDwYLcfolz+OaIYRxQH0XUd\nQahQr3uBFiBKve7AMBxsVSqcAwZQlBx+fxRRHKanx0wy2YnZ3IthCIiijtt9GYejiqL40LQNZBl8\nvgYTE7sRRZFweKsSaGnJi2G4EUUbtVqQQ4e8dHb2YLG0U6v5+epXhxFFkXqd7QSnyzWDz2cml7NQ\nLBqcPHmSyckgu3c/se3jPqwd8V4PrXdrcRQEgWeeeYb+/v67qid9GvvybpVD73/eVkJYZ9++g1y6\nNMXMzDFMphxm88hN6k/wzDPPAD9DFHWOHBkhkQhy+LDId7/7ne115XS6GRzcRSAwQipl55FHmrdJ\nnwVBoFYLEo0uIoohEglQVRlJKtFoOPD7xxGENMvLJ+jq2sRmcwK9DA3tYGlpFo+nSF9fFy6Xk4EB\nN6JYJZFIcvr0JrFYElnux2yO4fFUaW//Ni0tbtbXVzCMHZjNBpLkJBKJoevLzM0ZRKN2arVuNjeD\n+HwZwuE2wuHLuFwu5ueXqVZT6LqDdNqPKLbR3CwxMfEVLly4wOXLOmNjT5HPH6dQmGFhwYzT+TiG\nUWB2dgNRHMHv9zA+7mTfvj0kk2lUVdheq+3tayQSaebnT3+AoPmLjg8+DocNfL78bbcS8SrMzxtY\nLB9OxHu3+Pm118KAwqOPPsbly6dR1SQ3KrC+8pWv8K1veTl79jxTUxuoahcOh8z0dC/VqoVGo0Kp\nZMHp7KG9fTf1+i/RNA9m8yFmZy8wMVFAEAQKhXbM5kHW119H08wIwkPU63UUpUYoNMM//dPfsX9/\nO4VCJ6dOneHs2TPMzEiIYgtXr54hEBCIx69RKPQhyzaKxRoOxyVyOZlqNYfNtoeVlRCC8CJdXXYe\nf3zPLd/ZjZ9rtSALC2exWFL09XVTqdSALMVihGeeeYinn36aM2fOEYsZ1OuDxONFYrE3MYwNZHmU\nzs4jVKvXsNtd123aIi+88FPa2w+wY8cegsFfsHNnnAMHHmN5uZ1yeQ+QI5eb3RYmee21INFoC8vL\n14Cf0dVlv2X9JJNpFMV0neid7bbR2+GBUMT9gXod/uIv4Ld/+4uVMH/qKfgP/2FrPCbTFzeOLxr3\nKqE+DUzc5ld/CjQ+0Yge4GPjXozbnYLR273+/vf3+4cJBoNcunSZmZkMqupFVdeYmPAyOFikVNpA\nUVoIBCxYLKPs2HGA+fkzOBw6o6NFQqEZTCaRZNJHS0uAAwceBbYCirffPoZhuGltrbK5mcdqXUbT\nxpDlZrzevZhMCvX6EHv3fptaLUmtNoUse+npceL3D2E2R5DlWarVDJKUwOMJoOvrKEqDarUdp9NK\npXKaSqWKKEZJp8NsbiYYGJig0VjFYomgae3U6wl0vYV0uplcDqpVGZPJg81WxeOp43ItsGtXH0eP\nfhlRFK87IwtOp5tgcCsYullNQBCEX9lD7f02bkEQcDpbkKRWZNlNZ2cWTcuxtDSEz/ebRCJJGo2X\nEMU2dL2VcnkarzeFLJcQRZXhYS/5/BSFQhbDGMFq7UPTFllbmycUcrCyIhOPb90Ca5pIU1M7yeQV\nGg0Fq1VBVU9TKjWAHgzDgyDM4fGk2L//N3n44ef5x3/8KevrSxiGH5/PRaORplSK4XDksFrrSNIs\n1eoZBMFDsVjAZrPR19dDKrXBtWsvYDLJ9Pfv5A/+4ElGRkY4deoMJ09uHWBfe61MLreEYQhEo2Wa\nmw0slhTz82fo7LSxY8fILVVkWzwRBi0tZWCNvXt3fyAA/yy4d263Zt6PBzdvd8cn2Xsfl98llcqQ\nzdqRpH4ymWUymQuYTBK9va2AFV3PYrGsIoobNBoVyuV3gR1AHbAiSa0IgojHk8JmG6JeTxOJzOJy\nrdHaOk5b2wQeTw/FYhiL5QJDQxKJxA6sVoFicRFBCNLc3IHX62FgYIAzZ9aIRntxODbJ5aBS2UCS\nNGZnrxIIWHA4vMhynoWFORwOJ/l8bltxpb+/h/n5IDZbM8PDFpJJB/V6P/PzKv39i3edw8/y0PpR\n99unsS+HhoaYmDjO+vpJdH2Qjo6BO1YO3ZwQrtVq2xW+Xm838/PqLf5/cXERAK+3jN1eY3TUyb59\nI9tJCcMwUJQCqhoklapuVyzNz8/zyiuvEgqt4nDY2LNnknK5hVSqQqlUo1aTqVQWyefbsFhqmEyL\ntLQMUy6PMDNzDodjmd5eiUOHDuB0uhGECk88sYdQaA2Pp49r185TrQ7jdB5E06YplV4nk7mI211B\nVeMUiwawRQyuKA1efXUdmy1PqdSL0+knlVKRpDJtbf3k8w+zb99OlpePIct+JGkITQO73YyiTPHW\nW68DVszmNgYGrJw+HSeRSJHLmTCMv8HhqOH3P8r4+CEUJXoTh0jwlnhq797dCIJwvW2lztpa9wda\nC78ofBwOm8+bv+2GbaxWu4FpurvvjYj35vjW6y0DDebnz9DX58btLiKKW2TADz20l9HR0W11q1de\nWWBlJYok2bDZnNRqTdhsFaxWBUFYoqNDYGPDy8pKHEVJMzW1TrlcJpfz4vP5sNttVKut1Goy9foy\nlUoEQWinXI6TyYgcO6aiaX5mZi6Sy41hMsXIZAxEsYV8PoqmLdHUZMfjUdi7V8blmiOf9zI09GWW\nls4zMJDniSduPx832ze/fytOyGanaWuzsXfv729z8vn9XjY3Xycabaa5uU6l0o7XKzE314GmBRBF\nO+l0ajvm1XWDdDpFuRzG5XLyzW/+Gx56aB8/+tEJotGTQJnOTjOBgI9kMk00Wsbv7yaT8dwy3hvr\nCYJcvJimVhPu6v8eCEXcH/jJTyASgT/90y92HE89BX/2Z3Du3FZVz68r7rWSB0EQmtiq3BkEfmAY\nRgbYxVa7VuzTGd694X6rPPis8Vkbt6GhIUZHQ4TDs/T1dW/LMC8s6MzPJ/D7BUqlbnK5IDabRL3e\nTyKxwPCwSCq1yvHj/0Jnp0CpZGZhoU406mF5eYWFhWY6O9OEQqHrvcJZarU2NC1BR0cBVT2H1bpJ\nvd7AbBZoa/OgaQabm5c4flzE4aiwa5eT+fkpVlfbyOcl9u2zYbM5MIwGS0sOKhU/9bqG02mjo8ON\ny3WUjY3/RqWyhCA4UdUxslk/kcga+XwZq3UcXc+gaQrlchW4jN0uIUkShhHF4SjzpS+N8Y1v7N0O\nKLbW1nvOKJ9/BzDh8ey6xTH9qh5qP8txf9hevdPv9uyZ5KWXfsy1a0Hs9gaCMMiOHWauXLlGLPYm\nFosJrxcE4XHGxn6LU6f+TzTtJOm0g9XVNDabgapu4HBAuVxC064iSfOYTCKh0Bwm0wR+/0EkqZlk\n8h283jrj42AYERTFTqXiY309is0WQVESGIaNQuEJFhaW8fkuMzxsAHGq1SKSdBiTaZ5GYx2bbQhZ\n7iMUOkW97kcQBpiff4vJSYNk0ke12qCnpw+fr8qRI/3bSZpCIcfs7DmOHz9GpbJEqWQQi10GFhgZ\nGePZZ/dcTyiOfsDWBYPB65LpPVgsqe0Khs8at1sz78eDm7e745PsvTvxu8zNnebSpcsf2FeBgA9d\nP87MzDVSqXUEIYzXG6et7R38/jiGUUVRzmMYvTQaw0jSDJqWBNwA2O11NE1B0/IUCtNAC4bxLIpy\nBZNploGBnZhMdRSlgts9xsaGm3D4DIZRxmp1YTY/RK3Wz4kT6wwMDHD06ASZzBlyuTKNxgrFYols\nVkbXd7K+vkhr6wp+/w5+/vNNZFmhVFpicjLM4OAAKysGzc0FDKNKKlXDZNrN4cNHKRYjH2kO/7WQ\nji8tLaEoLfT1PY2qrrJzp+VD44PbVfgC9PcvbscXuq7z4x+fJJOxYRgbjI3Z8XqbuHjxEi+//Apt\nbe3bLUkm0zCbmxdob/cTCpn453++yC9/GaFQsOF2y+TzUR5+eDdTU5e5erWEpimAhKoeY3LyEczm\nCVQ1QCzmJZ12UKut0dbmIxzuoqmp93qSpB+A119/g+XlNer1BIoiYrVG6O+XcDjCgJuxsQEgzcJC\nmmy2mUrFw8bGAHCJYvEiglDAZlsjENBQVQnDEMhmbezY0UMoFGJx8W0KBQGXa4Sengo2Wxd+fxuX\nL1/g5MlN8vkYojiGzWYmn5/G6QzgclUJhS7R1SVu27fbxWs3qqcjkZ77Kj64n230Ddu4c+ftiXjv\nhPdz8Oi6TqOxRKVymYMHH6K/v59MJofffwi49bIO3qvGA/j7v09SLttJpRRkOYjfb6ejo8rhwxYq\nlXZ+9KM5crkyJlOE11+vY7UOUywmgXcZGqoRichEowXq9SFEsYLV2sVjj32XePway8tTNDXtJZns\npFQ6hyBUEMV+SqV+VDWFy5VC1xVsthibm4MEgyXW1zMkk8fw+3P09++9ZT5uyL6HwxH6+rp5+umn\nGRkRb4kRzOYk4XB4+zMbhoHdDpK0iKbZaW7W6ekZQ1VXEIQzGIaCxXKQH/3obVKpFKdPn2BpyYTV\naqe5eZNSqY/h4WF+93d1Xn75VS5fvkw+38Tycg8Ay8srXL2qY7XmPzDem7/jj7In/rXY7F9lGAb8\n4Adw9ChM3K4M5HPEvn3Q1ARvvfUgyfOxIQjCJPAWW3WMfcB/AzLAN4Ee4Puf0vjuCfdb5cFnjQ8z\nbp9GwmtxcZHjx8NksxKRSJhsNket1svExF6mp8NEIgkmJvaysbHGykqOoaFvsbb2KpCktXUEVQ2y\nY8cETqebWk0gEICrV3UCgRFisWlCoTD1ejORiMq+fRbsdhOKMk8mE6BY3EejsUpn5zkGB0fY2GjC\nbt9SxWppgXK5g1KpA0XJkMtdA2oMDU0iSS5GR5uxWHI0GhCPg2HUEMVNyuURNK3tuly6mVKpncXF\nTQShC133UanU0HUNs7mOIKSBDpqa+vH7S7S1NfjN39x/S1k6vL/kdxawX1fOuJ2awP0XMH0Y7mXc\nH3Xd3UnGeHFxkUuXLjM7m8XtnsRqvVX1yWwWsduddHc3s7lZobtb4rd+ayex2AZutx2n80u88kqS\na9deo1q9SrncRL1uoVAQKBbbgT6amy10dookEsHr7QCjBINBKpWXsFjO09bWxe7dHnbsqJFOj7Oy\n0sLysojb3Umx+CrF4ikajSGs1iNYLIMYxjVyubcxmYYYGfkfKZcvYrXGSSTaKZc1DGMHExMBkskk\nNtswbW37SKdfolgMceKEg2y2l7GxXbS2VnC7mxAEgWAwyPHjYYLBFJubKna7iiT5sFqd6Po4MzMZ\njhzZ4ti53Zx/UYnF262ZUGj5lr95cPN2d3zcvXenfXfz+xQK08zOmohEbq3qGR4e5siRHs6c+UeS\nSZFG41GSyWl0/YcYRh9+/w7KZR1dH0aS6kAFWfZjsVRpNGJ4PCq5XJhGowVVtaLrDXw+KxbLXtLp\nMzidDdrb1zlwYICrV71Eo5tUKjtoNMLIspOWlj309T1GODzFO+8c5ytfOczRozmczgKFQi8vv/wK\nmjaOqh4ilztDW5uFkZHHePHFU5TLDsrlAebnf0FTU5z29uewWNJ89as+HA4Xs7MKhcIqhcIMa2ve\nX4vLH/ggD57LxV2T6LeLJW5+7YUXfsrMjIHPt5dMpszGxgazsyV++cslNjcjtLY2MzJio7X1MQYH\ndxIMrrG01Mzq6iJLS5tomhtZ7kfTnGxuprDbHezbJ5FMzpDJ9KIoh1GUM5w+/S6BQDsOxwilkorb\n7WRg4CukUr+gWo2xZ08XoVCcRmOJZNJJMKhRLtuw2bLo+i8JBDQ6O7tYX2/Dbu9jfX2Nb37zUb7x\njXb+6q9eYWOjhK6XKRaj1Gqt2Gw+ikUf6XQeVZXp7R3B6dQYGLAhCCMIQp1KZY7DhwV27XqK48fD\nzMykMZu7cThi6HqJcLiBptWx2UZ54olDiOLGBzhR7jTH92N8cD/b6I86X+9f5zcuKbc4eN4hlcqz\nuGhCVcvE4+f5kz8ZuIWz7ub3uVnW2+l0Mzb2PAcO+Dl27KdUKu20tx/A6y3j8Ri88cYF0uk6mpZD\n0xRCoTptbT0EAjZMpkUefrgDSSpT+P/Ze9PguM77zPd3et93NJbGvjRAEiAIkBQpcbEkUiYp2/Iy\nsh1nbMeJa+beqUzVxDdVt+bW1E3NfJgPSWqcStVMcic1iSexElu2k3intUvcF4nYSXRjaSzdDaD3\nfTm9nPuhCZAgSIpSKJGS+HxhsdF9znve8y7/9788T8qJxTJILidDrR5lcXGEZDJELGZgfn4Gg0GP\n0XgQmew0KlUdgmAikzFjsTiQy3OIooWZGTeSVCWfn6KxMYJeb8DnW8Lr9W7M61deeYX/+T+vEI1q\nEISf4ff7+b3f+71NNsLp0z/H55vA5TqIWu3F6czR0fEMg4N2Jibeors7y969j5HNbsfnW2J+3syB\nA8/zv/7X/8XUVJJwWI8odqPTtaJWaymXa6WxMpmM2dkyo6O9VKslPJ5XOX68mc7ObYCKYFBOLJbY\nKKV9r+/4ER4OvPwyjI/Dn//5g24JyOXw1FM1J88f/dGDbs2Dw/vN5Pku8D1Jkv5vQRDSN33+a+Af\n/uXN+pfho5ox8UHgfji8RkbGmJgQsdn24vdfxm5fQa3Wk05L9PfLyeWyWCyrFIsFslk5kEAUw5TL\ndRw69JUN43J9wfb7c2g0C0QiOkRx6Xq9/26mp3/Ea6+9jM22g1BIT6GgweHYy8qKg1wuz/JylERC\ngcm0g0wmiyBMolT2IAg68vlVBMHB8rKVTCaC0ahCqazHYDBgNqtJp/1UqwlyOS+i2E59/TOEw+co\nFt8mlVKiUOSQpBDlsgaVqkq5rEOSIsjloFCsoVDU+qy728Xw8K4txvHmlN8KkNuyMT3MBtPd8H7a\n/W7jbt3weuONU/j9Jg4e3LdBuidJXr7//Te5ejVEMiny/PNPksnUVBjC4SiXLl1EFJuwWDR4vaOo\nVElsti/S0iLna187jNtdizbLZN/jpZdGyeeLRKM2SiU1xaKEVutAq3Uhij4MhhTNzZ2USgqWllKA\niWKxBZUqhlx+jZaWg+zd+xjnz8twuZa4dOk0hUKBcrkZhaIFmUxBpRIjmYxht+fJ59sJh20MD/eh\n04Xx+8coFnUUi1aq1TVCoSgGQ5xU6hqplIjFksRs7kKp3EOplMLvn6WpqYzD0bfR54mEApvtCUql\nJgyGeeLxMxQKUfr7u1CrjRvr2+36/EEZSbcbM5cvX970nUeRt3fHe517d5p3N19nacnK8nLLlv1R\nEAR27x7CaPxHSqVWyuVtlEphcrk1FIoDqFTTFItrVKt1CMIagqDFZLJgMolUKlevl8S2oNG4USrV\nFAoxEolLaLVRDIZ2DIZnSSS8CEKFTMZLJlPEaLQBbZTLV1CrZ0kmIZNZZW5uiGJxBrfbjM2WYGrK\ng0bjQqNpIh73YjReRZKa8XpHKJUmSSZ70OtNhMNN5PMa9u9/hsXFVyiXM3z1q19meHjdaazc4Ihb\n75uPMz4IBbEabqhFpdMZFhYkUik7pVIrqVSIWKyA1brIxMQamYyETuciHi8CIdJpyOeL6HQKRFFk\nakqHVvs0ZnOMtbXSdTl1iXy+m2RygNZWI+BBpZKTTMooFqtkMiI/+cmrOJ1NZLNpymUJvX4/Wu0i\ngjCGXC7R1ORmcTHK6moBQQihVNo4eXKahoZRcjkNolhPOn0emcxDtdpMtSqQz1fI5TQIgpv29mGc\nTiWVyiQWSz9f+1ptvuzfD48/vo9E4sckElUGBg6RSi0Si/2CVGqRdFqPJOVIJJrYudOxhRPlTngY\n7YOHeY2+1/66dZw7nTmKxdaNgJzPJ5LJbKNabWRy8hIjI2Mb3FHrkCSJl19+mZMnvahUbbhcYfr6\nVGg0JdJpAadTg0p1lEOHnuP06Z/z8stvsrhooFgsUCo5KJdXEIQi8/OnWVkps21bPzJZIwcP6onF\nVohGJyiX/dTX15PJjNDauo/HH9/LD3/4AvH4JF1du7FaBzAY5MRiSySTq2g0rahUCfT6HuTyTrLZ\nGApFhUwmgigqmJ/vRBRvzGufb4nl5RQymYFwuJ2XXprl0KGZTWuEKC6iUt3IJoMlNJoo6bRAb28j\nx4+7N8ay1+tFFL2cPfsT1tZCZDJ1VKsuFIow+fwipdIy7e3DG+8oFFKhVu/DYlGRTr9CJpNFrV5l\nYkIEbExNZZmZ2VxK+zDOiUe4M/7kT2DPHvjUpx50S2o4cgS+8x3IZkGvf9CteTB4v06evcD/cZvP\nA0DD+2/O/YHdbiWZfJPf/GYSq7WC3f7kg27SA8P9c3jpSCZLxGJZJEnNsWM9RKNxnnvuOWBdcvIx\nTp9eIJGYpL9fg81mui07fo2/xozBYCKTUTM9LZJOL9HcnKZcbuHgwWP87GfzVCpvEAiEgZ00N7tR\nKnXI5as0NpoIh6+ya1cd8bjE5cuTVKurKBSDaDQOCoU1BKFCMhmiWJxAr1dRLO7HZrMilydQKNaI\nxd6gXA6iVJqAWbJZOTJZEUnyoVLtRKVSoFReQSZLo1JZ2LYths3WxOHDzQC3zT5Z7+/18VZLeXW/\nawTvQeFes23ea7vXZT49nhQDA25SKWnLuFs3vG5HulfjehKRyx8jFDrFmTM/pr29kbm5VYLBBXy+\ny4hilVxOjVKpxulsprOzj0wmfp2grxZt0+uN7Nnz27S2LhGNXkOhsBOJLGMyLeF0ajEa41SrPkIh\nJ8mkg1LJj0KxDbm8H50uQ6nkY3w8xt69adTqEpJUQSabJhIxolL1YzA8jiiWsNlU6PVx+vraOXDg\nef7xH/+Zs2d/TTI5QS4XRKncjt+foLNzAau1CYdjN/H4VVpaAuzcuY/5+RKTk6sYDGlaWnKcOHEj\n6utw2LBaK0xPeykW5zGZJJqbK0jS21Sr0iaOjdvN9XW+qw/bSHrYxme3nEEAACAASURBVPpHDbfO\nzccf33dPWSd3Wu9vfh8Oh41Q6PYH/56eHg4c6GJycplyWQ/kqVYNVKsycjkHsIZcvkC5vAIUUSoF\nFIoMgiAnn3dTqbjIZueRy+sxmfJotVW02jgWy5OYzW3EYn4aGw18+tNGrl79KYGAAVGUo9XO0tmZ\nYu/eOrLZQTo6BpmcPE25nEaSTJjN3ZhMM6jVfrTaAB0dOrq6nkAUlxgcrHLmzBtks704HBaKxTCj\noz+isTFJe/vQxrPXymH+ZZLkHzXcbwUxSZKwWExYLO9QLCZpbKxc38enicU0FItKyuUc9fUZqtU8\n5XIemczC1atO1Oogu3d3oNVakCQV2ewSTmeRYrGBgwc/i893hfn5i4CVajWHStWLydRFuVxmz55m\ndu6sY3R0jJWVLuRygXTaREdHJzabwMzMyyQSCarVJBDGZuuksbGJ2Vk1dnuEWMyBXi/D57Ph882R\nTpdRKlcplYxUqx1I0iKp1AyC0IpMZqJcvkYwqKalpZn29hY8nshdCO2X0WhiDA7uoloVsNtbmJm5\nyJ49JZ56qlZyezfC8/V+/SRQDNzrc97L9+51j6mNcztGYwsTEwtUKquoVNqNgJxOl8Dvn79ekq9g\nZSVItVpldnaWUCiCx3MNv3+F0VE/ovgkLlcDsMqePSaOH7df5zwb2OCtEsVFTKYeTKYw1WoKScog\nSXVoNDYEIYsgaNixYwCLxUlzs57du6u8884IlYqFxsZ/Szr9OqVSmHw+iF5fIJdzMjeXwOmM8oUv\ndGG1mtFoWnE4OohEQKuVEwjMolSGaGuT43TmEIRGDhz4LF7vpQ2baHHRx9raNQqFOvR6C5Kk3mIj\npNPu689RIwFvbtbjdiuIxxc3hFnWs23W15I33jhFNHoQtXqNd97xIUkzqFQiHR3bNsZ+Op2krq6I\n13uGlZUSLleKxx57hkQiRTxec5Sm00tb1qBHdsRHB++8A6+/Dj/6ETwsS9eRIzXi5dOn4fjxB92a\nB4P36+Qpsl6IvxluIPz+m7MVgiCogP8GHAPywJgkSfdQDqYEdNQiTp9c3I9I/tDQIG+99XMmJy+g\nUklEo1oEQdiS0ipJEp2d67XOh4DNjo7bLdiSJNHRMUM4HMVmczE2FuX11/+CXC5Gb+9jpFJz6PU+\n9u3bg0pVJBYrIJOl2L69l69//VOMjIwRCARZXrYRDidQq1OkUl7W1nSIYgOS5CCRSKLTZSkWq7hc\nVY4e3cepU78kk7FQrQ5dzwKKYrX2kk4HKJdTyOUrVColZLIuSqUhZmZWOXYsy+7dQ3cwjj96m9EH\nVdY4MzPD5GQGv1/A73+JgQEVDsdTm76z3ocHD9YMjFpKe43j6MqVUUCH2dyG01mP253CZEpz/ryW\nlZUGgsFp5PI5FIohXK469HqYnDyF1Srn0qUU0agJs3kbyWQGGEcQLHR2FnE4lJhMO3C7a1T7ly7p\nmZpqIRq1oFQW0OslymUf1WqSfF6NwaBAkurR6Qz09maYmblAtaqgXG6gWFxBEEI0NFjZt+8p6uvL\nCEIZn89DobBIoQDJpIJ8vgmNZpBKxUNjo5wdO77Itm01IvIDB2oR4XXZamhgaGhwoyQNanxYBw/O\no1SGKRQyOBx1xGIHKJWcWzg2bjfXHxlJH02837l5L+v93Q7+giDwO7/zO7z99p9w+fIskhSlVKqn\nXF5CpVoE0pRKFqpVEzKZHI2mkXw+TLFYoFyWU6mkqFZ9yGTTyOU76eoaxGbrpFKJkkq9RFOTyK5d\nB3C73TQ1NfGnf/pdxsa0aDT/Cr9/hQMH5JTLCX7yk39CFBUEg4v09Hyab3/7d/nFL76PzTZNY+Nh\nRPExtm9/gtOnf4QgaBgaGmJ2dozOzmYcDhNNTVH279/LM88885765uOG+60gNjMzg8dTor7+AGtr\nlxEEE+XyPsrlSSCIQrGDSsXHykoajeYE2ewpnE4be/e2E4nIGBysolTm8PlERFGHTNbK/Pw1BEFA\npxNpbt6JSqUlkQih0wWxWNSYzRkOH95FU1MTL73kZ2EhTjgcQaGo8PbbKZ59tp1Dh7rQ6cpoNL3M\nzVXI5aoEg0oKhTWamiRMpiCZTJp8PobF4iYcLpFOr6HRqNBq96LXJykWEzgcA2g0Mhobr/G5z1kZ\nHnbT3d1NR8fslvly6zyqVqtMTb3F0lKKhgYtTz11GEEQ7mkef1IoBu71Oe9nfzgcNpLJM5w5cxXI\nYbFoOHxYhdEIdvuTzM+38ld/9SuWl9WYTCYiEQ2vvPIKHk+J8fFlLl+eRiarI5uFrq5VAgHQ6cLU\n1fVtzK11O3bdUXLtWpHV1RAmU4Bq1UkyWaJcLmI2V9HpIJ9fIZmMks8HMRr7OHy4l5MnpxHFENVq\njmrVTzQawGRSIZMdJpEIUS4LhEIqGhoUVKsmlpaMqNVGDh+uw2AwsbIiEIm0IYpW5ud9nD37S5qb\nZWQySt5+O8LiohaVyobRGEavV9DUVCvjveGwmUGSJPr6UsTjSySTJZaXW5maGmedYzIUmtlYU26Q\nI0Oh4AGKBIMZKpVhtm1ro6FByUsvzeJy7UWlEvn85wfo7fWQTmd47LFn+PSnP33dkVZzlL6bMtoj\nPNz40z+Fzk740pcedEtuoLcXmppqJVuPnDzvDT8H/kgQhK9c/78kCEIr8MfAP96Xlt3AHwNVSZLc\nAIIgON/tB9FoHLN5+wYnSjQav89N+ujgfqQ7ut1uPvWpNmSyFAMDh0mlopsyJt6tnv9uuJlF/+23\nneRyIrOz0yiVQwwOtmOxPM7u3QKtrfXY7TdKWDKZFNFoHKvVzPbtPaytvYpWe4WWFge5nI1r10xU\nq/1Uqw4qlXk0mhIQQKdLYjA8g83WQqWSIhZbRCaLo9VCtSqi0+lQqcqk03ZKpVUEoRO3+zGq1as0\nNGQ3NsOPw2HhgyprjERimM3bOHGilYmJ0/T3y7aMu/UDhsdzkeZmGU8+WXMKnj9/EYvFRH9/mkRi\nlP379ezb5+bixbdJpZYRxSKlUpxisRODIU+lItHSkqe7O0s0qmVmRk8gIHHiRI3Yr6VlmZaWFo4e\ntWAwmKirs9PT08OLL/74epaYm2IxRKGgpaUlj16fRZLGicetGI17KZcreL3TZLP1BIOdlMtKOjqG\nSaf92GxJfvu3B9m3z72RTfPmm6cJBntRKo/j850jnx/BYNAikzlwuXQbSlg3O2F6e3u3pIevY3Z2\nFq+3jE53FKs1gtOZo1q9kU5tMEh4PB5OnvwNqVQGl6uB4WEbTuej1OaPMt7v3Fwn6645DdkUeV3/\n/7tFyHt7e/nDP/wK//W//hVjY41UKm4kaRaIA2pksk40mpqzRxAaUav1KBRpUikZGs0FyuU8bW1W\nisU08biITAZ1dSVsNj1Wq2aDo+HEiRO88cYpgsFWBgf/HWNjf0kisURTkx5RFKir208iITIzc4ps\nNkdDQ4VvfONbCILAyZMeTp/+EQsLpzGZ9vCv//XX+eUvX8Bmm+bIkSc5evQoc3NzXLhwaeM5H2Tq\n/8OYqfF++uNmjp/f/CYEGNi27QkuXHiVhgYZg4PPc+6chEwWZPfur3Hq1CoyWRhBkFCpMqyuJolG\n0+TzeSoVA8PDz7OwcA69fhyzOYfd7qSrq5/FxQguVwCrVcDpPMD8fILz539KPt+DUjlBJhPEYGgh\nkQghSVU+85nfQaGYoVCwUy6PEo87cLvdJBJympuXKRbzXL4ssbamJxxWYTDIKBQs6PVQLOrQaPx0\ndjbS1uagVFpi164dDA3tuqtdc+vnHo+HW4OL9zqPPykUAw+iP3p6eujvHyUeTzEwcIxUKorReCNI\n6Xa7SSbTnD6dor//EPPzo7z22pvA4yiVVorFPrZv72d6+jzlso8dO8qcODFAd3f3Jo6edXlvSZJo\nb/dSrc6yuhohkbBSV9dMNhvGavXT1mamtXURSWojnR5gfv4aFosalyuFXH4WUUwSDPaRywmsrU0i\nim9SLmvp6alHrW6jVErS1bUdh8NNJKJj27Y6Dhx4fEOFs7d3H4Lw4w0uqHA4SiCwTLnsRKWqoNXm\n2L59jWefvZExvNmpVsLpFDCbB6+XtE1xg2NyK2n/+jU0mjUE4fNAH7OzIywsvE5n52fo7a2V4pvN\n8J3v/MHGe7mh/JllZWWWurrGLfvVI3w0MD8PP/4x/Pf/XuPCeVggCLVsntdee9AteXB4v06ePwR+\nAoQALfAWtTKt88B/uj9NA0EQdMDvAa71zyRJCr3b7z6JEbs74X5E8jenJsfQaKJkMsrralL3Hmm5\nk6G7Xt7j9aawWu2YzY9hMrkIBrPo9X6Gh5/bdG1B8PL22xECgWVWV99mZOQiCwsO5PITVCpBWlsT\naLVJcrlx5PIU4KFQcKJS6clmZQQCP6JS0VMudyGTLSAIBtTqOC0tHlSqRkIhDRqNnFKpi1TKSyJR\nZOfORvbv37spTfWjXif8Qc2T9evW6rg3S+uu49Y+lCSJkyc9BAJ5isVFdu600dfXRiaTYnpaJJvd\niUoVRBT/GWhDo2lHqYzjcMxx6NBBisUy09ML5PN5FhbCnDqVpL3dhFyeZmUlSGNjI+3t7ZsOVyqV\nHEhRKvmRpHEiETd2+wFaWpIolSbc7v1EIkuUSkmKRQc7dzYxMfHPpFLnMBjM7N27i89+9jO3jE2B\n5eUzTEycQ6EIUF+fQRDmsViUyGSt9PWtRxBrh/GzZ8+TyaQ2OaDuROi9XiN/s6Mok1HywgtnOHOm\nRLVaweW6xh/+YQtu9xP35V0+woPB+52b6+ppoZCOYtGxKfIKNWN+fZ6J4hlOnBjYUIq5kVEGu3bt\n5EtfOoTP9w6iWKRatQJa6urqKJU6SKdnkMtHgRAWiwpJEkgm36FataDVDqFQiGi1GrZt20Y6vYAk\nadHpTPh8Xq5cGd1oj9lsoFy+xOXLBQwGH319g+j1Rmy2NcxmJYlEmUwmyMrKGNWqFkmSrvNL+PD5\nFjCZthOLBfnlL18gHl/BZhvC4ykBr+LxlLbsTw8qq+1hzNS4F9vgVkWetrY21OrZW7jnzqNSpSmX\nQ1y69CNq/Dkl3nnnB9hseXbu1JPLvUY0WiUa7SYYVDA8vI8rV7xMTZ3Fas1RKtWhVvegUFxCq/Vw\n4sQA/f2HWF5uJZst8ctfjlKtagmF3iAaLSMIw4CcSiVCNpsjEonR26skFlvC57OQSGiZmfHS1BSj\nXHaSSsnR6TrZvTvD1NQ0NpsBs1mHWq2mWPTT12djcHAber2GyUknwaCVv/zLX2zMj3s5dN4uuHiv\n8/iTYrM+iP64nf168/Vu/rvPN8b8vA+rtZV4/CoymYBaHSQWE2hujrF7t57BwVba29s35nQgICGK\nlzl+fJ729nZGR8dZWQni9eZQKHZTrcZQKMp0d4PR2E1Pz1EKhUVUKhuHDj2HIAh0dq7xla98mvn5\nRX7962UqlR2Uy0pMphLNzVFWV6NYrU24XFo6OswUiyKBgBdRXOTatRBLS0usrq6QSBjxeCSam3U8\n+eQgAMvLy6ytvUM6PUh/vx2l0sfx422bxvXNdsa1a+dZWZklEFgiHF7CYikjCDWOyWTy2kaGz63r\nKkA+P83ZsxdIJseor68nFgty5swvNqnLrWNmZoaXXprB79cyN1egq0sgHN68Xz3CRwPf/S7Y7fCt\nbz3olmzF0aPwwgsQiYDD8aBb8+HjfTl5JElKAs8IgnAAGAQMwBVJkl69n42jJs8eA/6TIAhHqYVH\n/oskSa/f7Ucfl0P4w4Rb+zQUiuD3+3E4wO/PEQ5H39V4vtnQVak8+Hw+jEYz6XSSiYk0fr9AJjOB\nSlXC6dRQKi3R1mba4t2PRGIEAnnicS1vvy1ncVEBtGA0PkmhcAaHI4/FInLx4gWUyk7y+Ry5XIV8\n3sTcXIFQKIDBsA+73Y5KZaOuLozL1c2TTxqZmclz+fIyq6srFApOdLouVKoAe/Y0bKT+f1xKYD6o\neXIv1721D8+ePc/ExCzz80nicYjHcxw8eBBBEBBFOHhwH7FYgGx2iWp1J0ZjB3r9LIODWubnS5w7\nN86VK5OUSs3I5SpUqrNUKk28/nqZUKhAfX2Ep55K86lPLWA0mrFYTOzb18Rbb72DyRTFYhkkk6nH\nZrNSLqsRBB9QM5Y6Osx4PBEkycbTTxtRKtN0dtZx4sTxLc/W09PDN74hMTIySjBoxOczE42qOXTo\ny6TTsY0Iotfrvc5JlGNubp6uru00N0eBzYe/W43doaHBDbldh8NNOBzdQmi4sLB8X97jIzw4dHd3\n09vrY2Fhkvb2Frq7u+/5t3eLgt+8dnq9coLBlwBoa2vjz//8n5iczKBSydm/P8ahQ9vo6DhHPB5A\no2lAkjpoa6uQz88xMzOFwSBdlz/XUihoaGjQUS730NfXTzQ6RyrlIZHYRzLpIxAoMD6upVxeI5fz\nY7NZaG9vR6frZ2ioRDR6iSNH+vnWt77F7Owsk5NvEo9PYjb7SSb7MZufJhi8zOjoOH19fRiNZlyu\nvfT27uPMmR8DI9hsQxw8+GU8nossLExSLPY/NJkRH9VMjVdeeYW/+qsRCoV2NJoR/s2/kTh+3L2J\ne25kZIzZWT0ymUgkcgWz2YzNpqar6wL19XWEQmoiEQXptJzdu1sIBvOsrS0xMKCiv18GGFhcbMbl\nshMMztDbW+SrX61de3LyLCdPjhEIGHA6nwDC6PVaFIou8vklYIylpb387GfLuFxa6usF2tufpKEh\nzdjYm6TTQeAADQ0tTE9fpFjU0NZWR3NzkcOHu9Hp9Jw6paJS6WBhIc/27bC2ViAcXiaRkCNJHjo6\nOu4pgJVOJwkEJgiHl3C5tDgcvfe8x35SbNYH1R93u96NjJIc8biXrq6dHDjwWc6c+TF6vZfubj0a\nTQSXq5tMxsnyspNQaAanM0cgoCGRaCAQyJFInEarvUQwaCUaLZBIRLDbB2hoCBOJnCGZ1FGt7qSj\nYxifD0Sxlsnc2CgRjYaYn59HFPNEo0lWVlaQJA2NjRXq6904HKsMDso4fny97a/g802Qyeh58cV5\nqlU9er0RlyvAwICR4eFdSJJ03d5uQadbxOm8Rn39XlyuPoaHe++oYpVKjSNJRlSqOkRxkaef7qGj\no4NoNM7SkoGlpa2k/et9vG2bj3PnFjGZBmhu7gLmt6jLrWN9TXQ4LExN5XA4WikW+cisjY9QQzgM\nf/M38B//I2i1D7o1W3HkSE3a/Y034MtfftCt+fDxfiXUvwm8KEnSWeDsTZ+rgN+SJOnv7mP72oBJ\nSZL+H0EQdgGvCIKwXZKk23L/fOc738FsNm/67Gtf+xpf+9rX7lOTPh54r+njtx7KfT4fc3PzTE1V\n0WgWyGTMd/ztOjZLNf4In28Bl2svgYAXlcrJiRMHGR8/RU/PGg0NGk6dAq9Xh9f7IocP97J799CG\nkpUonmFmxkC53ATsplSaJRZ7E73+MsXiNtraDpBOz9PRUcdrr/lJJjXXy7eukEpFkaQiKtUaDQ0i\n7e0NNDXpkMlkdHY+xeBgK9/73v9LImHmyJE/YGnpDHZ7mtnZ2Xvur/eKH/zgB/zgBz/Y9Jnf779v\n178dPihn1fu5biaTYmLCw8JCFxpNmZmZFCMjYwwP79oo6zIYsuzd+xmSSQOzs2GcziiCYGBiokQ8\n3k4+v4hc3gHsZHX1TUqlaxQKA4jiHlKpNOfPjzE3N09b236amuBTn+pEpYrw0ksqlMpG4vFxJieL\nuFxWenpMtLYuMzy8axMnwxe+8IVN7/5WWdVayrabhYUFLlxYJp/vo1BIMD8/ilqd2JBvDoej1w0c\nmJqq4nC4KRbjd0yFvtk4rfXves95cTrFTYSG7e2P3df3+QgfPmZnZ69novTj8UTo6Ji95+jm3YQH\n1tdOr1dOqaQiFNrByZNetNq3OHdOpFIZRq+PsrAQ4dlnBzl2bJDZ2YvkcnpkMiXZbJRqNY7DcRi7\n3cXy8jTRaJhczkZ7+y5WVjwEAqvodFoMhhZ27JATDDaztiaRTDpZWwszMRHihRdOMTR0lbk5I0eO\n/DapVJSDBwXkcjlut5tvfrPmyLx4McObbxoBC6BjZSW4QeSpUonXyz119PY+icdTwuO5iFoduS1Z\n7oPERyVT41a7wOdbolBoZ3j4t7hy5YcsLvo5fvz4prU9Go2jUKRobm6mWi1RrRbJ59WkUmFSqSKR\nSDfVapxweBajMUV/fyMDA2aGh2vlUDUOtzc4d04EGhHFWjZad3c3dvuvKZUWUKu7qFSqWCx6NJoq\norhKMvk2Vmsz8XgXHs8SsZgCp7ORdHqC8fEi4bCcTCaPwXANhyOPybSMTufm0KFvkEpF2bZNYGlp\niWCwHpttiImJs1Qq48zO5llddWOzVclmZRuHzrvZTDMzM0xPi6hUbtbWRmlsNHGdYeCe9sKPS+Do\n3bD+nD09tb48f/7ibe2p+90fd7veekZJsdhKqRRHpYrg9V5CrU5QLruw2bajVkcwGHLE485NWbWi\nuEggkMPlMpDNOkilQsjl+xDFVdbWgkSjl6lW4ygUEhbLDvx+H6dP/4h9+3ro6xvAaITXX5/ghRf8\n5PNuRPEUZrOetrZDZDJT7NxZRatVoFIdQCYTNkpdjUYzTU0HCIcTnD8/j06XQa12kkqlaGlpwe12\nc+7chQ17G2ql662tzo3+vhk3i6JcupRndlbPwEAfqVQdJpOwUU5+N9J+QRAwGs20tz8JqLh61YPb\nvcKTT/7ebfeuG2q7oetqu7IN8Y1H+Ojgf/yPWlnU7//+g27J7eFy1bh5XnvtkZPnveB7wG+olWvd\nDOP1v90vJ88SUOG6LLskSaNCLcQ+ANw2m+fP/uzPGB4evk+3//jidunj6wbXvTgyDAbTprpgg2Er\nD/etRpHdbkWtnmF6+gLF4iLZrJNq1UIgUEUQLgJaensNnDixmytXRgkGrcjlDUxOTjI3V2RqKss3\nviHR09PDwICViYnTaDTNdHXZCQSuUSj8PRqNgXD4IMPDXcRi51laGieVaqVSAUmaA+SUyy1YLFY6\nOlLs3m0nl7OhVrcTiQQRhGkEQcbu3T3MzaVZWjqDWu0jGq3yF3/xc1SqVlyumn/xfqaU3s4R+fd/\n//d8/etfv2/3+LDwfvgnDAYTTmcn0aiJajWHKM4jSdImjhGFQkE4rAQyKJXjKBQNXL68Qiwmp1x2\nAnqqVT/VqhVRzJFI5EinV1GrHaTTUK3OI0mfw2yuqWM89piZffv28MorPyUYXEYUA0AjdnsPBoMC\nEIlEYsDsRr39rc+5LquayZgwGFKcOOGjvb2dkye9zMw009Skx2YDo3EGUWxiaamZyckz2O0pkkkt\nxaKZUmmCsbEEJlOaRMK4JRV6nQeq1paZTf3Z09PDf/gPn8Pt/s0GoeHNZLOP8NHEnTI/7n1u3eAG\nudkRabdbOX68n2DwZUKhHTidLczNjbKycolIZA+lUhyl0kdTUxqHw8aTTz7NxYsp/H41+Xw3xWIS\nUbyKTFZmbu4tslkvuVwDlQoYjUYUijhqdRm3ew8+n5xMJoHRWMHnm2FubplCQcJiqWdiYoVMpki1\nuo3p6X+kuTnHzp0H8Hg8G2Uujz++D7vdSjR6lnh8FI0mRjhs4Kc/DSGKiwwM6Ojrc1BXt5Uc905k\nuQ8KDyJT417Gyq3fWY/+r5eg1NWlUKsjXLnyQzSaBdrbh7b8LpmME42OMTu7QDJZQK9/hh07dlAu\nC0Aavd7O1NQaGk0OhULH4cPNm0pFapwpI/h8cZqa3IhiTSVRkiQuXVomGhVIp6+Sy/nZu9fCE0+0\nMz4eI58fJByWk0pVWVvTk0x6ef75Pvr7BXy+ANmsg3jchU6XwGSqsmfPDmSyLlKpKKnUOEtLVlZW\ngkiSjHU5eI1GR3d3L0ajjbW1GVKpedLpzo059P3vv0k8LsdiKXPw4BzJZHqjP4rFVjo7W/F4wszO\nSrz00qPSkzvhwypfvHmc2u1WgI31ZX0+hMNR/P4cDgcUixaGh6GtDZaWrCwvt9yxVHpoaBCrdQGY\nQKVqxeEwMjY2zrVr/0Qmo6RcTtDY2EI8vkapZKNSGUQUw4jiRfr6dvDMM88gk8n467/+HvF4Nw0N\n38Tnm72uTPUksZiSpqYVdLo9GI01fsP6+lF6enqw2634fC9y6VKMcDhHsbjG2loYt9vOtWtTLC8v\nEwwGmJsrsbCwQLW6THNz67sqlYGXaNSE3y9tEs1Y78dwOEpvrxKDQaKubus65nDYUCqniEazyOUJ\nisUaFcM6zcHN992stju0qWT9ET4ayOVqPDzf/natXOthxZEj8PLLD7oVDwbv18kjANJtPm8Gku+/\nOZshSVJUEITXgOPASUEQOoB24Nr9uscnFbc7RMDmjXe9ROp2RmJdnZ3m5ijFYoLmZhl1dVtn+K0b\n+bFjPRup3teu2fjVr4KcPHmWWGyO3l4Douilr29gk8JSNFomlXJSLDqYmKgd9gVBIJNx0tHxFOXy\nKFptkmxWQyz2JapVOfPzU7z8coZYbJlyeRDIUqv6SwJRtNo0NpuDvXuHGBiwsbzculGL3Nq6TGsr\nfO5zX2JhYYHFRT8KhZPx8Syzs070epFAIEB9ff6hIM98GPF+DLi6OjsuF3g8i5TLKTSaClareRPH\nSKm0D0EYo1i8SKVSRzTawdKSD41mCbW6gsGQQpJSCEIeh6OM0/kM8/MiavUizc05nM6dWK0uAoF5\ndLowDkcfi4uLaDTtOJ1NlEpqmprMZLNlwuExJic7WF7mjs9Q4zeZYHTUiijqUanywAT79ydRqdpw\nuRoIBObp6cnidrtZXm7FaGzh7NmaNKnVKqexcYVMRo0gyMlmIxgM7i0H+7v1pyAI9PX10dfXd5/f\n4iM8SNwp8+Ne5tat3CCjo+MbHD1q9QzHjvXw7W8f4x/+4SJ+f4pEYpVIxIxKlSaT8WIw5KmvbwfA\n6XQwONhFIrGIKILVWmF+PoYoXqJYLKDVDuF06lld9ZHLybFYdCSE9AAAIABJREFUBATBwOqqBYVi\nGYtlgXhcT7GoRJJKqNVt6HQNSNIFdLpu3O4hXn31ZcplNadPL3DmTBCzefumZ1vP6llakvHOO2qS\nyVp5BPg5dMi+8fy3RuofpsyIB5GpcS9j5dbv3FqCUq3m2b27RDI5Rm9vN0ePHt3yu7m5Sywvy9Hp\nngYu0do6TXt7H0qlEjCysDCHzbbG0aNfQKs1YTQKW7I2rFYLhYKPq1cD1zODh1heXmZ52YRW+ymK\nxXfQ6UrU1dXT3d2DWt2G0WjjhRf+P4pFOW53M06nDqPRTGdnJxcuLBEIWLHZzFQqAnV1GZ599nMI\ngsCVK6NMTipZXm4hkUjjcgWQySZpalLicjUQj6dIJhNotUFMph1MT4t0dMwwMjLGxISIzbaX6emX\nuXp1nGp1G6CjqSmG3Z5gcXERyDEwcIx0Ovao9OQO+LDKF28ep8nkWaCE2Ty4aT5kMqlNWelHjw7x\nxBP7t2St3FoqvZ6129HRQSQSI5VKsLzchtlcQqtdIJ1W0dy8E6UyQqFgx2BQEY1qSKUsnD69QHv7\nDL29vTiddmQyD7HYj1Grw7hcanS6UVwugcce283Pf36GyUlQqcpYLFaGh2cAyOeLVKttaLVyoJ66\nujRWq5bTp4MkEgLpdIpicRGbLU2xmMNgaCUcvrs9difRjFuJmY8ft9/2GrUA7CiJhITTOcQ773g4\ncyZ92/t+UrLXPs74/vchHoc/+IN3/+6DxJEj8Bd/AUtL0Nr6oFvz4eI9OXkEQRih5tyRgNcEQSjf\n9Gc50EEtw+d+4t8Bfy0Iwh9Ty+r5t5Ikrdzne3zicLtDxK0b78jI2E2Hg82L9L1EJm+9XjQa54kn\n9m9EpD0eI5lMlampDvbs2Y9MJmA01hb/oaFBJifPcvnyVUymFez2HsrlECsrad54I0Ug4OSzn/06\nv/ylxNzc3yOK9SgUe9HrbeRyP0IUT6FUdmA2m1haCqFSZdHpOhFFHS7XFZ54Qs6hQ+20t7cTCs1y\n9eo5FhZeJZ+XYbWa2b//sY2D87lzF/B4Quj1WqamrmKzLTM5qWN4eOZRlO42eD8GXE9PD4cPtxII\nRDAau9Bq1RvZYevX27ZtP6dPLxOJCCSTBTIZL8ViDw5HAJVqnp07Xeze/SW83guUSgvIZNs4cMCC\nUrnAnj0FBKGTYDCPXu/fUMf41a9+jSgKGAx1GAz16PURurr8tLXZKZe3bTj/rlwZvR5xukGSHA5H\nUalaMZlSeL1h3O4yKlVtB3G5BGAVnS7MiRMD18fZDBMTC2QyIXS6XYhiCY2mRKkkoFIJ5HJyRHFx\ny8F+/flr/CO/4I03Tm302SMn48cTd1pf72VuORw2VKqa+pQoLqFQKCiV9rFt2411+NOf/jTxeJLT\np1MUCj2cO9cCLKLTFejp6UYma+HXvz7J3r2PcfBgGzZbjvHxEAsLy5RKzahU7YhiELPZRLFoxGyO\n8fTTQ+RyOsDErl27iER0tLWtkUoJtLX1UCoFWVuLAxdpblbQ3q4gFPJis+k5dOgY4+NvkUyKDA5a\n8PtDhEKRDVL+1dUVJEkiFIoRDm+nudmIStX6iT9E3y1b517Gyq1rSyLhZW2tSiTixuUykMupCIe1\nuFxHyGYjzM3N4XZvthXOn/8Z1aqbxx//PCMjAtu2LfD5z9fhcNRKPEZGxpicFNBqTVtIb9efIRqN\nI4qrmM1ltNoav0g8nkSttqFSWZDL++nqUlNf3wUUUKsjpFISAwMWcrk09fUSLpdtIxPg+PF+4vFL\nxGJRFIo1WlqaNzgAAczmbfT1Pc70NAwMGGltbSWdTnLtWhGVqoAgXKCnp5Xnnvs/8XguEg5HWVkJ\nEosVkMtLFIsqslkZLtdewIJMNnqdXwgmJ1WkUtHbPusj1PBhlS/ePE5/85sFILNFJSoWS9DR0Ycg\nqAkG5cRiiY0s4vVr3L5UuoZ1R8W5cxdobBxGq23A4xlHr38dq3WOlhYXyaTI/PzrQBK9/ggTE2FG\nRsbo7e3lm9/8BgsLf0kgcB6DQc2RI8O4XDKGhg4gSRK53JuUywYaG7chisrrAVlwOgdpaUmRTGap\nr69iMLQhCPOUyzuw2Q5QLo+Sz8tobd3HwkKMurq2LZw3d8q2T6cF3G49VquKc+cucOnSRWZm6qmv\nb2JhIYPTOUp3d/dtKQzWSaw9ngCCkH/k8PyYolqFP/sz+OIXa9LpDzOeeqpWUvbaa/C7v/ugW/Ph\n4r1m8vz0+r+7gJeAzE1/E4EF7rOEuiRJPuDp+3nNDwMPo2Tqzbj9IWKzNDhAsWjHaGxhYmIBp3N0\n4znuxQt/t418PRPI76/icBSJRpc31eOuR3D7+0d4660qgpBCkuJEIi5KJSNzc1eJxeJcu/YOgYCd\nTEZOsXgOuRyamkooFM3E4w2srb2NJI1gszXjdO6hWl2gpeUxKpX9nDkTpL29nWPHevjf//tvuXIl\nhla7i7GxKwAcO3Zs4zlcrjCBwHpE8hharWnLpvWwv/MPC+9mwN2pn+x2KyqVjWSykWJxgUwmhdfr\nZWlpiWQyztWrVUKhd5DL23A4ImSzCsxmiUymAYtFiUolIpdnOXr0MQyGdiYmwqhUOlwuF8ePu2+K\nwt3ggohENKhUefL5KXbuzPPcc48zPLyL+fl5fvjDVxgdHcNojJJM1vPqq15mZyfp7u5kYKCZvj4V\nLpeWWCxKKjWB0+nG5dIyNHTzvfo25pogCFQqv2ZmJsLUVIJyeZLFxVnGxgzAblSqDLt2pTlwgI2S\nkxvPn+HMmRBzc1eBTorFh0Oh5xE+GNxpfb2Xw1FPT8+G+lQmU8fo6CI63RsIAqjVtYPnzca435/F\nZrtAIlFBrS7h86VJpa4yO5tjZaWJ5mYdn/nMs3z2swJ//Mf/Db+/m7q6p/H5fo7d7qehIY/JVIfF\nkiMS8ZLNyhkdhY4OJe3tLfj9iywvr6LXh3E6PbS3NzMw0MvBgy6mpz1kMivMzLzD4uJbzM/LmZkp\n0dycweNxcvIkvP66j7W1OE5nI+3tFerqRrFYdl8nt7V9SG/k4cQNtbRaedWJE76NUqibx4pKFSad\nrh3Ybl5z179z5swvmJu7SmdnDzrdHHV1I1gsuykWS6hUnVscRTdfu75ey9raNd56K4tMlqBUclJX\ntznDanh4ZpOtcfMekE4nOXVqjoUFPdWqGpcrRDabZteunfT0LFAsXkMuX6Gj4zFcrloACGrOo5aW\nXqxWM0ajeZM6YUdHBy0ti5RKSRYX47zxRpmXXvIzOHgYtToOZJieFlCroxvcQC+++GNmZqoMDBwC\nNBvEuOsqhut7RTh8gZaWNGZzHSsrlwEdGk0MaGNoaJChofWSoAdfJviw4sMqX7x5nFqtOaCyRSUq\nmcySyUwzMyMgiipOnVpieNhLb2/ve8o0WbcTYZWhoTwDA0fo69tOOp3k9OkFYrER4nEDmYyDQmH5\neqmgRF9fH//5P/8+v/71SUZHU6ytdaNQ1GzsaDROff1u1GodgUCGUmkFh2MbAC5XmFgsSkvLNE5n\nPU1Ncnbu3MX8fI2wvFAIYDAkCYWuEYlMcvq0np07+7Dbn9po892y7dNpFdPTIoFAmNHRVUKhKaLR\nEcxmkUqlDovlZbzeMsWinWTyDP39oxschsePg9M5+sjh+THGyZPg8dRIlx92WK2weze8+uojJ89d\nIUnSfwEQBGGBGvFy4YNo1McBD6Nk6jrudMi+naz15ORZzpy5CuSYnFQxNOS9YwnXrbjbRr6uHqNS\nLdHbW0dvbzNOp2PTgXidj2TdQFxaMrO83EJv736gpqii08mw23+LhgY1Kyt/y86dRXbs6OP0aSta\nrZ58Pota3YzNpuPw4WX0+jamprrI5Xbh959ldHScoaFBRkfDrK5uo7m5F79/hNdee5OOjo5N5Lf1\n9fm7RiQf5nf+QeBex9GtBtyd+KDi8QQajYXOTheCoCMeT26oQ0AGleoSWq0ZmcyAICRpaYmj1+so\nl5s4cuRp/P4JYIS+vic5evRbzM3NbWnbza+jlpo8yJe/bGdi4hSHDrXx1a9+mZmZGc6cCeL3yxFF\nLw5HmnLZRShkZHW1E7NZhd9fxelMUF8vUF9v4/nnn9ty0LhdxK8WEW5CkjRcuaJjZcVEudzOzp37\niMXU2O1VnniiRpS4rsBVKLQA4+j143R1uTlw4HnOnv3Jo4yeTyDuVbnOYDCRyZgIhWykUiXa2ry0\ntCxvHGhvvlY4HKWhIcjlyxnS6SiBQJGOjl7icS2SBB7PKk5njq985Xkef3wvExMjFApv0dUV4/nn\n+3n22Wfx+Xz84AdnWV1tIBrNEou9g9ncQnv7ATo6OhgZGcPjSZHJfJlDh76Cx3ORZHIJmayL+vpO\nZmZOsbSUpVDYSbnsQ68v4PeX8fkcJJM12fZUSolMluPECRutrTf4JT7JqKmlSRvlVTCxsW+tKwbB\nEhaLielpEVHcXH663n+1taTzujrZheskra2k02amp8UtTsWbx+HnPvcVTp48yenTGQYHj6PVyjcF\nQG7nsLyxttmZnHyNubkVtNphtNoO1GovPt8SkiRht5sYHLRSrRo5fNjO7t29Gw769SzjcDiypXyk\nVrI4iMsVZ3Q0RzZbIplco6UlhNs9QFubn9ZWNuZQjfw5jt8v4vf/hv5+OHKkRoy7rmJ4815x8GDr\ndbuhJpcdiRhZWmohFJrh+HH3xhr+CLfHh1Wqc/M4tdsPANxGJUoilRpHFF3U1R0mGJxkZGT0nu3c\n291rPbgjCALnzl3AYtnFF7/4FH/3d39DKPQKDocejyfHiy/+mOHhXQAsLpaJRNyo1TXOwBplASiV\naSwWCZ2uloF885q3Z4+DTKZzI7u4u7ubmZlaaaEk9ZLNpjl9eg6ZrJ54XEEsFtvU5rtl2587dwFR\nBIfDQrEYIpPxEo8nABfT02p+9avfUK3243SaGR+vEo+nCIW8HD/OFtv9kcPz44fvfhceewwef/xB\nt+TecOQI/O3f1pS2Pknm8vuVUP/b+92QjxseZsnUOzkjbt14JUmiv3+MeDzFwMAxUqnoXUu4bsXd\nNvIb6jEDqNURnE7Hba9z8zXsdisTE2/w4otnUChSHDrURSq1xurqZQoFC729Hfz7f/8k8XiSy5fn\nUKnKyOUmWls/hc1mZ8cOBWaziatX11gnWgQjIyNjJBIOoMj09EVUqotcu9bG3/3dG3zjG9JGROfd\nNq2H+Z1/ELjXcXQr7sQHNTmZIJMp4fV6GRiocXvc+J6ATjdJR8c+BgftjI+/RU9PloaGRqamsuRy\nAeLxVWy2ITyeEh0dc3clLIZa5E2j8ZJOC/T2NjA8fCMDJ5HQ09r6r4AEovgq6bSXVKoVmy1JIqEm\nFFpgaqrjOn9IhOHhzk3jd52oc2RkDIChoUHcbvdGBpvHk8FgMNHa+hTx+BSrq2dobMzT0TG0pZ9q\nZTYCLS1LhEI6zp79CXNz88D2Rxk9nzDc6+Eok0kxOzu6oRKkVHbQ2tp6R06ETCbF2bMjpNNtVKsL\nlEoZKpWrXLlixmBwMTmZwWp9hUzGyc6dPaRScxw7totvfavmTF1c9FMum1CrXcjlBozGIIJQK314\n4on99Pb2bhzs17MjAESxjkOH9jM350MuL+FyNeH1zqPV6pmeThMITJDJmJDJLIiiAaVSxvDw04/G\n+3XU1NIubyj8rJewQU0xqFBoIZUaR6n0ks26OXhwHx7PxY296WZi4GJx/d3Uslvc7lqgp6Nj6553\n6ziUyWTI5V6KReU9ld+sr20mk42ZmQJ+v5xSaQmNZhWXK8P8fDvT05OoVG6OH3+O6ekLtLXdWOfe\nba9dz+AIBq9RLqeoVh3k8+2MjV2loaGC1dqxpT0m005OnKg5cQYGTJvIocG7aa/YvduN2+2mr6+P\nc+cucPYsG20Jh6OA9z05CB7hg8HdMiJv8O1E6ehoZ3FRjtn8/7d35vFxFFfi/z7ZHhlZtqzDB0i+\nkSyCZbDNjc192CwkARKODUcI2d1kj+QHudlkszlIQpZAsjmWXJDAggOELOEINjiQYGObADYgGSwJ\nsLAlDp3W4UOyrfr9UT1Sz2hmNEfPqff9fOYjTXdP9evqV6+qX796Zejs3Mu77/ayZs2kmF7YjRZ9\n2dtrqKrycfBgPlVVx/Pii/U8+mgnmzevZc6cQ/h8sygvn0RLy1v09zdQVzeDKVMWI/IqS5cKS5d+\ncEiXjDFD5/Q7df06tnDhQhYuXIgxhvvvf5C+vpkcfvhJFBUNkpe3jY6OrhGyhYoMda9+tW/fi/T2\nHsb48Qs4cGCA9vYXaG6exeCg8OqrT+PzHaSm5uqAaVmacyd3eeUVePpp+N3vssdhcvbZcMst8Npr\ncPTR6ZYmdcS7hPo44AbgMmA24HPvN8aM7RhqMnvJ1GidEe6Q/t7eTiZO7ADwxJERr0Oks7OXnTsP\n4fNN4M03B1i2bDo+3zaM2cMFF5zPueeeS2NjIyed1MngYD2HDr1Nfv4USkq6mDPHPkBPnVrLwMB6\nFi2azJIlx7B16yuUlR1OYeEE6uvXkJ+/l5KSy6itfWlo3rS/PiJ1Wpl8z5NBvPcwXD4o9yDbf29a\nWxuHjrPLInfQ2ytUVx/OypXDb2Htm+h5zJt3CnV1G5g+/WWMMc7SqKEHauGiIsrKSigufo3m5ueA\nvSxaVMb8+RN49dVO9uyZyKRJB5g7dzhnT6hrb2xs5J57/kJt7QBQQF3dc1xzzXCUkz+UefLkOSxf\n3sTMmb2cdNLxAStjBdeTP/Hj00//lc7OwyktraK5uYG2tg4dSCkBFBZO4cgj51BUtIfdu8cxadK4\niFOb/KslnnBCJY2Nf2HZsnHs3z+LN96YSU3NCnp7d9LUtI0DB47muOOWUVu7nkmT8njjjTdYu7aR\n5uYpNDW9QEtLM/v3T2Vw8H2OOuoIyspOHzpHqEhRf/uePn2Anp7xtLW9RmFhPosXz6Onp4+iojJm\nzmxg0qQ2Zs/O48orzwr5RnisTpWtrKxk1aod+Ff48U9hcztRnntugMLCMvbvfwt4MOQyxeFsYbQP\narFOv/HbttraOsaPL6S6egUDAwPs2/csc+bMYvnyj7Jhw4Mhc5S5f+/fV1paGbCCnD+K6bjjxrNn\nTz+trcXMmzeD4uJWysr2j4hqCufwj+b6gmXp65vASy91jJmI3mwk+H4ODh5JR8df6eqqo7zcx8yZ\nU2lu9uaFnftcixefyvr1Lbzyyt9obxcOO+wEGhs72b17K+Xlk5k6VSgoaGbOnCkcOLCYo446me3b\nhdmzA3Uo2qTqdXVd7N7dTWvrn5k+XTj55JKAfiCSXrsjPceNK2Ht2mns3Tub/v43KSnZT2Xlacyf\nv4z16x9lwoQdYadljVXbnMvcfrtNYHzppemWJHpOPRV8PpuXR508o/N14JPAD4BvAzdjV736MPBN\nTyTLctKxZOpo+I2tP8fH9u1mKEdDOMIPzDfR3f06O3cWxmW443GIdHR0kZc3iyOPPBbYzc6d69i3\nr4hZs64gP7+dBQsWkJeXR1VVFddeK6xaVcNf//oXdu/upbp6FnPmzOHJJ99gxowaBgZ2ctpp84Y6\nxrq6Lrq6xlFYOIfu7unk5ZVglyCOnky858kkXqdWuHxQwYNsv05FWhbZ/SZ6164NrFmzFv/UQniF\n/v7ZYQdq4R5gKisrufpq44Q8F1JcXERh4RQqKnqHwqL9DqRw197e3klX1zhKSmxizq6ul53zj5yG\nePHFHxmqE/8ypX19PUyaNHnEcqUiwo4dO3jqqa08++zLQyvRKIqbadNKqalZQEvLPgYGdrJq1Qci\n2iP3aokzZ+ZTXFxIcfEc8vIG6O3dRX5+B3PnzmL9+tcDpu/629jy5SfS3FxPQUE7s2cfzr59RZx2\nWnnAOUNFivrb90UXXURTUxN/+9uLvPtuPiIH6e2dxNKlp9LYOIWqqnauuOKjrlxagQ8MY22qrB8R\n4bzzzhta4Wd4ClvjkBMFCli+/Hx27NjCggWtnHnmsSN0IZIzJ5qHtOFpuuEjJ934zz9t2h46Ow/S\n3PwaPl8xS5cuoKysiPr65ykvP4zq6qqhKVOhHkDd45JQqyj5fIdx0UVTqK3di883nvLycmbM2Meu\nXdMC+oWTTz4xoLxY6idYlra2Dvr7ZcxE9GYjoWzRNdfkDem4MYa2tvD9e7znqq+vZ8OGtznsMGFw\n8G1aWw+nqmoGRUVLqakRZxrqsSPGF24nZllZiaNjoydVnzJlMR/5SAkbNjzIwoVw+eVnRLTJ4eQu\nKyshL28DTU0HGD/+MFasuIg9e4Te3l2ccEI51dXzmDxZKC2100Q3btw8tGS9TbzeR1HRUWPKNucq\n774L990H3/kOjI/Xg5AGCgqso2fdOvjMZ9ItTeqI9xZ9DPgHY8zjIvKfwGpjzJsi8ipwEvDfXgmY\nrWRiqKJ/IOzP8RGcoyEUwYO30tJizj+/kq1bX6G7+4AzDz12w+1+S9DXN2EoxDnSwLC0tJjBwfW8\n8UYTPt8A5eV9+HyLR3R07gf/wsLFdHfvo7Z2Jz09axkYOIH588uore2hq6t7SG7/Mr09PRWsX9/C\n7t0vByR5jIZMvOduvH6jMppTK9z5QtVT+JUsAgdikWRZtOjlgKmFsIv8/PaYB2oiMhTy7J9i0t+f\nF7B0qF8W/3QsY8zQQyv4o4EO0dxsE3OWl0vAG7RIeSqamwd5883XWLBgvvOg0+OUax+cbNTFfMrK\nZtPenje0Cpmi+AnMRWFt2MaNmwNWh3O3f//xW7a8zO7dA7z0kmFg4FUWLy6hurqMadOsk7Wr6/ch\n21h9/fPMnz+d+fPLh6YwLltWFdG+BLeB6upqzjvvPJ566imef/4Furr2sWULiBzgwIFpiAhvvPFG\nyHxeW7a8TH19DzU1VfT0mDH1YB3Jnk6fvpe6uj76+nZRUZHHmWeeFvMDVrQOtFgcbX6Zbd6/LvLy\n2hk/vplly6x9E9k5NMXVPz0luC9xX/PGjZsDVlEyppfy8mI2bFhHZaVh5crjh3KmuSPI/P1CIn33\nyN82xB3Rq1EPySdcHfvvoX+qtT+f1ZIlx3j2ws6fK+ryy0/kkUd+RE/PNqZOnUx5eQFLly4cai9u\nB3hpqU2kv2ZNnROt10Z1tY/8/AMRdcwfndbXJ5x44rGsXFkVUH4seuZ/ceo/PnBlrYVDvx8eLw07\nW7u6xtHcLKxaNZveXhnVNmsbyGx++lPIz4dPfjLdksSOf8rWwYPZ5aBKhHgvcyZQ6/zfBxQ5/z8G\nfCtRoRRv8RvNZ555lubmKSxf/nfU148MAQ1H4ODNJhacPXs2u3aFj5IYjWFHTIMT2iz4fPVDy5yG\nM+4lJZOZPbuX8eMPsGJFFXv2SEBH5+4gdu7cSXOzobt7Ei0tFXR1NVBQsI6WlmL27DlIX987FBc/\nyXnnnRfQwc+fH9jB5Apev+0ebWAcz6A/eHfwKiw2zH7aiPJCTS30T2+KNrIq1OAieEqaO99Cb283\n779/GAMD02htbQx4cDHGcPTRUyktfZfDDy9kyZLIzlQYnv5WVjaVbdv2UlY2m5aWnezY0UR5+fFD\n1zwcdQEVFQVMm1YasVxl7OFuT6GchxUVduqtu/34nSVNTe0cOCD09VUg0s6KFcOOzeLiIiZM2Mlb\nb73srCR3jOth5Awg9MpCwW0r3PK7/lxtEyeejc/3MHl5naxY8SF6ejqcCJGR04VtPq8+mpuF5ua1\n1NT4KCs7k7FMqIULYokuDe5H9++f5eQGC9/XxzN9t6Oji6lTj+WKK05i/foH2LbtfcrLbZ4+/wsB\nYwxPPvkkTzzRgM83x1nBiCGdDI5OLi7eS0fHu/z+9/9La+sg7703g4MH3+Gaa2zetMHBQZqammhq\nqmPu3FkceeSRsVZvRBKJ6B2rEWmpZLQ6bmxsdKZ5zw7Qw9GIxjnhj36ur3+empoFVFcfFTDe9TPS\nfjfS2FhBeXkBsJfjjitj5crSkDrml6OtrWNEJHC0dTAaw/bFnmvTpudHRBj5l6yvqTmN5ua11Nau\nZ+HCwlGdntoGMpe9e+GOO+D662Hq1HRLEzvnngtf/Sps2gQrVqRbmtQQr5OnGTgc2Am8CZwHbAGO\nB/q9ES23SaW32m80m5unO0swh56XH45Qgzev8s+4y16//hF27KilvHx5SOPuHhBu376Zo44yTJsW\n2NG5O4ju7j5aW+tpb19Cefl8pk4tYNKkV+npmcDEidW0t3fwxBN2NRL3w04kx0U2v2VIdWJoL87n\nvp8tLQ34fDNYsSJ0ecHRYe3tnUybVsrJJ58Y1T0aXo54HwMDG1i1qoa5c+eSnz/81tedb6GlpRaf\nr2qEPMODxDnk509i6dKqqAYp7kSHEyc20d6ex8DATny+qpimFiiKm1DOw/5+QuaRqqvrY+fO8XR2\nvsfRR5fi880J0Ovt2wfw+aoYGHib6uqqoUiL0dQ7eOC+cOEOJ/F++Iic6dOXcuBA65DT1t/HhMrn\nVVR0FCtXzmLDhgeZMKF7RGTdWCXWaVR+gvtReNVZcjx8Xx/PmMD9m1C2zq93TzxR6zzk2pWH3PuC\no5M/+MFT2bLlZd5/v4GiohMoKprjmi5rF32wS0NP4fXX7bvKwCTLiZFIVNBYW7whHYxWx/Heg2ic\nE4EOwIUBzu5wbbO9vdNxbs6kpeUtCgqamTbt2LA6FijHgRErz8VzjeGuLXh7VdV4urvfZs2aOgYH\nWykpKaGnp4OaGh+LFuUNTcOPhLaBzOWee6CzM3unOx13HEyfDo89pk6e0fg/4GzgeeDHwP+KyPXY\nJMy3eyRbTpNKb7XfaC5fbh8Ow83LD0eowZtX+WcCB3lv4/OFjw4KlmPatKoRHV1gB2EoLe3h7bfb\n8PnslJnq6uPp6mqgsbEjYDWSaKs+m98ypDoxtBfnc9/PtrZWBgbClxcqOiyWe9Te3klLyz527y6g\npaUCaODTn57LypVVIfMttLXtDJkYNN5BSqCTaomzDPYRC154AAAgAElEQVTIJYwzfVqgklmEch6G\ncvL7nSXnnHMs69b9mQkTdlBeXj00zbC9vXNoNazt2zczeTJRPxgHt4mmpjr6+xdFjMhZtGgC55wT\nOidLcD4vu+z2Lvbv72fPnsWsXdvosgdjm3j6rOB+1C6pPvI+uIlnTOD+TW9vTcjl2u1D7mzKywuc\nh9w2ysqqA+T0r0A4e7ZdXUhE2LZtN7W1DXR2NgdMlw1l590vetLJWFu8IR2MVsfx3oNo+v3gvts9\nvSlc2ywrK3Gi196joKBtxDLq8cgR6zWGKzN4e1fX28AEoICSEmHFinKmTBHKys6M+oWotoHMZHDQ\nJly++GKYPz/d0sRHXh783d9ZJ88tt6RbmtQQ7xLqX3b9f7+IvA2cAjQaYx71SrhcJpXeaneIaDzz\n8qPJlxIvgYO8qpCDvEhyBBPYQXRw/vmrXFN2Slyh2YGrkURLNr9lSHViaC/O576f1klXE/Khz028\n98guR7yBlpYKysvn4/MV0NHRxSmnnBQy30K4xKDxDlJCtalwSxgrSrSEch76c/K48estlHL66aUs\nWlTI0qULE9brUL+1K+UF5svyO5lWrZpNbe16amryQkZYhMs/Y1fY+wDLl18UsEz4WCceexjcj/qX\nVI9EPGOC4FwooWzd8EPuXgoKmgMecsPppDt5PhCQVyWUnc8UXRlrizekg9HqON57EI99jKZtBspT\nPaqzJBo5Yr3GcGUGbxcRioo+wIkn2uuZMgVOOeWkUeshEdmU1LBmDdTXw69/nW5JEuPCC+Guu+Ct\nt7LXWRULnqQeMsZsBjZ7UdZYIZXe6kSNZjIjB6IZ5MUiR3iH1PAx/tVI/KsYRZP02U82v2VI5n0c\nLZlhvASHNyfzHlVWVrJqVQ3QMBT5FewAjEYeLwcpGrWjJEqsy2Bbu1g+IqF3Inod/NtQK+X5I3Ls\nCnuFI5axHu36APr77cuMbLPNySQee5jqB61I06ADZTk2wr7Apd/9yfNDXdtodj5dqL33ntGSdgcT\n7z2Ip81E0zZjlScaObwqM3h7qKTmsaJtIDO57TY4/ng45ZR0S5IY555rl1J//HH4t39LtzTJJy4n\nj4h8BXjPGHNX0PZPANOMMWMkECp+UjmI8tpoJisvjRdyRlNGItN69C1DaJI1jS0enYj3HoVfjjg2\nebKlvSmKm9HsorcrEIWPyInXtlZW2uV7w614N1aJp15T9aDlt21btrwcdpnlaJd5jpZo7LySO6Rq\nin0qxypeyxFvmaFWQA212IWOYbKbV16BP/8ZVq+GbL9tkyfDGWfAo4+qkycS/wRcHmL7NuB3gOdO\nHhG5Dvg18GFjzCNel59qstlbnWl5aeLtQOIJY8/m+5ZMMmkaW3B0WCy6kYn3N9Pam5J7xLOaktck\n2vb8q+C0thbQ318WsOLdWCYTbFo4O+y3bfX1PTEts5womVAnSmrIpLFJMKGcJA0NDVnrDAnXrnQM\nk93cdhvMmgWXXppuSbzhwgvhc5+D3l7r9MllEllCvTXE9jbsqlueIiJzgE8Cm7wuO1tJpmd8tLIz\nrdMcrQMJdz3uUFmfr43eXh8bN27Oys411QTXaWlpccAqVJkyVSJZg4t42p/7N6WlxYB/uenIv8+0\n9qZkB7HoaDSrKaX6bax7KeC+vp6AXELaVgLJxDflbpl6e7vZvn2AgYFpIVdTmz59Frt2NUS9zHIm\nkYl1rwwTPCWqtLQyLkdKKu5zJjhDRrvOeOphrNrlXOCdd2wEz3e/CxMmpFsab7joIrtC2OOPwxVX\npFua5BKvk2cXcCqwI2j7qcA7CUkUhFjr8SvgX4HbvCw7m0lmZzBa2cnMSxNNBxJ8jF3xKHwHEu56\n3KGyPT0TePbZZnbv7qK4+DWuvtqEnM+vWILr9PzzKwNWoUpV+Hu6HJLDy60bBgZeYOXKt5g3b15E\np03gg/RzwAGKio4Ztf1mcx4oJX3E4vzeuXMn/f2zIq6mlGqHqf98zc17efPNt1iw4AP4fK+zaNHL\nLF16bMg2NlbbSqL3xssH2MApWF1MmbKYd96pxeerGlqZLXg1tV276ikv382KFTOiWmY5HYympxql\nkJmEyhsTz/2K5j4n2o4ywRkS7jqjmVoZjrKyEny+etavf4CBgZ309tboVNos4Sc/gYkT4ZOfTLck\n3jF3LpxwAtx/vzp5wvFL4IciMgF42tl2NvB94AdeCObiRmC9MWarGoRhktkZjFZ2MvPSDD8872Ng\nYAOrVtWMWGEluBNauHAC+fkHwg7s3dfz+uub2LLl5aAkfMLvfvcAdXVQUnIszc3PsXXrK+rkiUCw\njoxchSo1xOqQjOUtXqQBW3t7Jy0tht27Z9LSspfdu9dTUfF2RKeNu87WrGkC+oZWoYjUfjUPlBIP\no9nxQKdjF9DnRO+EXk0puDx/wvrg9hHrg064Nuw/X1kZbNs2iDHF1Na20dXVQ2tr6DaWi20lmvpM\ndDzgpaNieArWIM3NA6xaVUp7+2wGBt6OuJraihUzufzyj3ry4JeMqIvR9FSjFDKT4ClEGzdujut+\nRXOfE21HpaXFdHf/hTVr6iguPkRp6RlD+1IVMRbuOhOZWllZWcmOHTvYsaMJn8+uojtvXqM6QzOc\nPXvgjjusg6eoKN3SeMvll8NNN0FPD0yZMvrx2Uq8Tp7/AkqBnwE+Z9t+4BZjzHe9EAxARI4GLgVW\nRPubG264gaIgbbzyyiu58sorvRIrI0jmG8vRyk7mfHb78LyP3bsLaGmpABqYN29eQGcQ3AkVFhpW\nriwNGNgHh4r7fANs376JHTueYdu2g8yYMdFZltXdCe8Fdjt/UztRc/Xq1axevTpgW3Nzc0pliAUv\n9S+RwUusDslY3uJFGrDZZXhfoKVlL+XlhezZU0ZX17iITht3nRUX7wUOsX37Jrq7X2fnzsKw1675\nI5R4GK2NBjq/DbNnj4zeiVReX98EJ0FzYPsYbjeldHdviBh5EyyHu+34z9fcvJeJE5t4553dwAEW\nLTqPHTvqnSXTCSg3F9tKNA+O8dpjv+195plnaW6ewvLlJya8/Lz/ftbULKG5eQ21tc9SVTWD6uoq\nJk9261d8q6lFQzKia0bT0+C612lcmUm8bSWa+xwYERmvw28CUIAdhw6TqoixcNc53K6raG5eG3Jq\nZTidFxEmTy6ivPx4dYZmEb/5DXR3w2c/m25JvOejH7V5eR55BK66Kt3SJI+4nDzGGAN8SUS+BRwF\n7AMajTH9XgqHde7MARqdaVszgV+IyOHGmJ+H+sHtt9/O0qVLPRYj80jmG8t0vg21D88baGmpoLx8\nPj5fwYjOILgTmjatasTAvqGhYahD9PkGqK720dW1i23bumlvX0J+/kzgvaGylyw5hrq6v9DVVUd5\nuY8lS45J2TVDaEfkvffey1UZan281JFEBi+xOiRjeYsXyYFkl+HdAdTi881m2rQpiByMOHB011lp\n6akAbN36Ct3dB9i5c1bY6ARFiYfR2qi77UycGDp6J1J5dpqsjGgf/nYzefIsNmx4LWLkTbAc7rYT\nuKR7EV1du6mr281bb23nrbdeB+bT35/7bSaaCIJ47fHwlLjpvPnma8CDVFQUJOS099/P3l5DTY2w\naNFkli5dOMLJkcxxRjKia0bT0+Dr0GlcmUm8ehfNfQ6MiIz95VdHRxdFRR8YelnU0dE1tC9VEWPh\nrtOv/z09hpoaH4sW5Y2YWjnai7GxOJU2Wzl0CH74Q/jIR2DOnHRL4z2zZtnl4B94QJ08YTHG9AEv\neCRLqPLvAO7wfxeRZ4Dbc2F1rURJ5hvLZL8NjfSGyz481wAN+HwFlJfbBMluoumkgzvEyZNh8uQi\npk8Hn6+Alpa3KChoo6ysGrAd0TXXSIBMSni81JFEBi+xDthiGWhEOjZ4Gd7ARMqh5Qi16ld3dw8D\nA8VUV5+U8Bt0RXEzWhuNte2MLK8hZPvwt5va2iZgLzU159Pb2xlWt8PJEWrlmaVLbdSJyHyWL/9o\n2DaTS1EU0diseO2x3/YuX34iAAsWtHLmmccm1P8F3s/lYes+XpmjubfJeKCMVk/96DSuzCRevYvm\nPkcTERmJSHqbKidJuOsM1P8zY542Olp/k0s2Oxd45BF44w249950S5I8LrsMvvAF6OyEkpLRj89G\nonbyiMgfgI8bY3qc/8NijLkkYcnCFJ2kcpUUEsnb73549q+q4s/94A79HK2TDtch2ilaeykoaGbV\nqppRB2pK8klk8BLrfYvlwXa0YxPRGfcb9Dfe2EZn548oLDyoCQmVlJGozQvXPvx/p09/mbo6Hz09\nHUyc2BG2XfvlqKy0g/xNm54POch3L4fe399Aff3zYe1FLkVRJDPixW976+ufp6IijzPPPC3heoqk\nV148yEVzb5NRZ7G2F41cGBvEGhEZiUh6609DsHXrK4BtS6kcKyQy7o7m97lks7MdY+Db34bTT7cJ\ninOVK66Az38e7rsP/vVf0y1NcoglkqebYSdLdxJkGRVjzFnpOK/iLaO94RoezDc4OR8kZqMfqbO0\n28LniFBSSyqnB8YyUE927in/G/TOzi56el6hpOQMTUioZA3h2sew06aSpUsbo27X0Q7y44nkzOYo\nimTaoVRPzfbiQS6ae5sJL21yMQm4MhIv73MkvfW/4GxtLaC/v4zW1sYAx3cmkEhd5JLNznaeeAK2\nbIF169ItSXKZMcMup/6rX8G//Avk4uNg1E4eY8x1of7PZTR8MDlE+4YrEaMfrrNM98BPGUkqBuSZ\n1pbdb9ALC3soKTmJFSs+qIMbJWeItl0HJv+dPmry30TfKCuWdNhELx7ksuXeZoKjSUk+qbzPqXaE\nxGojEqmLbGnXuY4x8K1vwcknw1ljIKzi+uvhwgutU2vZsnRL4z0J5eTJdTR8MDlE6+1Xo694Raa1\nZXcb6O21S4qqnitjkeGpi1Oc5L9QUZGXUDvQKIrRSYdN9KJP13urjFVSPSZOpY3Qdp0ZPP00bN4M\nf/pTbka2BHP++VBebqN5xrSTR0S2EmVOHGNMTixvpeGDySFab78afcUrMq0tBydhnjcv+mktipJL\nBCb/fdBJ/nta0qY9KJZ02EQv+nS9t8pYJdVj4lTaCG3X6ccY+NrXrLNj5cp0S5Maxo+Hj38cfvxj\n+P73YfLkdEvkLbFE8jycNCkyFI0kSS/ZZPQzbTpQKsmGa8/ktpxNeq5kLtnQDkMRmPy3gDPPjD9x\nqRI96bCJidq6bNVxJfmMBd1I9Vghk8dNivc8/DBs2gRPPjk2onj8fOpTcMstcNdd8JnPpFsab4kl\nJ883kilIJqKRJEq0ZNp0oFSSDdeubVnJdbKhHYZC22Z6yMZ6z1YdV5KP6ob3ZKONUOLj4EH4ylfg\n3HPtZyxRUWGXU//hD20C5nHj0i2Rd8Sdk0dEpgIfARYA/2WM6RSRpcD7xpgWrwRMJ/qGPZCx8KYk\nHowxbNnyMvX1g9TULKG316R9OlAq8Tqk1xhDQ0PD0FKhS5YcQ1VVVUK6pm1ZyXVSFVo/Wj+QymSd\nSvwko969GiOEKyfTpt0qmUM260Yi7SaZ43K1zWOHX/4S6uth9ep0S5IebrwRjjvORjNdemm6pfGO\nuJw8IrIYWIddSn0u8EugE7gEmA1c45F8Sgahb0pC09jYSF1dF83NAzQ3r6GmRigrW55usVKG1yG9\njY2N3HPPc9TWGmAvdXV/4ZprMmupUEXJNFIVWj9aP6D9xNjFq3sfrhydPqKEI5t1I5F2o/ZWSZTW\nVrjpJrjuOliyJN3SpIdly+D00+HWW+GSS3JnulpenL+7DfiNMaYS2O/a/ifgtISlUjIS95uS/v4y\n2ts70y1SRtDe3smUKYtZtep8KioMixYVjqmw1srKSlaurOLUU2HlysRDetvbO+nqKqCk5FRKSo6n\nq2uc6pqijILX7TAco/UD2k+MXby69+HKSZWOK9lHNutGIu1G7a2SKJ//POTl2cTDY5kvf9muLPbk\nk+mWxDvina51PPBPIba3ADPjF0fJZLL5TUkyKSsrYeLEBnp7hYULZ7J0aWJTi7INr0N6y8pKKC5+\njebm54C9lJf7KCsr8aZwRclRUhVaP1o/oP3E2MWrex+uHJ0+ooQjm3UjkXaj9lZJhLVr4Z574Ne/\nhrKydEuTXs4/H04+2a4wdt55uRHNE6+Tpx+YEmJ7FdAWvzhKJqNJ2EKj9eItlZWVXH21cXLyTGbJ\nkmO0ThUlQxjN3qk9HLt4de9Vh5SxRCL6rm1FiZe2Nrt8+Hnn2b9jHRH41rfgnHPgscfgoovSLVHi\nxOvkeQT4DxG5zPluRGQ2cAvwkCeSKSklmuRt2fymJJlovXiLiLBw4UIWLlwYcr8mAFeU9DGavQve\n70+kru01cTLd9nnVF2qfquQyodpxvPqubUWJh0OH4Npr7apav/mNna6lwFln2dw8N90Eq1bB+LiX\np8oM4hX/c8DvsVE7hwF/xU7T2gT8uzeigYjkA78DjgL2Aa3APxtj3vTqHIpFk7cp2YLqqqJkD9pe\nvUPrUlGyH23HSrr5/OftVK0//QkOPzzd0mQOIjb58gknwM9/bpdUz2bi8t0ZY7qNMecCfwd8BvgJ\ncIEx5nRjzB4vBQR+boypNsYswUYQ/crj8hU0eZuSPaiuKkr2oO3VO7QuFSX70XaspJPvfhd++EP4\n8Y9tHholkOOOg+uvt7l52tvTLU1ixOzkEZE8EfmEiDwG/Bz4NLAcOEI8jhs2xvQbY9a4Nm0G5nh5\nDsVik7e1u5K3hU506w+937hxMw0NDRhjUizp2ETrfZhodVVRMpWx1J61vXpHaWkx3d2vsWbN7+ju\nfo3S0uJ0i6QoYRlLdi4W1CYq6eDgQfjCF+xUpG98A/75n9MtUeZy880wOAhf+Uq6JUmMmKZrOU6c\nR4ALgFeAWkCw06l+A1wCfNhbEQP4LPBwEssfs0SbvC1SmGmm5wvIZjS8d5hsSDSobUGJRC6253A6\nnw3tNbs4APQBh9ItiOeo3cwtctHOeYHbJpaWVmKMYePGzarzStJ47TX41Kdg40YbxfPZz6Zbosxm\n+nS45RZbZ5deCitXplui+Ig1J8/HgdOAs40xz7h3iMhZwMMico0x5m6P5HOXfxOwAPhHr8tWok/e\n5g4z3b59M+3tnUO/0Q49eUSq97FGNiQa1LagRCIX23M4nc+G9potdHR0UVR0DCeeaPWmo6Mr3SJ5\nitrN3CIX7ZwXuG1iQ0OD6rySFPr7Yf16uzz6gw/C3LnwzDOwYkW6JcsO/vEf4Q9/sFO36uqgOAsD\nZ2N18lwJfCfYwQNgjHlaRL4HfAzw1MkjIp/HRgidbYzZH+nYG264gaKiooBtV155JVdeeaWXIo1Z\nbJhpgyvMdLgz0g49flavXs3q1asDtjU3Nw/9H6nelcxD24ISiVxsz6rzyScX9caN6lBukev66gWq\n84oXGANNTfDSS/Dii/DCC7BpE+zbB1VVcNtt8E//BPn56ZY0exCxDrJFi+ATn4CHHsq+VchidfIs\nBr4YYf8T2ETMniEiNwJXYB08vaMdf/vtt7N06VIvRVBcRAq91w49fkI5Iu+9916uuuoqIDumKCnD\naFtQIpGL7Vl1Pvnkot64UR3KLXJdX71AdV6JF2Pgqaes8+FPfwL/e+Hycli2DL79bTjzTDj2WOuw\nUGKnogLuvhs+9CH4znfgq19Nt0SxEauTpwR4P8L+9wHPAppEpBy4FXgTeMbJCbTfGHOyV+dQYiNS\n6L126MlDpzxkF9oWlEjkYntWnU8+uag3blSHcotc11cvUJ1XYqW/H+67D37wA9i2DSorbd6Yc86B\n44+HGTPSLWFu8cEP2kTVX/saHHkkXHFFuiWKnlidPOOAgxH2H4qjzLAYY1qIc5l3JfVoh64oFm0L\nylhDdV5JFNUhZayhOq9ES2cn3HGHXfr8vfes8+FnP7M5djRSJ7l89avw5ptw1VUwYYJ1qmUDsTpk\nBPiNiPSH2a+z/RRFURRFURRFURQlARoa4L//G+66yy7rfe21cMMNsHBhuiUbO+TlwZ13woEDcNll\ncOut8P/+X+Y712KNkvkt0Ap0h/m04nHS5XQRnAR3LMqQ7vOrDCNJtizZXH42y67lZ885VYbwZIIc\nmSCDFyTrOrRcLTcV5abrPNGi8kRG5YlMsuXp74dHHoFVq6wz54EH4ItfhJ07bTRPsIMnk+onk2QB\n7+QZNw7uuQe+8AW48Ua45BJ49930yRMNMTl5jDHXRfNJlrCpJBOUNN0ypPv8KsNIsv1BXZ08Wn62\nn1NlCE8myJEJMnhBtj3Ua7labiacJ1pUnsioPJHxWh5joL7eRutcdRVMn26T/ba1wW9/a507X/86\nTJuWGnkSIZNkAW/lGTcOvvc9m+x60ya7ctmXvxybsyeV9eNZ/hwlMzDG0NjY6CRxK6GyshLJgHiy\naOQKdUwmk6l1rWQ+bt0pLbW56js7u1i7di2FhVOYNq00Zn1SfVQyhXh0MVSb6OjoSkiXtU1Y3PXQ\n19eHMSYt9ZAJ98MvQ2dnFw0NDXHJkAnXMdbQOh8m3FjZ6/rROveWQ4fg/fehpQXefttOw/J/tm+H\nri47/WfxYhsp8pGPwAc+kPlTgsYil1wCZ5wB//Vf8JOf2L9nn20dc2eeCUcdlRn3TZ08OUZjYyNr\n1jTQ319Gfn4DAFUZkNEtGrlCHZPJZGpdK5mPW3e6u/8CTOC99/r5xS+2smDBfCoqOoDY9En1UckU\n4tHFUG2iqOgDCemytgmLux7a2vbQ2NiYlnrIhPvhl6GzE9asiU+GTLiOsYbW+TDhxspe10+u1vkP\nfgDf/Cb4fPYzbRocfjgccQTMnGmjaPyfqVNt9Ma4cfahff9+2LfPRtg88oj9f9++4e29vdDTE/hp\nb4d33rHJkg8dGpajuNhGglRVwQUX2JWxTjoJiorSVzdK9JSUwHe/C1/6Ejz4IKxebXMlHThgdee4\n42DpUvtZtgxmzUq940edPDlGe3sn/f1lVFefxPbtm2lv78yIrP3RyBXqmEwmU+tayXzcurNmTR1Q\ngM9XyP79cykrm01/PzHrk+qjkinEo4uh2sSJJyamy9omLO56OHTIl7Z6yIT74Zdh8uRi+vvL4pIh\nE65jrKF1Pky4sbLX9ZOrdb58uV0O+8ABm/umtdVOt6mrg3Xr7Pf9+0cv50MfGv5/3Dg47DCYMgUm\nT7Z//Z/Fi21unSOOgPJy+3f2bCgrS941Kqlj6lT4h3+wnz17YONGePZZ2LIFfvlLG70F1qm3cCE0\nN8PNN8P8+dbBWFZm902YYPVo/Hib6NkY+zv/X7/DMRZyyckzEeD111/3pLDu7m62bNniSVmplOH9\n99+ltfVtmpvr8fm6eP/9OXFfh5d1EI1coY7J5PvgZV2HoqHBvjlx63Sy6yOby88m2d26s3//DmA8\nvb2t7Nv3HNu2NTF9+sSY9Wk0fUx3/YTS52SfMxWoDCPliMc2hmoT69b9Nmbb6q6LdNhor0iWvRkY\n6OL999/1XF+ikTee++G1bvtlaGvbRWvr5rh0ItJ1JKstpqrcZOl0ovJ73ZYzxWb6iUWeUHUBeF4/\nybafscoT77mDdXrCBDjrrPDHG2Ojcjo7oa/Prmg1OGi3+3yQnw+33NLNzTdvIT/ffh8f49P0zp32\n4xWZpM+ZJAukXp7SUrj4YvsxxkZyvf46NDbaaXrbtnVzyy1b6O2NrdyHH7bRQBBgnydG+o0Yv4so\nyxGRvwfuTbcciqIoiqIoiqIoiqIoSeJjxpj7wu3MJSdPKXA+0AREEWinKBnPdOBC4DGgNc2yKEqi\nqD4ruYbqtJJrqE4ruYbqtJJrTATmAmuNMR3hDsoZJ4+iKIqiKIqiKIqiKMpYJi/dAiiKoiiKoiiK\noiiKoiiJo04eRVEURVEURVEURVGUHECdPIqiKIqiKIqiKIqiKDmAOnkURVEURVEURVEURVFyAHXy\nKIqiKIqiKIqiKIqi5ADq5MlQROSf0nz+aSJylogcnuLzThKR8c7/JSJytohUpFKGTCXdOpEIXuuT\niEz1opxRzpF0XRSRY0XkwyJyoYjM97JsJTWku12qrc490q1TseKVDibTridTX9WOZxeZ1r7SZcOD\nZFB7nqVkkj6rLmcYxpgx/wEWAM8AbwG3ARNd+zal4PwfDPF5z/9/iurgbmC68/9ZQBvwN6AV+HCK\nZLgG2AfscmR4x5GhHbg83XqSyk+ydQL4qOv/MuBxoBv4CzA70/UJGAD+CFwE5CWh/pOqi8BioNap\n80PO/53Ag8CUdOtfJn7Sbaed86itNmqrs0WnkmXnk6WDybLrydJXteNh6yXtttp1vrTb7BAypd2G\nB8mj9jxy/ag+h5dHdTmDP+JUyphGRNYCjwCbgc9iG/RKY0yviGw1xixJ8vkHgU3YAY6fkxx5jDHm\nrGSe35HhFWPMMc7/fwU+a4x5WUTmAX9Idh04530VO7grAp4FzjHGvCgiRwIP+eVLgRzjgNOB2c6m\nncBfjTGHUnF+R4ak6oSIbDHGLHX+/yXQAfwQ+HtghTHm4gTLT6o+iUg98AvgemAqtqO50xjTkEi5\nrvKTqosishH4ojFmg4h8EDgH+DzwH8AsY8y1iV1B+vRYREqNMR1JKDetdtqRQW01mWOrHVnSbq8T\nIZk6lSw7nywdTJZdT5a+JtOOp0OvvbLdmWCrXbKk3WaHkCntNjxInoyx50FyZYRtV32OKI/q8ugy\npU+P0+1lyoQPsDXo+01Yz18RsCUF578OeA5Y4tq2I8V10OD6/4Wgfa+m+j4ATZHuURJlWIH1AG8G\n7nc+zzvbTkvh/UiqTgTV9SvAOPf3TNcnd7sETgF+BfRgjfo1HteP57oIvBz0/QXX/w0elJ82PQZ2\nJqnctNpp55xqq01m2GrnXBlhrxO8hqTpVLLsfLJ0MFl2PVn6miw7ni699sp2Z4Ktdp077TY7hExp\nt+Hh7lc67XnQeTPGtqs+R5RHdTmyPGnV4/EoAGxhtLMAABPVSURBVIe5vxhjviMiA8CfgcnJPrkx\n5i4ReRr4lYisB24GUh1itVZEfgT8O7BORD4G3AesxIa5pYJBETkaKAYmicipxpjnRKQaGJciGX4K\nXGyMedG9UUSOB+4EalIhRAp0YqKI1ADinM/tUfbiPCnTJ2PMRmCjiHwWuAL4R+wb4ERIti4eEJFq\nY8x2ETkJ2OPa54V3P6l67Ly1DsfERMqOQFrttHNOtdWWTLDVkCH2OhGSrFPJsvNJ10GP7Xqy9DVZ\ndjxpep0i2512W+06dybY7GAywYa7yRR77iaTbLvqc3hUlyOTXj1OtVcrEz/A/2FD74K33wgMplAO\nAT4HbARaUlwHPuB27NzyHcAgcABYA8xLkQwXYMPJ24CzsXNgtzsypWQuJRHevkXal206ATRh5xfv\ncD4VznZP3kwkW59Iskc+2brIcAe43TnH6c72mcAvPCg/qXqMfYB52qmX4M++JN2TjLDTzjnVVqfZ\nVjtyZJS9zjSdSpadT5YOJsuuJ0tfk2XHk6nXqbDdmWSrXedOm80OIUvabXiQPBlhz4Nkyhjbrvoc\nUQ7V5cjypFWPNScPICL5AMaY/hD7yo0xLSmW52jsfPk7Unle59wF2Pmm47Ghu57n1ohBlnHAscAu\nY0xris75BHa+6x3+c4rIdODTwCnGmPNTIUcIuVKiE879n2GM2eFheZ7rk4iUGGM6vSgryvN5roti\nV5JZADQaY3q8KNNVdlL1WES2Ywc9TSH27TLGzEqk/DDnzCg77ZxXbTXpsdXOeTPSXidCKnTKKzvv\ntQ6myq57qa/JsOPJ1OtU2O5MtNWu86fNZoeQJWNsuJt02fMgGTLGtqs+RyWH6nLo86dVj9XJoygu\nRGQa8D3gMhiazngQu1rGl9PV4SlKLCRbj0XkK8BTJigE1dn378aYmxMpX1GiQe21koskU6/VdivZ\ngNp2JRdItx6rk0dRwiAiJQCpjBhRFK9RPVbGAqrnSi6ieq2MdbQNKLlAOvQ4L1UnUpRswxjT6W6M\nIuLJ8tyKkkpSrcfaTpR0oPZayUVSqdfaZpRMRG27kgukQ491dS1FcSEiiyPsTmkWfUWJl2TrsbYT\nJRNQPVRykWTqtbYZJRtQPVVygXTrsU7XUhQXIjKIXZFEQuwuN8b4UiuRosROsvVY24mSCageKrlI\nMvVa24ySDaieKrlAuvVYI3kUJZC3geXGmHeCd4jIrjTIoyjxkGw91naiZAKqh0oukky91jajZAOq\np0oukFY91pw8ihLII8D8MPseT6UgipIAydZjbSdKJqB6qOQiydRrbTNKNqB6quQCadVjna6lKIqi\nKIqiKIqiKIqSA2gkj6IoiqIoiqIoiqIoSg6gTh5FURRFURRFURRFUZQcQJ08iqIoiqIoiqIoiqIo\nOYA6eRRFURRFURRFURRFUXIAdfIoiqIoiqIoiqIoiqLkAOrkUZKGiFwvIm3plkNRwiEiz4jIba7v\nO0TkM67vgyLywfRIpyiKoiiKoiiJISJfF5Gtru93icgf0imTklzUyTOGcBr0oIgccv76/5+fxNOa\nJJatKCMQkd84uv2zEPt+6uy709l0MfC11EqojHVEZIaI/EhEGkVkn4i8KyLrReRTInJYuuVTlERI\n01hDyWKCdGZARN4TkSdF5DoRkRjKCXiQzRa8fuAWkSZX2+sTkZdE5CNela+kDq/ahoP7mewzwMc9\nlDMr214uo06esccTwEzX53BgR/BBIjIhxXIpilcYYCdwhYjk+zc6/18JvD10oDG7jTF7Ui+iMlYR\nkXnAy8A5wJeBY4GTge8DfwecHeZ341MlY9B5tS9Q4kHHGkqs+HVmDrASeBr4EfCoiMTyvJLwy8Uc\n0EsDfBVbn8cCLwD3i8hJ6RQqB+o1XXjVNoYwxvQaY3q8E9EW63F5SgKok2fs0W+MaTPGtLo+xnmL\n/EPn7XI78BiAiBSLyJ0i0iYiu0XkKRFZ5C9MRI51prz0iEi3iPxNRI5xn1BEVorI6yLSKyKPi8i0\nFF+zMvbYCuwCLnFtuwTr4HGHqwZM1xoNEfmGiLS424CixMj/AAPAMmPMQ8aYemNMkzHmUWPMRcYY\nv+0ddCJ7/igifcBNzvbTReR5EdkvIu+IyHfdgzyxfNGJEtrvvNH9imt/hYjcLyJdItIhIg+LyBzX\n/rtE5P9E5CYRaQG2i8jXRKQ2+EJE5GUR+UbyqkrJYmIda8wRkUecqIPdIrJaRMr8hYnILldkkP/v\ngGv/bBF50NHrdkeHZ7n23+Ps/6LYyLk2RwYdB2cOfp151xjzsjHme8CHgAtwIg5EpEhEfiUirc6Y\n888istjZdy3wdeAYl55cE+Z36/y/c/Z/XUS2ik0z8Bawz9leKCL3Onq5S0T+LXjcICI+EblVRJqd\n4zaJyOmu/dc6enmeiLzmjIWfEJEZ/nMD1wIfcsl9mohMEJGfOHZ+n9jp5F+KoT77nHb3BvAvzjVd\n5JzzOLHRIP6x/V9EZIn7x64+6E8isldE3hSRS4OOibk/iUF+ZZh42kaAjgcjQdFjYok0dvieiNSL\nyB5HF74pIuOcfYm0vcUi8rQMP0e+ICJLnX2zxfYLnU7bqhWRla7fLnL0s1dshNPdIlLq2v+MY+dv\ncfTzXae9jQm0c1PcXAf0AScB/+ps+wNQBJwLHAfUAn8WkSnO/tXAW8BS5/N94KCrzCnAZ7ERFKcB\nC5xjFCWZGOBO4BOubZ8A7gJiDW8FQER+DFwFLDfG1CUsoTLmEJESrC39iTFmfxQ/+TrWBi8C7hSR\nI4DHgeeBxcCngOuxb2z9fA/4IvAN4CjgcuA95/zjgbVAN3AqcArQC6yRwEihs4EqbLTRhdi2VC0i\ny1zXssQvV/Q1oChA0FhDRAR4FCjE6uV5wELgPtdvjsVGA80EZgF/A/4KQ9EBTwLtzu+XYx9on5BA\nJ865QAVwuiPDPwBXJ+UKFU8wxjwDvMLwC5vfA6XA+dgx50vAOhGZCtwP/ADYBszA6sv9YX63xfU7\nP0c657kYq28At2MjLS90fnsGEOAMAX4KnAhcBtQAD2J1b4HrmALgc8DHgBXAbOBWZ9+twAPAGpfc\nG7Fj5wuBj2Dt8ceApsg1FhpjzCHgAOBzNk0GfoPtA04EGoA/icikoJ9+07mexcC9wO9EZCEk1J8o\nHhBF2wil45EIO3Zw6AGucfZ9BvgkcIOzL9a292eXXPdiX8ouc/Z/D6urAD/D6uxy7HjjS9i+AxEp\nAv6MtQFLnfKnY9uSm2uc35zgXN9/iEjIiOmcwxijnzHywT7gHsAaYf/nfmffeuD5oONPxw6axru2\nCdap83Hnex9wZZjzXQ8cAipc2/4N2JnuutBP7n4cPf8DUIYd6M/ChrjuAUqA/wPudI59BrjN9dsd\nwGdc3weBS7GdUB0wM93Xp5/s/WAHGYPAh4K2t7ls8nedbYPArUHH3Qy8FrTt00C383+ho/PXhTn/\nx0L83ue0jXOc73cB77jtvrP9caxzyv/9v4E/p7tO9ZN5nzjGGquAfmCGa1uN0waOCVH+T4E3gKnO\n92uBV4OOyXfawhnO93uAxqBjHgLuTnd96We43w6zb7XT/54K7AYmBO1vBD7p/P91YEvQ/lOBrih+\ntx8oce0vdPTyYte2Kdhx723O99mOrs8MKvsp4NvO/9dix8JzXfs/DbwT6fqx03GeirM+h8Yyjo3/\niiPDyjDH52GdNRe4tg26bb6zbZN/G/alV1z9iX7S3zbc5TLK2CHMuT8H/M31Pd621w1cHeYcrwBf\nC7Pv34EngrZVOHp7pPP9GeCvQcc8D3wn3fc1FZ+0zPFX0srT2Le//mgGdz6SF4OOPQaYCnRJYG6v\nidiIHLBvOX4rItcB64AHjDFNrmN7jDHNru/vYj2tipJUjDHtIvIY9o2tAI8bYzol5jx13I4d/J1k\njOn0WExFATgeO8i+D/tw6ueloOOqsYNsN88BhSJSgX175sPa+VAcA1SKSG/Q9nysTV/nfK81xhwM\nOuaXwK9F5EZspNyV2DfNihKKWMYa1UCTMeZ9/wZjTK3YaYpHYQf6AIjIv2CdlScbY3Y7m48Bjgqh\n1xOwev0X53twBOa72OgNJbMRrM05BvswGtyPu8ekoTgGG7ky2u/eDurj5wPjsflsADDG9IhIveuY\nRcA4oEECC/dhX5L62Rs0No5mLPwb4CnnfGuAx4wxT43yGze3iMjN2OvsBb5kjFkDICLTsS8NTnfk\nGAcchnVaudkc9H0Ttj7BRvfE258o3pBo2/BzFJHHDojI5dgX9Qucc43HOmgiEU3buw07trgGqzMP\nGmPecvb9N/A/InK+s+8hY4x/6vgxwFkh9M84Zb/hfH81aP+YeQ5VJ8/YY48xZkTyQ/++oO+F2BC6\nsxg5xaULwBjzNRG5Bzsv9ALgGyLyUePklWA45M6PQacJKqnjLuAnWL375zjLeBL7QLuSwOkDihIr\nb2B1caF7o3/wLyL7go6PNSl48O+DKcQ+YP89I2162yjnfRTnrTbWro/HRkIoSihiGWtEhYicg50S\ncKkx5nXXrkLsw+g1RNZrHY9kJ0dhI1MKsVEhpzPyPu8O/pGLaH8Xj14WYlMULMVGELjpc/0fSvci\nvnEyxmwVkbnYSLdzgAdE5CljzGVRyvZfWEdRnzGmNWjf3UAxTnQ91rZvZng6VzQk0p8o3pBo2/AT\ncewgNmH3/2JXo30S69y5ErhxlHJHlcsY8w0RuRe78MQFwH+KyBXGmD8aY34tImucfecBXxGRG40x\nP3XKfgQ7BSu47Hdd/49Zu69OHiUSW4AjgAFjTEu4g4wxDdj5vD8UkQewScAeC3e8oqSQNdhByyFs\nxxQPj2AfcFeLyCFjzP2j/UBRQuFEkj2FzUPyY2PMaE6ZYF4nMJk42LnqvcaYZhFpw0adnU3oXDlb\nsHkj2owxfSH2R5L9kIjcjc1tNQD8zhjTH6P8ihKK14G5IjLTGOPPH7UYmAS85nyvwuZa+E9jzONB\nv9+CTULaanS1xJxCRM7CTt37AfZhcSZwyBizM8xPBrBRKW62RPG7ULyFdeAcDzQ78hRh88v81Tlm\nq3O+GcaY52IoOxq5cez0g8CDIvIQNtfPVFcUWyTaXRERwZwCfNoYsxZAbJLyshDH+R/u3d+3OP/H\n3Z8oiRNH24hEI5HHDqdgoy2/5zr/3KBj4m57xiYH/xHwIxG5DxuB/0dnXwvwC+AXIvIdbC61nzpl\nX4KNwAt2sCqMEU+WEjdrsWGqfxSRc0RkroicKiLfEZFjRGSSk7X8NCcD+nJs4qzX0iu2olgcw18N\nHG2cybhxlvNHbILOOyVodQlFiZF/xr5geVFELhORahGpEpGrsLoaKaz9Z8AsEfmxiCwUkQ8B/4kd\n5OE4XW4Bvi8iV4vIfBE5UUT8CcjvxU4h+KOILHds+hmOHT8iCtl/hY3sPB9NuKx4x1rsqjv3il2x\n8yRsFOY6Y8yrIlKAfXH0PHCXiMxwPv6Q+3uwb5YfdsYoc0XkTKedzEjHBSlxke/c1yNEZImI3AQ8\njH3Rco8xZh12utDDInKu2BXZThGRb4uzGg82MfE8Z4xaKiK+KH83Asdx8VvgVsdOHo21gYdwloo2\nxjRiI3zvFpGLHd07QUS+LCKrYrj2JmCx0xeUish4EblBRK5wbH0V1qHyXpQOntFoBK52+p8TsY6c\nvSGO+6iIXCcilWJXUjweGx0NifcnSvR40TbCEsXYoRGYLSKXO/s+A3w4qJgmYmx7IjLRsdOnO8+R\np2J1zO/cv13sqnRznes4k+FnzJ9i82z+TuxqcfNF5HyxK0LHtcBKrqGRPIqfEQ/Axhgjdqm672BD\nPsuwIXDPAq3Yh5Hp2LDPGdjwzN8D30qNyIoyOmHeMIVz+ARvH/pujHlI7Eotd4uN6HnYKxmVsYMx\n5i2xK1PdhLWtFdhQ+dew4fU/8x8a4rfviMgFznEvA53YXDk3u475pogcwK6QcQTWZt/h7NsnIqdh\nB3MPYefKt2BXqOiJQvY3RGQjUGyMeWG04xUlBOHGGhcBP8YmZj4I/Am7ggvYXFMLnM87zjZxjvMZ\nY/aIyAqsXv8Bq9fN2BwOGmGQPazE3t+D2JQArwD/aoy523XMBVh7dycwDbv6z7OAP5/TQ9gppc9g\nV4a9DjtGHe134bgBaz8fxdrI72MXc3Cvjvhx7AqHtwLlWMfHZuc30fJL7JSWF7ERbGdi8+h8EZs3\n6hD2pesFUZY32kutT2CjI17CpmW4ieHVvtx8HbgC+0D9LnCFMWY7JN6fKDHhRduIyChjh0dF5Has\njc7HLsTwTexLJj/xtL1D2JW3fot9jmx3yvGXOw7rVKzA6tQTOFPEjDHvOk6hW7AvCvKBt4E1rpe6\ncb/czQUkgZfbiqIoiqKMIUSkEbu6yo/SLYuiKEoqcaLKWoAbjTF3pVueZCIig8CHjTGPpFsWRVFi\nRyN5FEVRFEWJiIiUYRMtzsBGdiqKouQ0InIsdhrt37Crzf4HNjrgj+mUS1EUZTTUyaMoiqIoymi0\nYqfk/oMxZrRlUxVFUXKFz2OTLQ9gpzctD1pqPaWIyN8DPw+zu8kYU+PRqXSqh6JkMTpdS1EURVEU\nRVEUJcMRkUnYiMpQHDDG7EqlPIqiZCbq5FEURVEURVEURVEURckBdAl1RVEURVEURVEURVGUHECd\nPIqiKIqiKIqiKIqiKDmAOnkURVEURVEURVEURVFyAHXyKIqiKIqiKIqiKIqi5ADq5FEURVEURVEU\nRVEURckB1MmjKIqiKIqiKIqiKIqSA6iTR1EURVEURVEURVEUJQf4/83UPAaMYjoHAAAAAElFTkSu\nQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Scale the data using the natural logarithm\n", + "log_data = np.log(data)\n", + "\n", + "# TODO: Scale the sample data using the natural logarithm\n", + "log_samples = np.log(samples)\n", + "\n", + "# Produce a scatter matrix for each pair of newly-transformed features\n", + "pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "After applying a natural logarithm scaling to the data, the distribution of each feature should appear much more normal. For any pairs of features you may have identified earlier as being correlated, observe here whether that correlation is still present (and whether it is now stronger or weaker than before).\n", + "\n", + "Run the code below to see how the sample data has changed after having the natural logarithm applied to it." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
010.70248010.90152410.9254178.95956910.0929098.774158
19.5131828.3563208.5239705.0434255.5174538.092851
26.6795998.6789727.6539695.8289465.4467376.654153
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "0 10.702480 10.901524 10.925417 8.959569 10.092909 8.774158\n", + "1 9.513182 8.356320 8.523970 5.043425 5.517453 8.092851\n", + "2 6.679599 8.678972 7.653969 5.828946 5.446737 6.654153" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the log-transformed sample data\n", + "display(log_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Outlier Detection\n", + "Detecting outliers in the data is extremely important in the data preprocessing step of any analysis. The presence of outliers can often skew results which take into consideration these data points. There are many \"rules of thumb\" for what constitutes an outlier in a dataset. Here, we will use [Tukey's Method for identfying outliers](http://datapigtechnologies.com/blog/index.php/highlighting-outliers-in-your-data-with-the-tukey-method/): An *outlier step* is calculated as 1.5 times the interquartile range (IQR). A data point with a feature that is beyond an outlier step outside of the IQR for that feature is considered abnormal.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign the value of the 25th percentile for the given feature to `Q1`. Use `np.percentile` for this.\n", + " - Assign the value of the 75th percentile for the given feature to `Q3`. Again, use `np.percentile`.\n", + " - Assign the calculation of an outlier step for the given feature to `step`.\n", + " - Optionally remove data points from the dataset by adding indices to the `outliers` list.\n", + "\n", + "**NOTE:** If you choose to remove any outliers, ensure that the sample data does not contain any of these points! \n", + "Once you have performed this implementation, the dataset will be stored in the variable `good_data`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Fresh':\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
654.4426519.95032310.7326513.58351910.0953887.260523
662.1972257.3356348.9115305.1647868.1513333.295837
815.3890729.1632499.5751925.6454478.9641845.049856
951.0986127.9793398.7406576.0867755.4071726.563856
963.1354947.8694029.0018394.9767348.2620435.379897
1284.9416429.0878348.2487914.9558276.9679091.098612
1715.29831710.1605309.8942456.4785109.0794348.740337
1935.1929578.1562239.9179826.8658918.6337316.501290
2182.8903728.9231919.6293807.1585148.4757468.759669
3045.0814048.91731110.1175106.4248699.3744137.787382
3055.4930619.4680019.0883996.6833618.2710375.351858
3381.0986125.8081428.8566619.6550902.7080506.309918
3534.7621748.7425749.9618985.4293469.0690077.013016
3555.2470246.5889267.6068855.5012585.2149364.844187
3573.6109187.15070110.0110864.9199818.8168534.700480
4124.5747118.1900779.4254524.5849677.9963174.127134
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "65 4.442651 9.950323 10.732651 3.583519 10.095388 7.260523\n", + "66 2.197225 7.335634 8.911530 5.164786 8.151333 3.295837\n", + "81 5.389072 9.163249 9.575192 5.645447 8.964184 5.049856\n", + "95 1.098612 7.979339 8.740657 6.086775 5.407172 6.563856\n", + "96 3.135494 7.869402 9.001839 4.976734 8.262043 5.379897\n", + "128 4.941642 9.087834 8.248791 4.955827 6.967909 1.098612\n", + "171 5.298317 10.160530 9.894245 6.478510 9.079434 8.740337\n", + "193 5.192957 8.156223 9.917982 6.865891 8.633731 6.501290\n", + "218 2.890372 8.923191 9.629380 7.158514 8.475746 8.759669\n", + "304 5.081404 8.917311 10.117510 6.424869 9.374413 7.787382\n", + "305 5.493061 9.468001 9.088399 6.683361 8.271037 5.351858\n", + "338 1.098612 5.808142 8.856661 9.655090 2.708050 6.309918\n", + "353 4.762174 8.742574 9.961898 5.429346 9.069007 7.013016\n", + "355 5.247024 6.588926 7.606885 5.501258 5.214936 4.844187\n", + "357 3.610918 7.150701 10.011086 4.919981 8.816853 4.700480\n", + "412 4.574711 8.190077 9.425452 4.584967 7.996317 4.127134" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Milk':\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
8610.03998311.20501310.3770476.8946709.9069816.805723
986.2205904.7184996.6567276.7968244.0253524.882802
1546.4329404.0073334.9199814.3174881.9459102.079442
35610.0295034.8978405.3844958.0573772.1972256.306275
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "86 10.039983 11.205013 10.377047 6.894670 9.906981 6.805723\n", + "98 6.220590 4.718499 6.656727 6.796824 4.025352 4.882802\n", + "154 6.432940 4.007333 4.919981 4.317488 1.945910 2.079442\n", + "356 10.029503 4.897840 5.384495 8.057377 2.197225 6.306275" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Grocery':\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
759.9231927.0361481.0986128.3909491.0986126.882437
1546.4329404.0073334.9199814.3174881.9459102.079442
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "75 9.923192 7.036148 1.098612 8.390949 1.098612 6.882437\n", + "154 6.432940 4.007333 4.919981 4.317488 1.945910 2.079442" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Frozen':\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
388.4318539.6632619.7237033.4965088.8473606.070738
578.5972979.2036189.2578923.6375868.9322137.156177
654.4426519.95032310.7326513.58351910.0953887.260523
14510.0005699.03408010.4571433.7376709.4407388.396155
1757.7591878.9676329.3821063.9512448.3418877.436617
2646.9782149.1777149.6450414.1108748.6961767.142827
32510.3956509.7281819.51973511.0164797.1483468.632128
4208.4020078.5690269.4900153.2188768.8273217.239215
4299.0603317.4673718.1831183.8501484.4308177.824446
4397.9327217.4372067.8280384.1743876.1675163.951244
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "38 8.431853 9.663261 9.723703 3.496508 8.847360 6.070738\n", + "57 8.597297 9.203618 9.257892 3.637586 8.932213 7.156177\n", + "65 4.442651 9.950323 10.732651 3.583519 10.095388 7.260523\n", + "145 10.000569 9.034080 10.457143 3.737670 9.440738 8.396155\n", + "175 7.759187 8.967632 9.382106 3.951244 8.341887 7.436617\n", + "264 6.978214 9.177714 9.645041 4.110874 8.696176 7.142827\n", + "325 10.395650 9.728181 9.519735 11.016479 7.148346 8.632128\n", + "420 8.402007 8.569026 9.490015 3.218876 8.827321 7.239215\n", + "429 9.060331 7.467371 8.183118 3.850148 4.430817 7.824446\n", + "439 7.932721 7.437206 7.828038 4.174387 6.167516 3.951244" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Detergents_Paper':\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
759.9231927.0361481.0986128.3909491.0986126.882437
1619.4281906.2915695.6454476.9957661.0986127.711101
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "75 9.923192 7.036148 1.098612 8.390949 1.098612 6.882437\n", + "161 9.428190 6.291569 5.645447 6.995766 1.098612 7.711101" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Data points considered outliers for the feature 'Delicatessen':\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
662.1972257.3356348.9115305.1647868.1513333.295837
1097.2485049.72489910.2745686.5117456.7286291.098612
1284.9416429.0878348.2487914.9558276.9679091.098612
1378.0349558.9971479.0218406.4937546.5806393.583519
14210.5196468.8751479.0183328.0047002.9957321.098612
1546.4329404.0073334.9199814.3174881.9459102.079442
18310.51452910.6908089.91195210.5059995.47646410.777768
1845.7899606.8221978.4574434.3040655.8111412.397895
1877.7989338.9874479.1920758.7433728.1487351.098612
2036.3681876.5294197.7034596.1506036.8606642.890372
2336.8710918.5139888.1065156.8426836.0137151.945910
28510.6029656.4614688.1886896.9488976.0776422.890372
28910.6639665.6559926.1548587.2356193.4657363.091042
3437.4318928.84850910.1779327.2834489.6465933.610918
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper \\\n", + "66 2.197225 7.335634 8.911530 5.164786 8.151333 \n", + "109 7.248504 9.724899 10.274568 6.511745 6.728629 \n", + "128 4.941642 9.087834 8.248791 4.955827 6.967909 \n", + "137 8.034955 8.997147 9.021840 6.493754 6.580639 \n", + "142 10.519646 8.875147 9.018332 8.004700 2.995732 \n", + "154 6.432940 4.007333 4.919981 4.317488 1.945910 \n", + "183 10.514529 10.690808 9.911952 10.505999 5.476464 \n", + "184 5.789960 6.822197 8.457443 4.304065 5.811141 \n", + "187 7.798933 8.987447 9.192075 8.743372 8.148735 \n", + "203 6.368187 6.529419 7.703459 6.150603 6.860664 \n", + "233 6.871091 8.513988 8.106515 6.842683 6.013715 \n", + "285 10.602965 6.461468 8.188689 6.948897 6.077642 \n", + "289 10.663966 5.655992 6.154858 7.235619 3.465736 \n", + "343 7.431892 8.848509 10.177932 7.283448 9.646593 \n", + "\n", + " Delicatessen \n", + "66 3.295837 \n", + "109 1.098612 \n", + "128 1.098612 \n", + "137 3.583519 \n", + "142 1.098612 \n", + "154 2.079442 \n", + "183 10.777768 \n", + "184 2.397895 \n", + "187 1.098612 \n", + "203 2.890372 \n", + "233 1.945910 \n", + "285 2.890372 \n", + "289 3.091042 \n", + "343 3.610918 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# For each feature find the data points with extreme high or low values\n", + "for feature in log_data.keys():\n", + " \n", + " # TODO: Calculate Q1 (25th percentile of the data) for the given feature\n", + " Q1 = np.percentile(log_data[feature],25)\n", + " \n", + " # TODO: Calculate Q3 (75th percentile of the data) for the given feature\n", + " Q3 = np.percentile(log_data[feature],75)\n", + " \n", + " # TODO: Use the interquartile range to calculate an outlier step (1.5 times the interquartile range)\n", + " step = (Q3-Q1)*1.5\n", + " \n", + " # Display the outliers\n", + " print \"Data points considered outliers for the feature '{}':\".format(feature)\n", + " display(log_data[~((log_data[feature] >= Q1 - step) & (log_data[feature] <= Q3 + step))])\n", + " \n", + "# OPTIONAL: Select the indices for data points you wish to remove\n", + "outliers = [65,66,75,128,154]\n", + "#outliers = []\n", + "# Remove the outliers, if any were specified\n", + "good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### Question 4\n", + "*Are there any data points considered outliers for more than one feature based on the definition above? Should these data points be removed from the dataset? If any data points were added to the `outliers` list to be removed, explain why.* " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Based on the outlier step, there are 42 data points that are considered outliers. However, only a few of these are considered outliers for more than one feature (i.e. indeces 65,66,75,128,154). I do not think that all of the outliers should be removed as in total they represent 9.5% of the dataset. Removing the 42 data points could cause us to lose imporant information necessary to correctly classify customer behavior. In fact some of these outliers may actually represent certain customer group behavior. For this reason I only chose to remove the 5 datapoints that are considered outliers in more than one feature to reduce the potential of skewing our results." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Feature Transformation\n", + "In this section you will use principal component analysis (PCA) to draw conclusions about the underlying structure of the wholesale customer data. Since using PCA on a dataset calculates the dimensions which best maximize variance, we will find which compound combinations of features best describe customers." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### Implementation: PCA\n", + "\n", + "Now that the data has been scaled to a more normal distribution and has had any necessary outliers removed, we can now apply PCA to the `good_data` to discover which dimensions about the data best maximize the variance of features involved. In addition to finding these dimensions, PCA will also report the *explained variance ratio* of each dimension — how much variance within the data is explained by that dimension alone. Note that a component (dimension) from PCA can be considered a new \"feature\" of the space, however it is a composition of the original features present in the data.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Import `sklearn.decomposition.PCA` and assign the results of fitting PCA in six dimensions with `good_data` to `pca`.\n", + " - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total Variance from first 2 components: 0.706817230807\n", + "Total Variance from first 2 components: 0.931090109951\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI0AAAK/CAYAAADkqj2oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XucZGdZJ/DfMyRkGJCw2JrASjcgzGRcQZgRFbkbVmTx\nCrowOAvCCouCaLwgjKsoLIPgkihIBAUMITIuLl7QVVEkLAhySwR0aUYuYRohBIpAIEw6xMy7f5ya\nUOnqnumuvlRXz/f7+dQnXafOe87TladrTv/6nPdUay0AAAAAMGjbuAsAAAAAYPMRGgEAAAAwRGgE\nAAAAwBChEQAAAABDhEYAAAAADBEaAQAAADBEaAQAAADAEKERAAAAAEOERgAAAAAMERptIVV1RVU9\nfQXrP76qrl7Pmvr7eVBVHauq2673vpbY/zf29/9N49g/o9PTS+5fT08oPb3k/vX0hNLTS+5fT08o\nPb3k/vX0BNLPS+5fP6+A0GgDVNXv95vyxv5/j3/9l2Mu7Q+T7NygfbXFFlbV6VX12ap6xhKv/3JV\nfbqqbrGKfX8sydlJPrSKbTBATyfR01uKnk6ip7cUPZ1ET28pejqJnt4y9HMS/TwxhEYb56/SNebx\nxx2S7BtnQa2161trvTHXcEOSS5I8YYlVHp/kotbajaNsv6pOb53PtNaOjVoni9LTi9egpyeXnl68\nBj09ufT04jXo6cmlpxevQU9PJv28eA36eZMRGm2c61trn+035/HHNclNp+ddX1X3O75yVT2jn6B+\nXf/5pVX1kv7jC/309Tkn2mFVnVdVH6iqa6tqrqpeWlW3Hnj98VX1+YHnz66qf6yq/f1TGb9QVYcW\njKmqelZVfayqjvbXf9SC/f6nqjrcf/3vktz5JO/NK5PsrKrvXLCdBye5S//1VNXdqurP+u/Ll6rq\nXVX1kAVjPtGv7zVVdU2Sl9aC0w+r6rSqemX/ezxaVR+qqqct2M5rquqP+v8fruy/379VVdsG1jmj\nqn6jv8/r+t/z4wZev0dV/XX//b+yqi6qqtuf5L2YJHp6aXp6MunppenpyaSnl6anJ5OeXpqenjz6\neWn6eTNprXms8yPJ7yf545Os8+tJrkjyNUnunWQ+ySMGXr80yTVJzk9y93Qp9LVJ/uvAOlckefrA\n86cneVCS6SQPTvLBJL898Prjk1w98PzZSb6Y5I+S7E5yvySfSvLcgXV+Kcn/S/LQdD/sj0tyNMkD\n+q/fKcl1SV44UOeVSW5MctsTfP/vSvKKBcteneRtA8/vneTH+7XdLcn/6L8HdxhY5xNJrk7y0+k+\nUO6c5Bv7+/+m/jpnJPmV/vZmkvxofzs/OLCd1yT5QpIXpztF83v73+fjB9Z5ff89/97+dh6U5FH9\n1/5dks8m+dV+rfdK8rdJ/nrc/ain9bSe1tN6Wk/raT09aQ89rae3Uk/rZ/08Sf089gJOhUf/Q+GG\nJF8aeHwxyTMH1jk9yWXpriP95yS/s2Ablyb55wXLnj+4bOGHwiJ1PCrJZwaeL/ah8KUkOwaWvSDJ\nO/pf37L/w/PtC7b7e0ku6X99MMk/LVLnyT4UnpzuQ29H//lt+vv6sZO8t7NJnjzw/BNJ/nDBOt+Y\n5NjxD4UltvM7SV478Pw1ST68YJ3XJ7m4//U39bf5gCW29+wkf75g2Z37Y+487p7U03paT+tpPa2n\n9bSenqSHntbTW6mn9bN+nqR+Pi1slDcneUqSGlh208z0rbUbqmp/kg8k+XiSn11kG+9c8Pwfkvxs\nVVXrd92gqnpokmcmOSfJbZOcluSMqtreWptfos6Pt9aODjy/MsnX97++W5IdSf62qga/j9OTXN7/\n+px0qfDCOk/mUJILkvznJBcleUy6D5LXDXw/t0nynCQPT3fd72lJtqdLygdddrKdVdVPpftQnOlv\n45ZJ3rNgtX9e8PzKdO9BknxLkq8k+fsldvEtSb67qr60YHlL9yH18ZPVOAH09Inp6cmjp09MT08e\nPX1ienry6OkT09OTRT+fmH7eJIRGG+fLrbUrTrLO8WtWb99/fHLUnVXVTJI/T/LSJAfSfQA9IMkr\n0v0ALPWhcMOC5y1fnfvqNv3//qd0pyUOun7UWpOktfalqvrf6SY8uyjJjyV53YIPqN9M9z38QpKP\npjvN8U/TfT+DvnyiffU/fH89yc8keXe69PxZ6X6QB53ovbjuJN/SbZL8SX+7teC1he/dpNLTJ6Cn\nJ5KePgE9PZH09Ano6Ymkp09AT08c/XwC+nnzEBptElX1jemuR/3xJI9OcnGScxes9u0Lnt833Sly\nQylykr1JqrX28wP7eMwqy/xguh/+mdbaUgnqbJLvW6TO5Xhlkkur6hFJvjPJzy14/TuTvKq19oYk\nqarbpkuCl2PwPfrOJG9trf3e8QVVdbfhISf0T+kS9Ackeesir1+e5BHpkvnF/v9seXo6iZ7eUvR0\nEj29pejpJHp6S9HTSfT0lqGfk+jnTcHd0zbOGVV11oLH1yZJf8b1S5L8VWvt1UmemOQeVfXzC7Yx\nXVX/s6p2VtW+JE9Ll64u5iNJTq+qp1fVXarqvyT5b6v5Blpr1yb5n0kuqKrHVdVdq+reVfW0/vaT\n5GVJ7l5VL+zX+dh0p/ktZ/tvTZcQX5xktrW28DTGDyd5VFXds6ruleQPcvMf9hMZTHM/nOTbq+qh\nVXX3qnpeuknPlq219tH+/i+qqu+vqjtX1YOr6of7q7wkyVlJXltVe/vv1fdU1UUr2c8mp6dPvn09\nPVn09Mm3r6cni54++fb19GTR0yffvp6eHPr55NvXz5uA0GjjfE+6084GH2/rv/ZL6WaVf0qStNY+\nne4H+LlVdY+BbVyc5FbpTpl7SZILWmuvGHj9ph+Q1toH0l33+ox0qee+dNevrkpr7ZeTPLe/rQ8m\n+at0pyNe0X/9E+kmVPuBJO9LN4HZs1awi1cluV36t1Fc4GfSTX72jnSn9v15umt8b1biUqUPfH1h\nkjekux72H9LdkeBlK6jxuCelO/3xd9Il6C9Ld/1rWmufTHc66S3TzYr/gSQvStIbYT+blZ5eHj09\nOfT08ujpyaGnl0dPTw49vTx6ejLo5+XRz2NWE3Zm1Cmrqi5N8o+ttcUmQIOJo6fZavQ0W42eZqvR\n02wl+pmN4kwjAAAAAIYIjSaHU8LYavQ0W42eZqvR02w1epqtRD+zIVyeBgAAAMAQZxoBAAAAMERo\nBAAAAMAQoRFDquqMqnppVfWq6ktV9b+r6utXMP6ZVXWsqs4/wTov66/z9EWWf6SqjlbVZ6rqT6tq\n14J1/l1V/UFVXVNVn6+qV1TVrVf+nXKqGKWnq+pZVfXuqvpiVV1VVX9SVTsXWW93Vf1ZVX2hqq6t\nqndV1TcMvL6cnr57f/ln+339tqp68Jq9AWw5I/b0A6rqDVX1yf7n7/cveP20qnpBVX2g38ufrKpX\nV9UdFqy3nJ4+UFVvr6ovV9XVa/eds1WtR08PrPecqvpUv2f/tqrutuD1J1XVpf3P32NVddsFr8/0\njzU+1t/Gh6vqV6vq9NV/52xVox5PV9VTq+qKqrquqt5ZVfc5wbpLHU+fVVWvqaor+5/nl1XVIxes\n8/H+2OOPG6vqGaN/x2xl69HPKzjuWPa+q+qWVfW+fk/fc/XfOYnQiMX9ZpJHJHlUkgcmuWOS1y9n\nYP+D4MlJ3n+CdX4oybcn+eQiL783yY8lOSfJdyepJG+sqhpY57VJdic5t1/nA5O8fDn1ccoapacf\nkOQl6Xr1oUlOT/I3VXWr4ytU1TcmeVuSD/a3e48kz00yP7Cd5fT0/0lyiyQPTrIn3c/PXyznH2NO\nWaP09K2TvC/JT2bxyTN3JLlXkl9Lcu8kP5RkV5I/W7Decnr69CSvS/I7y/2GOOWtR0+nqn4xydPS\nHZt8W5Ivp+vXWw6sdqskf5XkeUts55x0ff6kJN+U5LwkT+mvD0tZcU9X1aOTvCjJs9N9Dr8/Xb9O\nLbLuiY6nX5Pk7km+N8k3J/njJK+rqm8ZWKcl+e9JzkpydpI7pDvugcWsRz8v97hjJft+YZJ/jUnC\n11ZrzcPjpkeS2ya5PskPDSzbleRYkm87ydjbJDmc5LuSXJrk/EXW+fdJ5tKFPlckefpJtnmPJDcm\nuUv/+e5+LfceWOdhSf4tydnjfv88Nt9jNT29YDtT/TH3H1h2KMmrV1jPwp7+2v527zewzm36y75r\n3O+fx+Z7rEVP99f9/mWs9639fv2GE6xzs55e8Nrjk1w97vfMY3M/1rOnk3wqyXkL9nVdkv+8yLoP\n6vfybZexv59P8pFxv3cem/Mxak8neWeS3xp4Xul+AX7GgvVOeDyd5EtJfnTBsl6SJw48P+lxuIdH\na+vfzwvG3Oy4YyX7TvLwJP8vXdB/LMk9x/3ebZWHM41YaG+S05L83fEFrbXD6f5huu9Jxr40yZ+3\n1t682Iv9v0JfnOSFrbXZkxVS3SVnT0zysSSf6C/+jiSfb63948Cqb0qXJn/7ybbJKWk1PT3odun6\n7Orkpn5+RJIPV9VfV3cJ2zur6geW2sBiPd1a+1ySDyV5XFXtqKrTkvxEkquSXLaC+jh1rFVPL8fx\nvv/CYi8u8TkNK7UuPV1Vd0l3BsXgdr+Y5F2r2W7f7dL/9wAWseKe7l/uuHfBmJbuOPe+A+st53j6\n7UkeXd2UDlVVj0lyRpK3LFjvmf1Lfi6vqp+vqlus7NvkFLFu/byIhccdy9p3VZ2V5HeT7E/3hwHW\nkNCIhc5O8pX+QdWgq/qvLar/j9G9kjzrBNt+Zn/bv32iAqrqJ6rqS+n+SvKwJN/dWvu3gfo+M7h+\na+3GdAduS9bHKW2knh7UP0D7zSR/31r7YH/x16c7I+gXk/xlkv+Y5E+S/HFVPWDB+BP1dPpj9/Rf\nvy7JTyf5ntbaNcv+LjmVrLqnl6Oqzkjy60le21q7dsFrJ+tpWIn16umz0/3ycdVabrc/J9LTkrxs\n9NLY4kbp6al0l6qfrF+Xczz96CS3TPK5dGdp/E66MzU+NrDObyV5TLpL41+W5ECSF5xgm5y61rOf\nb7LEccdy9/37SS5ccGIBa0RoxKpVN+nvb6Y7DfaGJdbZm+TpSZ6wjE1eki6AemCSf0nyRwvmHoCN\ndmG6eSweM7Ds+Ofnn7bWXtxa+0Br7QVJ/iLdXBeDTtbTF6b7x+9+Se6T5E/TzWl01pp/J7AM/TPe\n/ijdL9w/ucgqPqc5JVXVv083/9H/aq29atz1cGpZwfH0/0hyZropI/YmOT/d5/R/OL5Ca+03W2tv\nba39c2vtd5P8bJKfMsE747CM444TjX16uj/kHg896wSrMwKhEQt9Oskta8GdQ9JNkvfpJcbsTfJ1\nSS6vqhuq6oZ08wL8dFV9pX+Wxv3763xiYJ2ZJOdX1eBfPdJa+1Jr7aOttb9P8iPprkv9oYH6bjY5\ncP9U2tufoD5ObaP09E2q6reT/KckD26tXTnwUi/dXFoLTw2fTTI9uOBEPV1V5/a3/+jW2jtba+9r\nrT0t3RlHj1/m98ipZVU9fTIDB253SncG0bUL1znJ5zSs1Hr19KfT/fKwMIAfabtVdcckb0531ul/\nW0VdbH2j9HQv3VwuJ+rXkx5P92/S8dR08xe9pbX2T62156a7icFTT1Dzu9NdBnTnZXx/nFrWq5+T\nnPS4Yzn7fki6S9Wu7/9MfLi//L1V9fsn+sZYHqERC12W7hfhc48vqO5WytNJ/mGJMW9KNxHqvZJ8\nS//x3nR/if6W/vWrFye558Dr35JucsoXpru0YSnb0h3wndF//g9JbldV9x5Y59z+Ou9a7jfJKWWU\nnj6+3m8n+YEkD2mtzQ2+1j+r7j3pJuMbtDPJkRNsdmFP3yrdX1WOLVjvWHxGs7iRe/pkBg7c7prk\n3Nba55cxbGFPw0qtS0+31q5I90vF4HZvm24OxHesZFv9M4wuTfe5/8RRa+KUseKe7h9XXLZgTPWf\nH+/X5RxPHz+uuHHBLm7MiY8r7p3u2OMzJ1iHU9N69fNyjjtOtO/j2/mp3Pxn4uHpfgb+c5JfWuk3\ny7DTxl0Am0tr7YtV9cp0f7H4fLr5Kl6c5O2ttXcfX6+q/i7J61trF7bWvpzuluMZeP3LST53fIK+\n/gfA5xesc0OST7fWPtx/fpd012D/TZLPpkubn5nkaLo5Y9Ja+1BVvTHJ71XVT6S7XvslSQ611pxp\nxJBRerr//MIk+5J8f5IvD1wqdk1rbb7/9W8k+cOqelu6XyYenu72tg/qb+OkPZ3uH9svJLm4qp6b\n7gyjJ6f7S9//Wdt3g61gFT196yR3y1dP275r//bLV7fWPtE/cHt9uj8AfG+S0wf6/urW2g3L7OlU\n1Z3SnQE6k+QWA7d5/kj/3wy4yXr1dH/Zbyb571X1kSQfT/LcdHfv+bOB7R6/5fjd+9u6Z3/OrrnW\n2uf7Zxi9Jd3dpp6R5Ou7332S1trC+Tpg5J5OdxnZRVV1Wbozf85Ld1vyi/rbPenxdLqba3w0ye9W\n1S+km9foh5I8NN0NPFJV35EuPL20X9t39vf9GvMpstB69fNyjjtOsu/39Ov718F6+7+HVpKPtdY+\ntcZvx6lptbdf89h6j3R/LX5JutMKv5Qu/f36Bet8LMmvnGAbb05y/kn287EM3OozyR3S/ZJ8ZZL5\ndGdrvCbJ3ReMu126s5iuSfcP5+8l2THu981j8z5G6el0f227cZHH4xaM+7F0c7p8OcnlSb534LXl\n9vSedHNkfDZdgPT2dKfnjv2989icjxF7+kFL9PWr+q/PLPLa8fUf2F9nuT39+0v8/Dxw3O+dx+Z8\nrEdPD6z3q+nOxjia5I1J7rbg9WcvsZ3H9V9//FI/G+N+3zw272OUnu4v+8l0Aed16f6w9K0n2c/N\njqf7y76xv78r+/v+xySPHXj93v1tX53u+OWf0wWip4/7ffPYnI/16OflHHcsd98L9nl8u/cc9/u2\nVR7Vf2MBAAAA4CbmywAAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0AgAAAGCI0AgAAACAIUIj\nAAAAAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAhExkaVdVTq+qKqrquqt5ZVfc5yfo/WlXvq6ovV9Wn\nquqVVXX7jaoXAAAAYNJMXGhUVY9O8qIkz05y7yTvT/LGqppaYv37JXl1kt9L8k1JfjjJtyX53Q0p\nGAAAAGACVWtt3DWsSFW9M8m7Wms/3X9eST6R5MWttRcusv7PJXlKa+3uA8ueluQZrbXpDSobAAAA\nYKJM1JlGVXV6kr1J/u74stalXm9Kct8lhv1DkjtV1cP72zgryY8k+T/rWy0AAADA5Dpt3AWs0FSS\nWyS5asHyq5LsWmxAa+0dVbU/yf+qqu3pvuc3JHnaUjupqq9N8rAkH08yv/qyAQAAADaF7UnunOSN\nrbXPnWjFSQuNVqyqvinJbyX51SR/k+QOSf5nkpcn+fElhj0syR9sRH0AAAAAY/CjSV57ohUmLTTq\nJbkxyVkLlp+V5NNLjHlmkre31s7vP//nqvrJJG+rql9qrS08aynpzjDKJZdckt27d6++ak7ovPPO\nywUXXDDuMmDN6Gm2Ev3MVqOn2Wr0NFuNnl5/s7Oz2b9/f9LPPk5kokKj1toNVXVZknPTXWJ2fCLs\nc5O8eIlhO5J8ZcGyY0laklpizHyS7N69O3v27Flt2ZzEmWee6X1mS9HTbCX6ma1GT7PV6Gm2Gj29\noU46Hc9ETYTdd36SJ1XV46rqnCQvSxcMXZQkVfX8qnr1wPp/nuRRVfWUqrpLVd0v3eVq72qtLXV2\nEgAAAMApbaLONEqS1trrqmoqyXPSXZb2viQPa619tr/K2UnuNLD+q6vqNkmemm4uoy+ku/vaMze0\ncAAAxu66667L5ZdfPtLYqampTE9Pr3FFALB5TVxolCSttQuTXLjEa09YZNlLk7x0vesCAGDzmpub\ny5svvTR79+4dafz2HTtyeHZWcATAKWMiQyO2ln379o27BFhTepqtRD+zlfR6vRy78cbkwIFkZmZl\ng48cyfzBg+n1ekIjNhWf02w1enpzERoxdj4U2Gr0NFuJfmZLmplJdu4cdxWwJnxOs9Xo6c1lEifC\nBgAAAGCdCY0AAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAh\np427AFiNubm59Hq9kcZOTU1lenp6jSsCAACArUFoxMSam5vL7l27c3T+6Ejjd2zfkdnDs4IjAAAA\nWITQiInV6/VydP5oDuRAZjKzorFHciQH5w+m1+sJjQAAAGARQiMm3kxmsjM7x10GAAAAbCkmwgYA\nAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAAAAAYIjQC\nAAAAYIjQCAAAAIAhQiMAAAAAhgiNAAAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0\nAgAAAGCI0AgAAACAIUIjAAAAAIacNu4CAJYyNzeXXq830tipqalMT0+vcUUAAACnDqERsCnNzc1l\n167dmZ8/OtL47dt35PDhWcERAADAiIRGwKbU6/X6gdElSXavcPRs5uf3p9frCY0AAABGJDQCNrnd\nSfaMuwgAAIBTjomwAQAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0AgAAAGCI0AgA\nAACAIUIjAAAAAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAhQiMAAAAAhgiNAAAAABgiNAIAAABgiNAI\nAAAAgCGnjbsAAICF5ubm0uv1Rh4/NTWV6enpNawIAODUIzQCADaVubm57N69K0ePzo+8jR07tmd2\n9rDgCABgFYRGAMCm0uv1cvTofA4cSGZmVj7+yJHk4MH59Ho9oREAwCoIjQCATWlmJtm5c9xVAACc\nukyEDQAAAMAQoREAAAAAQyYyNKqqp1bVFVV1XVW9s6ruc5L1b1lVz6uqj1fVfFV9rKp+bIPKBQAA\nAJg4EzenUVU9OsmLkjw5ybuTnJfkjVW1s7W21L15/yjJ1yV5QpKPJrlDJjQwAwAAANgIExcapQuJ\nXt5auzhJquopSR6R5IlJXrhw5ar6niQPSHLX1toX+ovnNqhWAAAAgIk0UWfbVNXpSfYm+bvjy1pr\nLcmbktx3iWHfl+S9SX6xqv61qg5X1W9U1fZ1LxgAAABgQk3amUZTSW6R5KoFy69KsmuJMXdNd6bR\nfJIf7G/jd5LcPsl/XZ8yAQAAACbbpIVGo9iW5FiSx7bWrk2SqvrZJH9UVT/ZWrt+qYHnnXdezjzz\nzJst27dvX/bt27ee9QIAAACs2qFDh3Lo0KGbLbvmmmuWPX7SQqNekhuTnLVg+VlJPr3EmCuTfPJ4\nYNQ3m6SSfEO6ibEXdcEFF2TPnj2jVwsAAAAwJoud+HL55Zdn7969yxo/UXMatdZuSHJZknOPL6uq\n6j9/xxLD3p7kjlW1Y2DZrnRnH/3rOpUKAAAAMNEmKjTqOz/Jk6rqcVV1TpKXJdmR5KIkqarnV9Wr\nB9Z/bZLPJfn9qtpdVQ9Md5e1V57o0jQAAACAU9mkXZ6W1trrqmoqyXPSXZb2viQPa619tr/K2Unu\nNLD+l6vqPyZ5SZL3pAuQ/leSX97QwgEAAAAmyMSFRknSWrswyYVLvPaERZb9S5KHrXddAAAAAFvF\nJF6eBgAAAMA6ExoBAAAAMERoBAAAAMAQoREAAAAAQ4RGAAAAAAwRGgEAAAAwRGgEAAAAwBChEQAA\nAABDTht3AQAAAGy8ubm59Hq9kcZOTU1lenp6jSsCNhuhEQAAwClmbm4uu3ftztH5oyON37F9R2YP\nzwqOYIsTGgEAAJxier1ejs4fzYEcyExmVjT2SI7k4PzB9Ho9oRFscUIjAACAU9RMZrIzO8ddBrBJ\nmQgbAAAAgCFCIwAAAACGuDwNAAAAuBl31yMRGgEAAAAD5ubmsuucXZm/bn6k8dtvtT2HP3RYcLQF\nCI0AAACAm/R6vS4wemSSqZUOTub/eN7d9bYIoREAAAAwbCrJHcddBONkImwAAAAAhgiNAAAAABgi\nNAIAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAAAAAY\nctq4CwDYaubm5tLr9UYaOzU1lenp6TWuCAAAYOWERgBraG5uLrt278780aMjjd++Y0cOz84KjgAA\ngLETGgGsoV6v1wVGBw4kMzMrG3zkSOYPHkyv1xspNHKGEwAAsJaERgDrYWYm2blzw3Y3NzeX3bt3\n5ejR+ZHG79ixPbOzhwVHAADATYRGAFtAr9fL0aPzo57glIMH50c+wwkAANiahEYAW8gGn+AEAABs\nYdvGXQAAAAAAm4/QCAAAAIAhQiMAAAAAhgiNAAAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0A\nAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAhQiMAAAAAhpw2\n7gLYGubm5tLr9UYaOzU1lenp6TWuCAAAAFgNoRGrNjc3l927duXo/PxI43ds357Zw4cFRwAAALCJ\nCI1YtV6vl6Pz87kkye4Vjp1Nsn9+Pr1eT2gEAAAAm4jQiDWzO8mecRcBAAAArAkTYQMAAAAwRGgE\nAAAAwBChEQAAAABDhEYAAAAADBEaAQAAADBkIkOjqnpqVV1RVddV1Tur6j7LHHe/qrqhqi5f7xoB\nAAAAJtnEhUZV9egkL0ry7CT3TvL+JG+sqqmTjDszyauTvGndiwQAAACYcBMXGiU5L8nLW2sXt9Y+\nlOQpSY4meeJJxr0syR8keec61wcAAAAw8SYqNKqq05PsTfJ3x5e11lq6s4fue4JxT0hylyS/tt41\nAgAAAGwFp427gBWaSnKLJFctWH5Vkl2LDaiquyc5mOT+rbVjVbW+FU6wubm59Hq9FY+bnZ1dh2oA\nAACAcZq00GhFqmpbukvSnt1a++jxxcsdf9555+XMM8+82bJ9+/Zl3759a1fkJjE3N5dd5+zK/HXz\n4y4FAAA7DrDKAAAgAElEQVQAWAOHDh3KoUOHbrbsmmuuWfb4SQuNekluTHLWguVnJfn0Iut/TZJv\nTXKvqnppf9m2JFVVX0ny3a21tyy1swsuuCB79uxZddGToNfrdYHRI9Odz7USH05y6ToUBQAAAIxs\nsRNfLr/88uzdu3dZ4ycqNGqt3VBVlyU5N8kbki796T9/8SJDvpjkmxcse2qShyR5VJKPr1uxk2oq\nyR1XOGblV7QBAAAAm9xEhUZ95ye5qB8evTvd3dR2JLkoSarq+Unu2Fp7fH+S7A8ODq6qzySZb62Z\niAcAAABgCRMXGrXWXldVU0mek+6ytPcleVhr7bP9Vc5Ocqdx1QcAAACwFUxcaJQkrbULk1y4xGtP\nOMnYX0vya+tRFwAAAMBWsW3cBQAAAACw+QiNAAAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0A\nAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAhQiMAAAAAhgiN\nAAAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYI\njQAAAAAYIjQCAAAAYMhp4y4AANi85ubm0uv1Rho7NTWV6enpNa4IAICNIjQCABY1NzeXXbt3Z/7o\n0ZHGb9+xI4dnZwVHAAATSmgEACyq1+t1gdGBA8nMzMoGHzmS+YMH0+v1hEYAABNKaAQAnNjMTLJz\n57irAABgg5kIGwAAAIAhQiMAAAAAhgiNAAAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAA\nGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAhQiMAAAAAhgiNAAAA\nABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAA\nAAAYIjQCAAAAYIjQCAAAAIAhQiMAAAAAhgiNAAAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0A\nAAAAGDKRoVFVPbWqrqiq66rqnVV1nxOs+0NV9TdV9Zmquqaq3lFV372R9QIAAABMmtPGXcBKVdWj\nk7woyZOTvDvJeUneWFU7W2u9RYY8MMnfJHlWki8keWKSP6+qb2utvX+DygYAYAuYnZ0dadzU1FSm\np6fXuBoYLz8PsPVNXGiULiR6eWvt4iSpqqckeUS6MOiFC1durZ23YNEvVdUPJPm+JEIjAABO7uqr\nsy3bsn///pGG79i+I7OHZ/2izJZwda7Otm0Z/edhx/bMzh728wATYKJCo6o6PcneJAePL2uttap6\nU5L7LnMbleRrkly9LkUCALD1XHttjuVYDuRAZjKzoqFHciQH5w+m1+v5JZkt4dpcm2PHkgMHkpmV\n/TjkyJHk4MF5Pw8wISYqNEoyleQWSa5asPyqJLuWuY1fSHLrJK9bw7oAADgFzGQmO7Nz3GXApjAz\nk+z04wBb2qSFRqtSVY9N8stJvn+J+Y9u5rzzzsuZZ555s2X79u3Lvn371qlCAAAAgLVx6NChHDp0\n6GbLrrnmmmWPn7TQqJfkxiRnLVh+VpJPn2hgVT0mye8m+eHW2qXL2dkFF1yQPXv2jFInAAAAwFgt\nduLL5Zdfnr179y5r/Lb1KGq9tNZuSHJZknOPL+vPUXRukncsNa6q9iV5ZZLHtNb+er3rBAAAAJh0\nk3amUZKcn+SiqrosybvT3U1tR5KLkqSqnp/kjq21x/efP7b/2tOTvKeqjp+ldF1r7YsbWzoAAADA\nZJi40Ki19rqqmkrynHSXpb0vycNaa5/tr3J2kjsNDHlSusmzX9p/HPfqJE9c/4oBAAAAJs/EhUZJ\n0lq7MMmFS7z2hAXPH7IhRQEAAABjMzc3l17vpPe8WtTU1FSmp6fXuKLJN5GhEQAAAMBxc3Nz2b1r\nd47OHx1p/I7tOzJ7eFZwtIDQCAAAAJhovV4vR+eP5kAOZCYzKxp7JEdycP5ger2e0GgBoREAAACw\nJcxkJjuzc9xlbBnbxl0AAAAAAJuPM42ALWt2dnakcSbBAwAAEBoBW9KVSSX79+8fafT2W23P4Q8d\nFhwBAACnNKERsAV9IWlJHplkaoVDe8n8H8+bBA8AADjlCY2ArWsqyR3HXQQAAMBkMhE2AAAAAEOE\nRgAAAAAMcXkapzR31wIAAIDFCY04JV2dq7Nt2+h319qxY3tmZ91dCwAAgK1LaMQp6dpcm2PHkgMH\nkpmZlY09ciQ5eNDdtQAAANjahEac0mZmkp07x10FAAAAbD4mwgYAAABgiNAIAAAAgCFCIwAAAACG\nCI0AAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAAAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAhQiMAAAAA\nhgiNAAAAABgiNAIAAABgiNAIAAAAgCFCIwAAAACGCI0AAAAAGCI0AgAAAGCI0AgAAACAIUIjAAAA\nAIYIjQAAAAAYIjQCAAAAYIjQCAAAAIAhQiMAAAAAhgiNAAAAABhy2rgLANiMZmdnN3QcAADAZiM0\nAhh0bXcK5v79+8ddCQAAwFgJjQAGzSfHklySZPcIw/8yyS+vbUUAAABjITQCWMTuJHtGGOfiNAAA\nYKswETYAAAAAQ1Z8plFV7UlyQ2vtn/rPfyDJE5J8MMmvtta+srYlAgDAV83NzaXX6614nJsVAMDK\njHJ52suT/HqSf6qquyb5wyR/kuRHkuxI8jNrVx4AAHzV3Nxcdu/alaPz8+MuBQC2vFFCo51J3tf/\n+keSvLW19tiqul+6AEloBADAuuj1ejk6Pz/SDQvcrAAAVmaU0Kjy1bmQHprkL/pffyLJ1FoUBQAA\nJzLKDQtcnAYAKzNKaPTeJP+9qt6U5EFJfqK//C5JrlqrwgBOVaPMuWGeDgAAYK2NEhqdl+SSJD+Y\n5HmttY/0l/9wknesVWEAp5yrr862bMv+/fvHXQmb0KgT/ybJ1NRUpqen17giAAC2uhWHRq219ye5\nxyIv/UKSf1t1RQCnqmuvzbEcy4EcyExmVjT0XXlXXpVXrVNhjNvc3Fx2nbMr89eNNvHv9lttz+EP\nHRYcAQCwIisOjarqY0nu01r73IKXtie5PMld16IwgFPVTGayMztXNGYuc+tUDZtBr9frAqNHZuWz\nB/aS+T+eT6/XExoBALAio1yeduckt1hk+RlJvmFV1QAAS5tKcsdxFwHAZjLq5cvmQwSWY9mhUVV9\n/8DTh1XVNQPPb5Hk3CRXrFVhAAAALG1ubi67du/O/NGj4y4F2KJWcqbRn/b/25K8esFrNyT5eJKf\nW4OaAAAAOIler9cFRgcOJDMrmw8x73pX8irzIQIntuzQqLW2LUmq6op0cxqNdgsXAAAA1s7MTLJz\nZfMhZs58iMDJjXL3tLusRyEAAAAAbB6jTISdqjo33RxGX59k2+BrrbUnrkFdAAAAAIzRikOjqnp2\nkl9J8t4kV6ab4wgAAACALWSUM42ekuTHWmuvWetilquqnprk55OcneT9SX6qtfaeE6z/4CQvSvIf\nkswleV5rbeFk3gAAbBC3CQeAzW+U0OiWSd6x1oUsV1U9Ol0A9OQk705yXpI3VtXOxSbnrqo7J/mL\nJBcmeWyShyZ5RVV9qrX2txtVNwAAnbm5uew6Z1fmr5sfdykAwAmMEhq9Il348tw1rmW5zkvy8tba\nxUlSVU9J8ogkT0zywkXW/4kkH2utPaP//HBV3b+/HaERAMAG6/V6XWD0yCRTKxz84SSXrkNRAMCQ\nZYVGVXX+wNNtSZ5cVQ9N8oEkNwyu21r72bUrb6iO05PsTXJwYH+tqt6U5L5LDPuOJG9asOyNSS5Y\nlyIBAFieqSR3XOGYlV/RBss26mWTSTI1NZXp6ek1rghgvJZ7ptG9Fzx/X/+/37xg+XpPij2V5BZJ\nrlqw/Koku5YYc/YS69+2qs5orV2/tiWOz2r+kbtpfoBRhn++v41R9rtw/ysZ2x9zJEdWPPbKXNmN\nXfnQkcawGqN01hXdfza4nwf2PFqjXNnvSz29Za16DpdRerq3YBuj7HcVjbWqz/cRe1NPb5yx9PQq\nPqfH9Rl9fMyo8zEJIzbG3Nxcdu3anfn5oyONP+OM7Xn96/937nCHO6x47PXXX58zzjhjxeNW9Tnt\nuOOUMGnHHsnqfx58Tq+tam1ybn5WVXdI8skk922tvWtg+QuSPLC1NnS2UVUdTvKq1toLBpY9PN08\nRzsWC42qak+Syx74wAfmzDPPvNlr+/bty759+9bqW1ozq/1HLklSGTn225bk2Kj73bYtOTba6G3Z\nlmMj7nkVu82OHdszO3t4y34wbAar7ulx9XOip1nUxPb0BPZzoqc3gp7esN3q5w2ipzdst3p6g+jp\nDdvtpu7pQ4cO5dChQzdbds011+Stb31rkuxtrV1+ovGjzGk0Tr0kNyY5a8Hys5J8eokxn15i/S+e\n7CyjCy64IHv27Bmlzg3X6/X6HwaXJNk9whZmk7Y/l1xySXbvXvn41aTB+/fvTw4cSGZmVjb4yJEc\nO3hww2tOtnaSvFlMT0/n8OHZkc+eW83/39WMHee+9fTmtrrP6dE/o49/zo641+w/dmxV+z2QA5nJ\nyj7fj+RIDh4b/fM90dMbYVw9nUze5+xNPw+jHe7k4MH59Ho9Pb3OVnPscdMx7YjzdB27dOSfpJE/\npxPHHVvdJB57/GWSXz52bMN/P9zKn9OLnfhy+eWXZ+/evcsav+LQqKr+JIvnjS3JfJKPJHlta+3w\nSrd9Mq21G6rqsiTnJnlDv57qP3/xEsP+IcnDFyz77v7yLWh3ktGDrt27d48nKJuZSXbuHGno2Gpm\n3U1PT2/KD15YndE/p1fzebeafx1Ws9+ZzGRnfL5vbePp6Um0isMdNsiqjz1WMU/XuD6nORVMzrHH\nTReHjen3Q5/Tw7aNMOaaJN+V7v9/6z/u3V92WpJHJ3l/Vd1vrYpc4PwkT6qqx1XVOUlelmRHkouS\npKqeX1WvHlj/ZUnuWlUvqKpdVfWTSX64vx0AAAAAFjHK5WmfTPLaJE9rrR1LkqraluS3klyb5DHp\ngpoXJLn/GtV5k9ba66pqKslz0l1m9r4kD2utfba/ytlJ7jSw/ser6hHp7pb29CT/muS/ttYW3lEN\nAAAAgL5RQqMnJbn/8cAoSVprx6rqJUne0Vp7VlX9dpK3rVWRC7XWLkxy4RKvPWGRZW9NsrwL9gAA\nAAAYKTQ6Pck5Sf5lwfJzktyi//V8Rp5nHQBYa6PcQHa0m84CAKzSkSMbM2Zz7HZTGyU0ek2SV1bV\nwSTv6S+7T5IDSS7uP39Qkv+3+vIAgNWYmprKju3bs39+fqTxO7Zvz9TUSm8FBACwcrdLkm3bkoMH\nRxq/fceOkY5bpqamsmPH9hw8OOLx0o6te7w0Smh0XpKrkjwjX72V/VXp5gx6Qf/53yT561VXBwCs\nyvT0dGYPHx7pFtKJ2yIDABvnDkly7FguueSS7N69e8XjRz1umZ6ezuys46XFrDg0aq3dmOR5SZ5X\nVbftL/vignXm1qY8AGC1Vn0LaQBggk3eReq7d+/Onj17NnSfjpcWN8qZRjdZGBYBAAAA4zc1NZXt\n23dkfn7/SOO3bx/tUi+2lmWFRlV1eZJzW2ufr6p/zAkmuW6tbWwcCAAAANzM9PR0Dh+edckVq7Lc\nM43+LMn1/a//dJ1qAQAAANaIS65YrWWFRq21X1vsawAAAAC2pm2jDKqq21XVj1fV86vq9v1le6rq\n369teQAAAACMw4onwq6qeyZ5U5Jrktw5ye8luTrJI5NMJ3ncGtYHAAAAwBiMcqbR+Ukuaq3dPcn8\nwPK/TPLANakKAAAAgLEaJTS6T5KXL7L8k0nOXl05AAAAAGwGo4RG1ye57SLLdyb57OrKAQAAAGAz\nGCU0ekOSX6mq0/vPW1VNJ3lBktevWWUAAAAAjM0oodHPJblNks8kuVWS/5vkI0m+lOSX1q40AAAA\nAMZlxXdPa61dk+Q/VtX9k9wzXYB0eWvtTWtdHAAAAADjsezQqKru0lq74vjz1trfJ/n7dakKAAAA\ngLFayZlGH62qI0kuPf5orf3r+pQFAAAAwDitJDT6riQP7j/2JbllVX0syZvz1RDpqrUuEAAAAICN\nt+zQqLX2liRvSZKq2p7kO/PVEOnxSU6vqg+11v7DWhcJAAAAwMZa8UTYSdJam0/y5qr6+3RnGT08\nyX9Lcs4a1gYAAADAmKwoNKqqWyb5jiQPSXeG0bcn+USStyZ5WpL/u8b1AQAAADAGK7l72pvThURX\npAuHXp7ksa21K9epNgAAAADGZCVnGj0gyZXpJr5+S5L/21r73HoUBQAAAMB4bVvBurdL8uQkR5P8\nYpJPVdU/VdVvV9UPV9XXrUuFAAAAAGy4ldw97ctJ/rr/SFV9TZL7p5vf6BlJ/qCqPtxa++b1KBQA\nAACAjbOSM40W+nKSq/uPzyf5tyS716IoAAAAAMZrJRNhb0vyrenumvaQJPdLcuskn0xyaZKn9v8L\nAAAAwIRbyUTYX0gXEn06XTh0XpK3tNY+uh6FAQAAADA+KwmNfiHJpa21f1mvYgAAAADYHFYyEfbL\n17MQAAAAADaP1UyEDQAAAMAWJTQCAAAAYIjQCAAAAIAhQiMAAAAAhowUGlXVf6mqt1fVp6pqpr/s\nZ6rqB9a2PAAAAADGYcWhUVX9RJLzk/xlktsluUX/pS8k+Zm1Kw0AAACAcRnlTKOfSvKk1trzktw4\nsPy9Se6xJlUBAAAAMFajhEZ3SfKPiyy/PsmtV1cOAAAAAJvBKKHRFUnutcjy70kyu7pyAAAAANgM\nThthzPlJXlpV25NUkm+rqn1JnpXkx9eyOAAAAADGY8WhUWvtFVV1XZL/kWRHktcm+VSSn26t/eEa\n1wcAAADAGKwoNKqqSnKnJK9vrf1BVe1IcpvW2mfWpToAAAAAxmKlcxpVko+kC47SWjsqMAIAAADY\nelYUGrXWjiX5cJKvXZ9yAAAAANgMRrl72jOT/EZVffNaFwMAAADA5jDK3dMuTjcB9vur6itJrht8\nsbV2+7UoDADg/7N359FRFfn7x59KgHQSdjqgIp1AEMhAUAMMqIAgKigiKgwSRNmGXUGYURBFUfgh\nKIuCsrgMRpagIKMIsioIisuXAWfREEEgGXGQ6QhBDWFJ6vdHoIdOJ4F0OjTB9+ucHHPrVtX9dKMz\nh+dU1QUAAEDw+BMaPRzwKgAAAAAAAHBRKXZoZK1NKo1CAAAAAAAAcPEodmhkjHEVdd9am+5/OQAA\nAAAAALgY+LM9bb8kW8T9UP9KAQAAAAAAwMXCn9Do2nzX5U+3jZb0eIkrQgmlXOBxAAAAAADgUuTP\nmUZ/L6B5uzHmB0mPSFpR4qpQbE6nUw5HhLKze/s9h8MRIafTGcCqAAAAAABAWeXPSqPCpEpqEcD5\nUAwul0upqSlyu91+z+F0OuVyFXlkFQAAAAAA+I3w5yDsyvmbJF0uaYKk3QGoCX5yuVxlN/RJS7sw\nYwAAAAAAwHnxZ6XREfkehG0k/VtSzxJXhN8Up9MpR0SEsidP9mu8I4ItdQAAAAAAlAZ/QqP2+a5z\nJf1X0h5r7amSl4TfEpfLpdQU/7fVsaUOAAAAAIDS4U9oZCVtyx8QGWPKGWPaWmu3BKY0/FaU6W11\nAAAAAABcokL8GLNJUvUC2qucvldqjDHVjDGLjTGZxpjDxpjXjDGRRfQvZ4yZaoz5hzHmF2PMAWNM\nkjHm8tKsEwAAAAAAoKzzJzQy8j3TSJJqSPq1ZOWc0xJJcZI6SOosqa2k+UX0j5B0jaSnJV0r6W5J\nDSW9V7plAgAAAAAAlG3nvT3NGLPi9K9W0hvGmONn3Q6V1FTStgDWlv/5jSR1lNTMWrvzdNtDklYb\nY/5srT2Yf4y19ujpMWfP86CkL4wxV1prvy+tegEAAAAAAMqy4pxplHn6n0bSz5KOnXXvhKTPJb0a\noLoKcp2kw2cCo9M2Ki/EaqnzXz1U9fSYI4EtDwAAAAAA4NJx3qGRtbafJBlj9kuaZq0t7a1o+V0m\n6VC+mnKMMT+dvndOxpgwSVMkLbHW/hL4EgEAAAAAAC4NxX57mrX26UAWYIx5VtKYoh6pvHOMSvqc\ncpKWnZ5v2PmMGTVqlKpUqeLVlpiYqMTExJKWAwAAcIlIuUBjAABAcSUnJys5OdmrLTMzs5Devood\nGkmSMaa7pB6SXJIqnH3PWptQzOmmSVpwjj57JR2UVDNfHaHKe5Obz3lG+fqdCYzqSLrpfFcZzZw5\nUwkJxf04AAAAlz6n0ymHI0LZ2b39Gu9wRMjpdAa4KgAAcLaCFr7s2LFDzZo1O6/xxQ6NjDEjJP0/\nSW9I6qq8wCdWUgtJLxd3PmtthqSM83juZ5KqGmOuPetcow7KO2PpiyLGnQmM6klqb609XNwaAQAA\n4M3lcik1NUVut9uv8U6nUy6XK8BVAQCAQPJnpdEwSYOstcnGmL6SnrPW7jXGPKO8VT+lwlq7yxiz\nTtKrxpihylvhNFtS8tlvTjPG7JI0xlr73unA6B1J10i6Q1J5Y0yt011/staeLK16AQCAlKa0CzIG\nweFyuQh+AAC4hPkTGrkkbTv9+zFJlU7/vlB5b1B7MAB1FaaXpJeU99a0XEnLJY3M1+cqSWcOIqqt\nvLBIkr46/U+jvHON2kvaUoq1AgDwm+V0OhXhiNDk7Ml+jY9g6xIAAEDQ+RMaHVTeiqI0SemSWkn6\nu6S6ygtkSo219oikIjfOW2tDz/o9TVJoEd0BAEApcLlcSmHrEgAAQJnmT2j0kaQ7Je1U3nlGM08f\njN1c0ooA1gYAAMowti4BAACUbf6ERoMkhUiStfZlY0yGpOslrZQ0P4C1AQAAAAAAIEiKHRpZa3OV\nd57QmeulkpYGsigAAAAAAAAEV4g/g4wxbYwxi4wxnxljap9uu98Y0zqw5QEAAAAAACAYih0aGWO6\nSVqnvDenXSsp7PStKpLGBa40AAAAAAAABIs/K42ekDTEWjtQ0smz2j+VlBCQqgAAAAAAABBU/oRG\nDSVtKaA9U1LVkpUDAAAAAACAi4E/odFBSfULaG8taW/JygEAAAAAAMDFwJ/Q6FVJLxpjWkqykq4w\nxtwnaZqkuYEsDgAAAAAAAMFRzo8xU5QXNn0oKUJ5W9WOS5pmrZ0dwNoAAAAAAAAQJMUOjay1VtL/\nM8Y8r7xtahUlfWOt/SXQxQEAAAAAACA4zjs0MsbUk7TvdGgka+0JSd+UVmEAAAAAAAAInuKcabRb\nUtSZC2PMW8aYWoEvCQAAAAAAAMFWnNDI5Lu+XVJkAGsBAAAAAADARcKft6cBAAAAAADgElec0Mie\n/snfBgAAAAAAgEtMcd6eZiS9YYw5fvraIWmeMebXsztZa+8JVHEAAAAAAAAIjuKERkn5rhcFshAA\nAAAAAABcPM47NLLW9ivNQgAAAAAAAHDx4CBsAAAAAAAA+CA0AgAAAAAAgA9CIwAAAAAAAPggNAIA\nAAAAAIAPQiMAAAAAAAD4IDQCAAAAAACAD0IjAAAAAAAA+CA0AgAAAAAAgA9CIwAAAAAAAPggNAIA\nAAAAAIAPQiMAAAAAAAD4IDQCAAAAAACAD0IjAAAAAAAA+CA0AgAAAAAAgA9CIwAAAAAAAPggNAIA\nAAAAAIAPQiMAAAAAAAD4IDQCAAAAAACAD0IjAAAAAAAA+CA0AgAAAAAAgA9CIwAAAAAAAPggNAIA\nAAAAAIAPQiMAAAAAAAD4IDQCAAAAAACAD0IjAAAAAAAA+CA0AgAAAAAAgA9CIwAAAAAAAPgoF+wC\nAAAAAOC3LuUCjQGA4iA0AgAAAIBgceRt/+jt5/AIh0NOpzOQFQGAB6ERAAAAAARLRSlX0qJFixQX\nF1fs4U6nUy6XK/B1AYAIjQAAAAAg6OLi4pSQkBDsMgDACwdhAwAAAAAAwAehEQAAAAAAAHwQGgEA\nAAAAAMAHoREAAAAAAAB8EBoBAAAAAADAB6ERAAAAAAAAfBAaAQAAAAAAwAehEQAAAAAAAHyUqdDI\nGFPNGLPYGJNpjDlsjHnNGBNZjPHzjDG5xpgRpVknAAAAAABAWVemQiNJSyTFSeogqbOktpLmn89A\nY8zdklpKOlBq1QEAAAAAAFwiykxoZIxpJKmjpAHW2u3W2m2SHpLU0xhz2TnG1pb0oqRekk6VerEA\nAAAAAABlXJkJjSRdJ+mwtXbnWW0bJVnlrSAqkDHGSHpT0nPW2pTSLREAAAAAAODSUJZCo8skHTq7\nwVqbI+mn0/cKM1bSCWvtS6VYGwAAAAAAwCWlXLALMMY8K2lMEV2s8s4x8mfuZpJGSLrWn/GjRo1S\nlSpVvNoSExOVmJjoz3QAAAAAAAAXTHJyspKTk73aMjMzz3t80EMjSdMkLThHn72SDkqqeXajMSZU\nUvXT9wrSWlKUpH/n7VKTJIVKmmGMedhaW6+oh86cOVMJCQnnKA0AAAAAAODiU9DClx07dqhZs2bn\nNT7ooZG1NkNSxrn6GWM+k1TVGHPtWecadZBkJH1RyLA3JW3I17b+dPu5gioAAAAAAIDfrKCHRufL\nWrvLGLNO0qvGmKGSKkiaLSnZWutZaWSM2SVpjLX2PWvtYUmHz57HGHNS0kFr7e4LWD4AAAAAAECZ\nUpYOwpakXpJ2Ke+taaskbZE0OF+fqyRVUeFs6ZQGAAAAAABw6SgzK40kyVp7RFLvc/QJPcf9Is8x\nAgAAAAAAQNlbaQQAAAAAAIALgNAIAAAAAAAAPgiNAAAAAAAA4IPQCAAAAAAAAD4IjQAAAAAAAOCD\n0AgAAAAAAAA+CI0AAAAAAADgg9AIAAAAAAAAPgiNAAAAAAAA4IPQCAAAAAAAAD4IjQAAAAAAAOCD\n0AgAAAAAAAA+CI0AAAAAAADgg9AIAAAAAAAAPgiNAAAAAAAA4IPQCAAAAAAAAD4IjQAAAAAAAOCD\n0HWWa+0AACAASURBVAgAAAAAAAA+CI0AAAAAAADgg9AIAAAAAAAAPgiNAAAAAAAA4IPQCAAAAAAA\nAD4IjQAAAAAAAOCD0AgAAAAAAAA+CI0AAAAAAADgg9AIAAAAAAAAPgiNAAAAAAAA4IPQCAAAAAAA\nAD7KBbuAsiw9PV1utzvYZQBlltPplMvlCnYZAAAAAIACEBr5KT09XXFxccrKygp2KUCZFRERoZSU\nFIIjAAAAALgIERr5ye12KysrS4sWLVJcXFywywHKnJSUFPXu3Vtut5vQCAAAAAAuQoRGJRQXF6eE\nhIRglwEAAAAAABBQHIQNAAAAAAAAH4RGAAAAAAAA8EFoBAAAAAAAAB+ERgAAAAAAAPBBaISL2nff\nfaeQkBDNmjUr2KUAAAAAAPCbwtvTSkF6errcbnewy5DT6fT7VeZJSUnq169fgffGjh2ryZMnl6Q0\nAAAAAABwkSM0CrD09HQ1bBin7OysYJcihyNCqakpfgdHxhhNnDhRMTExXu1NmjQJQHUAAAAAAOBi\nRmgUYG63+3RgtEhSXBArSVF2dm+53W6/QyNJ6tSpkxISEs6rr7VWJ06cUFhYmN/PAwAAAAAAFwfO\nNCo1cZISgvhTuoFVTk6OQkJCNHr0aC1cuFCNGzeWw+HQhx9+KCkvQJoxY4an/fLLL9ewYcN09OhR\nr3m+/PJL3XLLLXI6nYqIiFC9evU0aNCgAp85f/58xcbGKjw8XK1atdLOnTtL9TMCAAAAAPBbxkoj\nFCkzM1MZGRlebTVq1PD8vm7dOi1dulTDhw9X9erVPaua+vfvr+TkZPXv318PP/yw9u7dq9mzZ+vv\nf/+7tm7dqpCQEP3444/q2LGjrrjiCj3++OOqXLmy9u/fr5UrV/rUkZSUpKysLA0bNkzWWk2dOlXd\nunXTnj17FBJC9gkAAAAAQKARGqFQ1lp16NDBq80Yo5ycHM/17t279c0336h+/fqets2bNyspKUnL\nli1Tt27dPO1t27ZV586dtWLFCnXv3l2ffPKJjh49qi1btig+Pt7Tb+LEiT61HDhwQHv27FHFihUl\nSbGxserevbs2btyoW2+9NWCfGQAAoLSkpV2YMQAABAqhEQpljNGcOXN01VVXFdqnQ4cOXoGRJC1f\nvlw1atRQu3btvFYpNW/eXOHh4dq0aZO6d++uqlWrylqrlStX6ne/+51CQ0MLfU6vXr08gZEktWnT\nRtZa7d27twSfEAAAoPTlbcN3aPLkbL/GR0Q45HQ6A1wVAADnRmiEIrVo0aLIg7Dzv1lNylt9lJGR\noaioKJ97xhgdOnRIknTTTTfp7rvv1pNPPqlp06apXbt2uuuuu5SYmKgKFSp4jatTp47XdbVq1SRJ\nhw8fLu5HAgAAuKBcLpdSUlLldrv9Gu90Okv0YhMAAPxFaIQSCQ8P92nLzc3VFVdcoYULF8pa63O/\nZs2akvICpHfeeUeff/65Vq1apXXr1qlfv3564YUXtG3bNq+5C1uFVND8AAAAFxuXy0XwAwAocwiN\nEHCxsbHaunWrWrdurfLly5+zf6tWrdSqVStNmjRJCxcuVJ8+fbRs2TI98MADF6BaAAAAAABQEF47\nhYDr0aOHTpw4oUmTJvncO3XqlI4ePSpJOnLkiM/9q6++WpJ0/Pjx0i0SAAAAAAAUiZVGKJS/W79u\nuukmDRgwQJMmTdKOHTt08803q1y5cvr222+1fPlyzZ07V3feeadef/11vfbaa7rrrrtUr149HT16\nVK+++qqqVaumTp06BfjTAAAAAACA4iA0KjUpZf75xphz3i+sz6uvvqrf//73euWVV/T444+rfPny\niomJUd++fdWqVStJUvv27bVjxw4lJyfr0KFDqlq1qlq1aqWnnnrK6+Drwp5T1PMBAAAAAEDJEBoF\nmNPplMMRoezs3sEuRQ5HhN+vZ+3Tp4/69OlT6P3Q0FDl5OQUOcfAgQM1cODAQu8nJCRo8eLFRc4R\nGxtb4HPO5/kAAAAAAMB/hEYB5nK5lJqa4vcrVQOJ17MCAAAAAAB/ERqVAl6pCgAAAAAAyjrengYA\nAAAAAAAfhEYAAAAAAADwQWgEAAAAAAAAH4RGAAAAAAAA8EFoBAAAAAAAAB9lKjQyxlQzxiw2xmQa\nYw4bY14zxkSex7g4Y8x7xpgjxphfjDFfGGOuvBA1AwAAAAAAlEVlKjSStERSnKQOkjpLaitpflED\njDGxkrZK+uZ0/3hJEyVll2qlAAAAAAAAZVi5YBdwvowxjSR1lNTMWrvzdNtDklYbY/5srT1YyNBJ\nklZbax87q21f6VYLAAAAAABQtpWllUbXSTp8JjA6baMkK6llQQOMMUZ5K5J2G2PWGmN+NMZ8bozp\nWvrlAgAAAAAAlF1lKTS6TNKhsxustTmSfjp9ryA1JVWUNEbSB5JukfRXSSuMMW1Kr1QAAAAAAICy\nLejb04wxzyov1CmMVd45Rv44E4q9a62ddfr3fxhjrpc0RHlnHRVq1KhRqlKlildbYmKiEhMTi3xo\nenq63G63fxUHkNPplMvluqDPDAkJ0YQJE/Tkk09Kkt544w31799f+/fv99QSExOjpk2bauXKlRe0\nNgAAAAAAfkuSk5OVnJzs1ZaZmXne44MeGkmaJmnBOfrslXRQeSuHPIwxoZKqn75XELekU5JS8rWn\nSLrhXIXNnDlTCQkJ5+rmJT09XQ0bNVT2seCfs+0Idyh1V6pfwVFSUpL69esnSfrkk090/fXX+/Sp\nU6eODhw4oDvuuMMTABljlLcrUAVen2kDAAAAAAClq6CFLzt27FCzZs3Oa3zQQyNrbYakjHP1M8Z8\nJqmqMebas8416iDJSPqikLlPGmP+T1LDfLcaSErzv+rCud3uvMDoHknO0njC+RYiZa/IltvtLtFq\no/DwcC1ZssQnNPr444914MABORwOr/Zjx46pXLmg/2sFAAAAAABKqMz87d5au8sYs07Sq8aYoZIq\nSJotKfnsN6cZY3ZJGmOtfe900/OSlhpjtkraJOk2SXdIurFUC3ZKuqJUn3BB3H777Vq2bJlmzZql\nkJD/HYG1ZMkSNW/e3GcbXoUKFS50iQAAAAAAoBSUpYOwJamXpF3Ke2vaKklbJA3O1+cqSZ6DiKy1\n7yrv/KJHJf1DUn9J91hrP7sQBZdlxhglJiYqIyNDGzZs8LSfPHlSy5cvV69evWSt9RoTEhKiZ555\nptjPSkpKUvny5TVmTFHHWwEAAAAAgAulTIVG1toj1tre1toq1tpq1tqB1tqsfH1CrbVv5mt7w1rb\nwFobaa1NsNauurCVl10xMTFq1aqV18FZH3zwgY4ePaqePXsG5BmvvPKK+vfvr3Hjxmnq1KkBmRMA\nAAAAAJRMmQqNEBy9evXSu+++q+PHj0vK25p244036rLLLivx3LNmzdLQoUM1adIkPf300yWeDwAA\nAAAABAahEc6pR48eysrK0qpVq/TLL79o1apVuu+++0o87/PPP6+HH35Yzz//vB577LEAVAoAAAAA\nAAKlzByEjeBxOp26+eabtWTJEv3666/Kzc1V9+7dSzTn5s2btWrVKo0dO1ajR48OUKUAAAAAACBQ\nWGmE89KrVy998MEHmjdvnm677TZVqlSpRPM1adJEjRo10sKFC7V///7AFAkAAAAAAAKG0Ajn5e67\n71ZISIi++OIL9erVq8TzOZ1Obdy4UeXKlVOHDh108ODBAFQJAAAAAAAChdAI5yUyMlLz5s3ThAkT\n1KVLl4DMecUVV2jjxo06duyYbrnlFh0+fDgg8wIAAAAAgJLjTKPS4i77z7fWel3ff//9JZ80n9jY\nWK1fv17t2rXTrbfeqo8++qjEW98AAAAAAEDJERoFmNPplCPcoewV2cEuRY5wh5xOp9/jjTHn1efs\nfvmvz2dMkyZNtGbNGt1yyy268847tXbtWoWFhfldNwAAAAAAKDlCowBzuVxK3ZUqtzvYS43yAiyX\ny+XX2D59+qhPnz7n7Ld3716v65ycnHPOk3+MJLVo0UJHjhzxo1IAAAAAAFAaCI1Kgcvl8jusAQAA\nAAAAuBhwEDYAAAAAAAB8EBoBAAAAAADAB6ERAAAAAAAAfBAaAQAAAAAAwAehEQAAAAAAAHwQGgEA\nAAAAAMAHoREAAAAAAAB8EBoBAAAAAADAB6ERAAAAAAAAfJQLdgEAAPy2pFygMQAAAEDJEBoBAHAB\nOJ1OORwRys7u7dd4hyNCTqczwFUBAAAAhSM0KgXp6elyu93BLkNOp1Mul6tEc+zfv1/Tpk3Thg0b\n9P3330uSYmJi1L59ew0ePFjx8fGBKBUALnkul0upqSl+//9DIP43HQAAACgOQqMAS09PV1zDhsrK\nzg52KYpwOJSSmur3XzJWrVqlnj17qnz58rrvvvt09dVXKyQkRLt27dKKFSs0b9487du3T3Xq1Alw\n5QBwaXK5XAQ/AAAAKDMIjQLM7XYrKztbiyTFBbGOFEm9s7Pldrv9+gvK3r17lZiYqLp16+rDDz9U\nzZo1ve5PnTpVc+bMUUhI4WepZ2VlKSIiotjPLi3Hjx9XhQoVZIwJdikAAAAAAFz0eHtaKYmTlBDE\nn5IGVlOnTlVWVpYWLFjgExhJUkhIiB588EHVrl1bktS3b19VqlRJe/fu1e23367KlSurd+//ndux\nbNkyNW/eXBEREYqKitL999+vH374wWfe1NRU9ejRQzVr1lRERIQaNWqkJ554wqvPDz/8oP79++uy\nyy6Tw+FQkyZNtGDBAq8+H3/8sUJCQvTWW2/piSee0JVXXqnIyEh99dVXCgkJ0Ysvvujz7G3btnnG\nAAAAAADwW8dKIxRo9erVql+/vpo3b35e/Y0xOnXqlDp27Kg2bdpo+vTpnlVGb7zxhvr376+WLVtq\nypQp+vHHH/XCCy9o27Zt2rlzpypXrixJ+sc//qE2bdooLCxMgwcPVnR0tL777jutWrVKkyZNkiQd\nOnRILVu2VGhoqEaMGCGn06k1a9ZowIAB+vnnnzVixAivuiZOnKiwsDA98sgjOnHihBo1aqQbbrhB\nixcv1siRI736Ll68WJUrV1bXrl1L+vUBAAAAAFDmERrBx88//6wffvhBd999t8+9zMxMnTp1ynMd\nGRkph8MhSTpx4oTuvfdeT8AjSadOndLYsWPVtGlTffzxx6pQoYIk6YYbbtAdd9yhmTNn6qmnnpIk\nPfTQQzLGaOfOnZ4VTJL07LPPen4fN26crLX66quvVLVqVUnSoEGD1KtXL02YMEGDBw9WWFiYp//x\n48e1Y8cOz3Ml6YEHHtCQIUP07bffqkGDBp46ly1bpm7dunk+DwAAAAAAv2VsT4OPo0ePSpIqVqzo\nc69du3aKiory/MyZM8fr/pAhQ7yut2/frkOHDmnYsGFewc3tt9+uRo0aafXq1ZLyzoLaunWrBgwY\n4BUY5bdixQp16dJFOTk5ysjI8PzceuutyszM1I4dO7z69+3b1+u5ktSjRw+FhYVp8eLFnra1a9cq\nIyPDa0sdAAAAAAC/ZYRG8FGpUiVJ0i+//OJz75VXXtHGjRu9ApczypUrpyuvvNKrLS0tTcYYz4qe\nszVq1EhpaWmS8g7elqTGjRsXWtd///tfHTlyRK+88opXcBUVFaX+/ftLytu+draYmBifeapUqaIu\nXbpoyZIlnrbFixerdu3aat++faHPBwAAAADgt4TtafBRuXJlXX755frXv/7lc69FixaS5Al7znb2\ntrDSkJubK0nq3bu3+vTpU2Cfpk2bel2Hh4cX2O+BBx7Q8uXL9fnnn6tJkyZ6//339eCDDwa2YAAA\nAAAAyjBCIxSoc+fOev3117V9+/bzPgy7INHR0bLWKjU1Ve3atfO6l5qaqujoaElSvXr1JKnAoOqM\nqKgoVapUSTk5Obrpppv8rkmSOnXqJKfTqcWLF+v3v/+9jh07xtY0AAAAAADOwvY0FOjRRx9VeHi4\n+vfv77PlS/rfqp9zad68uWrWrKl58+bp5MmTnvY1a9YoJSVFd9xxhyTJ6XSqbdu2+stf/qJ///vf\nBc4VEhKibt266Z133tHXX3/tc9/tdp9XTZIUGhqqxMREvfXWW3rjjTcUHx+vJk2anPd4AAAAAAAu\ndaw0KiUpZfz59evX15IlS9SrVy81bNhQ9913n66++mpZa7Vv3z4tWbJEoaGhqlOnTpHzlCtXTlOn\nTlX//v3Vtm1bJSYm6uDBg5o1a5bq1aunhx9+2NN31qxZatOmjRISEjRo0CDVrVtX+/bt0wcffKCd\nO3dKkqZMmaLNmzerZcuWGjhwoH73u9/pp59+0t/+9jd99NFHxQqOHnjgAc2aNUubN2/Wc889598X\nBQAAAADAJYrQKMCcTqciHA71zs4OdimKcDjkdDr9Hn/nnXfqn//8p6ZPn64NGzZowYIFMsYoOjpa\nXbp00eDBgxUfH+/pb4wpcJ4+ffooMjJSU6ZM0dixYxUZGalu3bppypQpqly5sqdf06ZN9fnnn2v8\n+PGaN2+esrOzFR0drXvvvdfTp2bNmvryyy/1zDPP6K9//avmzp2rGjVqqHHjxj7BT2H1nJGQkKDG\njRtr165d6tWrlz9fEQAAAAAAlyxCowBzuVxKSU0t1oqX0uJ0OuVyuUo0R926dfXSSy+ds9+CBQu0\nYMGCQu93795d3bt3P+c8cXFxWr58eZF9nE6nZs2apVmzZhXa58Ybb1ROTs45n1e+fHm1a9dOl19+\n+Tn7AgAAAEXy568Awf9rAwAUitCoFLhcrhKHNSh927dv11dffaU333wz2KUAAACgDHM6nXKEO5S9\nwr/dBo7wku0QAIDSQmiE35yvv/5a27dv14wZM1S7dm316NEj2CUBAACgDHO5XErd5f9ug0DsEACA\n0kBohN+c5cuXa+LEiWrUqJGSk5NVoUKFYJcEAACAMo7dBgAuRSHBLgC40J566imdOnVK//rXv9S6\ndetglwMAAAAAwEWJ0AgAAAAAAAA+CI0AAAAAAADgg9AIAAAAAAAAPgiNAAAAAAAA4IPQCAAAAAAA\nAD4IjQAAAAAAAOCD0AgAAAAAAAA+CI0AAAAAAADgo1ywC7gUpaeny+12B7sMOZ1OuVwuv8YmJSWp\nX79+Bd4bO3asJk+eXJLSAAAAAADARY7QKMDS09PVMC5O2VlZwS5FjogIpaak+B0cGWM0ceJExcTE\neLU3adIkANUBAAAAAICLGaFRgLnd7rzAaNw4KTo6eIWkpSl78mS53W6/QyNJ6tSpkxISEs6rr7VW\nJ06cUFhYmN/PAwAAAAAAFwfONCot0dFSgwbB+ynlwConJ0chISEaPXq0Fi5cqMaNG8vhcOjDDz+U\nJP3yyy8aNWqU6tSpI4fDobi4OL3wwgtec9x///0KCQkp8Ofs7W/Hjx/Xk08+qfr168vhcCg6OlqP\nPfaYTp48WWA9K1asUJMmTeRwOBQfH6+NGzeW6ncBAAAAAMCliJVGKFJmZqYyMjK82mrUqOH5fd26\ndVq6dKmGDx+u6tWry+VyyVqrzp0769NPP9XAgQPVtGlTrVmzRqNHj9Z//vMfTZ06VZI0fPhw3Xbb\nbV5zr169WkuXLlWtWrUkyTPXl19+qSFDhqhBgwb6+9//runTp+u7777T22+/7TV+8+bNWrZsmYYN\nG6aKFSvqhRdeULdu3ZSenq4qVaqUxlcEAAAAAMAlidAIhbLWqkOHDl5txhjl5OR4rnfv3q1vvvlG\n9evX97S988472rp1q5577jn9+c9/liQNHTpU3bp104wZMzR8+HC5XC61atVKrVq18oz79ttvNWzY\nMN12220aMGCApLwDuT/++GN9+umn+v3vf+/pGxcXp4ceekjbt29X8+bNPe27du3Srl27PFvyWrdu\nrWbNmumtt97SoEGDAvjtAAAAAABwaSM0QqGMMZozZ46uuuqqQvt06NDBKzCSpDVr1qhChQoaPny4\nV/vo0aP117/+VWvXrvUJcH799VfdfffdqlWrlhYvXuxpX758ueLj4xUbG+u14ql9+/ay1mrTpk1e\noVGnTp28znC69tprFRkZqb179xbvwwMAAAAA8BtHaIQitWjRosiDsPO/WU2S0tLSdOWVVyo8PNyr\nPS4uznM/v379+ik9PV1ffPGF1zay3bt3a8+ePYqKivIZY4zRoUOHvNrq1Knj069q1ao6fPhwoZ8B\nAAAAAAD4IjRCieQPhvwxffp0vfPOO3rrrbf0u9/9zutebm6urrnmGk2bNk3WWp+x+d8MFxoaWuAz\nChoLAAAAAAAKR2iEgIuOjtbWrVt17Ngxr1ApJSXFc/+MzZs3a+zYsXrkkUfUvXt3n7liY2OVmpqq\n9u3bl37hAAAAAADAIyTYBeDSc/vtt+vEiROaM2eOV/vMmTMVGhrqeWPaDz/8oJ49e+qmm27Ss88+\nW+BcPXr0UFpamhYsWOBz79ixYzp27FjgPwAAAAAAAChbK42MMdUkvSTpDkm5kt6RNNJa+2sRYyIl\nTZXUVVINSfskzbLWzi/9iss2f7d03X333Wrbtq3GjBmjPXv2qGnTplqzZo1Wr16tRx55xHPu0PDh\nw/XTTz+pc+fOWrJkidcc11xzjRo3bqy+fftq2bJlGjhwoDZu3Kjrr79ep06dUkpKipYtW6ZNmzap\nadOmJf6sAAAAAADAW5kKjSQtkVRLUgdJFSS9IWm+pN5FjJkpqZ2kXpLSJN0qaa4x5oC1dlWpVVrA\nYc8XVACeb4w55/2C+hhjtHr1ao0fP15vv/22FixYoJiYGM2YMUMjR4709HO73crJydGoUaN85pg4\ncaIaN26skJAQrVq1StOnT9fChQu1YsUKRUZGKjY2Vn/6058UGxt7XvWc67MAAAAAAABvZSY0MsY0\nktRRUjNr7c7TbQ9JWm2M+bO19mAhQ6+TlGSt3Xr6+jVjzBBJv5cU8NDI6XTKERGh7MmTAz11sTki\nIuR0Ov0a26dPH/Xp06fQ+6GhocrJySn0fmRkpGbMmKEZM2YU2mfr1q2F3sv/rEcffVSPPvqoX/Wk\np6ef13MAAAAAAMD/lJnQSHnhz+EzgdFpGyVZSS0lvVfIuG2S7jTGLLDW/mCMaS/pKknrSqNIl8ul\n1JQUud3u0pi+WJxOp8/bxQAAAAAAAM5HWQqNLpN06OwGa22OMean0/cK85CkVyR9b4w5JSlH0kBr\n7aelVajL5SKsAQAAAAAAZVrQQyNjzLOSxhTRxUqKK8EjRihvJdIdktIltZU0xxjzg7X2o6IGjho1\nSlWqVPFqS0xMVGJiYgnKAQAAAAAAKH3JyclKTk72asvMzDzv8UEPjSRNk+T7PnVveyUdlFTz7EZj\nTKik6qfv+TDGOCT9P0l3WWvXnG7+lzHmWkl/llRkaDRz5kwlJCSc8wMAAAAAAABcbApa+LJjxw41\na9bsvMYHPTSy1mZIyjhXP2PMZ5KqGmOuPetcow6SjKQvChlW/vRP/hOScySF+FcxAAAAAADApa/M\nBCfW2l3KO7z6VWNMC2PMDZJmS0o++81pxphdxpiup8f8LOljSdOMMTcaY2KMMX0lPSBpxQX/EAAA\nAAAAAGVE0FcaFVMvSS8p761puZKWSxqZr89Vks4+iOheSc9KWqS8rWxpkh6z1r5S6tUCAAAAAACU\nUWUqNLLWHpHU+xx9QvNdH5I0oDTrAgAAAAAAuNSUqdAIAAAAAABc/FIu0BiULkIjAAAAAAAQEE6n\nUxEOh3pnZ/s1PsLhkNPpDHBV8BehEQAAAAAACAiXy6WU1FS53W6/xjudTrlcrgBXBX8RGgEAAAAA\ngIBxuVwEP5cIQqNSkJ6e7neqGkgktAAAAAAAwF+ERgGWnp6uuIZxysrOCnYpinBEKCU1xa/gKCkp\nSf369fNch4WFqXr16oqPj1fnzp3Vr18/VaxYsdjzpqSk6O2331a/fv0uuUDrs88+0/r16zVq1ChV\nrlw54PO3a9dOW7Zs8VxXq1ZNsbGxGjp0qPr27StjTMCfCQAAAAD47SI0CjC3262s7CyN0zhFKzpo\ndaQpTZOzJ8vtdvsdzhhjNHHiRMXExOjkyZM6ePCgNm/erIcfflgzZszQypUrFR8fX6w5v/nmGz39\n9NNq3779JRcabdu2Tc8884z69etXKqGRMUZ16tTRlClTZK3Vf//7X7355psaMGCAdu/ercmTJwf8\nmQAAAACA3y5Co1ISrWg1UINgl1FinTp1UkJCgud6zJgx2rx5szp37qyuXbsqJSVFYWFh5z2ftbZU\nVsRkZWUpIiIi4PMWh7W21J9RpUoVJSYmeq4HDRqkhg0b6qWXXtLEiRMVGhpa6jUUV3Z2thwOR7DL\nAAAAAAAUU0iwC0DZ065dO40fP15paWlatGiRpz01NVXdu3dXjRo1FB4erhYtWuj999/33E9KSlKP\nHj08c4SEhCg0NNRry9WaNWvUtm1bVaxYUZUrV9Ydd9yhb775xuv5ffv2VaVKlbR3717dfvvtqly5\nsnr37u25//LLLys2NlYRERFq1aqVPvnkE7Vr10433XST1zwnTpzQU089pauuukoOh0Mul0tjxozR\niRMnvPqFhIRoxIgReu+99xQfHy+Hw6EmTZpo3bp1nj5PP/20Hn30UUlSTEyM57Olp6dLkjZs2KA2\nbdqoWrVqqlSpkho1aqTHH3/cr+//bOHh4WrVqpV+/fVX/fe//5UkffLJJ+rRo4eio6M9n2v06NHK\nzvfKyzPf4759+9SxY0dVrFhRtWvX1sSJE32eY63VCy+8oCZNmig8PFyXXXaZhgwZoiNHjnj1i4mJ\n0Z133qn169erRYsWCg8P1yuvvFLizwkAAAAAuPBYaQS/3H///Ro3bpzWr1+vAQMG6Ouvv1br1q11\n5ZVX6rHHHlNkZKTefvtt3XXXXVqxYoW6du2qtm3basSIEZo9e7aeeOIJNWrUSJIUFxcnSVq4cKH6\n9u2rTp066bnnnlNWVpbmzp2rNm3aaOfOnZ7tbMYYnTp1Sh07dlSbNm00ffp0zyqjuXPn6qGHhfXT\nfwAAH4xJREFUHtKNN96o0aNHa//+/brrrrtUrVo11alTx1O/tVZdunTRtm3bNHjwYDVq1Ej//Oc/\nNXPmTO3evVsrVqzw+rxbt27VihUrNGzYMFWqVEmzZs1S9+7dlZ6ermrVqqlbt2769ttvtXTpUr34\n4ouqUaOGJCkqKkrffPONunTpomuuuUYTJ05UWFiY9uzZo23btgXkz+K7775TaGioqlatKklatmyZ\njh07pmHDhqlGjRr68ssvNXv2bB04cEBvvfWWZ5wxRrm5uerUqZOuu+46Pf/881q7dq2eeuop5eTk\naMKECZ6+gwYN0ptvvqn+/ftr5MiR2rdvn2bPnq2vvvpKn376qWeFkzFGu3btUq9evTR48GDPSigA\nAAAAQNlDaAS/1K5dW1WqVNF3330nSRo5cqRiYmL0f//3fypXLu9fq6FDh6p169YaM2aMunbtqrp1\n66pNmzaaPXu2br75ZrVt29Yz36+//qqRI0dq0KBBmjt3rqe9T58+atCggSZPnqx58+Z52k+cOKF7\n771XkyZN8rSdPHlSTz75pFq2bKkPP/xQISF5C+maNm2qPn36eIVGixcv1kcffaQtW7bouuuu87Q3\nbtxYQ4cO1eeff65WrVp52nft2qWUlBTFxMRIylspdfXVVys5OVnDhg1TkyZNlJCQoKVLl6pr165e\n5zVt2LBBJ0+e1Jo1a1StWrUSfe85OTnKyMiQlHd+1pw5c7Rz50517drVswXsueee89oy+Mc//lGx\nsbF6/PHH9f333+vKK6/03MvOztbtt9+umTNnSsr7M+vSpYumTp2qESNGqHr16vrkk0/0+uuvKzk5\nWffee69nbPv27dWxY0ctW7ZMPXv29LR/9913WrdunW6++eYSfVYAAAAAQHCxPQ1+q1ixon7++Wcd\nPnxYmzZt0h/+8AdlZmYqIyPD83Prrbdq9+7d+s9//lPkXBs2bFBmZqZ69uzpNd4Yo5YtW2rTpk0+\nY4YMGeJ1vX37dmVkZGjgwIGewEiSevXq5RPWLF++XHFxcWrQoIHX89q3by9rrc/zbrnlFk9gJEnx\n8fGqXLmy9u7de87v6cwKoL/+9a8lPvcoJSVFUVFRioqKUlxcnF5++WV16dJFr7/+uqfP2YFRVlaW\nMjIydN111yk3N1c7d+70mXP48OFe1w8++KCOHz+ujRs3SspbuVS1alV16NDB67u69tprVbFiRZ/v\nqm7dugRGAAAAAHAJYKUR/PbLL7+oVq1a2rNnj6y1Gj9+vJ544gmffsYYHTp0SJdffnmhc+3evVvW\nWrVv377A8fnfRlauXDmvFTOSlJaWJmOMYmNjvdpDQ0O9Ap8zz9u1a5eioqIKrfdsZ69SOqNatWo6\nfPhwoZ/pjHvvvVevv/66Bg4cqLFjx6pDhw6655571L1792IfCl63bl299tprkiSHw6GrrrpKTqfT\nq8+///1vjR8/Xu+//75XfcYYZWZmevUNCQlRvXr1vNoaNMg7wH3//v2SpD179ujIkSOqWbOmTz0F\nfVd169Yt1mcCAAAAAFycCI3glwMHDigzM1P169dXbm6uJOnPf/6zOnbsWGD/+vXrFzlfbm6ujDFa\ntGiRatWq5XP/zJa3M4rzxrbCnhcfH6+ZM2cWuPonf0hU2FvJzmflkMPh0JYtW7Rp0yatXr1aa9eu\n1VtvvaUOHTpo/fr1xQqOIiMjCwzWzsjNzdXNN9+sI0eO6LHHHlPDhg0VGRmpAwcOqE+fPp4/q+LI\nzc1VrVq1tGTJkgI/b/7gLTw8vNjPAAAAAABcfAiN4Jc333xTxhh16tTJs1KlfPnyPm8oy6+wgCQ2\nNlbWWkVFRZ1zjsJER0fLWqs9e/boxhtv9LTn5ORo//79uvrqq72e949//KPIAKa4zhX+tG/fXu3b\nt9e0adP07LPP6oknntCmTZv8/rwF+ec//6ndu3dr4cKFuu+++zztZ7aa5Zebm6u9e/d6hXqpqamS\n/rdiKDY2Vh9++KGuv/76Eod1AAAAAICygzONUGwfffSRJk2apHr16qlXr16KiopSu3btNH/+fB08\neNCnv9vt9vweGRkpa63Pq9o7duyoypUra/LkyTp16lSRcxSmefPmqlGjhl599VWvFTWLFi3y2UbW\no0cPff/993r11Vd95snOzlZWVtY5n5dfZGSkJPl8toK2sF199dWy1ur48ePFfk5RzqyIyr+i6IUX\nXig01HrppZd8ritUqOAJs3r06KFTp07pmWee8Rmbk5Pjs+UNAAAAAHBpYKVRKUlTWpl/vrVWH3zw\ngVJSUnTq1Cn9+OOP+uijj7RhwwbVrVtXK1euVIUKFSRJL7/8stq0aaP4+HgNHDhQ9erV048//qjP\nPvtMBw4c8BzAfM011yg0NFRTp07VkSNHFBYWpg4dOsjpdGru3Ll64IEHlJCQoJ49eyoqKkrp6ela\nvXq1WrdurVmzZhVZb/ny5TVhwgSNGDFC7du3V48ePbR//34tWLBA9evX9wpN7r//fr399tsaOnSo\nNm3apBtuuEE5OTlKSUnRsmXLtH79eiUkJBTr+2rWrJmstRo3bpx69uyp8uXLq0uXLnrmmWe0ZcsW\nde7cWdHR0frxxx81d+5cuVwutW7duph/KkVr1KiRYmNj9ac//Unff/+9KleurHfeeccnyDojLCxM\na9euVd++fdWyZUt98MEHWrNmjR5//HHVqFFDktS2bVsNHjxYU6ZM0VdffaVbb71V5cuX17fffqvl\ny5dr1qxZuueeewL6OQAAAAAAwUdoFGBOp1MRjghNzp4c7FIU4YjwOSS5OIwxeuqppyRJFSpUUPXq\n1RUfH69Zs2apb9++npU1khQXF6ft27fr6aefVlJSkjIyMlSzZk1de+21njkkqVatWpo/f76effZZ\n/fGPf1ROTo42bdqktm3bKjExUbVr19aUKVM0bdo0HT9+XLVr11abNm3Ur18/n9oKcuZNYNOnT9cj\njzyi+Ph4rVy5UiNHjvS8kv7M+Pfee08zZ87Um2++qXfffVcRERGqV6+eRo0a5TkM+kzfgp6Xv715\n8+aaNGmS5s2bp3Xr1ik3N1f79u3TnXfeqbS0NC1YsEBut1tOp1Pt2rXThAkTVKlSpeL8kZxzC1y5\ncuW0atUqjRgxQlOmTJHD4dA999yj4cOHe23PO7v/2rVrNWTIED366KOqVKmSJkyYoPHjx3v1mzt3\nrpo3b6758+fr8ccfV7ly5RQTE6MHHnhAN9xwwzm/KwAAAABA2WNK+grwS5ExJkHS3/72t78Vutpk\nx44datasmQrqk56efl7bqUqb0+mUy+UKdhlBd+aspG7dumn+/PnBLuei0a9fP73zzjs6evRoUJ5f\n1H9DAAAAAIDScebvYpKaWWt3FNWXlUalwOVyEdYEyfHjx30Oa05KStJPP/0U0EOvAQAAAAC41BEa\n4ZLy+eefa9SoUfrDH/6gGjVq6G9/+5v+8pe/qGnTpurevXuwyyuQ2+1WTk5OofcrVKigatWqXcCK\nAAAAAAAgNMIlJiYmRi6XS7Nnz9ZPP/2k6tWrq2/fvnr22WdVrtzF+a97ixYtlJZW+MHl7dq100cf\nfVQqz+b8IQAAAABAYS7Ov0UDfoqOjta7774b7DKKZcmSJTp27Fih90trldGCBQu0YMGCUpkbAAAA\nAFD2ERoBQXbdddcFuwQAAAAAAHyEBLsAAAAAAAAAXHwIjQAAAAAAAOCD0AgAAAAAAAA+CI0AAAAA\nAADgg9AIAAAAAAAAPgiNAAAAAAAA4IPQCBfUxx9/rJCQEG3ZssXT1rdvX9WtWzeIVQEAAAAAgPzK\nBbuAS1F6errcbnewy5DT6ZTL5fJrbFJSkvr16+e5DgsLU/Xq1RUfH6/OnTurX79+qlixol9zG2N8\nrkNCSi+/nDt3riIiItSnT59SewYAAAAAAJcaQqMAS09PV1xcQ2VlZQe7FEVEOJSSkup3cGSM0cSJ\nExUTE6OTJ0/q4MGD2rx5sx5++GHNmDFDK1euVHx8fInrfO2115Sbm1vieQozZ84cRUVFERoBAAAA\nAFAMhEYB5na7lZWVrXHjpOjo4NWRliZNnpwtt9vtd2gkSZ06dVJCQoLnesyYMdq8ebM6d+6srl27\nKiUlRWFhYSWqNTQ0VKGhoSWaAwAAAAAABBZnGpWS6GipQYPg/ZRmYNWuXTuNHz9eaWlpWrRokac9\nNTVV3bt3V40aNRQeHq4WLVro/fffP+d8BZ1pZK3Viy++qKZNmyo8PFw1a9bUbbfdph07dnj6LFiw\nQB06dFCtWrXkcDjUuHFjzZs3z2ueunXr6uuvv9bmzZsVEhKikJAQ3XTTTZ77mZmZevjhh+VyueRw\nOHTVVVfpueeek7XWa56lS5eqefPmqly5sqpUqaKmTZtq1qxZnvunTp3S008/rQYNGig8PFxOp1Nt\n2rTRhx9+6DXP+XxHSUlJCgkJ0bZt2zR69GjVrFlTFStW1D333KOMjIxzfp8AAAAAAAQCK43gl/vv\nv1/jxo3T+vXrNWDAAH399ddq3bq1rrzySj322GOKjIzU22+/rbvuuksrVqxQ165dC53LGONzzlH/\n/v2VlJSkzp07a+DAgTp16pS2bt2qzz//3LPyad68eWrSpIm6du2qcuXK6f3339ewYcNkrdXQoUMl\nSS+++KIefPBBVapUSU888YSstapVq5Yk6dixY2rbtq3+85//aMiQIapTp462bdumxx57TAcPHtSM\nGTMkSRs2bFCvXr10yy236LnnnpMkpaT8//buPEqq6k7g+PdHhCiojdjsgoqEBI8cRtEsjkRARRTH\nmONIggYxREgkRk7iQhJBhCSMExeMS4gmHEQzYRKXOUICAhOYwaCZiLigknEBJCGCI0jTwrgAd/54\nRU/RezfdVHfz/ZxzT3e9uu++W+/9+nXVr+67bw1PPfUU11xzDQBTpkzhlltuYdy4cZx22mls376d\nlStXsmrVKs466yyAOu+jb33rW3To0IGbb76Z9evXM2PGDK6++mrmzp27v4dPkiRJkqQamTRSvXTv\n3p2ioiLeeOMNACZMmMBxxx3HM888wyGHZGF11VVXccYZZzBx4sRqk0blLVu2jDlz5pTNnbTXt7/9\n7X3qLV++fJ9L48aPH895553HHXfcUZY0uvDCC7nxxhvp2LEjI0eO3Gf922+/nXXr1vH888/Tq1cv\nAMaOHUvXrl257bbbuPbaa+nevTsLFiygqKiIRYsWVdnnBQsWMHz4cGbOnFllnbruo44dO/LEE0+U\nPd69ezd33303paWlHHHEEVVuR5IkSZKkhuDlaaq3ww8/nNLSUt59912WLVvGJZdcQklJCVu2bCkr\nQ4cO5bXXXuOtt96qdbuPPvoorVq14qabbqq2Xn7CaPv27WzZsoXPf/7zrF27ltLS0hq388gjjzBw\n4ECKior26fNZZ53Frl27WL58OQDt27dnx44d1SaN2rdvz8svv8zrr79e6fN13UcRwbhx4/ZpY+DA\ngezevZs333yzxtcmSZIkSdL+cqSR6u29996jc+fOvP7666SUmDx5MpMmTapQLyJ4++236dq1a63a\nXbt2Ld26daN9+/bV1luxYgVTpkzhj3/8Izt37txneyUlJTWOxnnttddYvXo1HTt2rLLPkI1gevjh\nhzn//PPp1q0bQ4cOZcSIEZx77rll9adNm8ZFF11Enz59OOmkkxg2bBijRo0qu7tcffZRjx499qlz\n1FFHAVkCSpIkSZKkxmbSSPWyceNGSkpK6N27N3v27AHguuuu2yeRkq93794Nuv21a9dy9tln07dv\nX2bMmEGPHj1o06YNv/vd77jzzjvL+lSdPXv2cM455zBx4sQKE18D9OnTB8guE3v++edZtGgRCxcu\nZOHChcyePZvRo0cze/ZsIBsF9MYbb/D444+zePFiZs2axYwZM7jvvvsYM2ZMvfZRVXeUq6yvkiRJ\nkiQ1NJNGqpcHH3yQiGDYsGFl8wG1bt16nzuT1dcJJ5zA4sWL2bZtW5WjjebPn8+HH37I/Pnz6d69\ne9ny8ncrAypMsp2/nffee4/BgwfX2KdDDjmE4cOHM3z4cCCbi+j+++9n8uTJZa+/ffv2jB49mtGj\nR7Nz504GDhzIzTffzJgxYxp8H0mSJEmS1Nic00h1tnTpUn74wx/Sq1cvLr30Ujp27MigQYO47777\n2LRpU4X677zzTp3av/jii9mzZw9Tp06tss7eUTj5I4pKSkp44IEHKtRt164d27Ztq7B8xIgRPP30\n0yxevLjCcyUlJezevRuArVu3Vnh+72VnH3zwQaV12rZtS+/evcueb+h9JEmSJElSY3OkUSMp9FzF\nDbH9lBILFixgzZo17Nq1i82bN7N06VKWLFnC8ccfz7x582jTpg0A9957LwMHDqRfv36MHTuWXr16\nsXnzZp5++mk2btzIc889t0+71Rk0aBCjRo3irrvu4tVXX2XYsGHs2bOHJ598kiFDhjB+/HiGDh1K\n69atueCCC/j6179OaWkpv/jFL+jcuXOFpMyAAQP42c9+xo9+9CN69+5Np06dGDx4MNdffz3z5s3j\nggsu4IorrmDAgAHs2LGDF198kccee4z169fToUMHrrzySrZu3cqQIUM45phjWL9+Pffccw8nn3wy\nffv2BeDEE09k0KBBDBgwgA4dOvDMM8/wyCOPcM0115T1oyH2kZemSZIkSZIOFJNGDay4uJi2bQ9l\n+vT3C90V2rY9lOLi4nqvHxFMmTIFgDZt2tChQwf69evHXXfdxRVXXEG7du3K6vbt25eVK1cydepU\n5syZw5YtW+jUqRMnn3xyWRv57Va2rXwPPPAA/fv3Z9asWdxwww0UFRVx6qmncvrppwPZfEOPPvoo\nkyZN4vrrr6dLly6MHz+eo48+mq997Wv7tHXTTTexYcMGbr31VkpLSznzzDMZPHgwhx12GMuXL2f6\n9Ok8/PDDPPTQQxx55JH06dOHadOmUVRUBMCoUaO4//77mTlzJtu2baNLly6MHDlyn9c1YcIE5s2b\nx5IlS/jggw849thjmT59Otddd12t9lH5O8VVdUldVcslSZIkSWpo4ciFiiLiFODZZ599llNOOaXS\nOqtWrWLAgAFUVmfDhg1N4nKj4uJievbsWehuSJWq7m9IkiRJktQ49n4WAwaklFZVV9eRRo2gZ8+e\nJmskSZIkSVKz5kTYkiRJkiRJqsCkkSRJkiRJkiowaSRJkiRJkqQKTBpJkiRJkiSpApNGkiRJkiRJ\nqsCkkSRJkiRJkiowaSRJkiRJkqQKDil0B5q7NWvWFLoLUrPk344kSZIkNW0mjeqpuLiYtm3b8pWv\nfKXQXZGarbZt21JcXFzobkiSJEmSKmHSqJ569uzJmjVreOeddwrdFanZKi4upmfPnoXuhiRJkiSp\nEiaN9kPPnj39wNsA5s6dy8iRIwvdDanBGNNqSYxntTTGtFoaY1otjTHdtDSribAj4vsRsSIidkTE\n1jqsNy0i/hYROyNiSUT0bsx+qm7mzp1b6C5IDcqYVktiPKulMabV0hjTammM6aalWSWNgNbAb4CZ\ntV0hIiYCVwPjgE8DO4BFEdGmUXooSZIkSZLUAjSry9NSSlMBImJ0HVabAPwgpfTb3LqXA5uBi8gS\nUJIkSZIkSSqnuY00qpOIOB7oAvx+77KU0nbgv4DPFapfkiRJkiRJTV2zGmlUD12ARDayKN/m3HNV\nORRgzZo1jdQt5SspKWHVqlWF7obUYIxptSTGs1oaY1otjTGtlsaYbnx5uY5Da6obKaXG7U1NHYj4\nJ2BiNVUS0Del9GreOqOBGSmlDjW0/TngD0C3lNLmvOW/BvaklCqdkj0iLgX+pfavQpIkSZIkqVm5\nLKX0q+oqNIWRRrcBs2uos7aebW8CAujMvqONOgPPVbPeIuAyYD3wfj23LUmSJEmS1NQcChxHlvuo\nVsGTRimlLcCWRmp7XURsAs4CXgSIiCOBzwD31tCnarNtkiRJkiRJzdRTtanUrCbCjogeEdEfOBb4\nWET0z5V2eXX+HBFfyFvtTmBSRPxDRPQDHgT+Cjx+QDsvSZIkSZLUjBR8pFEdTQMuz3u8d3aswcDy\n3O+fAIr2Vkgp/Tgi2gL3Ae2BJ4HzUkofNn53JUmSJEmSmqeCT4QtSZIkSZKkpqdZXZ4mSZIkSZKk\nA8OkkYiIPRFxYaH7UZ2IODMiducmMpeqZUyrpTGm1dIY02ppjGm1JMaz8pk0aqEiYnbuj313RHwY\nEZsiYnFEfDUiolz1LsDCQvSzDlYAXVNK2xtzIxExMCLmRcTG5nCyPJgY0/UTEd+LiD9FxPaI2BwR\n/xYRfRpzm6odY7p+IuIbEfFCRJTkylMRMawxt6naMab3X0R8N7cP7zhQ21TVjOn6iYgpuf2WX15p\nzG2qZsZz/UVEt4h4KCLeiYidufchpzT2dpsKk0Yt20KyP/hjgWHAUuAnwPyIKDv2KaW3U0ofFaaL\ntZNS2pVSevsAbKod8DwwHnDCr6bHmK67gcDdwGeAs4HWwOKIOOwAbFs1M6br7i/AROAUYADZPns8\nIvoegG2rZsZ0PUXEacA44IUDtU3VijFdPy8Bncn2XRfgjAO0XVXPeK6jiGhPlqD6ADgX6AtcC7zb\n2NtuMlJKlhZYgNnAY5UsHwzsAcbkLdsDXJj7/djc40vI7ki3E/gT2V3pTgOeAUqBBcDR5dq+EngF\n+N/cz6vyntvb7hfJTk47yJIzn82r0xOYB2wF3gNWA8Nyz52ZW//IvPoXk/1Deh9YB3ynXH/WAd8D\nZgHbgTeBsXXYh2X7xVL4Ykzvf0zn2ijObfeMQh/Tg70Y0w0T07l2tgBfLfQxPdiLMV3/mAYOB/4b\nGAIsA+4o9PG0GNP1jWlgCrCq0MfPYjw3UDzfAvxnoY9fQWOn0B2wNNKBreKkkHvuOeC3eY8rOym8\nTDYq4ZPAU7mTwe+BzwL9gVeBe/PauAz4K/CFXBsXAf8DjKqk3WFAb+A3wFqgVa7Ob4EngBOB44Dz\nyX2wzZ0Udu89KZB9u7wL+H6urctzJ5rL8/q0LteHbwC9yL6Z3gV8opb70KRREyrG9P7HdK6N3rnt\nnljoY3qwF2O6Qc7TrYAvk70Z/VShj+nBXozp+sc0MAe4Lfe7SaMmUozp+sU0WdKoFNgIvAH8EuhR\n6ON5sBfjud7x/DJwe65vm4FVwJWFPp4HNHYK3QFLIx3Y6k8Kc4GX8h5XdlK4Iu/5L+X+IM/MWzYR\neCXv8WvAl8pt50ZgRTXt9s212yf3+AVgchV9Ln9S+CXwRLk6/wysznu8DnigXJ1NwLha7kOTRk2o\nGNMNEtNB9s/3oP62pKkUY7r+MQ2cRPaB5COybx+HFfp4Wozp3OM6xzRZ4vMFoHXusUmjJlKM6XrH\n9LlkIz5OAs4hu7RnHdCu0Mf0YC7Gc73j+X/JRlf9gCw5Njb3eFShj+mBKs5pdHAKap6vZ3Xe75tz\nP18qt6wTQES0BU4AZkVE6d5CdlI4vpp238r1pVPu8V3A5Ij4Q0TcHBH9qulfX7J/QPlWAJ8oN5Hb\n6nJ1NuVtTy2HMV07PyX7pubLtayvwjGmq/dnsjdunwZmAg9GxKdqWEeFZUxXIiKOAe4ELktNfP4Q\nVWBMVyGltCil9GhK6aWU0hKy0SFHASOq6YsKy3iuWivg2ZTS5JTSCymlnwM/JxutdFAwaXRw6kuW\nZa1O/huXVMWyvfFzeO7nlWRv4veWk4DP1aLdVgAppVlkJ5EHc+uujIhv1tDPmpR/A5bfb7UcxnQN\nIuIesjdtg1JKb+1nH9T4jOlqpGzyy7UppedSSjeSfRM5YT/7ocZlTFduANARWBURH0XER2Tfnk/I\n3d2o/B2N1HQY07WUUiohu3Sp9372Q43HeK7aW8CacsvWkM23dFDww/NBJiKGAP2AR6qpVlOWed/K\n2az1fwNOyL2Jzy9v1qXdlNLGlNL9KaV/JLt2dGwVVdcAf19u2RnAqyk3jlAHB2O6ZrmE0ReAwSml\nDfvTlhqfMV0vrYCPN3CbaiDGdLX+nWzf/B3//6FqJdllFv19T9M0GdN1ExGHkyWM/NKqCTKea7SC\nbB6nfJ8km0T7oHBIoTugRvXxiOgMfIzslpfnAd8lm4H+oWrWq+xbrZq+6ZoC/CQitpNNVvZx4FSg\nfUrpztq0EREzyG4D+SrQgWwm/1eq6MPtwJ8iYhLwa+B04Jvs5zDBiGhH9k9t77Z6RUR/YGtK6S/7\n07YahDFdRxHxU2AkcCGwI7f/AEpSSu/vT9tqEMZ0HUXE9FwfNgBHkE20eSYwdH/aVYMxpusgpbSj\n3PaIiB3AlpRS+W+2VRjGdB1FxK3AfLIP1d2BqWSjO+buT7tqEMZz3c0AVkTE98gmw/4M2QiqqpJX\nLY5Jo5ZtGFmGdxfwLtnw/atTSg+Wq1c+81pZJrba7GxKaVbuTc4NwI/JZqpfTXadfm3b/RhwD3AM\n2S0QFwLfqaxuSum5iBgBTAMmkX1zMSml9FBl9Wv7OshOZMty9RLZyQeyu5qMqWFdNT5juo6vg+wf\nZQL+o9zyr5IN9VVhGdN1fB1k8w7MAboCJcCLwNCU0tIa1tOBYUzX8XU0QH01LmO6jq8jt+1fAUeT\n3anqD2S3Ud9Sw3pqfMZz3V/Hyoj4InALMJnsMr4JKaV/rW69liQc9SpJkiRJkqTynNNIkiRJkiRJ\nFZg0kiRJkiRJUgUmjSRJkiRJklSBSSNJkiRJkiRVYNJIkiRJkiRJFZg0kiRJkiRJUgUmjSRJkiRJ\nklSBSSNJkiRJkiRVYNJIkiRJkiRJFZg0kiRJkiRJUgUmjSRJkiRJklTB/wGwtFkmu9b3pgAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.decomposition import PCA\n", + "\n", + "# TODO: Apply PCA by fitting the good data with the same number of dimensions as features\n", + "pca = PCA(n_components=len(good_data.columns)).fit(good_data)\n", + "\n", + "\n", + "# TODO: Transform log_samples using the PCA fit above\n", + "pca_samples = pca.transform(log_samples)\n", + "\n", + "# Generate PCA results plot\n", + "explained_var=pca.explained_variance_ratio_\n", + "totl=0\n", + "\n", + "explained_var2=sum([explained_var[i] for i in range(2)])\n", + "explained_var4=sum([explained_var[i] for i in range(4)])\n", + "print 'Total Variance from first 2 components:',explained_var2\n", + "print 'Total Variance from first 2 components:',explained_var4\n", + "pca_results = vs.pca_results(good_data, pca)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### Question 5\n", + "*How much variance in the data is explained* ***in total*** *by the first and second principal component? What about the first four principal components? Using the visualization provided above, discuss what the first four dimensions best represent in terms of customer spending.* \n", + "**Hint:** A positive increase in a specific dimension corresponds with an *increase* of the *positive-weighted* features and a *decrease* of the *negative-weighted* features. The rate of increase or decrease is based on the indivdual feature weights." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** In total, the first and second principal components explain 70.7% of the variance in the data. On the other hand the first 4 components explain 93.1% of the variance in the data. \n", + "\n", + "Regarding spending, a customer with higher values on the first dimension would spend much more on Detergents_Paper, also on Milk and Groceries.This could represent a convinience store. \n", + "\n", + "A customer with higher values on the second dimension would spend more on Freshs, and relatively equal on Frozen and Delicatessen. This could represent a restaurant. \n", + "\n", + "A customer with higher values on the third dimension would spends heavily on Delicatessen, a decent amount on Frozens and really little on Freshs.\n", + "\n", + "Finally, a customer with higher fourth dimension values would spend heavily on Milk, some on Detergents_paper, and very little in Grocery. This could represent a coffee shop." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it in six dimensions. Observe the numerical value for the first four dimensions of the sample points. Consider if this is consistent with your initial interpretation of the sample points." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Dimension 1Dimension 2Dimension 3Dimension 4Dimension 5Dimension 6
04.36463.9519-0.12290.6240-0.5379-0.0551
1-0.35250.0495-0.0661-2.9649-0.6829-0.1654
2-0.5383-2.22241.2415-1.0479-0.92760.8047
\n", + "
" + ], + "text/plain": [ + " Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 \\\n", + "0 4.3646 3.9519 -0.1229 0.6240 -0.5379 \n", + "1 -0.3525 0.0495 -0.0661 -2.9649 -0.6829 \n", + "2 -0.5383 -2.2224 1.2415 -1.0479 -0.9276 \n", + "\n", + " Dimension 6 \n", + "0 -0.0551 \n", + "1 -0.1654 \n", + "2 0.8047 " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display sample log-data after having a PCA transformation applied\n", + "display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Dimensionality Reduction\n", + "When using principal component analysis, one of the main goals is to reduce the dimensionality of the data — in effect, reducing the complexity of the problem. Dimensionality reduction comes at a cost: Fewer dimensions used implies less of the total variance in the data is being explained. Because of this, the *cumulative explained variance ratio* is extremely important for knowing how many dimensions are necessary for the problem. Additionally, if a significant amount of variance is explained by only two or three dimensions, the reduced data can be visualized afterwards.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Assign the results of fitting PCA in two dimensions with `good_data` to `pca`.\n", + " - Apply a PCA transformation of `good_data` using `pca.transform`, and assign the results to `reduced_data`.\n", + " - Apply a PCA transformation of `log_samples` using `pca.transform`, and assign the results to `pca_samples`." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# TODO: Apply PCA by fitting the good data with only two dimensions\n", + "pca = PCA(n_components=2).fit(good_data)\n", + "\n", + "# TODO: Transform the good data using the PCA fit above\n", + "reduced_data = pca.transform(good_data)\n", + "\n", + "# TODO: Transform log_samples using the PCA fit above\n", + "pca_samples = pca.transform(log_samples)\n", + "\n", + "# Create a DataFrame for the reduced data\n", + "reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it using only two dimensions. Observe how the values for the first two dimensions remains unchanged when compared to a PCA transformation in six dimensions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Dimension 1Dimension 2
04.36463.9519
1-0.35250.0495
2-0.5383-2.2224
\n", + "
" + ], + "text/plain": [ + " Dimension 1 Dimension 2\n", + "0 4.3646 3.9519\n", + "1 -0.3525 0.0495\n", + "2 -0.5383 -2.2224" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display sample log-data after applying PCA transformation in two dimensions\n", + "display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Visualizing a Biplot\n", + "A biplot is a scatterplot where each data point is represented by its scores along the principal components. The axes are the principal components (in this case `Dimension 1` and `Dimension 2`). In addition, the biplot shows the projection of the original features along the components. A biplot can help us interpret the reduced dimensions of the data, and discover relationships between the principal components and original features.\n", + "\n", + "Run the code cell below to produce a biplot of the reduced-dimension data." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPYAAALECAYAAACL5r7FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xl8VNX9//HXJwHCFsIqYZGCiFVRZDP+1KoguAECgvoF\nxA1xX6q1VWtVpIJbrbVaQa0oLoiURUEQUNzBJQgqWBGhAsq+hS0BAsn5/XFmwkwyk40kk+X9fDzu\nY2buPefez525d2A+OYs55xAREREREREREZGKJS7WAYiIiIiIiIiIiEjRKbEnIiIiIiIiIiJSASmx\nJyIiIiIiIiIiUgEpsSciIiIiIiIiIlIBKbEnIiIiIiIiIiJSASmxJyIiIiIiIiIiUgEpsSciIiIi\nIiIiIlIBKbEnIiIiIiIiIiJSASmxJyIiIiIiIiIiUgEpsSciUkmY2Wozy8617DOzNWb2ppn9roD6\nLc1slJl9YWabzSzTzNLMbJGZPWVmXcvoPD4OxH5mWRyvIjqc9yjkOmlVGrGVNDMbH4j3ihLa31mB\n/X1YEvuLRRxmdqGZfWZmO0Pudd0vlVRFuGcD8WXFOg4REZGqSIk9EZHKwwWW+cD4wPIuYMClwCdm\ndnukimZ2F7AS+DNwPPAt8B/gU6ABcCuQamaPluoZeMHzkOgivkdm9mDgB/YDRa1bjpVGvBXtPchh\nZicBU4BTgC+AV/D3+sYYxKIkfNlwQHasDl6Ez7lC3lMiIiIVXbVYByAiIiXuRefcq8EXZlYDeB64\nEnjczGY651aGbH8UuAvIBO4EnnXOHQjdoZmdDIwCjimD+KVglwO1gV9yra+wCat83AM8Amwoof19\nBRwHZJTQ/spaf/z/30Y75/JL4JaFyni9lUdnA9WBdTE6fmE+52PLIhARERHJS4k9EZFKzjmXaWa3\nABfjk0EDgMcBzKwHPqnngEudczOi7GMhcJ6ZnVY2UUt+nHNro2yywFJpOOc2AZtKcH/7gJ9Kan8x\n8JvA48p8S0ml4ZxbFesYCuKcq8j3lIiISIWmrrgiIlWAcy4dWB542Tpk0334pN70aEm9XPv5vLDH\nDB1zycyuNbOvzWxPYNy+WWZ2SuHPAMyssZndFqj7s5llBMYYW2hmd5lZQiHiGBgyNtkeM5tvZhfk\nc8x4Mxse6Iq2LTBm4c9mNsbMWhYh9iQzyzKzbRG2XRIyTtr5ubbVCJxnRuj5ReoaZ2bZQLAF14MW\nPtbiS1Hi6m5m75nZ9sAxFpnZ5YU9r1z7ijezG8zsczPbYWZ7zewnM/unmTWPUif0s7k6pG7OeGL5\njbEXOOadZvZ94HibzOw/ZnacmV0Z6dyjjW1nZr8JrP858Pq6kGt2h5nNNbP/F+U8Tjazx83sKzPb\nYGb7zWyjmc0IJM8Pm5mNCHzGV+GTt8H3JdK51DezkWb2jZntMrN0M1tiZn8xs1oR9l03cI9ODXxm\newLLEvPjbiblKn9WIJazArF8bOHX2xWh5XLHl2tfEcdmK8y1EVL2YjObY35s0P1mttbMXjOz4wr5\n9kY7bqG/t8yPg5dlZq3MrJ+ZfWD+OyP3fVqc+yTfMfaKc/6Ba+QB89+fO8zf//8zs0kW+B4q7Oec\n+32LcKwGZvaw+fs0PXBNfm1mfzKzmhHK51w3ZlbNzO4O1M0ws62B6zRiC0Ez6xw4h18D78XOwHlN\nMbO+0d4PERGRikyJPRGRqqNe4HE/+GQTcEZg3asRa5QAM/s78ByQDryN7z56PvCZmfUrwq7OA54C\nTgRWA2/hu1UeAzwKfGBm1fOJ40H8uIEOmIVvtXUa8E6kOMysLjAPeAHoBHwHTAf2ATcA35gf76xA\nzrmdwNdAfcs7CUnPYLGQ50GnAzWBBc65/aG7JG/XuPH4sREJPI4PWeZHCOsa/PnVB2YD3wAdgVfM\n7LaCz+oQ89295wBjgJMCx3sLqIEfn/FbM+uYT/2ngX8DB4CZ+LHjgucXbTxBw19PfwPaAh8DH+A/\nq4VAl6KcQ659vww8DaQB7+C7AZ8DfGi+W3puDwN3AAn4z/kt4FegN/C+md1a3FhCfIP/LFeSdyzN\nOSGxHw8swSftmwCfAe8DjYGHgPlmlphr3yfhu+ufjj/XGYF6ycC9+PE1G4SU3xg47qZALHMIv95K\nrDVhftdGIEk2CX9fn4n/48VbwGZgCPC1mZ1bzOMW9XsreI3+MRBDXfx99TEQTBQW9z6Jdg8U6/wD\n31vfAw/i753PAue4AX/N3hUoetifs5m1wV+79+CvwVn4+/Ro4DH8+5kUpXp1/Dix9wFr8J//HuAi\nYEGEBG8P/PVxMbAlcE7vB96PXvikuIiISOXjnNOiRYsWLZVgAVbhf0BeEWFbB+BgYPuVgXXd8QOy\nZwEtSiGe4L73AGfl2nZnYPt2oHGubR8F6p2Za/1vgZQIx0nC/4DOAu7MJ45tQNdc2x4IbF8Wod6E\nwLa3I8R4W2Dbj4AV8v0YHYjjnlzr/4dPAm0Gvi1knWjv0YhAXA8UcJ1k4xOUF+TadkXI55JQhM/6\n0UC95cCRIevj8YnRbHwSoFqUzyYNODnKvl+OdF2HfAZrgaND1hvwZMi+X8pV76zAtg9zrf9NYH02\n8DPQNtc+Xwxsmx0hxvOAphHWnwLsCLzXzQoTRyHe64jvR2BbzcD7nIVP2lTLtS14Tb+Yq14LoHuU\n/QWP90yE7RGvw6KcY/Bzyue+ze/aGB0otwBolWvbAHwycCtQrwjvb3G/t4L3VSbQu4Tvk+B3e+5z\nLPL5c2hszizgJaB2rnqJwNlF+ZwL+By/DNSdBtQKWd8InwTPAl6Lct1kB8o0CdlWg0Pf92Nz1fsw\nsH5QhDgSifDvhxYtWrRo0VIZFrXYExGpxMysnpn1AqbiW2mvw7fuAN+aJ2hzKYbxnHPuk9AVzrm/\n43+wJQHDC7MT59xy51xqhPU78UkeAy7JZxf3O+e+zrXuUWAncIyZtQiuDHTzGoRPGg1xzm3Ndcyn\n8S1J2gFRu/LmMi8Q4zkhx2kDtMG3KvkIONHMQj+XniF1S5IDnnbOzQ5b6Sdd+RH/ueRuWRiR+S7C\nNwX2eYdz7teQ/WUBv8e3+GmDb0kTyd+cH8exKG4LHHOEC5kMxjnngLsp/kQDDrjFOfe/XPv8S+Dl\nWWYWH1bBubnOjwVIrvVfAc/iWx4VpXVqcV0FHAW845x70Dl3MCSWfcB1+Hv98tBWUs65dc65j3Lv\nLFDnJnyyJL97qzRFvDYCLQhvB/YCA51zYRPJOOem4VshNgCGFuO4xfnecsB459ysCPGWxH0Sur/i\nnv+1QEt8K7prnHMZuertds5F7TpdFGZ2OpCCn6jmeufc3pDjbMNfjwYMitINORu4yjm3JaReJv4P\nGEbeFs5HBB5n51ofPK88/36IiIhUBkrsiYhUPjljb+FbC83E/9hfAfQK/XFVRqJ1830V/+OsW2F3\nZGZxZna2md1nZs+a2UuBbpPBpMtv86k+M/eKwI/EnwMvW4Rs6hWIbU7uH74hPg6UKeyEIgvwP8JP\nDRlX6hz8D/33OZT46wk5XaW7ADsiJCRLQp73I2BZ4LFFlO25dcV3O9zunHs398bA9fYm/ty6R9nH\n1EIeC4BAEvaowMuJEY55AJhC8SYSOQjMjbDPTfjWYwn41ka5Y2poZpeb2WNm9oKZvRy4Ns8KFMnv\n2iwpvfDX038ibXR+rM2v8ZOn5elSbGanmh+v8l8h99ZYfCu0Jvl0mSxN0a6N7kAtfDf1jVHKfELR\n7tFQxf3eihZvSdwnoYp7/ufhr5GXAgnr0tQt8DgnNDkX5JxbjB/iII5D90moX5xz30dYH+07KhV/\nvm+Y2em5E/AiIiKVlWbFFRGpfOZzaOyjTHwLnS/xP66yQ8qF/tA6guK3cCpItBkdg+sLNQmFmR2N\n7xZ7PBHGmwqoF2U9uVu0hNgVeAwdxD2YNBpuZvm1KHSEt3yMXtDPTjwfn7g7A5/M6xnYxzz8j34C\n6yYCPfA/ePO0pCohRXk/8hP8cZ3fzJ3B1m/RkoWrC3msoOA1szWfxGtR9xm0IdCCKpJd+DEJw94b\nM7sW3/23DsW4NktQ8Lp93cxez6dc2HUbaCU6DT/GXqT4LbC+Hr6Fa1laHWV98Fx7Bv6IEU2h79Fc\nivu9tTrK+pK4T0IV9/x/E3j8sRDHOFwtAscv6Jw7EPmcI35HOed2+yE2yT1h0p/xY7Cej29JvdfM\nFuP/CDPBOVcW5ywiIlLmlNgTEal8Xgx0qSzIN/iuToZvvVNaib2CFLZV1VTgOPzA/o/jW23scs5l\nBSbN2J9f5SIKtmj/Bt+iJD9fFWG/8/Ct9M7BJ/a6A0sDrVm2mNkqDnUvC036lYb8kgFlyoVPDFKk\nqsXclp8ivS9m1hk/ycJB4E/4lpC/BFvGBpJ+z1O81oNFFbxuZ+O7deZnTcjzcfik3gJ8N8clQFow\nwWlm6/ATaZToOQQmQMlXPtdG8FxX4OPOT2kkdKLFXlYtomN9/mWhSPdioFXtyeZnIe6Jv6ZPwbdY\nvNfM7nHO/a3kwxQREYktJfZERKoo59wOM/sM3wXqSnxruNLQBp8oyK114HFtQTsws9/iW2JsAgbk\nankIfqy7khQc/2qBc65IM8QWIJik62lmnfBdOsfn2j48cL49ctUpr4IJ4Tb5lAm2Liqp5HFwP03M\nrFaU7uWtS+hYBQmOPfd0YAy23I4pozjAX7e/BcYFxlgrkJnVxrduysJ31d8dYXtyMePJDDzmnoU3\n6DdR1hdG8B5d7pwbdhj7ieawv7dyKen7pLjn/wtwbGApkbH08rEOnwA9Kp8yJf3dgHPuU+BTyJmJ\n+Cr8TMQPm9kU51x+LQhFREQqHI2xJyJStY0OPPY1swIH9zez3xXjGJdHWX8FvlVVYbqaNgw8ro+Q\n1MvvGMUVHHy9b+CHYYlwzn2Dn523AzCEQ+PrBQWTeNfgk5W/hk4MUQjBREpZ/uHua/wMog3NrE/u\njYHxBAdR+M+6QM65tRzq8jg4wjGrAwMpfqu9oghem3m6DQYmTBhQRnGAv24NuLQIdZLws7Luyp3U\nC7ic6K3TCrregsmao8wsUpk810sRfBA4fjcza3wY+4mmJL63QpX0fVLc85+D/zyHFabFZEBxv1c+\nDjyen2tSIAACf9zoiG+Z92kR910ozrlM59wL+CRtHP67V0REpFJRYk9EpApzzs0Dngi8nGRmd0RK\nZJnZKWY2D/hDMQ5zo5mFDYxuZnfgu//uBl4qxD5+wrcoOjHCvi7Ezw5ZYpxz3+K7/rYC3jKzPC2L\nzKy2mQ2J9IO1AB/i//29Gf+DOfQH7QeBx1soXjfcYCui9kWsV2yBrpLP4pMFfzezVsFtgWTO0/gW\nXz/jJ7QoKU8HjjnSzHJabAaSFY8CR5bgsfKzLBDHlWYWHCcxmNQbS9m1HAR4Ad/F9hIzezQ0npC4\nknONGxmcFKS+mQ3NVfb/AQ8TPTGZ7/UWGNdyBX5cwrtz7bsbMLKgE4rGObcZeAY/NuVMMzshdxkz\nq2FmF5pZcVpNlsT3Vmi8JXqfHMb5v4j/3DoBLwZaZIbWSTSzHoQr1veKc24BfqiCWsDzZlYr5DiN\n8V3UHTDROXfYLfbM7E4zy3PfB2Y5D35HrAlZ39zMfjSzZWbW7HCPLyIiEivqiisiUsU55+4ys+3A\ng8DfgQfN7Cv8pBuJ+BYOv8H/AHu0GId4Hvgw0O13HXACvlvtQeDqwA/UgmLcZmb/Am4DPgjsaz2+\n22EnYBRwfzFiy8/V+NZM5wPLzew7/CDwhk/WnARUx4/7l2fGx3zMw3ffrAl86JzbF9zgnNtuZt/i\nz6k4ib25QDrQP/AercAnRBc458YXcV9FMQI/g28PYJmZfYRPfpyKT45uAS5xzh0swWM+jR9H6wJg\nSeCYO/CJl2b4JEoweVqaXsZfl52AVYH3PQs/QUpN4J+UcOI5Gudchpn1Bt7Bj/d3nZktwSdmauO7\nBR+HT+a9GKiTbWZ/xU/+8aqZ3YxPLrXCf36v47vrtyKvqfj75G9mdg7+O8PhuwJ/GShzDzAZeMjM\nBuKvyaPw79dD+GunuO7BJ8OGAN8G7tGf8d8tLfGtwYJdjX8q4r4P+3srgpK+T4p8/s65dDPrC8zC\nd1G9yMwW4FsTHon/XL7i0B8ZoHCfczRDAvvqh78/PsV/b3bH//uyCLi1kOdbkPsCMf6IT7jvBZoD\nv8O3Sn0l8EeboOr4e8IFnouIiFRIarEnIlK5FKvLn3PuUXyLhofxP4g64pNPZ+C7jv4D6Oyc+0sx\n9n0ncCP+R1w//A/Yd4EznHNvRasWYT934LuoLgY643+spgP/55wbEa1eAevzO94e59y5+B+m7+N/\n9PbH/yCtiU949OfQTJaFNS9wvGzCu+FG2v5BhO35xbwZn4ich0/gXA4MA84sqO7hcM5lBo57E/At\n/od0f3xS7Z9Ax1w/qA87lkCX7H7AXfhZoLvhEybfAikcmjxia5RjRjputPW5y4TGsRPoih/DKw3/\nPvw/fJfHzvjJVw7neEXinPsBn4y/C/gBn4y6GP+e7MFPPHNRrjr/xH9eC/CJjj5ADeAm59xVIbHm\nPta7wHBgKf6+uBp/vR0TUuatwP7m479jLsBfF//nnAu22CvWfeucy3LOXQ70At7Cz/56IXAu0AA/\n0c5gitHNs6S+t3Lt83Dukzz7L+75B45xIv4PIr/gE7cXAk3xY60+kqt8gZ9ztPMPjGfXObDPrUBv\nfEJ+Jb4V5xmBeyjSuRb1e/smfEvKA/jvvAH4P8LMBfrnMxZhWXWVFxERKRXmnP4tExGRkmdm2YBz\nzsXHOhapeszsQ3zCYqBzrrQmhpFKpjx+b5nZJqAxcIRzblus4xEREZHypdK02AuMk/GamW01swwz\n+87MOsc6LhERESkdZnZSYKKM0HXVzexBfAu+TfhWViIVkpkdhW+Jt11JPREREYmkUoyxZ2b18d1H\nPgDOwzf1b4fvEiMiIiKV01NAx8DYYhvw3Q9PxI+xtxe4MtD9UaRCMbPT8WMzdsN3FX05pgGJiIhI\nuVUpuuKa2aPAqc65swosLCIiZSLQpS3bOVcp/ogk5Y+ZDQYuw48p1wg/scl6/MzDTzrnfoxheFIB\nlZfvLTO7Evg3PmH9BvCAc+5ALGMSERGR8qmyJPb+ix+k+kj8eDrrgDHOuRdjGpiIiIiIiIiIiEgp\nqSxj7B2Fn7lsOX4msLHA02Z2eUyjEhERERERERERKSWVpcXefiDVOXdGyLp/Al2dc6dHKN8IPxbf\namBfWcUpIiIiIiIiIlLKagKtgbmafKnyqyzjHm0AluVatwwYEKX8ecCEUo1IRERERERERCR2LsOP\n1SqVWGVJ7C0Afptr3W+BNVHKrwZ4/fXXOe6440oxLBG44447+Mc//hHrMKQK0LUmZUXXmpQVXWtS\nVnStSVnRtSZlYdmyZQwdOhQCuQ+p3CpLYu8fwAIz+zPwH+AUYDhwbZTy+wCOO+44OnfuXDYRSpWV\nlJSk60zKhK41KSu61qSs6FqTsqJrTcqKrjUpYxp6rAqoFJNnOOe+Bi4CBgNLgb8Av3fOvRnTwERE\nREREREREREpJZWmxh3PuXeDdWMchIiIiIiIiIiJSFipFiz0REREREREREZGqRok9kVI2ePDgWIcg\nVYSuNSkrutakrOhak7Kia03Kiq41ESlp5pyLdQxlzsw6A4sWLVqkgUtFREREREREpNJYvHgxXbp0\nAejinFsc63ikdKnFnoiIiIiIiIiISAWkxJ6IiIiIiIiIiEgFpMSeiIiIiIiIiIhIBaTEnoiIiEgJ\nGTduHHFxcRxzzDGxDkVEREREqgAl9kRERCRmRo4cSVxcXKEWEREREREJVy3WAYiIiIiYGU2bNs13\nu4iIiIiIhFNiT0RERMqF9evXxzoEEREREZEKRf1aREREREREREREKiAl9kRERKRC+eCDD4iLi6NG\njRoALFq0iMGDB3PkkUdSo0YNzj333Dx1li5dyvDhw2nXrh116tQhMTGRjh078sADD7B9+/aox/ry\nyy8ZMmQIbdq0oVatWtStW5c2bdrQvXt3Ro8ezYYNG/KNdeHChVx88cU0a9aMmjVrcvTRR3PXXXex\nc+fOw3sTRERERERQV1wRERGpwCZPnszQoUM5ePAg9erVo3r16nnG43v44Ye5//77c17Xrl2bAwcO\nsHTpUpYsWcJLL73E7NmzOfHEE8PqjRs3juuuuy7ndUJCAtWrV+eXX37hl19+4dNPP6VNmzYMGTIk\nYmyvv/46w4YNIysri6SkJLKysli1ahVPPPEE7733Hl9++SU1a9YswXdDRERERKoatdgTERGRCik7\nO5thw4bRq1cvfvrpJ9LS0khPT2fMmDE5ZZ5//nnuu+8+EhMTefTRR9mwYQO7d+9m7969LFy4kO7d\nu7N+/Xr69u3Lvn37cuqlp6dz++23A3DVVVfx888/k5GRQVpaGnv27GHhwoX88Y9/pEmTJhFj27Bh\nA8OHD2f48OH8+uuvbN++nd27d/P0009TvXp1li5dyhNPPFG6b5CIiIiIVHpqsSciIiLlQrNmzaJu\n+/DDDznuuOPC1jnn6NixI9OmTQtrpde2bVsAdu3axd13301cXBxvv/023bp1yyljZnTu3Jn33nuP\nrl275rTcu+mmmwBYsmQJ6enp1KtXjxdffDFs/7Vq1aJz58507tw5arwZGRkMHz48LMlYs2ZNbr75\nZlasWMHTTz/NxIkTue+++wr35oiIiIiIRKAWeyIiIlIubN68OeKyZcsWDhw4ELHOXXfdlafrbdDk\nyZPZtWsXXbt2DUvqhYqPj2fw4ME455g7d27O+vr16wOQmZmZ7xh8+fnLX/4ScX2/fv0AWL58edTz\nEhEREREpDLXYExERkXIhKyuryHVOO+20qNsWLFgA+Ikz8msNuHfvXgDWrFmTs+6YY46hXbt2rFix\ngpSUFG688UbOPfdcTjjhBOLiCv676BFHHEGrVq0ibmvevDngWxzu2LEjandeEREREZGCqMWeiIiI\nVEhmRqNGjaJuX79+PQD79u2L2hpw8+bN7N69GzPLSfCBb8n35ptv0rp1a1avXs1dd91Fx44dSUpK\n4rzzzuOFF14IG5Mvt8TExKjbqlU79HdVtdgTERERkcOhxJ6IiIhUSAW1nMvKysLMuOyyy8jKyipw\nWb58eVj9Tp068dNPPzF58mSuv/56TjjhBPbu3cu8efO44YYbOPbYY1m2bFlpnqKIiIiISL6U2BMR\nEZFKKTk5GedcWBfboqpWrRoDBgxg7NixLFmyhM2bNzNmzBgaNGjAr7/+ytVXX12CEUt55FysIxAR\nERGJTmPsiYiISKV0+umnM2HCBFJTU9m6dSuNGzc+7H02bNiQ66+/HoAbb7yRhQsXsnv37ny73krF\n4hysWwepqX7JyIDatSElxS8tWkCU+VpEREREypxa7ImIiEilNGjQIOrVq0dmZiZ/+MMf8i3rnGPX\nrl05rzMzM/MtX6tWrZznhZlMQyqGrCx46y0YMQJeew02boR9+/zja6/59W+/7cuJiIiIlAf6n6iI\niIhUSvXr1+fJJ5/EOcfrr7/OhRdeyMKFC3O2O+dYtmwZTzzxBMcddxxz5szJ2fb6669z5pln8u9/\n/5tVq1blrM/KymLOnDnce++9AJx55pnUqVOn7E5KSo1zMH06TJoE1atDhw7QujU0b+4fO3Tw6998\nE2bMUBddERERKR/UFVdEREQqrWHDhrF//37uuOMO3n33XWbNmkVCQgJ169Zl165dObPSmhkW0r/S\nOcf8+fOZP38+QE6dtLQ0srOzMTNatWrFv//975icl5S8detg1ixo0ACSk/NuN/PrnYOZM+Hkk6Fl\ny7KPU0RERCSUEnsiIiISU7mTaiVd58Ybb6RXr148++yzvP/++6xevZqdO3dSr149jj76aE499VT6\n9u1L9+7dc+oMGDCAhIQEPvroIxYvXsyGDRtIS0ujXr16HHvssfTt25ebb7454th6hY2tqOcspSs1\nFbZv9y3z8pOcDEuX+vJK7ImIiEismauC/QjMrDOwaNGiRXTu3DnW4YiIiIhIjN1zjx9Lr3Xrgsuu\nWuW76D7ySKmHJSIiUmSLFy+mS5cuAF2cc4tjHY+ULo2xJyIiIiJVmnN+9tsaNQpXPiEB0tM1zp6I\niIjEnhJ7IiIiIlKlmUHt2lDAZMg59u+HOnV8PREREZFYUmJPRERERKq8lBTYubPgVnjOwe7dfvIM\nERERkVhTYk9EREREqryUFGjYEDZtyr/cxo1+5tyUlLKJS0RERCQ/SuyJiIiISJXXogX07g1pabBh\nQ96We8759Tt2QJ8+vryIiIhIrFWLdQAiIiIiIrFmBv36+ceZM2HJEkhK8hNq7N/vu982aACDBkHf\nvhpfT0RERMoHJfZERERERID4eOjf34+fl5oKCxf62W8bNfLrUlJ8Sz0l9URERKS8UGJPRERERCTA\nDFq29MuAAb4LrhJ5IiIiUl5pjD0RERERkSiU1BMREZHyTIk9ERERERERERGRCkiJPREREZFoDhzI\nOz2qiIiIiEg5ocSeiIiISDRjxsBFF8HGjbGOREREREQkDyX2RERERCJxDp5/HqZPh/bt4c031XpP\nRPLQ14KIiMSSZsUVERERiWTBAli2zD/fvh0GD4apU30rviZNYhubiMSMc7BuHaSm+iUjA2rXhpQU\nv7RooUlXRESk7CixJyIiIhLJCy/kXTdlCnzyCTz3HAwYUPYxiUhMZWX5RryzZvl8f1IS1KgBu3bB\na6/59X36QN++EB8f62hFRKQqUFdcERERkdy2b4f//Cfyti1bYOBAuOwyX05EqgTnfFJv0iSoXh06\ndIDWraF5c//YoYNf/+abMGOGuuiKiEjZUGJPREREJLfXX4f9+/Mv88Ybfuy9mTPLJiYRial163yL\nvAYNIDk5b3dbM7++fn3/tbBuXWziFBGRqkWJPREREZFQwUkzCmPjRrjwQrjqKtixo1TDEpHYSk31\njXSbNs2/XHIypKX58iIiIqVNiT0RERGRUJ9/Dj/8ULQ6r7wCJ5wAc+aUTkwiEnOpqX5MvYImxjCD\nxERYuLB96jlbAAAgAElEQVRs4hIRkapNiT0RERGRUJEmzSiMdevgggvg7bdLNh4RiTnn/Oy3NWoU\nrnxCAqSna5w9EREpfUrsiYiIiASlpUWfNKOwWrUqmVhEpNwwg9q1ITOzcOX374c6dQpu3SciInK4\nlNgTERERCXr9ddi3r/j1mzTxU2OKSKWTkgI7dxbcCs852L0bTj65bOISEZGqrVqsAxAREREpF5wr\nWjfclBQ47zw4+mho29Y/HnGEmuiIVFIpKX5W3E2b/AQZ0Wzc6GfOTUkpu9hERKTqUmJPREREBOCL\nL+D77/3z5ORDybrg0rZt+C/1JUvgq69iE6uIlLkWLaB3b5g0yf8dIDk5PI/vnE/q7dgBgwb58iIi\nIqVNiT0RERER8N1ov/3WJ/Dq1o1c5qOPoHt3/3zfPj86fp06ZRejiMSMGfTr5x9nzvS5/aQkP6HG\n/v2++22DBj6p17evGu+KiEjZUGJPREREBKBdu4LLdOsW/vrKK2HKlFIJR0TKn/h46N/fj5+XmgoL\nF/r8fqNGfl1Kim+pp6SeiIiUFSX2RERERIrivvtg1Cj/fOpU3/9Ov+JFqgwzaNnSLwMG6CtARERi\nS7PiioiIiBTFgw+Gv37ppZiEISLlg5J6IiISS0rsiYiIiBRFfDx06nTo9fDhsYtFRERERKo0JfZE\nREREimrOnPDXy5bFJg4RERERqdKU2BMREREpqiOOCH99yimxiUNEREREqjQl9kRERESK4/33Dz3f\nvRv27o1dLCIiIiJSJSmxJyIiIlIcPXuGv7766tjEISIiIiJVlhJ7IiIiIsV1992Hnk+aBM7FLhYR\nERERqXKU2BMREREprtGjw1+/+mps4hARERGRKkmJPREREZHiio+HE0449Pqqq2IWioiIiIhUPUrs\niYiIiByO994Lf718eWziEBEREZEqR4k9ERERkcPRrFn469NOi00cIiIiIlLlKLEnIiIicrhmzz70\nfPt22LcvdrFIhaG5VkRERORwVYt1ACIiIiIV3vnnh7++9lp47bXYxCLllnOwbh2kpvolIwNq14aU\nFL+0aAFmsY5SREREKhK12BMREREpCX/4w6Hnr78euzikXMrKgrfeghEjfM5340bfsHPjRv96xAh4\n+21fTkRERKSwlNgTERERKQmPPRb+esKE2MQh5Y5zMH06TJoE1atDhw7QujU0b+4fO3Tw6998E2bM\nUBddERERKTwl9kRERERKQrVq8NvfHno9dGjsYpFyZd06mDULGjSA5OS83W3N/Pr69WHmTF9eRERE\npDCU2BMREREpKR98EP565crYxCHlSmqqn1OladP8yyUnQ1qaLy8iIiJSGErsiYiIiJSUFi3CX//u\nd7GJQ8qV1FRISip4YgwzSEyEhQvLJi4RERGp+JTYExERESlJM2ceer5pE+zfH7tYJOac87Pf1qhR\nuPIJCZCernH2REREpHCU2BMREZHDNnLkSOLi4gq1VHq9e4e/vvHG2MQh5YIZ1K4NmZmFK79/P9Sp\nU3DrPhERERFQYk9ERERKkJmRnJwcdWnWrFmsQywbt9566PnLL8cuDikXUlJg586CW+E5B7t3w8kn\nl01cIiIiUvEpsSciIiIlav369VGXdVVlus8nnwx/PWlSbOKQmGvdujUXXxzHtm2vsmlT+LannmrN\nyJFxfPfdqwBs3Ohnzk1JiUGgIiIiUiEpsSciIiJS0qpVg7ZtD70eNCh2sVRRkbqHx8fHk5SUxJFH\nHsnpp5/OLbfcwtSpUzlw4ECpxWFmmBkdO/oZbzdsONRyL7jNOb9+xw7o0yfvHCxlZeTIkYwcOZJf\nfvklNgGIiIhIkSmxJyIiIjHxwQcfEBcXR43ArAKLFi1i8ODBHHnkkdSoUYNzzz03T50pU6bQu3dv\nmjZtSkJCAsnJyfTt25cZM2ZEPMa4ceMKPfbf559/nqd+ZmYmzz77LN27d6dJkyYkJCTQrFkzLrro\nIt57772Ix8zKyvL7/PlnPgd2A/cCx7ZtS61atWjcuDH9+vXj66+/Lu5bJ0UQ2j28adOmxMXFsWHD\nBr788kvGjh3LJZdcQvPmzXn++edLNY7OnX1+9+BBWLIEVq+G2rXbUq/eb9m4MYmDB/32vn1jN77e\nyJEj+etf/8rq1atjE4CIiIgUWbVYByAiIiIyefJkhg4dysGDB6lXrx7Vq1fHQrIbmZmZXHbZZUyd\nOhUzIy4ujqSkJLZt28asWbOYOXMmQ4cOZfz48WETdNSuXZvk5OSox92/fz9paWlhxwpatWoVvXv3\n5scff8xpWZWYmMjmzZuZMWMG06dP59Zbb+Wf//xnxH2bGWud43JgNVBz1Sqq1alDWloa77zzDnPn\nzmX27Nl07969uG+bFNL69evDXjvn+OGHH3j//ff517/+xapVq7jxxhuZP38+r732WqnEEBcH/fv7\n8fNSU2HhQhg4cB516vh1KSm+pZ4mzRAREZGiqHQt9szsHjPLNrMnCy4tIiIisZadnc2wYcPo1asX\nP/30E2lpaaSnpzNmzJicMnfddRdTp04lLi6OkSNHsm3bNrZu3cqWLVu4++67AZgwYQIPPvhg2L4H\nDx4cdby/1atX0759ewCOOuoojj/++Jx6e/bs4bzzzmP58uX07NmTzz77jL1795KWlkZaWhpPPPEE\ndevW5V//+hdjx46Nem43JiZSF/gESHeO3du28dVXX3HMMceQmZnJ9ddfX2LvoxSemdG+fXtuv/12\nvv/+ewYFukq/8cYbPPbYY6V4XGjZEgYMgEcegX/+0z8OGODXK6knIiWtoEl7RKTiq1SJPTM7GbgO\n+C7WsYiIiFRVzZo1i7osW7YsT3nnHB07dmTatGm0DRmXLvj8119/5dlnn8XMuP/++7nvvvuoV68e\nAPXr1+fhhx/mtttuwznHE088wZYtWwoV57Bhw5g/fz7169dn5syZ1K9fP2fb3/72N1auXEmPHj2Y\nM2cOp512GtWrVwegXr163HHHHbz88ss453jooYdwUX45JdSty8fA74Irbr2Vrl278uabbwLwv//9\nj4ULFxYqXikdNWvWZPz48XTq1AnnHI8++ig7duzIU+7AgQOMGTOGs88+O6xbdv/+/ZkzZ06xjt2m\nTWvi4uJ49dVXo5ZJTU3l6quvpl27dtSpU4ekpCTat2/PNddcE7E7+FdffcXdd9/NmWeeSevWralV\nqxYNGjTg1FNP5fHHHyc9PT1Pnauuuoq4uLjAeH+Obt26hXVTP+qoo/LUcc4xYcIEevXqRXJyMgkJ\nCRxxxBGcd955Odd3JFlZWbzwwgs53dtr1KhB48aNOfbYYxk0aBAvvfRSxHqTJk3KOVaNGjVo0KAB\nxxxzDP369WPMmDFkZmZGrLd161buu+8+OnfuTP369alVqxZt27Zl+PDh/PDDDxHrfPLJJzljMgKs\nXLmSYcOG0apVK2rWrMmRRx7Jddddl6clqEh54BysXQvTpsE998Dvf+8fp03z65XoE6mEnHOVYgHq\nAsuBs4GPgCfzKdsZcIsWLXIiIiJy+B588EFnZi4uLi7qEh8f77777rucOvPmzcupM2PGjKj7fvLJ\nJ52Zubp167r09PSIZbZt2+YSEhJcXFyce+655wqMd8SIEc7MXI0aNdy8efPybG/ZsqWLi4tzs2fP\njrqP7OxsV7duXRcXF+cWL16cs/7gwYM55zVy5EjnbrzROf9byi8BrVq1cnFxce7FF18sMF4putBr\nsjCmTJmSU/7ll18O27Z69WrXvn37nO3x8fGuQYMGOde2mbmbbrop4n5bt27t4uLi3CuvvFKkbVlZ\nWe62224Lu68SExNdo0aNXHx8vIuLi3MNGjTIUy+0fN26dV2jRo3C4mzfvr3bsmVLWJ3f//73rlmz\nZjl1GzVq5Jo1a5aznHLKKWHlt2/f7s4888ywY+V+P/r37+8OHDiQ55zOOeecPPVq1aoV9l2R29VX\nXx1Wp169ejn3XnBZs2ZNnnrvv/++q1+/fk7dhIQEl5iYmBNjQkKCe/XVV/PU+/jjj3PqfPTRRzl1\nkpKSXI0aNXLqt2zZ0q1fvz5PfZFYOXjQualTnRs2zLn+/Z278krnrr3WP/bv79dPm+bLSeW2aNEi\nBzigsysH+RotpbtUphZ7zwLvOOc+jHUgIiIiVVlWVlbE5eDBg3To0CFindNOOy3q/oKTTJxyyinU\nrl07YpmGDRvSqVOnsPLRTJgwgb/+9a+YGc888ww9evQI2/7LL7+wbt06AK688sqorQ+bN2/O3r17\nAVizZk3EY51yyim+v2WoadMAaN68OQDbt2/PN14pG+eff35OC61PPvkkZ31GRgbnn38+y5Yt4+yz\nz+aTTz5h7969bN++nR07dvDkk0+SmJjIc889xzPPPFNi8fz5z3/mmWeewcy45pprWL58Obt27WLr\n1q2kpaXx9ttvc/755+ep17dvX/7zn/+wYcMGdu/ezdatW8nIyGDatGkce+yxLFu2jBtuuCGszlNP\nPRXW+uytt94K67b+5Zdf5mzLzs7moosu4rPPPqNz587MnDmT9PR0tm/fzp49e3jllVdo2rQpM2bM\nyOkmHzRx4kTmzZtHrVq1GDduHLt372b79u1kZGSwadMmpk2bxsUXXxxWZ8GCBYwfP574+Hgef/xx\ntm3bxs6dO3PObe7cuVx55ZU5k/AELV26lH79+rFr1y6uv/56fvjhB/bu3cuuXbtYs2YNN998M5mZ\nmQwfPpzFixdH/RwGDhxIz549+fHHH9mxYwfp6elMmjSJxMRE1q9fz5///OeCP0yRMuAcTJ8OkyZB\n9erQoQO0bg3Nm/vHDh38+jffhBkz1HJPpDKpFIk9MxsEdAT0L6uIiEgFY2Y0atQo6vbNmzdjZrRo\n0SLf/bRs2RLnHJs3b45a5rPPPuOaa67BzLj99tu57rrr8pQJTXBs3bqVzZs3R11c4JdRRkZGxOMl\nJib6X1KtWh1aOXAgANWq+TnMDhw4kO95SdmoU6dOTpfT//3vfznr//73v7N8+XK6devGe++9x+9+\n97ucbtmJiYn8/ve/59VXX8U5x6hRo8jOzj7sWFasWMHf//53zIy7776bF154gaOPPjpne2JiIhde\neCFvvPFGnrpvv/02AwcO5IgjjshZl5CQQL9+/fjggw+oUaMGb7/9NmvXro16fJfPL/4JEybw6aef\ncvzxx/Pxxx9zwQUXULNmTQBq1arF0KFDeffddwEYM2YMW7duzan7+eefY2ZcccUVXHXVVWGJ+uBs\n0ZMmTQo7XnC26p49e3LnnXeGdZlv0KABPXv25KWXXsozSc7tt9/Ovn37uPfeexk7diy//e1vcybJ\nadmyJc888wy33XYbBw4cYNSoUVHPt3PnzkybNo127doB/r69+OKLGT16NM45pkyZUiKfucjhWrcO\nZs2CBg0gOTnvmJ1mfn39+jBzpi8vIpVDhU/smVlL4CngMudckf5nfMcdd9C3b9+wZeLEiaUTqIiI\niEQUOottaVq5ciUDBgzgwIED9OnThyeeeCJiuaysrLA60Voghi5DhgzJ/+AhLcAAiNLCT2KrYcOG\nOOfCWlG+9NJLmBl33HFH1Gu1X79+1KtXj61bt7Jo0aLDjuOVV14hOzubRo0a5ZkQ5nA0a9aMk046\nCedcTsKsqMaNG4eZccMNN1C3bt2IZTp16kT79u3JzMzko48+yllfv359nHNs3Lix0McLJvK2bNlS\n6ATamjVr+Oijj6hWrRp33nln1HJXXHEFAPPmzYuazLz33nsjru/Xrx8Ae/fuZcWKFYWKS6Q0pabC\n9u3QtGn+5ZKTIS3Nl5fKYeLEiXnyGnfccUesw5IyVC3WAZSALkATYLFZzt8l4oEzzewWIMFF+Zf6\nH//4B507dy6jMEVERKQ4jjjiCJxz+bYwAli7di1mFtZSKSgtLY3evXuzbds2TjrpJN544w0syhSk\noS1/Vq9eTZs2bQ7vBMD3gwrVrZufBlXKldz/ZVy/fj1r1qzBzBg2bFhOV91I9uzZA/ik0sknn3xY\ncQRbtp1zzjl5upgWxDnHxIkTmTRpEt9++y1btmxh3759YWXMrMD7KZLs7Gy++uorAEaMGMHo0aOj\nlg0mR0O7qffq1YtHH32U6dOn06tXL6644grOOussmjVrFnU/PXr0oGbNmixevJgzzjiDa665hrPP\nPpvWue+pEAsWLMiJ97jjjotaLpjET09PZ9u2bTRu3DhPmZSUlIh1g13pQ89VJJZSUyEpqeDZtc0g\nMREWLvQzckvFN3jwYAYPHhy2bvHixXTp0iVGEUlZqwyJvXnAibnWjQeWAY9GS+qJiIhIxdC1a1cm\nTpxIamoqGRkZEcfZS0tL45tvvgHIk1Q5cOAAF110EStWrKBZs2a888471KlTJ+rx2rZtS9OmTdm8\neTPvvPMO3bt3L5kTmTwZLrnEP1+9GgroWixlLy0tLaxreGi37G3bthVqH9G6ZRdFsEXbb37zmyLV\n27t3L7179+bjjz/OSVzXqFGDRo0a5XQf3r59OwcOHIg4O25Btm/fzv79+zGziDMHRxL6fpx++uk8\n/vjj3HfffcydOzdnNuGWLVvSs2dPrrjiCrp16xZW/6ijjmLcuHHccMMNfPnll3zxxRcANGnShO7d\nuzNkyBD69u0bVif4uWVnZ+fbNR98ktPMon5u0b4rQpO86k4vseYcZGRAYf8OkJAA6em+XkGJQBEp\n/yp8V1znXLpz7ofQBUgHtjnnlsU6PhERETk8l1xyCfHx8WRkZPD4449HLPPQQw+RmZlJQkICA3I1\nQbj22mv59NNPqVOnDjNmzKBlIVrKXXvttTjneOGFF1i6dGm+ZdPS0gp3IrkmBeDnnwtXT8pEeno6\nPwc+k7Zt2wLh3bJ//PHHQnXLDnbvPBzRWpMWZNSoUXz88cfUrl2bp556ijVr1rB37162bNmSMxFG\nsAVacf72Hfp+zJkzp1DvxwMPPBC2jzvvvJNVq1bxj3/8g4suuoimTZuybt06xo8fz9lnn82ll14a\ndhzwrVHWrFnDc889x6BBg2jVqhVbt25l8uTJ9O/fn7POOiunxWRonE2bNi1UjAcPHqRV6DiYIhWM\nGdSuDZmZhSu/fz/UqaOknkhlUeETe1GolZ6IiEgl0bJlS2655Racczz00EM89NBD7Nq1C4AdO3Zw\n77338tRTT2Fm/OlPfwrrTvfII4/w6quvEhcXx/jx4wvdLeWuu+7i+OOPJyMjg7POOouxY8eGJfB2\n7tzJu+++y9ChQ/O0MMrX8OGHnm/YUPh6Uupmz56dkxAKfqa5u2WXleBxo822HM2kSZMwM0aMGMGt\nt94aMYldlPHtcmvUqFHOpC+H834kJydz2223MXXqVDZs2MCSJUu49tprAZg6dSpjx47NU6d+/fpc\ne+21vPHGG6xevZqVK1dyzz33EBcXx/z588PGIgy+f1u3bs2ZuVqksktJgZ07C57t1jnYvRsOc8QA\nESlHKmVizzl3tnPuD7GOQ0RERErGY489xsDAbLIjRoygYcOGNG7cmMaNG/Poo49iZgwdOpQRI0aE\n1QvOzmlm3HLLLTRr1izq8vXXX+fUq1u3Lu+99x4pKSns3LmTm2++mcaNG9OwYUOSkpJo0KABffr0\nYeLEiXlaF+Xr2WcP/82QEnfgwAEeeeQRAJKSkujfvz/gu8IGZ2N+5513yiye0047Decc77//PpmF\nbYID/PrrrwB07Ngx4vY1a9awcuXKqPWDLQWjtearVq1aTou/knw/2rdvz/PPP8/pp58OwPvvv19g\nnTZt2jB69GgGDx6c814FBfeTlZXF7NmzSyxOkfIsJQUaNoRNm/Ivt3Gjnzk3yvCRIlIBVcrEnoiI\niJS94FhVpVGnRo0aTJ48mf/85z9ccMEFNGrUiN27d9O4cWMuvPBCpk+fziuvvBJx1lIzyxlrK9qy\nZcuWPAmU5s2b88UXXzBhwgT69u1Ls2bNyMjI4ODBgxx11FH069ePZ555hg8//DDquUU4EQidKKCQ\ns3xK6dm3bx9XXnkl33zzDWbGvffeS7169XK2B7tljxs3ju+++y7ffRW6W3YBrrrqKuLj49m2bVue\nZHV+kpKSAKLGeffdd+dbP3je+Y2fd9111+Gc4913380ZIy+a3O9HQUnKWrVq4ZwLu48LUwfCZ9c+\n+uij6datG845/vKXv7B79+4ixSlSEbVoAb17+xlvN2zI23LPOb9+xw7o00fDvIpUJkrsiYiIyGEb\nMWJEzlhVhdWjRw+ysrLYv39/oesMHDiQWbNmsWnTJvbv38/GjRuZPn06ffr0iVj+s88+K/QYW6ed\ndlqe+mbGoEGDePvtt1m7di379u0jPT2dlStX8tZbb3HTTTflmYU3Pj6e7OzsqPtk/nwfG5AF3Hv5\n5YU+fykZzjn++9//8uSTT9K+fXvefPNNzIwrrriCP/7xj2Fl77zzTk488UT27t1Lt27dePbZZ8Nm\nQd25cydz5szhiiuu4IwzziiR+Nq2bcuf/vQnnHM89thjXHvttWEt7Xbv3s2kSZPyjCd5/vnn45xj\n1KhRvPXWWzmtSVetWsWQIUOYMmUKDRs2jHrcE044AeccEyZMiNqFdejQofTs2ZPs7Gz69+/P6NGj\n2RDSrTwjI4OPP/6Ym2++maOOOiqsbv/+/bnmmmuYM2cOO3fuzFmflpbGqFGj+OCDDzCzsPv5lltu\n4f/+7/+YNm0aW7ZsyVmfnp7Oc889x6uvvpqnDsAzzzxD3bp1Wb58OaeccgozZswI+65Zv349r732\nGj179uSee+6J+p6IVBRm0K8fDBoEBw/CkiV+nqb162HVKli61K8fNAj69tX4eiKVSWWYFVdERESk\n4siV7KBHD/jpp9jEUgU452gW0kpy//797Nq1i+xAa0kzo0mTJowePZrhoWMgBtSpU4e5c+cycOBA\nvvzyS2699VZuu+02kpKSyM7Ozhnv0cxo165dicU9atQo9uzZw7PPPstLL73EuHHjqFu3LtWrV2fH\njh0456hfv36eOvPmzWPTpk0MHDiQatWqUadOHXbu3ImZ8fDDDzNnzhw++eSTiMe84YYb+Pzzz5ky\nZQrTp0/niCOOoFq1arRs2ZLPPvsM8C3jpk2bxmWXXcbMmTO5//77uf/++6lXrx5xcXHs3Lkzpytv\njVxTdO7du5fx48fz8ssvA4daCIa+h5dccgnXXHNNTp0DBw4wZcoUJk+eDPhu8tWqVctpVWhmnHHG\nGdx7771hx2rfvj1z587l4osvZvny5fTv35/4+Hjq169PRkZGTuLSzDj66KOL+OmIlE/x8dC/vx8/\nLzUVFi70s982auTXpaT4lnpK6olULkrsiYiIiJS1iRNh8GD/fMUK34yimv5bVtKC3aE3b96c87pO\nnTo0a9aMVq1a0alTJ3r06MGFF16YMylEJMnJycyfP5/JkyczceJEvv76a7Zu3UpcXBxt2rThxBNP\npGfPnlxyySX5xlGUbXFxcTz99NMMHjyYsWPH8tlnn7Fp0yaqV69O+/btOfXUUxk0aFBYnVatWvH1\n11/z4IMPMnv2bDZv3kytWrU466yzuPXWW+nRowdz5syJeszLLrsMM+P5559n6dKlbNy4kezs7Dxd\n3OvWrcv06dOZO3cur7zyCl988QWbNm3COUfLli05/vjj6d69O5deemlYvX/961/Mnj2bTz75hBUr\nVrBx40b27dtHixYt6Nq1K1dddRX9+vULq/PAAw/QtWtXPvroI5YtW8bGjRvZs2cPTZs25aSTTmLI\nkCFcfvnlEc/p1FNP5aeffuKFF15gxowZ/Pe//2XHjh3UqlWL448/ni5dunDBBRfkOWbwcynMMAHF\nncG4PHFOiZ7KxAxatvTLgAH6fEWqAivOVPcVnZl1BhYtWrSIzp07xzocERERqYpCf2n9/vfw1FOx\ni0VEqgznYN0636IrNRUyMqB2bd+aSy26RCqHxYsX06VLF4AuzrnFsY5HSpfG2BMREZGqbenS2Bz3\nyisPPf/nP2MTg4hUKVlZ8NZbMGIEvPaanyF13z7/+Nprfv3bb/tyIiJSMSixJyIiIlXXrl3QsaPv\nr1TW49w9/3z463ffLdvjS0xUwc4yUk44B9Onw6RJUL06dOgArVtD8+b+sUMHv/7NN2HGDF2rIiIV\nhRJ7IiIiUnV9/TVkZ/smLMcfDzffDIHx2EpdQgI0aXLode/eZXNcKVPOwdq1MG0a3HOP73V9zz3+\n9dq1MUie7NsHs2eX8UGlPFi3DmbNggYNIDk5b3dbM7++fn2YOdOXFxGR8k+JPREREam6UlMPPc/K\ngjFj4OijYfRoP/BUaVuwIPz1+vWlf0wpM+Wu2+Ps2XDCCTB0qJ+wRaqU1FTYvh2aNs2/XHIypKWF\nfz2KiEj5pcSeiIiIVF1ffZV33e7dcN990K4djBtXulmXdu3CX59zTukdS8pUuer2uGYNXHQR9OoF\n//ufz+588UUpHlDKo9RUSEoqeGIMM0hMhIULyyYuERE5PErsiYiISNXkXOTEXtD69TB8uB+Db/bs\n0su8vPbaoec//KBR6yuJctHtcf9+ePhhOO443zQw1MyZpXBAKa+c842Qa9QoXPmEBEhP1zh7IiIV\ngRJ7IiIiUjWtXQsbNhRc7vvvfUunnj1h8eKSj+Oyy8Jf33NPyR9DylzMuz2+/75vFviXv8DevXm3\nv/NOCR9QyjMzqF0bMjMLV37/fqhTp+DWfSIiEntK7ImIiEjVlF9rvUg+/BC6dPHjk61ZU3JxmMGQ\nIYdeP/FEye1bYiZm3R7XroVLL4Vzz81/pudly3y3XKkyUlJg586CW+E550ckOPnksolLREQOjxJ7\nIiIiUjUVt4nUhAlwzDGwZEnJxTJuXPjr994ruX1LmYtJt8fMTPjb3+DYY2Hy5MLVUXfcKiUlBRo2\nhE2b8i+3caPvQp6SUjZxiYjI4VFiT0RERKqmorbYC5WZ6X/5lpSaNf1ga0HnnVdy+5YyV+bdHj/6\nyFWGWWwAACAASURBVI8FedddPkNYWErsVSktWkDv3r7r94YNeRPJzvn1O3ZAnz6+vIiIlH9K7ImI\niEjVc/AgfP118esnJpb8r97cs5Ru3Fiy+5cyVWbdHm+/Hc4+23etLapPPoFdu4p5YKlozKBfPxg0\nyH8FLlkCq1f7eYJWrYKlS/36QYOgb1+NryciUlFUi3UAIiIiImXuv//1fSUL66SToGvXQ8uJJ0Jc\nCf999Nhjw1+ffz58+23JHqMCc65iJRpSUvysuJs2+Qkyojnsbo+HkwA+cMB3+7744uLvQyqU+Hjo\n398nklNT/diO6enQqJFfl5Li/2ZRke41EZGqTok9ERERqXqija9nBscdBz/8EL7+00+hXr3Sj+vl\nl+Hqq/3z776DrCz/S7wKcg7WrfMfVWqqz8PWru0TDxUh+RDs9jhpkj+X5OTweJ3zObkdO3wLqWI3\nAO3UyR+kuN55R4m9KsYMWrb0y4ABFS9pLiIi4ZTYExERkaonOL7eMceEt8Tr1Anq1vUtmUJnPmjS\nxA+EVtquvPJQYg/g/vvh4YdL/7jlTFYWTJ/uW7xt3+5nl61Rw/cafe01v75PH99dsLzmPYPdHs38\nUHZLlhw6j/37fffbBg1KoNvjjTf6plbff+/7Un7/vV/27Clc/XffrdIJZFFST0SkojN3WNNvVUxm\n1hlYtGjRIjp37hzrcERERKSsLV0KRx4ZPmFFbq++6hNtQbNmQa9epR/bpZeGz2paxf6v5hy89ZZv\nhNagATRtmrel26ZNfgKAQYN8t8LynJgIbXkY7PZYp04pd3tcvBi6dDn0+qyz/Bu2bJlPWue2YAGc\ndloJByEiIrGyePFiuvh/B7o45xbHOh4pXUrsKbEnIiIi0eTOuGRllfzYerllZPjMT9C8edCjR+ke\nsxxZuxZGjIDq1fMfm27DBj/Q/8iRvkthRVEm3R5zHyD4//0DB2DFivDWfUuX+gzpqFGlHJSIiJQV\nJfaqFnXFFREREYlm48bw7FKfPr7rYmmqXdsn9tLT/euePatUq73UVN/9tkOH/MslJ/ucVGpqxUrs\nlXpS7733wl8vXXroefXqcPzxfrn00kPrDx4s5aBERESktJTyn5xFREREKrCmTeH66w+9nj0bVq4s\n/eMGxwAM2ry59I9ZTqSm+rHoCkqAmUFiou/eKiHOOy/89QknFFynmv7WLyIiUlEpsSciIiKSn7Fj\nw1+3a1f6x2zfPvx1WYztVw449//ZO/PwKKq07d/V2SEJISyBNAqIbIKgCMF1XMcNkcVRQcV1Rh03\n1FFfXGaQUdHx/Rx19HUZxxVHFmdAUdx3USEoCgJCENmysBOSELJ11/fH7Ul1VXqp7q5OdzrP77py\nJae6uupU1alKn7vv53kYiexbtyQYGRk0NrYjQ2NwXnnF3N6yJT79EARBEASh1RBhTxAEQRAEIRia\nBixZYl72t7/Ffr///Kfx93ffAV5v7PcZZzSNkcgNDfbWr69n1HIiF89oNXTdXOzloIP4IwiCIAhC\nUiPCniAIgiAIQihGjwYOPdRoT5sG1NTEdp+//725fe+9sd1fKxHKXVdUBOzbF3o9XQeqq1ldVgDw\n4IPm9sqV8emHIAiCIAitigh7giAIgiAIdli1ytx2u2O7P00DJkww2vfdF9v9xQhdZ6Xb+fOph06d\nyt/z53O5VcArKgLy84Ht24Nvd9s2oHNnrt/u8XqBu+822scfD+Tlxa8/giAIgiC0GiLsCYIgCIIg\n2CEjA3juOaNdVQV8+GFs9zlrlrn9+eex3Z/DeDzAggXA9Ok8lG3bgLo6/p41i8vfeIPrKdxuYMwY\nYO9eoKKipfCn61xeWckixbHWV9sEf/yjuR3rcSkIgiAIQsIgJbAEQRAEQRDs8vvfA3/4g9E+/XSq\nUq4YfVfasSMrSaikcyedlDCVInQ9eG47XQfefBOYO5fOumHDzOvrOl15c+awPX48X9c0YNw4/n77\nbUaUdurE01Bfz/Dbzp2BSZOAc8+V/HpobDTnY7zkEiAzM379EQRBEAShVRFhTxAEQRAEIRzKysw2\nsd/9jnGlsWLZMmD4cKO9axfQtWvs9hcAXeehFxfzp7aWhS6KivjjdptFtrIyYNEiinA9erTcnqZx\nua5TwBs1CujVi6+lpFDoGzWK+1q2jNVvu3ThMn/7a7ece665/dJLcemGIAiCIAjxQYQ9QRAEQRCE\ncCgsZPXRl19me8ECYNMmoE+f2Oxv2DBze+xY4JtvYrOvAHg8dN8tWgTs2WM46KqqGFK7aBHDYs89\nl6IcQEFuz56W3bfSowfw449cXwl7AEW7Xr34M3FiaIdgu6S6GnjvPaN9993GBRAEQRAEoV0gOfYE\nQRAEQRDC5cUXze2+fWO7v6eeMv5esoTFEloJ35DatDQKdX36UN/s04fttDSG1C5caEQKFxdTAAwl\nxmkakJNDV16o9QQL1sohbbTAiiAIgiAIkSPCniAIgiAIQrhoGrB4sXnZY4/Fbn/XXmtuP/BAq6Xa\ns4bUWgU2FVKbl8eQ2rIyinu1tXT12SEjg6G2CZI+sG2wbRuwdq3RfuYZUT8FQRAEoR0iwp4gCIIg\nCEIkHHecOXb0lluoZsUCTYN+zjlG+y9/wdSpwLRpTO9XWho7UUyF1BYUBF+vRw9Wsi0upr7UoYNR\n8yMU9fWsEyK6VBgccoi5fc018emHIAiCIAhxRYQ9QRAEQRCESFm/3tyOUUiuxwMsnDTbtKzXpsXY\nto057qZPB954g+s5TaQhtUVFwL59oQVHXWequFGjnOlvu6CkBDhwwGi/+Wb8+iIIgiAIQlwRYU8Q\nBEEQBCFSMjOBJ5802jt2AJ995uguVI671xZmwwtDXbvjrROC5rhzat+RhtQWFQH5+cD27cHfs20b\nw3yt6eKEIAwcaG5bK+MKgiAIgtBuEGFPEARBEAQhGq6/3tw++WRH1bWyMuau69wZ+OfV35leyzqw\nx2+OO6eIJqTW7QbGjGF4bkVFy1Oi61xeWcmKum63c/1OaqwVkVu5QrIgCIIgCImFCHuCIAiCIAjR\nsmWLuX3xxVFtTteZN2/+fOCmm4DPPwd+/BH4tPJI03qT5oxv/ts3x52TRBpSq2nAuHHApElAUxOw\nciWwaRNQXg5s3MjjaWri6+eeK/n1bHPsseb20UfHpx+CIAiCICQEIuwJgiAIgiBEy0EHARdeaLRn\nzwa2bo1oUx4PsGAB8+bNmsU0fikpDHFduRJ42P1487q9t3wJTfcCMOe4czIcN5qQ2pQUYPx4YMYM\nYMoUoGdPRi8XFgKXXMLl48dzvVBIxVy0zKW3bl18+iEIgiAIQsKg6e3wU5KmaSMAfPfdd99hxIgR\n8e6OIAiCIAjJgK4DLlfLZWFuYsECYO5cimTduwPvv09nW04OX99fo+Pb5cZ+Pjr1QXx53DRUV9MF\nt2cPTV0dO1JkKypimGukjjjfPuXl0Rnouy1dp6hXWUn33fjxwfel6/b6ousMKy4u5k9tLcOCnTim\nNovvAWdlxa4KsyAIgtCmWb58OY466igAOErX9eXx7o8QW8SxJwiCIAiC4ASaBnz6qXnZU0+FtYmy\nMmDRIop6PXpQJ0xLM6rdahqQnaPh69wzmt9z2sd3Yu1a7nrdOubDq6+HYxVzow2ptWqbdsQ4q2tx\n2zagrs65Y2qTPPOMub1xY3z6IQiCIAhCQpEa7w4IgiAIgiAkDSedBHTtCuzaxfb11wNXXsn4UxsU\nF9NxN2yYscztBlasMDvd7hs6D+9+3al5HVfxErjyj0aHDsBhhzHUFeB7tm9nxVwgtJsuECqkdtQo\n9nHZMoYGd+nCZb4OumiddqoKsHItDhvW0iHo75jsOgHbJLoO/PGPRnvwYKCgIH79sUlSXxNBEARB\nSBBE2BMEQRAEQXCSzZsZB6sYOJDLbFBcDHTqZBZD3G6gpIRCWnY2lx1IyzW9b/amY3BUvo6sLHN1\nWVUxV9dZMXfUKKBXr8gOS9P43l69gIkT/Ys2Hg9FuUWLKFB26gSkpwNVVXTaLVrECrjnnhs4r57V\nteivHz16AF4vxb9du4ANG5I8VPeee8xtpyukOISETwuCIAhC6yOhuIIgCIIgCE7SoQPw978b7S1b\ngK+/Dvk2XacQkp5uXp6TAwwYABw4wKqzKrT1koHLTOul7a/EgAFc30osKub6C7lVTru0NDrt+vSh\ne7BPH7bT0ui0W7gwcPpB5VoMZkjzepnTb8kS4LnnkjxU1+MBZs402meeaSi8CYSETwtC4tEO0+kL\nQrtEHHuCIAiCIAhOc8stwK23Gu3jjqMaFcSupGnUBKuqWi4fOJB/l5QwDDUzEyj3jjSt96+9EzFv\n4Cd+d+FbMXfixEgPKjh2nXah3IP+XIu+6DpzCa5eDWRkUAjt08f8uhPhxwnDZZeZ2wsXxqcfQYg0\nfFoQBGcR16wgtE/EsScIgiAIghALfvnF3L7yypBvKSoC9u1r6bJwuYBBg4CTTwaGD2ekb1MTMDP/\n/zWvM3THp3Bpge0ZGRkM542Vg8OO0w4I7h4M5Fr0pbqaAmdWFo1rjY3mY1ICYl4eBcSyssiOJyGo\nqwP+/W+jfc01tD0mGFZR1yocJNU1EYQERVyzgtB+EWFPEARBEAQhFvTty3KyipdeAioqgr6lqAjI\nz6e7yYqmAbm5rJswdCjrdJRdeKtpnWO++XvLN/5KfT0FwVi5NUI57RS+7kF/r3XowMq+gSgrY1iy\nEjfT0vzvMxbhx63Ob39rbodZZbm1cELUFQQhcpxKhSAIQttEhD1BEARBEIRYsWCBua3K1QbA7QbG\njKH4UVHRcvKl61xeWQmMHQuccqqGFd1ObX79jA9v87tdXafTbdSo0F2OZMJnx2nnSzD3YCDXoqKs\nzCgy3NBgLhbiSzABsU2wdy+weLHRfuABWjcTECdEXUEQIkdcs4LQvknMTweCIAiCIAjJgKYB779v\nXvb880FXHzcOmDSJbrSVK4FNm4DycmDjRuDHH7l80iRWlh09Gnju9P+YtlFY1lI12baNE76iopb7\n1HWgtBSYPx+YNg2YOpW/58/ncjtCnx2nnS/B3IPBXIu6ztDblBSgpoYCXyBhD4h9+HFMGTbM3L7z\nzvj0IwROirqCIESGuGYFoX0jwp4gCIIgCEIsOf10cxXT3/8+qAKWksLiAjNmAFOmAD17UsAqLAQu\nuYTLx4/nem43cMrEPNP7r/6Xod75OvzOOaelCOZkTqZQTjvfPgVzDwZzLWoakJrK99fVIWAVYEWs\nw49jxtatVFUVr7ySsAfhpKgrCEJkiGtWENo3UhVXEARBaFfoukwohThQUWFWoA4/nKVdA6BprBjb\nqxer2AYat8rh99lDS3DStKObl+/ZVIV9ei6qq+nUUw4/a6VSJyuZFhUxFGz7dv9VcRXB3IO+x6Rp\nDBlbuZIT1vR0ikJNTfx9xBGsFhyseq7d8OOE4+CDze0pU+LTD5sUFVEIDvV8bdPXRBASlGhcs/J5\nSBCSAxH2BEEQhKRG15lLpriYP7W1dJcUFfHH7ZYPtkIrkJ0NPPigEU5ZUsIBGUjdshBsjKakACfe\nMRqYZiz746fn45WL3seoUYHHuTUnk7999ujBe+jttynG9OoVuB/KaTd3Lt9jzfOk6xT1KispNAYL\noVWuxVGjeJqWLeNEtEsX4PjjgY8/ptgXLOVcKAExYfnxR3PbGsqdgDgl6gqCED7KNVtVZW/9+no+\nS+WzjyAkDyLsCYIgCEmLx0NH0qJFzD2jXD9VVXSXLFrE8MRzz6WQIAgxZdo0c5600aMBr9eR2ZWm\nAXjoIe4DwOAtH+DBmcHtGConkzWVm5UePag1FRcHF/ZCOe2CuQcDbc+fa1HXOSmdO9foX6QCYkJi\nvSCnnx6ffoSBk6KuIAjhI65ZQWjfiLAnCIIgJCVOhxkKgiOsXw/072+0r7sOePppZ7Z9++3Nwh4A\n4B//YCWMAESSk2nixODrBnPaBXMP2kG9x2kBMaH49FNze/ny+PQjTJL6mghCG0Bcs4LQvtH0dliS\nStO0EQC+++677zBixIh4d0cQBEGIAaWlTPyflhb8Q25FBXN2zZgR3I0kCI5x5pnm8Mrt24Hu3Z3Z\n9oknAl98YbQDfM7TdWp+dXUsyhGK8nIW8Hj88fBFmVjlcfINs1cCYseO0QuIccXa4Tb2OT3Zronk\nIBPaCrrOQkhz5wJ5eaFds/JlZvKzfPlyHHXUUQBwlK7rbeNbIiFixLEnCIIgJCVOhxkKgmO88445\n9rugwDkB5403gPx8o718OeDnS8zWzMkUq8mj3QIjbQZlH1Zs3BiffkRBW78mkpNVaKuIa1YQ2jci\n7AmCIAhJSSzCDAXBEVwuzrzOOcdYNmuWI5VP9bzOMA35kSOZx88PyZaTqc1PVCdPNv7u1g3o0ydu\nXXGKtnRNJCer0NaJZSoEQRASGxH2BEEQhKRD1+m0SE+3t35GBj/8tjV3idCGGTMGSE1lHDgAXHop\nrRRpaWFtxp/DaNDFX+G6fx9nrFBdTfXaguRkSiAeecTc/umn+PSjnSI5WYVkoa27ZgVBiAxXvDsg\nCIIgCE6jwgwbGuytX1/PPFDy4VdoDXSdOSAXvrjbtLyy/0iUltqPyvV4mFNp+nQ6irZtY8684tRj\nzfubNNnv+1Ul0717mWvSul9d5/LKSjqVpJJpjNB14LbbjObIkbTYCK1GWRlF7s6dW+YmA9ju0YO5\ny95+m+sLQltAPtcIQvtAhD1BEAQhKSkqAvbtCy2SOBFm2Mby2wtxxFeMe/G/uVgw/N7m1/I2r8Tz\nN3yPN97gesHwdRilpdFh1KcPC2H06QN8fNJ9zetq7yyC7m05SFVOpkmTaBxcuRLYtImFMjZuZO7J\npiYjJ5MQG/SpN5vat436AtOmAfPnIyyhV4gclZO1oCD4ej16UAgvLm6dfgmCIAiCHSQUVxAEQUhK\nYhlmKAnWhUjwF+63Yvh0TFhxb/M6098cgQvTvQC0oOF+VoeRlcW/uQunfvbn5nblzKfQ+Z7rW6wX\nLCfTyJHAwQcDW7YAd98t4zwWeOqbkPLEP5rby3r/DtVNWWjYJnndWhPJySoIgiC0ZcSxJwiCICQl\nsQozDBT+uO3Xifj06bDluBLaH4HC/Z683pxP7Q8/3Roy3C+Uw0jXXNja65jmduc/3xBwWyon08SJ\nwIMPAo8/Dtx/P5c/8wzw6qsyzmOBrgPbT/idadm7l85udl0OG0Y35pw5wMKF4tyLFdHkZBUEQRCE\nRECEPUEQBCEpCTfM0I7zKFT4o52JuEwG2y+BxLhdXQdhU+8Tm9unrXoMTdt2BQ33s+Mwem3yW+YF\nK1fa7mu041wITfn6/Shc9mZz++tj/gSvywimkbxurYPkZBUEQRDaOhKKKwiCICQtwcIMR40KP5ww\nVPijmojrOifio0Zx+xK2KwDBxbiXL/0Y0+8zPpa9/E433DlM9xvuZ9dhdKCDuQCDPnIkNBvqRSTj\nvFevkJsVLHQ883hT+4Pf/q/f9Xr04BcRxcVynmNFURGdqKEqiDqRk1UQBEEQnEaEPUEQBCGpUWGG\nKtQw1MQtGMpxNWxY8PXURPybbyguLlrE93XqRDGmqkryZ7U3QolxuisFcy5cgElzJzQvG/D9XOj6\nhX4rdHbowHEUihcv/xxXvEQ3oNbYSGW7Y8eg7wl3nIvgFAE7dyJv4w/NzXfPfDzgg0nyusWeWOZk\nFQRFNJ8/BEEQgiHCniAIgtCuiOZDdTgJ1rOzgdmzGbKoCiX4vk/XOYmcM4ftYIUShLaPHTFu7aDx\npvYV708CPOcBqS0/rtl1GG06+DfmBZdcwiSRQZBCArFHHzgQvqd36eibgq6v8rp5vYBLEuk4jsrJ\nOncu7ynfHJgAl23bxpyskybZz8kqtG+k0JYgCK2FfDQQBEEQBBuEm2C9qQlYu5b5sayTREDyZ7VH\nioqAffuC56R76H/2mhccd1zAbeXnUxwOxrZtwJtHTDcWvPFG0A5IIYFW4JdfoO01rvO8380LuKqu\nUwwuKaGAevPNwLRpwPz5QGmpnHeniEVOVqF94/HwPpVCW4IgtAYi7AmCIAiCDcJNsF5ezolgsLAu\ngK/v3YughRKE5MCOGFeXmYd3j5hmLCgupqpgIZyqz957/mJ+8bnnAu5fCgm0Av36mZqrDzvf72pe\nL78c+PRTCnuZmSIMxBKVk3XGDGDKFKBnT57zwkIaXWfM4OuSNkEIhK5TcP/vf4Hzz6cIv3w5nfv5\n+RxTUoBIEIRYIKG4giAIgmCTcBKsl5fbC7ORcMb2g91wv5cGPIizfnjIeGHYsBYzP+Uw0jQ6Pleu\nNHI41tczwX/nzsph5AJGjgS+/ZZvvuYa4OqrA/ZTCgnEEHUNfuWhs7/wm9dN14F164BVqyjwde8O\nHHkkkJtrvC6h/M7jZE5WoX3h8bCa+KJFdOD//DPFO13ndzPr1wMDBgADBzKcXgoQCYLgJOLYEwRB\nEASb2A1/rKhgWrSePe1tV8IZ2wfhhPt5frC49KZNa7G9sBxG77xjfvPq1QH7GU6YrxQSCBOLCjrg\nqhP8ui6rq+nSUzn1Bg7kFwAKCeVvHUTUE+yg6xT15s6lmJeby88A3bvzHu3enc/hVaso2Kt7XTn2\nly6Nb/8FQWj7iGNPEARBEGxi13G1bx8waBA/4Nuhvh7o0kUmkW2NSNw8SowbNYpRtsuWUdTt0oXL\njITqQ4GjjwaWLOEb//Y34H/+h0qaD7YdRt26mdtFRdyxH4KNczUhlUICEfDuu+b2qlUYN8i/67Kk\nhMJq9+4U9QYO9H9dpTKxIMSfsjI69Tp35j25ahW/ZFH3rCqopeu8twsLuaysjO0HH+T/AimqIQhC\npIiwJwiCIAg2CSf80eMB/v1vCWe00pZD25yqcGhbjPvyS7M6nJ8f0tYZdP+ffAKccgr/rq01DsDP\nNtQ4f+stuknq64E9e5h7z+MBDjoImDwZGDu27V7PVufss42/NQ0YMgQp8C/01tdTzDvySDr1Ap1j\nCeUXhPhTXMzno8qa0NjoPxdjdjYFe/X/48ABunIBunZnzaJAeM45LNIi+RwFQbCLCHuCIAiCEAZ2\nHVdlZTTo+Muf5UuyhzM6JYbFWxD0zZ+0Z48h6FZVRT8ZC3hcqam0zV14obFs/vzIFZyTTza3L78c\nmOe/ImtKCkW7XbuYx62sjMsyMjhe09KAr7/muJcJqA1efNHc3rq1+U+r0Ov1svptXZ2RUy8YvqH8\nIrImP3KdE4/iYv5PUNclLY3ivD/q6hiO26cPUFBA53NODtC3r+TOFAQhckTYEwRBEIQwseO4shu2\nm8zhjNGIYU4Jgk7gmz+pc2e6MqzXMmaTsQsuMAt7553HRHyRKml33QXMnMm/X389oEqg66zW+NFH\nQP/+wPHHc7lvSK5MQG2i68CVVxrtPn2C3vAuF8d6VZW9zUsof3KTSM9CoSW6zmuSnm4sc7uBFSta\nPl4bGujQT0lhNXG1TD0OVO5MKaohCEK4SPEMQRAEQYgSf5OqcAolnHtu8k3MrMnEhw2jnlFYyN/D\nhnH5nDkUkHwjTD0eYMECYPp0CoDbttHlsG0b29OnA2+8wfVaA2v+JOu1inkhg127zG0VThsJf/2r\nuf3SS35X83fMvsdt95hboyBMrPcR9fbvv9/c/uGHkG8pKmKuzlD7DjeUXwr0tC0S7VkotETTKLQ2\nNBjL3G4gK6tlGtOqKv7fV/n3amr4t1XnV0U1iotj339BEJIDcewJgiAIQoywXygh3j21j90wMKsw\nZCWQMyGu7rgA+OZPCkbMChl06QLccgvw6KNsf/EF8NNPwODBYW1G1wEtJQUYPpx2EoBOsiuuaLFu\npMfcGu6iWO/D0e17vcBf/mK0TzqJ1tUQFBXx/ok2lF/cXm2XRHwWCv4pKqLQqv4/5uQAAwawiIau\nM7eephku3OxsCvJ1dcDQoeaK14DkzhQEIXxE2BMEQRCEGGK7UEKCEqkwEKkwFKkgGEus+ZMCEdPJ\n2COPGMIeABx2WEj7VaBrd8JN72PMVT4n149IGMkxjxsXuzyEiljmOozJ9q++2tx+7z1b/XAilD/W\n50qILYn4LBT8YxXiNY3FbwCjwnVGBh16uk53X0YGRb1AFa8ld6YgCOGQFMKepml3ApgAYBCAAwC+\nBvA/uq6XxLVjgiAIgmChLX1Aj0YYiFQMi7s7zoK//EnBiNlkTNOA779nmVTF9OnAjBl+Vw927f61\nrgBjfFc+5hgqRL8SyTHX1MTeXRRrB5Pj229oAJ5/3mhfdhlPlg3CqcDtL5Rf3F5tn0R7FgqB8SfE\nu1zAoEF8rbSUAh/A9AUjRvBaBat4LbkzBUEIh2TJsXcCgCcAjAZwGoA0AB9ompYV114JgiAIrYLk\njXKeaHLkRSOGRSIIxhJ/+ZOCUV/PpOhOTsaaz+0RR/BH8de/MhGbn/VDXbvHx3xgvGHfPuDAgeZm\nJMfs9cY+D2Gscx06vv0xY8ztF14Iqz8qlH/GDGDKFKBnT+bjKiwELrmEy8eP9++2i3teSCFqEu1Z\nKAQmUE7digpg924uO+oo4A9/oKg3eDArXge6tuHmzhQEQUgKx56u62f7tjVNuxzADgBHAVgcjz4J\ngiAIsUPyRsWeaMLAlDAUblVPID7uuFDvt+ZPCrYdJyZjQcf3/GL0OsTnBHXpwlmjD3au3d6RvwUW\n+Sy86irgtdeam+Eec0EBC8PE0l0UaweTo9uvqmJJYcVf/kILT5hEGsovbq+2TcI4hQXb2Mmpq+vA\nvfdGnztTEATBSrI49qzkAdAB7Il3RwRBEARnkSqBrYMSBgoKgq8XqHpfJFU9W8sdp+sMjZo/H5g2\nDZg6lb/nz+dya5+LioD8fE7GguHEZKypKcT4vj8N306dZbzB46Gy6oPda7f4mNuNxuzZpgMP95j3\n74/OXWTHdRtrB5Oj2z/qKHP73nvD60yQfdtB3F5tm0RwCgvho4T4iROBBx8EHn+cvydONAT6uYz0\nqgAAIABJREFUMWP4P7OiouVzT9e5vLKSaS785c4UBEHwR1I49nzRNE0D8BiAxbqur4l3fwRBEATn\nkLxRrUe0BSMireoZa3dcJHkDnShkEOw4fN15K1cCGzcCBx0EDBliDtdS4/t/Ky7BXEwxNjJ2LA/s\nV0eY3Wv38WkP4vhv/tdY8OqrjPkM85gvvBD49NPw3UVbt3Lc2HHdBnMw+Rsr4TqYHHVIVVQAP/9s\ntJ97rlUfRLrOvonbq23T2k5hwXn8hcBHkztTiD3yHBTaKkkn7AF4CsBhAI6Ld0cEQRAEZ5Eqga2D\nEyJHpGJYpIKg3eOKRBiO1WTMKjKmpgIbNvC1rVuBnTuBAQNYNdHlMo/vmydvx2OzfSx5Z50FvP9+\nWNdOd6WgrPMQuPeu5oJLL20W9sI95uJiLrNDXR2waxdNbHbFVd/wbiVklJXxp7GRuQTdbv7k5ISf\neD7S8HG/2+/d29z+/e/tbTQKrALx11/T7XXYYcY5kST9bYtYPguF+GEnZFfSibQektpFSBaSStjT\nNO1JAGcDOEHX9YpQ699yyy3o1KmTadnkyZMxefLkGPVQEARBiAbJG9U6OCFyRCqGxdIdF40w7NRk\nTImf/kTGtWv5mgqh3b8fWLWKfw8aZGy7Rw/gx53dseHM69Dvvae48IMPgPXrofXvH9a1e/jUD/D4\nf3xOYkkJ1cQwj9muu8jrBdato4jZvXt4rtuiIuCVVzjxWr+eAmFGBvtZX88xVlIC9O9PsW/cOHvn\nQOGIQ+qnn7hzhSVMOhb4c6Hm5/M8//CDcUmVQOyLuL0Sl1g+C4X4EmnuTMFZInHwJyqzZ8/G7Nmz\nTcv2+SmuJSQvSSPs/SrqjQNwoq7rW+y859FHH8WIESNi2zFBEATBMaINDxXs44TIEYkYFstQpWiF\n4UgmY4HcAP36AR9/zKqkSmQsK2PVU7XN7Gy+v6SE5yk31+hHTg7wrwFP4kEl7AFUb3Q9rGu31VNo\nXnjccbQKhnnMdt1Fv/zC/FJFReGLq6NGAf/3f6w22bkzhUH1HnU8+/cD333H6r/hilWOOKQOO8zc\ntlbGdZhALtT8fLoildPTn0AMOO/2EoHCOSRss/0g1671SbbULv7MScuXL8dR1nyvQtKSFMKepmlP\nAZgM4FwA+zVNU7Ep+3Rdr4tfzwRBEASnkCqBrYtTYWCRiGGxClVyWhgOtR3lBnj7bVaMra+nsNjQ\nwMIiDQ3AMcdQoHK5aPSyugKys4EdOyj6KWEP+HV812rQi5dBK/JRsGbORNGld4V17Xa98g66Xno2\nF+7aRStcZmZYx2zXXbRxI/d5yCFBThwCi6u6zgIje/bw+LxenrOcHP7our1CHNEcQ0CH1FdfmdtL\nl0bWkTAI5ELNyaHOu2oVL2VGhlkgdsrtJWFssUXCNgUhNkhqFyHZSAphD8C1YBXczyzLrwDwSqv3\nRhAEQXAcR3NgJRGxEi5jFQYWTs4zJ0OVWlsYVm6AOXN4jnbsMPSyDh0M/ezLLylSnXIK88TV15u3\no2nsc1kZMHiwsbx5fI8aSRvW2rV84e674b7xJowZk2372nUZfxZwqc9Or7kGePnlsI7XrruooIBi\npTUk1N/2rOLq0qW8JprGc6brDOkFKJQCdKqNHEnxb9kyFiFx+hgCOqSOP97cboWkZ4FcqJrG0FuA\ngt6BAxz/P/4IFBY64/ZKpjC2REbCNgXBeSS1i5BsJIWwp+t6iI+HgiAIQjIgVQJbzyGTaGFg0W6/\ntYXhsjKet8pK/p2VRVFL5ddLT6co1dQErF5NQaqwkOfZOr5TU+nm883PZxrfK1ZQiVTH2rMHxu2r\nCe/a3XIL8Oij3MArr4Qt7AGh3UWjRgEPP9xSvAyEr7gKAK+9Rpdely6cbFVX80cVBE5PZx9crshD\n8SN2SM2fb26vXx/ejiMkmAvV5aLm63ZzDK5ZwzDokSOjd3slWxhbPIhUoJPzKAjRI6ldhGQjKYQ9\nQRAEoX3Q3qsEtrZDJtnCwFpTGC4uZvjtjh0U9bKzjdc0jefW46HYuG8fQyZPO43r7t9vXr+pictV\nn1uM7/R04PnngauuYnv/fqR89D7Gjz/D/rV7+GFD2AOA2bOBCIqJhXIXdexov3qur7i6dStNiVlZ\nnGQBdD9262beR3U1HWqDB0fuuIzIIXXeecbfOTnAoYeGt9MIsONC1TSG3ubm8nmRkQHMnBn9PSth\nbOEjYcuCkBhIahchGRFhTxAEQWgztOcqgXYcMtu2Oe+QSaYwsNYUhouLKUzV1RlVbn3JyWE/MjL4\nU1VFgU/lRdN1Q9xraOBYDjq+r7zSEPYA4MwzoXk86NXLZe/apaZy5yUlbF90UUTCnhXr/iIVV5ct\nMwRO9bp6v+92VE7Cigqgd++ou+/3GFrw5JPm9s8/O7PjEMQzPYGEsYWHhC0LQuIgqV2EZERCWAVB\nEIQ2gwoPnTSJk/yVK1khs7ycSfl//JHLk7FKoNUho0Iyq6qAn35ihdUffgDWraPO8O23kRcRCEZb\nPqdKGN67l8KP9fzoOpdXVnKSHU1BgdpaTuB9q9z6kptrhNiqyqVlZcyLNnQoi0Js387+eL0UBkKO\n7/Jyc3vCBFMz0LXTdaC0FHj3to9Ny99/agNKS50dR0VFDDvevj34elZxdelSTqx27QI2bKB29ssv\nLOBbX9+yj2vX8l6YOhWYNo2Rsk4fCwBu8MYbjfbQoUa53lagqIiCcKjjcjo9QSRhbOESi+dXPPD9\nUiYtjWJonz4Mve/Th+20NH4ps3Bh8hy3ICQy8Xp2CkKsEMeeIAiC0KZItvBQu1gdMl4vhQuVGD8z\nk+dG1yn0TZsG3HBDYjtAWtv911p5A5UboKGBv/2Rns4xu2MHRbu0NIp2msa8aIWFzL23dSsryB56\nqI2QvZ496dx74QW2Fy6k4t23b8C+mp1EvXCWz2uj/nQCbv+u3FEnUTiu2wsvZHvePOD11ynq1dfz\nXHXowPNVWwvs3s1z2aUL/y4v5/tcLjomY+qKmjbN3P7mG4c2bI94pCeIVRib3VDVtuYalrBlQUg8\n2ntqFyH5EGFPEARBaHMkU3ioXXwdMrpOUW/VKnNRBl/27Em8xPWJkGOqtYThoiK6xJqa/L+uaUDX\nrjwn5eUU2Gpr6dBTIuNBBwF//CMwdqxR/TUk//qXIewBVAUDWBL8hXe/lrkQF805FwCQX1eBLFc9\n5sxhYY5Ix5E1bNaOuHrBBTwn06dT4Ny9m+/PzKSQ7fEw7FYJfNu3032xfz9Fb7cbGDLE2G9Mijl4\nPMxNqDjnHHNyxFYgHukJYhHGFipUdd48hlbrOsXatpSbTsKWBSHxaM+pXYTkRIQ9QRAEoc2TyJM6\nJ7A6ZFSBAGtRBkVqKn86dUocB0gi5ZiKhTBs3UZREYW5DRuAvDz/29c0XkO3m+eib18KV1GJjJoG\nfP01cOyxxrJHHgH+9KcWq/pzEpUMHGta58rvrsezo/4V1jiyI+CGqp5bXAz85z905zU0UATdt4/F\nN9LTuX5VFUOZs7IMcS87m2HOhx9uPm8xcUVdfLG5ba2M2wrEq3q1k4VoguUP9XoZVv3998DixUD/\n/nSvhvvciOYej/b5INU3BSHxiNezUxBihQh7giAIgpDgWB0yZWV0LfkrygAYRQZ69kwMB4idwh+O\nu6nCIFIXWjDxqrCQE4KZM5kHrlu3lsdcU0P3kdvN6/PXvzrkPjrmGCbv2rSJ7dtuo/XPEhccyEm0\ndNQNGL2MBSFGfP88eoz9l+1xFI6AG0hcLS0F3nmHY2XvXp6jbt0o5jU28jBUeGdDgxGGnppKYa9r\nV4qq/nDMFXXgAAe04vrrqULGgXikJ3AyjC1QqKpyJq9eTcErO5vumZwcirfBnhvRuIOddBZL9U1B\nSFzaa2oXITkRYU8QBEEQ2gC+DpmyssBFGXTdqKKaKA6QZMsxZVe8uvRSFnmYNw/YssUomNHUZAhS\nbjffP3aswxOItWu5A8XBBzNJnQ+BnETvn/H3ZmEPAIaseR2bcs4POY6iEXB91/MVHFetMioHq5yE\nus7znZtrTMKUe+/AARb3zcnx30fH7olTTjG3n3giio21JFxhp7XTEzgZxhZIYLY6k3Wd17+sjNc+\n0HMjGnew085iqb4pCIlNe0ztIiQnIuwJgiAIQhtAOWS2baOAEWhSWVNjCEZAYjhAkinHVLji1f33\nM3RwzhwWwkhJ4TUpKDBclWPHxiDUJyMDePppOvUAJqn79FPg5JOb+xnISeRNScPevL7oXLkRAHDB\nfy7AR3/QQ44jpwRcJTgCxlhXOQnVoezfT5HU6zUKkGga9z1wYPBzqUJ5I74n9uwBliwx2n/7W9QX\nz+n8k7G+150MYwskMFudyZrG7ZeVAYMHG+v5Pjfc7sjF5Vg5i50MWxYEIbaIqCe0VUTYEwRBEIQ2\ngK9Dpr6+ZT0E39DOoUMNx1IiOECSKcdUJOLV738PnHWWWbTp2LEVQn2uvdYQ9gC6zLxeQNNCOole\nuvwz3PJY7+Z2zu5NSB/QJ6RAE62A6ys4ahqjW+vr+ZoS93Jz2e/qah5OairHuBKBXK6W26yu5rUr\nK6Mw2KkTsGBBhOd/yBBz+447wnhzSxIp/2Q4OBHGFkxg9udMTk2l2GstyKKeG+oLkEjE5Vg5i6X6\npiAIghBrRNgTBEEQhDaAr0PmySeBNWu43BraOXSo4VhKBAdIsuWYikS8mjgxjqE+W7eaE85NmtSc\nGy6Yk2hfp4NN7Wnv/gZfXrwl6K6cEHCtgqPbTTeY6qOmcYx068afvXu5rcJCFlcoLDRvz+tlnraS\nEgp/GRkUv3v0iFA027yZCozi1VdtvCkwiZ5/MhTRhrEFEph13b8zWeUPte5DPTeWLo1cXI6Vs1iq\nbwqtSaL+7xQEIba4Qq8iCIIgCEIioBwyDz0EHHYYnUmpqRQ2hg1jlOWgQYZjKREcIGri3tBgb/36\nerrZEnViEol45e+1VqNXL+Cii4y2SvgHjov8fApH/phzgVHltduBrSg6sjHgbqIRcK0UFbECrq5T\n5MjM5Lr+9qnySaalMQ+b7/5V8YVVq3jvFBTwfsnLA448kvdMWhpFs4UL/felBX36mNvWyrhhYnWJ\nWceGconl5dElVlYW1e5iTiRj2/d6+24nLY1uRoXv9bainhvLlkV+fzpxbwdaf9w4inZNTRSqN20C\nysuBjRspEjY1SfVNITJ0nQWH5s8Hpk0Dpk7l7/nzudzWc00QhDaPCHuCIAiC0IbQNGDkSBbhHDAA\nGD4cOPVU5pxSCeV1HaiooAPknHPi6wDRdf8T90DrJoLDMNhrTolXrYrVVdabIbbKSbR3L8eLtZ8/\nDZpgarv/dlPAXTgp4PoKjjk5HOcHDnBs+PaxpobnOC2N7q4JE7h/dSy+xRc6djRC1VVxjbBFsxUr\nzO2PPrJ3sEFQLrFAFa4VPXrwOhUXR73LhCOQwOx283qpa27NH6pQ13rkyMjvz1jf2+pLmRkzgClT\nmFszM5MO00su4fLx4xMr1DrWuFwuuFwufPHFF7Zf27x5M1wuF1JSUrBlS3AHcXvA42FKgenT6UDe\nto33zLZtbE+fDrzxhlkgFwQhOZFQXEEQBEFoYziZuN5p/BUB8HgYavfzzywkEag/TjsM7YQkhVO0\noM1WuNQ04PPPgRNPNJY9+SS0G24IOY4+G3gNTlr3LDfz7DPAM08H3I1TRQKsoYsDBnB5SQkLZaj+\nqZDa9HTgvPP4nkWLjGOprKQY1qkT32cNVVfYDq084ghz+9RTg6xsj2TKPxkpgUJV3W5e85oarmfN\nH6pQz43Ro3l+Ir0/Y31vt+XqmzNmzMCMGTOa23PmzMEFF1wQ9D1jxozBu+++29zetGkTDj7YHOKv\nBTkBwV4T2n4YvyAIziLCniAIgiC0QZxIXO801iIAubl0UpWXc4K+bBmdOaNGMe2bck05lWMq3Mqi\nkRQtUOKV19uySIO1L77iVdwn8b/5DRUTlR/uxhuBq65CSlZW0HF06BH/APo9a2xnwQJa4/zgVJEA\nq3C9ahXH0uDBHEsVFbweI0Ywyvjoo41r63ssDz9Mt15ODl93u40xZ91fSNHs44/N7R9+CHyANnEq\n/6TdsRX3MRiAQF9UpKXRTbl+PR2Xw4ebRVl/z41oxOXWrl6biNciFEpse/HFF4MKexUVFfjggw+g\naRp0Xfcr0g0cOBAulwsdOnSIWX+TmVgVexEEoW0iwp4gCIIgtFESyQFidQ8MHUoxTxUt6NqVfdu1\nC/jwQwpHhxzCkLSamugdhuGKdOG6HcaNo6i0ezewYQPFhry8wIJRRQX3v3s38x2FEhlbhV9+YScU\n/fsDpaUhxlE6VditW9lUK/jBySIBgYTr3r25TE1S/Yl0vXpx2599xrFnRygOWbTltNPM7eHDQ280\nBJE6QAHmzgolYIcrdAOxe4aE2m6g6636unkzHXtbtgR3JkcjLkv12tB07doVtbW1+Oijj1BeXo5C\na7WaX3n55Zfh8XjQt29fbNy40e86P/30Uyy7mvTEqtiLIAhtExH2BEEQBCFJiKcDxNc9UFAA/PQT\nsHo1HVMFBexb584MjayuZljkpk0UxC6+mGF0kYpdkYQkheN2WLiQguSSJRTqunSh0NDQAOzcSfFy\nwADDTVRezqrFmZncR15eaCdgq5CVBTz2GHDzzWyXlbGU7PHHtzh2E59/ThVWsWULYAmpU+9zMkQ8\nGuHa0bDpf//b3N682d5GbRCuS2zECJomQwnYY8bwGoRab+xYClXhiH92iERUDHS9fbcVypkcjbgs\n1WtD07FjR4wZMwYvv/wyXnrpJdx1111+13vppZegaRouv/xyTJ8+vZV72T6QMH5BEHwRYU8QBEEQ\nhKhZupST79xcYPlyVntMSeEEPC2NooIS9xob6ejr1IlOu9Gjo3MSRBKSZNftUFAAvP8+xbvDD6dR\nS9eB7t0NN2JtLSdNO3ZQxFNiUr9+dCQmVN6jqVMNYQ8ATjiBccXBOtG3r7l98sm0LfohliHi4b7H\nkdBKXWd1A0WPHn5FzUgJxyWWl0dR6aOPggvYs2dThN64kaHv/tbbts1Yb+dOIxehEwJ0JCHu/vDN\nbWlX4I1GXE7k3KWJxBVXXIGXXnopoLD31VdfoaSkBP369cNvfvObgNtx/ZrL4LPPPgu6XjjU1dVh\n0qRJWLhwIbp27Yq3334bRUlorXQqjF8QhORBhD1BEARBEKLC46GpacMGIDWVYldjI3PQbd9uuNxU\nOG56OsW4QYOcCRGKJCTJrtuhpob9z8kxhBdNY9/dbh5HWRkFlz17gLPOorDZqRNFPSsJkfdo0yag\nTx+jffnlwMsvB3/PvHmAyqn1yy+8wGlpfldNlBBxR0IrH37Y3F692tE+huMSO+004JtvQgvYNTV0\n9RUVGesp8VKNV+U2/ewzGjYPP9ycMzJSAbo1EvqHWj8acTkRc5cmGieccAL69euHDRs2YPHixTje\n4vh94YUXoGkarrjiipDbUrn3rA5PFe2vzMJ2zvnevXtxzjnn4JtvvkGfPn3w/vvvo3///hEdY6LT\nZgs5CYIQM0TYEwRBEAQhYtRE/scfKep1706nUGYmf3SdGtCOHVy/a1eu19jIthMhQsXFdAraDUlS\noYF23A5lZUBTEzUsX4FK07hPVdTB62WRh127OIkKJiQBcc571Ls3y8j+979sv/IKMHNm8NjC8883\nt//0J+Af/7C1u3hNJqMOrdR1JkhUHH00LXAOEo5LzOOhsy6UgN3QQHGvoYFtrxdYt85wmGZmcluV\nldzH999zfA8caIh7kQrQiZLQ3youhyp2E+y94nJqyeWXX44///nPeOGFF0zCXm1tLV5//XW4XC5c\ndtll+Pnnn0Nuy+NpGV6u+OADfg+hHJ6B2Lp1K8444wysXbsWw4cPx3vvvYeCgoIojjDxae1iL4Ig\nJDY2/8UJgiAIgiC0RE3kO3ZkuA/AiZqvAJaeTuFg926KDUoo0zRziFA46DoLCPz3vyzG8e23DFH8\n6Se6GAJtLyPDyPelhI9Qx5eaaoQSB8Llomj45Zfh5z2KC6+/bm7bUVeuvNL4+4knnO1PDFCi2aRJ\nHHMrV1IkKC+n+Pzjj1weMLTyhhvM7U8+iUk/lUtsxgxgyhQ6PTMzgcJCRgHPmMHXv/3W3tgqL+f4\nLi/nfbBuHUXnlBSGluflUehKSeEYPHCAr69b1/K+6dGDYmJxsb1jUe7ZUJpKuNsNF/V8mD+f2uzN\nN/P3/PlcHs7zRkS9llx22WVwuVz4z3/+g9ra2ublc+fORU1NDU477TS4bSYhXLyY4ntaGkVrXzNx\nv35cPmcOc536u26rVq3Csccei3Xr1uGkk07CF198kfSiHkBhLz+fDthgtOdiL4LQnhBhTxAEQRCE\niFET+QEDWLUSMKrO+pKWRhFl3z4KamrOV19PUTCcybNyeEyfDrz6KrfX2EiX0ooVwKefAmvXUryw\novZXVMS+BJvg6zq37fHYS5Sfnk7RMECEagsiFTUdQdOohPryz38Gf89TT5nbb73lbJ9igF3RrEWu\nt8ZG8/FeeCGLj8QI5RKbOBF48EHg8cf5e+JEQ3O14zJVDlnliq2qolMvKwvIzjbus+pqruNy8dgz\nMrhedXXLfoUjQEeS0N9pfJ8Ps2ZR2Kir4+9Zs7j8jTe4XqyIyz3divTq1QunnXYa9u/fj3nz5jUv\nf/HFF6FpGq70/RIgBEuWGA5PfwVVevSgGP3227yGvnz55Zc44YQTUF5ejvPOOw/vv/8+cnJyojm0\nNoNyJO/dyyrs1jGn61xeWUnHY3ss9iII7QkJxRUEQRCakZAjIVzURD4/H1i/nkJVTg5dBNbQ1dRU\nioA9e3KSEUmIkL8cXunpRghjp07sw6pVXH/QIKMPvvuzk39N0yjspabamxQ1NNAppcKMQxH3vEen\nnmpUZACAa64BLrvMsF5aycjgyVKz63PPbRMKRkShldbYcGtl3BjjT+Cwk1NL0wwRPS2Nrr0DB8wO\nOl03XLW6bjj3duwwCuD4YjfxfiIk9G+NHH+B9htuFeC2zhVXXIEPPvgAL7zwAi6//PLmnHv5+fkY\nN26c7e1UVdlzeP74I/DDD8ay+fPn46677kJ9fT2uu+46PNEGXMROIsVeBEHwRYQ9QRCEdkx7nIwI\n9rAz2fZ6DTFg/Xo65vbuNRx4DQ2GRqTrFBu8XqB/fwoJkYQIqdDfvDxDkHO76Tbav5+upOxs7q+k\nhK8pocJ3f3bzr6kQ4+zs0OeruppFZtevb0N5j0pLzQc3ZAgQIC+WrgPa4sXAoYea39/qSQKjI+Qz\nraaGM2XFHXeEVxY2RtjNqVVYyPomhYW8XzIzW1Z/TUnh/ejxGOKyKmozeLB5e3YF6ERI6B+PHH9O\nVQG2QyJ9+TZhwgR07twZX331FTZs2IAXXngBAHDRRRch3aa6q+v2HNvK4blypbHs1ltvhaZpGDNm\nTLsT9RRS7EUQBIUIe4IgCO2U1pyMCIlPuCKvGj/ffkvDV34+J16NjRT3lGutQweOH4+Hol5BAZP0\nBy1aEKR///gH89jl5bFAqdtNAaN/f7Z13RD3lOioRETf/dl1O1xxBfDVV9yWncqq558PPPNMlJVY\nW5OOHVn59Y472N6wgbFxRx8dYEz0w0O+7z/tNMY9JxPHHGNuP/SQ//VaGbtVftPTOf7T0ngf+nt+\n5+TwWZ+ZaQjfKnzXVzwKV4COJqG/E6JVJBWyoxH2Yu0QTOQv39LT0zF58mQ8/fTTeO655/Daa69B\n0zRcfvnlYW0nnNQFPun8MGXKFMyaNQvvvPMOnn32WVxzzTVh7TdZkGIvgiAAIuwJgiC0S+IVriQk\nJuGKvL7jp0cPOvNUXq2cHC7bsYMVYhsaOHHLzqaw1707BbhwQoR8+/fll9yOx0Nj1cqVdOYdeijN\nZuvXc98ZGXQkrV5NscLf/uy4HQoLKVrarax61FFRVmKNB7ffbgh7AHDMMfA0evHmQs3vmHhk5Gv4\n07cXcd1163iiU5PkI+WOHUYcNwA8+WTCPPzsukwbGoAJE1ggpL7ef+4tJfZ17GiEzjY1MRef7zbD\nFaDtio/btlGcP+ggFrRwSrSKJMdfNBW5Y+kQdPzLN13nAzMjgyda/WRm2i8ZbOGKK67AU089hcce\newwNDQ04/PDDMWLEiLC2EU7qgo4djfZ9992HPn364L777sN1110Hr9eLP/7xj2HtOxlJkMeVIAit\nTJJ8ChMEQRDCIR7hSkJiEonI6xsO63YDO3caYbCaxnniwQdze3V1wCGHAFu3UnAYOpSp3exO3H37\nl5fHH4+Hk3L1+v79wJo1FPZOOol5xcrKKFRkZgIXXwyMHu1/f3bcDuHkMXK52mjeo59/NoXYbjnr\nGszN/6ffMVHVezKghD0A+u13QHv0763Z29jRr5+5ff318emHH+y6TCdPpgC4aBF1yTVr+P7UVN4T\nDQ28L4YMobu2poaCiW9Rm0gFaLvi4549fC48/TT74IRjPB45/mLlEIzJl2+axo1On97ytawss9jn\n+9OxI528us7S5nfe2fzaUZdcgsMPPxyrVq2Cpmm46qqrQh+cpUt28zdWV7c0086YMQOpqamYPn06\nrr/+ejQ1NeHGG28Mqw+CIAjJgAh7giAI7ZDWDlcSEhdfkbegIHBVQl1nEdRevYDXXzfCYdPSOMfb\nudMIg1XbyM7mpK2+nuG3F15IJ1E4k2irCL16NYUI3/6pnHrr17N/gwfz55dfKDScd579/fnrWzh5\njJQbqs3lPerXz1CDAPT96Dn0nvJXdPCj/GsasGLYFAxfOYvtxx4FkkHY+/ln8+CaPz9+fQlAOGNr\n/HjeD9Om8Xmfmkr9xu3mT8eOdLuWlFB4T0nhz8aNkQvQdsTHvDyKehs30g3rlGM8Hjn+YuUQjObL\nt6Ai2d13Ax9/DHzxhXn5gQP82b07eMeqqsyh6R074uGHH8bHH38MALj44otDH5yF3FybBVLEAAAg\nAElEQVT7qQuOOKLla3/+85+RmpqKu+++G1OnToXH48HNN98cdj8EQRDaMiLsCYIgtENaO1xJsE9r\n5sfRdeDddynepqUB33/P32rin5Nj9KV7d+CDDygSbN1qhMM2NHA+2NhI8WD/frqBVHL+2lpOyv74\nx8gcalYR2u0GVqxoeZ58c+rl5vL1mhrnilMEcvapHFgLFvgPJ5wwIbHyHgXtx8KFJnvUw7N64t7p\n/qvevjX2n83CHgAOpLPOcrCncaB/f3N7woT49CMEdnNqaRowciRNh3Pn8pnfs6d53YEDKfht2kRh\nv2tXCn7RCNChxMeDDqJTLz/fecd4NDn+wiWWDsFwvnxbuZK3X5cuNkKaU1JY4Xn4cO4gWj74AGfM\nn48zzjgj4k0cfTSj3wM5PCsqDOdoIPHvzjvvRGpqKqZNm4Zbb70VTU1NuO222yLukyAIQltDhD1B\nEIR2RjzClYTAxCs5usrf9MQTRvGLlBS6WFTeugEDOPHXNLa3b2dorTUctlMnimjV1YYDprGR7qDu\n3TmRHzcusjROVhHaWgFXYa3qGSw3mBNjWdPaRgGasMaXy9VCoDvih5fwwxGXt9huU2omarO6oMOB\nXx0+Z5/dMplbW6K42NxevDg+/fBDqPEa6jU74bu33WaEkjvxvAkmPs6fz/DbWDjGw8nxF23xmlg6\nBO1++abrPJdPPEHTra1nUK9ewAsvUH2NBlUtKEqOP54pGnzHp+KXX6i3K+doaWng7dx+++1ITU3F\nbbfdhjvuuAONjY248847o+6fIAhCW0CEPUEQhHZGPMKVBP/ESxhS+ZvmzKHzrmtXozKmen3/fqOG\nQGEhxbSsLLrxUlPp1FMoZydA4ejkkw2338aNdAIpUU9pP3bGkz8ROieHgqNyeChxT9OMfpWXA/v2\nGbnBYiGetoUCNJGML/2MM9GYkol0Tx37/eYV+PHwi+BJaflNwPNXfY0bnxxoLKiooCWsLTJ6tLl9\n3HHx6QdCj9fCwvBE8kQIDffddiwd43Zz/DlVvCYWDkG7X77pOmvXbNnC8XH44eZxEfAZVFbWMhTX\nBtqvP80be/rp4Oqpep+mQQtwcjRN8zs+1R5/+1tWJreOz0Dbu+WWW5Camoqbb74Z99xzDzweD+65\n5x67hygIgtBmEWFPEAShHdKa4UqCf+IpDKn8Tfn5dN/5phUDzHnrSko4yayrY5iuCtVduTJ4OOzg\nwXy9qooayXPPAe+8w0koAPTuTWPYmWfSQBIolNAqQmsaXYS1tRT3Nm0yRD2A6zc1GQ4Przc24mmi\nF6CJdHxpGnD/jTvw18cMpfeaZ0fgqetWwcruLgPMC377W3NF2bbC22+b2z/9FJ9+wL8Ym5ZGzfST\nT3gfHnQQHU6jR9sX5eyG78YC333F2jFu16HoVPGaWDgE7X75Vl3N53NqKp/jVrFXPYMKd61Ez9se\ngjZxduidB2D6rz/o0oUVWS680NbJO/HEE+HxePy+5vV6TW3f8Tlzptfv5nv37m16n3VsaRpw4403\nSgENQRDaHSLsCYIgtENaM1xJ8E88hSHf/E179/rPWQcYQt369Zxgq6qZdsNhlXPu5ZcZQqXrdPwB\nwLffAsuXU1i67joKS/6ENasI7fXSpVJayvVzcowcf/X1QLduwLHHAmPHcqK7YEFsxNNEL0ATzfg6\n4oQc/Pv9+3DxT38GAHTfuRo9y79DReFRpm3oOvCPo17GTd9dxgWrV1OZilfccaSMHWv8nZoKDBoU\nl274E2OVK+vnnznOdZ26Y20t78FIhelYinqhHIdZWbF1jLemQ7GwMDYOQTtfvpWVcUy4XD7b1XUc\n8stHOGHxTPTd9Fk0h9aS88+nqNe9u7Pb9UOgY/YdW0uXsmjT3r1cPy+PXQvlxJa0IoIgJCMi7AmC\nILRDWjtcSWhJPIUh31C4QCIdYAh1O3cyVFdV1PQXDqvGj2847Jo1LLLY0MBwX9/1VHGLTZuAv/+d\ny/1VzPUVoQsKKHKsWmX0Ra1fXU3Rb8gQ4MMPOYkfOTJ24mmiF6CJZnwVFQHTj7mnWdgDgGueG4l7\n/+I1HfC2bUDpsCmAEvYA4K67gL/9zclDiS3PPWdub94cn36gpRirRD013lXV6upqPpuPOILCTjzD\nva3YCf/u2pX9j6VjPFYORX+iZVYW0KcPh8727RSYonUI2vnyrawMcHkaMbFhDm78aCYK5q0N72DG\njWM1pFWrgD/8IfB63boBTz0F/O534W3fYXzH1u7d/NKovJz3AMDrUFgIrF1rFrxdrvjksRUEQWhN\nRNgTBEFoh7R2uJLQkngJQ9ZQuGAiHUD3S2MjJ0/Dhxu58wb+mlqtpISuvowMrltZyd9VVUbV2Px8\n/6Khysu3axcwbx4nWVZhzVeErqmh0JGVZWxPCYR1dQxP7NePgtPbb3O7sRBPow0ntCMyRCtERDO+\n1Dm/uXwtHnvPcK+d9d5UvHvWPyzCvwa9bjK02b+G+T38cNsR9nQduPpqo33ooVQG4oRVjFWhlr7j\nHTCctOXlRsh7a4R72xHi7IR/r1ljVMsOlpLRSce43fsuGMFEy337eJ+r5+KBA9E5BAN9+ZZRX4WR\n3z6D4xc/iHvrKsPq/+Kh1+K4BbdBO7Sf+YXRo/ltyLx5Ld80aRIrc3TtGta+nMZ3bCnhdMcOPruU\n8Ll/P5d168YvmFQOWYBpIBK1wJEgCIITiLAnCILQTkmEhOrtlXhWJrbmb7KKdNu3M1w2JYW56vbu\n5fo9elAAVPt3uRix6HbTDVFWRmdeaipF4/79gX/+k+t37Bi4P9nZPLaNG/0La74i9JNPsn/du1P0\naGriPjMzKeqpCr5KqHvnndiIp+EWoFH5CRcsCOwYAZxzlUQ7voxzPhBrVpyKwyo+BgCMLn4Cs/r8\nGeWN3czC/5nPA7N98nd9+CHz7SU6995rbn/3XVy6obCKsWVlHDvWyEdryHuswr29XoqHdsek3fBv\nrxfYsIHbBmLnGHeyaI5d0XLTJvY50irgCnUPZu0uRcrjf8fpqx8N6/1NKen48vi7UFx0Aw506IKN\nG6lZH39ogJ09+yxjW5VjtaAAeOaZ6CvnOoTv2OrQgdfTn+Ct60wdcfLJ/Pupp7i+252YBY4EQRCc\nQoQ9QRCEdkw8E6q3Z8IVhpyuTGzN3+RPpGtspGCWmQmcdx7Dm3buNE/YNY0hurm5Rk49jwe46SaK\ncHV1fH+wfmuaISwFEtaUCP3hhxQFGhv5o8JxVXiw7zazs+kM6tbN3jkJVzy1W4DG46HLMDub58ef\nY+Tss3lc773njKvEifGlznnZUR8AvY2dPjmvO+b/VzcLI1lZHARqh6efbpQ/DkDcnzVeL/DXvxrt\n004zl4ZuZfyJsWVlHJf+zlNqKu8BdR6dcPX6CmFLljBl4tatvLwHH0ynlHVMjh1rFK6xG/7dsyef\nJQMG0FUbC8e40xXHncyJGnTsr1gBPPQQMGcOUgCcZfN4Kzv1xpfH34kVR1yGptTMFvsLGdKcl0dx\n/oQTgMmTgccfp9XaIZxwIKuxtXatf8EbMBdwKiykgDxgQGIWOBIEQXASEfYEQRCEZkTUaz3iWZnY\nX/4mq0inXDNNTZznLVsWOifjvn2cjBcWUiTzeu25xlJTuZ9QwlpqKp2AhYWGblRdbRYjVdXelBTu\nv77e3jkJVzy1kwNL12mC2bGD/e7Xz/95+/vf2R461DlXiRPjS9OAXge7qJCMG9e8fGL9bKDXZPPK\nS5YAhx1mtFVSRJ/9JEqeK10HtCuvNC9ctKh1dh4Aqxir6xzPgUSnpiYKbuqcRevq9Ze/bPNm3k/1\n9XTGDhhAV2x1NUW/O+8E/vUvo0Lvxx/z+WFn/6mpdFb16MHtr11LHemQQyi2jR4d+ZiIRcXxaHJW\nBhz7o3ScUP8Ruj43E9pnn4V3kKNHY9fVd2Ha4nOQmu5ypgjWMcfwQhzqz9YXHk7f775u1mCCt6+b\nFeD/gNra4NuOV4EjQRAEJxFhTxAEQRDigFUYCjQhtzMpC3cyH27xlF69KKbZzcnocjH81uWiYBCK\npiYjZDfQcfgTPtatY/hwXZ2R46++nv1rbKRQt29fbMRTO+fw558pXvgT9dQxdexI11Kg44/UVeJo\n5etzzzW3L7qIFTJTfT5GDh5sXufMM4HvvwfgvHsqXKwiQ0N1Pf7+8svG61deBc1u3HIMsYqxSlSz\noutGhWpFNK5eqxDWty/w2WdGbkxdp2i4ahWrUdfWMoec18sx3qGDcS+63UDv3oHDUFVV65Ured/n\n5HA8d+/O542q8tqzZ+RCbywqjkeas9J37O/b1YjT98zGuT/ORI9968I7qPHjWeiiqKi5E1104Ow8\nh4tgOSDqOX2/+7pZQwnegOFmLS2lY9zX2eoPO47XuDuMBUEQQiDCniAIgpDwJOOH6sJC4OijgZde\notkpPZ0/KrQ0O5uijL9JWbRuiEiKp4Sbk7GoCPjkE07mgl0/Xec+O3UKLawp4UOJA6paaPfu5u17\nvQwh9Hp5LLFI0m/nHO7bx76NHh34+JWzRDlRAkWDhusqcbzydWUlw/UURx8NfPuteZ3nnweuuop/\n//AD4PFAd6U47p4KB38iw50fnGla542z/4lzPfFPnm8VY91ujivr/VNTQ8FCXbNoXb1WIWzNGm5P\nFSjweAzRfOtWCnfKjLljB4W44cPp8Fu/noLgoEEtr6NvlV+A92TfvubXnRgLwdx1vufS7j0Vac5K\nb2UV1tz0DM6YMxMTG/eFdxDXXgvcdhu/EQiAv2dQbi73H21Ic6T/c2PhlvT9UieY4K1QbtbGRrbT\n0kLvw1+Bo0RxGAuCINhBhD1BEAQh4Uj2D9VKbPj6ayMEtbKSToPSUv7u2pUmKOukzCk3RCTFU3xz\nMk6YYCzzR1ERw+p++IHbtVbFVdTU8Hr37RtaWFPCxy+/+K8Wqti/nxrUgAEUr2KVpD/UOfz4Yx5f\nsOtQVsbjUGPeanxTRFLgw9HK1506AXffDTzwANvffcd8YMOHG+tccYUh7AHA9Okou/Z+x91TdvEn\nMmTW78PAis+a11k4cgbmzHMBrvgnz7eKsYWFHOfq/rFWgFZ5JaOtHusrhHm9FLv27KFgl5rKc9LQ\nYIj0lZUU76xFPAYM4LbWreOxWEVqVeU3M5PPdOv9Fu1YUKKMr7tOiZ7+wvXVFyih7im7OStzq0px\nzNeP4Jilj3HBE8DhNvrd6ErHO8PvwqiXb0Dh4V1sHy/AazRyJF2/777LEGldp/h61lk0zvbqFXpc\nO/U/NxZuScDsZg0keKvjUG7W0lLeK3ae676O11g4Dtvy5xVBENoGIuwJgiAICUWkH6rbyodnq9hw\nxhmcrPtWllWhRscea66u6LQbIpziKcEmfmpy5vtet5vRmlu3UnjQdU6i1Tpqwl1ZSefOBReEnoAp\n4eORR/i+gw5q2Udf4aNfP/Yzlkn6A51DXWc4Y0ZG4Pdaw8pChYyFm0fN8crX999vCHsAcMQR5iIZ\nmgb87nfAf/7D9gMPoHjE/RHnJosGNV6tIsO1zx5hWm/52X9G3rbESJ5vFWM3bqRAvXkzn38uF0Vg\nVQEaACoqoq8eq4QwgCnWtm83wunV2GhqMp5Du3dTtOva1VzEw+1mfysr/btPy8oYatuxo9lx6Ity\nl9p10lmfSVlZfG9eHv+XlJQEDtcvKeEx5OaGvqf85aws2LYCx3/1EA5fNcfeif6Vyk698eUJd2HF\n8EvRlJoJXWefPeuBiXaUwF/x979yxAgeX1UVneBdu1IgDiZAOSlkRZOLMBi+bla32yx4++LrZt27\nl9eqsDD4tn0dr078j032LyYFQUhMRNgTBEEQEoZwPlTrOj+IL1vWtj48+xMbrEUrNI0T9iVL6LpQ\nE59YuSF83+8P68QvN5eT+YoKYP58Tu4HDWLqtaOPNs79+PHsy9NPMxfXzp2cdKnwW5eL4tt11xmC\nRqj+jRsHvPoqx8GOHdxeSgqFh4YGtpXw4XIZyfxnzHBI3LJ5Du24fHzDynTdXAzBH5HkUQtHvLXF\nqlU8wYrbbwf+93+N9ssvG8IegF2vf4pOnU4OOzdZuPibTJeW8mfYMIaXNmwsQ+fKTc3vmX36C9Ch\nJVTyfKsYu3Qpx5FvddrcXIp9TgjTvmGm1dUMpVUhp77ba2gwRB1dN8Q93yIeOTkU0ZcupWvPGo5b\nWkpHoK/jMJCjLjWVjtcJE/wfVzAx6uef+frmzRR3OnRoGa6v8gauX2+uqB3o/igapWPTPz/EOc/N\nxICKz8M6x1t7HY0vj78L6weMga61TD4Yydh36ksep78sijQXYSh83axeL/OWKneiEvfUlzpDhvDv\njAymDKytNYRrf/g6XqP9HxvvfKKCILRfRNgTBEEQEga7H6o9HuD//g/o1s3Iz9ZWPjyHcjQEy/8U\nKzdEMKwTv6FDzS6YrCxO+pcv5/UbMgQYO9Y49+edxxxz773HULEtW7jdgw8OL1RM4XJxkpeZyXGg\nxICsLCO8LifH2F5GBid2ylim68ZPrLFTmdbtZriyOq5ARJtHTRG1gDlkCHDcccBXX7H9//4fy6Pm\n57PdoQMvxoEDAICr55yCb/9g72RHWtk10GS6pIST9g0bOF62lpstng/vuAID1lIEjkZUdBqrGOv1\nMpzcV5ju2tUZYdpXgFaOuvx8iua+7lOv13iPqmKtCtOocatpPJd79nBbvg7Zujpei9RUQ3gPVgCn\nspJ9WLCAYr7VnR1MjKqtBb75hsJPly78P2E9P5pmFK7ZsYPVfTdsML4gGn1kA35TPgf5z86Etm4d\negG41eY5LS8ajx6P34mb/z0KdfVaSMcYEP7Yd+pLHie/LIo0F6GdY7a6WRsaKNaWl/MLI4CPncJC\n/j/weJgZwOMxvmewk4phwYLoqh/HM5+oIAjtGxH2BEEQhITBjnCl65xQrlvHyd4xx7StD8/hOhqK\nizl5Ly4GHn6Yx75zp38Ry/peJ4QK34lfQQFD9fwVraiu5oS8oaHluT/oIOAPf+CPEtSiESI6duT+\n+vQxuxz9UVfHyfu995pFn+rq2IvAdirTKmHPVyDxR7R51Bzl88/NFXG7dDErpcXFwOFGTGFG1U6g\nsFvIzUbiSAw0mVau0KYmOsD61q6GC0Yf7xj6DlJSjEIOubmRiYqtgcvlsOvSghKglQM2K4v3SmMj\n7xVNYx+amgxnqcvFdXr2NI9bVdF2wADg1FPNDtlhwwx3LxD4WQJQSHS5eF2V+1e9HkqM6tWL+/F4\n6NxqaPAfEl9dzd+bNgGvPb0P12rPYOyPM9GhMUQyPQufDLgWr/e5HQ29Dml+lrhSgA5vAFXV9rYR\n7th36kseJ78sspuLUBHqmK3j3OpmLS7mmK2s5Ot5eRxHvq59r5djwW6e0Wgch7F21AuCIARDhD1B\nEAQhYbDzoVqFi3XoQHeAP1ErUT88h+toSEvjZOovf+HkSzlkampYt6CkhBNoFXbqS6TuJytLlxoT\nP5X83l/RiuxsTrIaGznBCnTunRAkrE64QNtU1XNTUznha20HhZ3KtDU1dF8B/Nsq1EZb4CNSgo6b\nlBTaYH73O2OZb9s3VBfATe+PwasDi4Oe20gdiYEm09XVFBhSUigEL95s7lNxl7OQ/et+S0oYste1\na+KJev5wuo9FRbxf16/ncyM9nYLLjh18PS3NEENSU42/VUikNZS1pob30sSJZiFy/nzet0DwZ4nK\nPTlsmP9nSSgxKieHAqXLZeSb69bNvP0Oe0pxyaZH8PuaXwtdlNk7V3pmJqquvxNfHn49vlrbBfv3\nc3z9NkBl8FCOXdWfcMe+UyGvTofORnPMdnPTBRK5/e0znDyj0ToO4+GoFwRBUIiwJwiCICQEdj9U\nl5XRhZWdHbzYQCJ+eA7H0aDrzBW1fTsdb8OH03lWU8PJrsoRpRxH1nxWkbif1H59J1cffkjHS3o6\nr8+BA3Tu+Ts2VSFz0KDYnXtdN4SIYE44gKF1e/dyfbsOinDDGoNNYK3hY4EcI7feyu28+25sCnzY\nEXfDTvh+3nnmDZx/Pi1dyvb4zDPAtdcCAPpXLsOObV4U9GyZX0wRqSMx0GS6rMxwbY068IXptWtG\nLGv+Ozub42jLFmDy5PD2nSy43XStfv017/XsbENs3r2bzxmPxwjHVaJe9+4tnzv+rqOv0KUcrHv3\n8jnevXvL/vgWQMjJ8Z+SIJQYlZPD519lJfs0tOkHXLnzIZyxd25Y52Zrah88mnkXPuwxBY0pmRg3\nDrjhBmBML+AcLfi9ZcexC4Q/9p0KeQ21Hev6dr4sivSYI81N59uPYM9hO47XaB2HscovKAiCYAcR\n9gRBEISEwO6H6rIyTjA8Hq4f7MN8In54tutoqKpiVcyBA40JkttN4Ue9NzvbcBy53UYVykjdT/6K\nZNTVUUBdsYKT8ayswO9XFTKB8M69nWq8S5cCn3zCc7J7N/dTVQX07UuDmDr26mom6S8p4eQSMFw7\n/sKWdZ3j6OuvgZtu4uQvmKAVrgBm1zECsPCIEwU+wu1jxAnfd+9mJxUnnggsXsy/r766WdgDgFMW\n/xUfHX+vrTxX4RBoMl1WxuV79gCvbz/R9Nq6nJHNf2saRaoDBxIkzDkOKAF66VK6V7dvp7CWkUHx\npaqKmm1mJu+7nByOg2HDzBW7Q11HXwfrunVGmK/CWtVa3a++zxI7opYGHcfv/wAX7ZiJkft/FXX3\n2DsXq3OOxqsH34W3vGOwa48LjY089i4eIFXj+dm8GbjwwtDh+3Ycu5GMfadCXq3bCVTIRKV9qKsL\n/WVRJMfc2rnpgr03UsdhLPMLCoIg2EGEPUEQBCFhCPWhWoVouVyciIeaCCXih2e7joZVq9jnIUOM\nZW43Bav9+43wNRUCW1ZmiFuRuJ8CTa42bOBkOzeXIkllJUPP/IUt+lbIDHbu7QpPSnB66y1WNd29\nm/tQAmJDA/PTrVsHHHIIJ9mbN3N7HTtykpWaynP5888tw5ZVqG5JCbddW8vjCiRoReMqseMYcSKP\nWrh9jGpSnZ9vror71VesWDBkiKEWvfkmAOD8NTPw3tH3OupIDDSZVs+JzExgctrrpteO6b4B6T5F\nIWpqOKYOOgi2ihwkKykpdKJt2sRq1zt3MvQf4L3fvz9F9O3bec/V1fH8lZfbv45qSADAPfcYqRQC\nVbVW27A+S6yiVoqnAUN/nI0TFs9E190lYR33oowJeCxjGlZ3GIX+A7jDXbuAHTspamVn81jVGNmx\ng/eVHZHJrmM3krGv/leqXISBCPUlj9qOx2MURTpwwKg2Xl/PL3XWrQMyMnT06PEmrrrqLSxZsgTb\nt29HVVUVsrOz4Xa7ceSRR+LMM8/E2WePhabl2D7m0tL456ZTYytSx6HT+QUFQRDCRYQ9QRAEIWEI\n9aFa0zjZ2ruXwk0oYS8RPzzbdTSUlnIircQ6gM6VAQMoVOk6J53WENhI3U+BcpUpl6CmcbLX1EQR\nLDfXnJBe1zkxV/v0Pfe+IpVd4WnsWGDhQk6gKys5IczL43X3FWWqqykmrl/PSW5BATBiBPvx1Vfc\nX3Z2y7BlgJNVlby/a1eOrZ49je37ClpKo3LCVWJnPEYachtuH6NO+P7ww4awB1CVUYU0Xn3VlIDt\nwbO+wGLXb6J2JPr2zd9kWj0n6uuBR0svaF5eiTxs0A/BQTVmIengg9ntYAJJe6BnT6B3b4rtum7c\nEx4P76+tWxk627+/od3W1oZ3HVNSgAkTgI8/pljf2Bi8qjXQ8jl+7JB9qHzrGVwwZyYy68MrdLGg\n8DrMcd+GxWV94fVyHFRVAd1+HaYNDXy+qbyCAMeFx8O/VUqCvn3tiUzh5Hizg/pSZPdufumyfj2f\ni4HOXagveVRag6VLud2sLD5Drc+NLVuWorT0MixbVgLt1xdTUlLQqVMn7N+/H2vWrMGaNWvw6quv\nIjc3F/feOwMzZky1dczxqvbu78ulUaPonP7ww/BdlrHMqSgIghAKEfYEQRCEhMGO6JWVxQ/hRxxh\nTtpuJVE/PNtxceTl0YGmRCbf9w4cyL9LSugeycgwqtGuXEkTVSQOkECTK1+XYE4Oz70Kg/VNSO+b\nF8vrZd8KCoBp08yTpj17OGnKzw8uPO3ezfDY9HS6hzp0MCfZVyF6AI8/I4OT8VNOMcTQ9HT2y1/Y\nsjqHKnn/3r3m0G6roNWrV/xdJaGIRKRzZFK9YgWTQCruuQe4/36e2LS05vjs7uefiIm67mhl10CT\nabcbGP7pY6Z1f9OjBPmd6OJUQlJhIV1qo0dH35e2jK5TSN+4kV8e7NhBp5rLRXEqI4MOvn37gAsu\nAB54gOcxkuuoaayYW15ujLtgofjp27fiqt2PANrjAIBzbe6n3pWJh1Pvwpvu69HxoHzTPlwu4/gy\nMviMamgwwo47djTW9Xo5jDXNcAsXFPBLATsik13HbiisX4p06UKHckMDXYa+xZQ0zd6XPG43K8vP\nnMl7Qn1xotB1oLT0DWzePAm63ojMzK6YOvUWXHbZeAwePLh5vV27duHLL7/ErFmz8NZbb2HevLm4\n+eapto65tXPTBfty6dVX+f+3b1/eA+G4LGOVU1EQBMEOIuwJgiAICYMd0atLF05c8vKCTwQS+cOz\nHRfHk0/yGKy4XHScud1GLqT6ep6PKVMidz8Fmlz5ugRdLk5sGxp4Lbp1a5kXKzsbWLKEYokSZ9Wk\n6bnngF9+Afr0aZl0HzALT7NnczKdm2su2GGdIKriB14vJ+i+IcluNzUn35yEKmwZMJL3W92GvihB\n6/XX/Qtg1v7Es2hLJCKdI5PqYcOAo44CvvuO7QceAG67jYNy2TKq8Ipf8/I55aINNJl2F+q4a+ct\nze21WUcgpUc3nH2y2dVUUUGRORGfE62JEoW7dPn/7F15eBTF9j01k0km2yQhkIQk7JAAASMBgoAL\nKD4UZAcVV8QNt6eIzyeoIE8Uf76HoqgoKoqiqCgIiICgICCbgLJDZAskIQSSyW/yFwcAACAASURB\nVL7P1O+Pm0r39PSsmSxIn++bL5leqquqq2v6njr3XqBrV/tYa4GB9Mz6+RHRnp1N49vb++iMBInJ\n/hNXb52Nboe+8ahMc3hbbLl6GvZdcTcyLhpx4ADVNThYWgQRbr+c09+4OJqbRBbloiJqo2gX50QE\niUUEEW5Ap7N/Htwl7HylxuWc5q+0NCImS0upPufP0zHuLPIwRo9pVBTNgcp+Kio6hvT0uwFUISYm\nGT16rEFqajRknB4AoHnz5hg1ahRGjRqFI0eO4KOPPnKrzQ0dm85dVfOpU8CNN1If7t7tnsqyvmIq\natCgQYM70Ig9DRo0aNDQpOCK9Ordm7Z9/bVEBF2KL8+uVBzO3HoYI/LKZCJje/9+IvW8VTE4M67k\nKsFjx+j+VFWRAZyXJ8Uy69aNCMAdO4CjR4EuXagNcvdGofbLyKCy1Mg9gO7pxo1077KyqIyLF+ma\nFgvVITSU2u/vTwYpILkkC6NTGZNQ7rYMSK7EcrWhWvtDQ4HNmyUX3sJCxwHmQ0MbJmmL2rjwlKQT\nLmg+Map37KCOEIiIoAPlSj6AWIbffnPvgm7AkTE9dsczNsfd1WYrEhIkUu9SmScaApzbksLy+aVL\nF9v7zblviOva+/YVR5czP2HEoVfR9sxm1yfKkJvYF4tbTcOvwUNgCtfVLgAVHiZCJiYG6NCBFiCU\nJGXr1rTIYDRS2wSxZ7Xaju3KSiL6TCb7BQB/fyKBvvuOnneXmaTrADU1LmP2izz5+XQf77wTuPlm\n9+qwZw+VExlp3095ec/Dai2Bv38IbrttOczmaJdzW5cuXTBnzhybbTNnzsTMmTMxYMAA/PLLL/ju\nu+/wwQcfYN++fbhw4SKSk2dgxIjptcdXV1dg9+75OHx4KS5cOILq6jIEB0cjMvI6XHfd02AsWXlZ\nGxw9ehTz5s3Dpk2bcPbsWXDOERcXh8TEHiguHodOnUarqur++ms1/vxzIc6c2Yllyy4iJCQIycnd\ncfvt4/HAA/fDIJ/jajBgwABs3rwZL730Ev7972lYufItLFv2FQoKjqOqqgC33LIJBw/Ox+nTX6NV\nqyF4660fHJKtJ06cQKdOnQAAmzZtwrXXXuu0nRo0aNAgoBF7GjRo0KChycEV6RUbWz8ByRsTynp6\n4tZTV8WRq8DfcpXg2bMUj6m0lBRvcXHkMuznR8qG06eJDOjTxz5mWVYW3Su93j6TrxJ6PRmopaX0\nV7jBMUbk3vnzUlJWMT4E6Si+q8Uk1OuJyCspofZmZZExn5hIx6iRVv7+pBrU64m0TEujtgtlS0UF\njUPhChca6vukLa4SjsTGek7SiTJ8EvDdzw/48kvgjjukbStX0kP4zjuUmQEg/2pXEf89gJrKNyK0\nGv12vFF7zIbgEdCbghEQQAq9S3me8AXUxtKuXUTkFBXZx2lT/l8n4rqyEvjyS7DZszE6LQ0eFTF6\nNPn29+oFMIZmHBiTCcTLMmabzXRfAwLoGTUaqb5dutiSlCIbtlyJLFz6LRaJxKuuJjWbcOuXhxv4\n6y+am8xmDzJJewlHalwlCWu1UpsiI90jXsWiTkCAPZlbUpKNbduWgzGG5OR7EB7eBqWldZ/bnnnm\nGbzxxhvQ6XQIDw+HXq+vTcZCJGsWFi8ejJycQ2CMQaczwGAIQmHhWRQUfI7Tp79ASspcPC7mFAX+\n7//+D88//zysVisYYzAajQgKCsKJEyfw119/wWr9Br17mwFIPz7V1eVYvvxuHD78XW0MQT8/E4qK\nCrF169YaN+PPsGbNGoSFhSnuAQNjDGVlZbj++uuwfft2GAwGGI2hsFj08PcH+vWbhPT0r3Hu3Dr0\n6pUBvV795nz44YcAgM6dO2ukngYNGjyCRuxp0KBBg4YmD6UB4euA5PUNb4yghnbrcRX4WxiQXbuS\nsXvzzRRcX/R9cLDkRqtU6on6VlXRvVPL5Ku8lr8/EXdlZbRNLfZTVRWVU1kpGeTKOHnymITZ2RQj\nTBjsFotk+OfmAps22WfOBej4wEBS+OTk0P9RUfb1EQk6WrSgAOyuAqi7OybcTThiNHpO0vXuXbeA\n7zYk0b7xeA0yYm/ECPCqarBHH5WIPQCYPRt4/nn3KuoGlPNBp2njbfaHrf8Wz2a571L3d4baWDIY\n6LkQ84naMyCHR+6QBQXA/PkUxK2oyKO6Ft/zKIJnPAPWvp3qfsakOKSCaE9MlBJcHD9ORJfFIrVH\nbW44doy+V1RQX5SWStm3o6JovCjDDRw9SuV37Vq3RDrieFf96K4aV81F2BkcLeowBpw6tRGcczDG\nkJAwDEDdE1Lt3r0bv/76K6ZOnYqnn34akZGROHWqCs89l43z54HoaCu+/no0cnIOwWgMx9Ch76Fr\n17HQ6fyQlnYav/32JM6eXYWnnnoKnTp1wuDBg23Knz9/PqZOnQrGGEaOHImZM2eie/fuAIDy8nJM\nmPAbdu36GDrF4F616kEcPvwdmjXriIEDX0ZCwlBkZoYgOroS1177EyZPnoydO3di4sSJ+O677+za\nxTnHu+++C8YYFi1ahFtvvRUBAQEwm80AGCIiwvHnn11w9OhRLFz4MWbMmGFXRnV1NRYtWgTGGB56\n6CHvOliDBg2XLTRiT4MGDRo0XJLwVUDy+oArdZU7ZII78QZ9qTjyVCE4ZIh93z/3HJ2rRggwJmUq\nlbvEKmM1CQQFkfovMlKdrBJliMyWRqN6nDyhNoyNJaVhVhb1W2AgkRPx8ZJLrjJzrlD2FBUBPXoA\nP/5IZKZIxKGsj9h+6hS5wsnh7ZjwJNNt27ZEzHhC0tUl4LsaSfT03RfwxudSVpULPQcjcu8G6IcO\npQMBSq4hI/Z88ezWzgfNSoEx30o7nnwSvfv6oTeAMWOa1jzR0HA2liIjaUzo9fbPgBJOyZ0zZ4A5\nc4C33/asckYjMG0a+KOPgUU2AwCEuDjF1bMhYs4dOKDeHvnc8NtvtC8vj0g8f39qo05HcfpEuIHE\nRNq/bx8tNnTr5jxWqFoiHU/ngvqOQ+doUefChcO1/8fEXOk8IdWqVcBnn9FNEJ82bex+DEpKSjBl\nyhS88sortdvatjXgttta4euvgePHv0Vm5i4wxjBu3FK0b38DOCelrcXSFnPmLMOcOVdj165dePbZ\nZ22Ivfz8fDz33HNgjGH8+PFYvHixol+MiIq6AYMG3WDTl2fObMX+/V8gJCQGEyZsQmhobG0/lpf7\nY+jQW5CSkoLExER8//332L9/P65QCWRaUlKCVatWYciQIbXbIiIiav9/+OGH8dRTT2HhwoWYPn16\nrTJQYOXKlTh//jyMRiPuuecelU7WoEGDBsfQiD0NGjRo0PC3QFMx1t1VV7njouWtMtFXCkHANraW\nI4WgIMBcGZ9xcURQci5ll1SrK+eSeiY4WIrN5ygGoOhHzh3HyWOMVHmxsURKMkZx/AQpCNhnzjWZ\nJEKrbVu6t2YzGfpqsf5EPyjbU5cx4Umm2/R0aosnJJ23ylDHpEpz7Ex9An12zQMARO3/GevnH8Og\nL5eAhUnyzJzvt2GrtZ/XxLdDXHed7fc337TrL0/Q0ERgfV7P2VgSiWbCw+2fAWX9bMidP/4AXnsN\n+MazRBdo1w6YOpWCg4oHEIAnTXf1bMTHk7tsebnj9jBG4697d+Cll6h977xDPBXn9HzHxlJZIoHG\ngQM0D/fr5zwzu1oiHW/mAlehEpTwVFXniNwvK8ut/T8wsJkquX/ixAn0798fzGqlifFbiVRfHhSE\nq5KTaXI4exYAoNPp8Oyzz9pcX76INXny1wCAFi36wmi8AadOKRex9AgJmYEhQ4bg4MGDOHToEJKS\nkgAA3377LYqKiuDv728X409cR60f9+79CIwxdO9+Ry2pp+zH2NhYDBw4EKtXr8a6detUib2kpCQb\nUk+Je++9F9OmTUNGRgZ+/PFHDB061Gb/ggULwBjDmDFj0KxZM4flaNCgQYMaNGJPgwYNGjRo8BE8\nUVcBrl20APeUib5SCA4fTuTXV18R6aXXk2ohPJwUbi1bOlYIumN8ypNZiOySavXKzqb9nTpReaJc\nzm0JtKoqOi44mIQhwmVOGSNMBPwXxrgw7pXx94TqLieHEnxERBChdeutwOLFZJRfvEikpL+/bay/\nZs2In6ioIM7ixAnp2nUZE55kus3JoT5LT3efpPNWGeqMVFlz01u1xB4A3PhEZ2SM5JBHlYoa1R+f\nj+S+jU2Wm0v+tgL/+5/HLJkvnqWmej1nY0mZaEbNVZ5xK5r9/hNe2/sqEpZv8ezi/foB06aRD7+P\n4iu6ejbkMTbz8+mZ7tpV2q98HkSW31dfpedoyRI6JzeX+kbMg+fP035HikYBpohHWJe5wFWoBHkZ\nDlV1DuCK3AeonwoL7Rd1qqurceHCBds6gAjaytJSYPt2+tSgY3U1mvfqRUyqTN2n79QJI0f64Ykn\ndkOnY+jUaRCMRvVFrIEDB0Kv18NqtWL37t21xN62bdsAAD179kS0SKOugFo/nj1L5+3d+xEOHPii\n9liRQOTTT+l7QUEBOOdIT0+3K5cxhv79+zvt57CwMNx222345JNP8OGHH9oQe2fOnMGGDRsAAA8+\n+KDTchoTIgmKHIwxhISEwGQyoXXr1ujRowcGDhyI4cOHqyYb8VU9AOC+++5D69at6+UalwMYZaEZ\nCSCfc/5WE6jPJgBqwSVLAWQC2Abgfc75zoas16UCjdjToEGDBg0afARP1FVqLlruwJdqMGU5K1eS\nDSayvOblEbmTlQW0akW2+bBhjstxZXzKDe3SUinGlYAwtM1mul5MDBF1x46Rm21pKcXc0+mk/AuB\ngUTsdewI3HcfsHatOjmlZozL4+/l5EjJMCorgT//BK65BrjtNuqbgwepzIgI6hcRg8vPj47PyJCM\nUJOJ6ipIm7qMCU8y3ZpM9Pf22z0j6bxRhjolVRjDBw/uxsMf9qrdVPivl8F37wHr1bN2W2onMyqC\nJFc1b4hvG4i0xQJTpnhwsm/Vtk3xes7GkjLRjL8/cP5sJcZXfIlrtryKyLy/PLuYItFFfcDVsyGP\no7dnDz3TQUHOnwf5POjvbz8PxseTO3779u7xk3K32LrMBXVxmXcFR+S+xRIJQMQPzcPtt0fbLeok\nJibCYrHQl8mTkT53Lto5uVYUQCsP6el0MYGAALCkJORmU8rye++NwwMPqN/bgIAANG/eHDk5OcjJ\nyZG1PRuMMbRp08bh9dX6sagoCwBQWVmEykrbOJBVVbaLVSJJhmrboqIcN7wGkyZNwieffIIff/wR\n586dQ8uWLQFQ0gyr1XrJJM1gjNmQp2VlZTh37hyysrKwY8cOvPfee4iMjMSsWbPw8MMP+/z6M2fO\nBGMMAwcO1Ii9uuFKADMAnAbQ6MQeaF2AA6gCkCfb3hxARwCdANzDGJvJOf9PI9SvSUMj9jRo0KBB\ngwYfwRN1ldJFyxv4SiGoLKdPH1sXXIDKWb+eyB5H5bgyPoWhbTZT/LzCQvqrNLTHjyfD+vx5KRtv\nRgYdazYTuRcYSAqadu2I5OvYERg7Fujb156c6tWL6qXX2xrj8my/mZn0qaqS3O+Ea97MmUQeAmTw\nhoVR3YuKiAgICSGCLyhIIgJEso+6jAlvYmuVlZGR7qn7tjvKUDlckSrnYnsip0USoi4cAgB0/Wo6\nMmc8Bbmn9PhvRuHTCZts6uA18X3qFMkpBZYscfNEQn2obRvzesr752osMQYkt8nHyCPzMfzPVxFs\nLfasQY8+CjzzDD2QDQB3nw3xjOv1pMyLiaHz1J4Hq9W9efDXXyW3f1f3RO7OWZe5oL6TKamR+9nZ\nXWv7cMiQPzFy5GDn7b35ZmDuXOfXcbSjogLYu5f+r7mIp8+XMmadGtT6kXMiJocOnY+UlIds+tGT\n507vBvveu3dvpKSk4I8//sDHH3+MF154AVarFZ9++ikutaQZWVlZNt855zh8+DDWr1+Pd955B6dO\nncIjjzyCrVu34vPPP2+kWmq4BMEAbOOcX1+7gTE/ANcBeA9E7s1gjP3OOV/TSHVsktCIPQ0aNGjQ\noMFH8ERd5UnmQkfwlULQWTmiLe6U447xef48EXL/+he5r8ozlfbqBbRuTfH3jx+nmF/Hj0uEk0i0\nIY9lJ9xsU1Odk1NkqKr3kclEny5dyLg/coQIu3ffJfXK8eOk0jl/no4LCKDMty1a2NZDuC9WV0uu\ncHUZE97G1tLp6p5YxpW7nzukyvsP/4Hps6SDYpKj8HG3N3H/wckAgLbpv4JxKzizlT55RXy3b2/7\n/fbb3TyR0BBq2/q8njsuvcqxFFZwBn23zcFVuzxMdBEURPHxHn2UHuJGgCfPBmOkQk5OpoTM8mc2\nMxNYvpz6LCeH5qOYGHtiTD4Pith9V15Jz7YjKN1i6zoX1HcyJeX8ee7cQMTHU0Hbf1yEu/zMNCnv\n20fyx3PnPL+IC0QByACQkZHh8JiKigrk5lL8P7lKLiYmxqGrrIBaPxqNMSgpOYP09HQYDL5NSqWG\nSZMm4aGHHsLChQvxwgsvYPXq1cjMzLzkk2YwxpCUlISkpCRMmjQJ999/P5YsWYIvv/wS3bp1w7//\n/e/GrqIGe9SPnNrH4JxXA/iZMTYSwB8ADAAeB6ARezL4JsiFBg0aNGjQcJmjLpkLvYVQgDgIJ1SL\nmBhSuu3a5ftyOCc13bJlZOv/8gup3o4fpyy0p06RC9upU0TWVFeTIm/iRMpSOns28NZbwKxZZETN\nnw98+CHZjGYzcOgQsGEDGd979xLxBkgGlzPXM7lRlpoKFBTY9zfnRA4cOUKKxC+/BH76iep64gQZ\n/lYrGf35+fRdXoa4BmN079PSpPr4Ykw4qrcSzmJr+do4FaRKZaXz46x6A5aP+LT2u76yHPnRCTbH\n9Pvtv6rlC2LDLfzxh+33jRvdPFGCJ89AXp7jZ6k+rufs2QWIhF6+HJgxg1x4s7MpYUR2Nn2fMQP4\n/nvghmZ/4MH1t+KlmQwvzWSYPLeNe6Re+/bARx9RoeSXSZmNGznAv7fPhnC5VfbZ2bP0jJ85Q0Po\n6FFpvpGjWzcq89Ah59eVz02+mAuEqm7mTMo50rIlxfWMjQXuuou2jxzpptu2xUKT8vffkzR51Ci6\nz4zVflrGtsRoqxXcasXnS5Ygffx4SpSyZk29kHowmdCrfXtwAD///LPDwzZu3Ijq6moApIAT6Nev\nHwBg9+7dOH/+vMPzlf3Ypk1/cM6Rnf2D5/3oBe644w6YTCakp6dj7dq1+OijjwDgb5U0w2g04tNP\nP0WPHj3AOcdrr72G/Px8u+Oqqqrw3nvv4frrr0eLFi0QEBCAli1bYuTIkVi7dq3d8RMmTIBOpwNj\nDJxzDBgwADqdrvbTXrnAA1ISfvHFFxgyZAhiYmIQEBCAqKgoDB48GF8JSbQK2rZtC51Oh88++wwl\nJSWYPn06rrjiCphMJuh0Opw5c8bm+M2bN2PYsGFo0aIFgoKC0LlzZ7zwwgsoKSnBokWLHNZP4OLF\ni3jhhReQkpKC8PBwBAYGokOHDnjggQdw+PBh1XN+/fVX6HS6WrXo8ePHMXHiRLRu3RpGo1GezKW5\n8lzGmBXAQtFcxphV8ZmuOH4wY2wZY+wsY6yCMVbAGDvBGFvHGJvCGAt32DgfgXN+BMAeECFp87bD\nGIthjP2TMbaCMXa4pn4ljLE0xtgCxlhn1ULp3MU1bV7ACI8yxn6vKaOAMbaZMXabq/oxxtoyxt5i\njB1ijBXVXP8wY+xNxpjq0hxj7P6aa6fVfL+hpg1ZjLFqxtgCd/tHU+xp0KBBgwYNPoC36qq6kC6+\nUgh6W448RlhuLinx/P3pGJHJtqiIVG6uXEFXrCC3w/x8ItHKy+k8Ybjn5QFbttDf668nVZonrmdq\nbsJWK8XvS0sjF9bycmqHTkdtO36c2mEySRlzL1ygv/Hxtm69IpOvxUKqRdHGuo4JR+7NShWeN7G1\n6gJ3g/n/mXwvRq2YUPt9ys9Dcbz9jeh4cj0A4Mafn8NvV9srOeTEhstnJCXF9vuAAe41QgZnz4Ag\nhoS7dm4u8PrrtM/bBBe+enYdufQybkWH4+tw9d7ZaHtmi2S+uYHj0f2w+oppGPPRzYhv3XQ1AN7G\nnXPUZ8ePE1cZFkZj7+BBOl6ZJMNkIo/js2eJ33I3SY0vfh+cusxzThUSqjrxOXLEvYuqYBaAtQCK\nQRH2fwTQ0uvSHKBHD+CRR4Dx43H7mjVYfttt2L59O9av34Abbxxkc6jFYsHLL78MAOjevTu6yrKh\njBs3DlOmTEFRUREmT56ML7/80uEl5f3YvPlDGDDgS+TmHsSFCx8gPt5xTLjS0lIYDIY6JYUICgrC\n3XffjXfffRezZs3Czp07wRhr0kkzvIHBYMC0adMwbtw4FBYW4vvvv8eECRNq96enp2Po0KE4fPgw\nGGNgjMFkMiEnJwerVq3CypUr8cgjj+Ddd9+tPSc8PBwxMTG18RQjIiLgL2PLlXEOzWYzRo4ciS1b\nttS6aoeFhSE3NxcbNmzA+vXr8fXXX2Pp0qXw87OlRUSdLl68iJSUFBw/fhz+/v4ICgqCThFgc968\neXjqqadqv4eFhSE9PR2zZ8/G8uXLXbpYb9iwAePGjUNBQQEYYzAYDPD398fp06excOFCLF68GB9+\n+CHuvvtuh2Vs2rQJw4cPR0lJCUJDQ8E5lye2+Ywx1oNzLmfkswEEAggDYAFwQVFkbTyGGpLvJVD8\nO4CSWQBA25rPIAC/A9jstKG+gZDzKnKc478A7gTVsRpAIQAjgA6g+Hx3M8Zu45yvVClTxPZjAL4B\nMEZWRjiA/gCuZowN5JxPUqsUY+xeAB+A1IQAUFFTZiKAzgAmMMbGcM5/cdQwxthkAP+r+ZpfUwe3\n0XR/rTVo0KBBg4ZLDL5QV7kLXykEvS3HYgEWLgTmzCElXVYWGcYFBWSQpqZSsgqDARg4kDJNjh4t\nZZ6UIzOT3KKEIs7Pj5RMbdqQGsXfn8rhnFynNmygv9XVZDgPG+aaIBFuwmYz2b6C1Dt4kJQZYWF0\nT/z8JINPr6fj8/IkQ7B5c2pjZibVt6iIjsnJofp07y65egF1HxOi3nl51L+HD1P7166lv4cP03az\nmRIteBpby1ukphIJ4kQYA4AIjsnjFT7QipsVl2Gf4K6iQopT6BQ//WT7ff9+FyfYw9kzYLWScmvj\nRuJIiovp+IIC4LPPJDWcyB9Q1+upwZm6V7j0NjdV4qZzn+Cf73TCSzMZZvxHj7u+HEKkngsc7jIa\nCx7YhRkvWvHwQxzPX/cbWj8yFHGtmraZoHym1ea2c+foOZU/G0o3aOGWW1VFzzxjROQbjUT6F9nm\nUwBjFNOzfXs6Z/9+iv+pVCYr3Tm9mgs4p9iRGzdS/LoJE4gI0+kAxsB0ksIOOh01csgQkk9/9VWd\nSD2ALNLFAAIA7ANwBYBp/uFY1XYgNl07HV/f+h3eeuI4pv7LjCE3r8GAFgPdKzggALjnHmDHDsps\n8uCD4MEh6NNnDDp16gOrlWPYsHEYPnwJli6tRkYGcPLkKYwePRrbt28HYwyvC3a9BiaTCa+//jo4\n5/jqq68watQo7Nu3r3Z/WVkZVq9ejZEjR6K4WIohee2112LixIngnOPRRx/F008/jVOnTtXur6ys\nxM6dO/Hss8+iTZs2dlmAHcHZfZ40ibiB7du3w2KxIDEx8ZJImuEpbrrpplo12a+//lq7vbS0FDfd\ndBOOHDmC66+/Hr/++ivKysqQl5eH/Px8vPHGGwgNDcX777+PefOkDOtz5861ie23fPlyZGVl1X52\n7NhRu89qtWLUqFHYsmULUlJS8MMPP6CkpAR56ekoNpuxaNEiREdHY+XKlU7dhF966SUUFxfj+++/\nR3FxMXJzc3HmzJlaEnHbtm2YPJnCS/zjH/9AWloa8vLyUFJSgqVLlyInJwf/+Y/jPA8HDhzAiBEj\nUFhYiIcffhiHDx9GWVkZCgsLkZ6ejsceewyVlZV44IEHsFfEoVTBmDFjMGjQIBw9ehT5+fkoKSnB\n7Nmzxe4WAGbLj+ecxwIQbORZznms4vMGADDGWgOYDiKp5gCI45yHcs7DQKTXNaDYd4qZst7QtuZv\nnmL7MQBTAHQDYOSct+CcBwDoDmAJaBr7jDHWwkG5DMBY0BrGcwAiOOfNAcQAmF9zzIOMMTtijzF2\nM6Tls1cBtOWcB3HOgwF0BfAdiED9ljHmaG0kDsDrAD4C0IpzHgkiXmc7ON4OmmJPgwYNGjRo8BHq\nM3OhEr5UgKiV40gpVVFBdV+4EPjvf8mwpQyKRHrs30/GcEICJcrgnPokNdVxjLBdu8gozsmhpBgh\nIdK+5s1JIVNYSJ+CAjp21Ciqx86dZPMq44mptVMeW2nXLiLEDAZqQ3Y2GeNxcXRNYdybTESqxcSQ\noS+UetHRdExVFdU5NpaM8TvvtHXhquuYYIxIiZ07yXWwqIgILz8/qu/Jk1TPUaOI5JAH+6+P+FAC\nruIpWq3kynz6NBAdHY2tSQ/h6kPkUdLxhC0Z9+DHV+GlGZIV7BHxPXiw7ffu3T1ui7NnQJC/gYHS\nPTebSUWXnOxdggufPLv5+cD8+Yj+z6v4uNyzRBfLYx/D//AMMg1t0a4d0KEDUFUJFB2s//hivoS3\ncefUkliIOHwVFdK2kBApbqZJoQ2pqqKh9vjj7iepkc8FbSIKEZVzENHZ+xBzfh9isv9E9Pl9MFSX\nSycs932fOURMDA3oK6+kv8nJxF76+2MEgG9W7cI990xAbsExzK4sAE5vgu7MFhiN4bBYqlBRQYOZ\nMYZQ6PAcrLhK7TpGI8VdmDCBOqsGkvpbh3btvsOFCzchP/8QVq26E6tX3wc/vyBUVZErp16vx9y5\nc/GPf/zDrviHHnoIZrMZL7zwAlauXIkVK1YgMDAQgYGByM/Ph9VqBWMMVoWP9fvvvw+9Xo+PPvoI\nc+fOxdy5cxESEgKDwYCCgoLa44UbqBpEWApncS7FqUlJSbj66quxdetW/Qu2wwAAIABJREFUXGpJ\nMzxBcHAw2rdvj+PHj+PEiRO12+fMmYNjx45h4MCB+Omnn2wUcKGhoXjyySfRtm1bjBo1CrNmzcJj\njz1mp5IDyM3WEb744gts3rwZXbt2xaZNmxAiXizWr0fg+PG4q18/JI0ejV7vv4/33nsPU6dORfPm\nth6rnHOUl5dj69atuEI2YcTGxtb+P336dFitViQlJWHlypW1ak6dTofRo0ejWbNmuP766x2Om6ee\negrl5eWYNm1arRpVID4+HvPmzYNer8fbb7+NWbNmYdmyZarlpKSk2Ozz8/PDoEG1ilcGYCxjbCLn\nXCXAgFP0AYnBjnHOn5Xv4JwXAdhW86l3MMZSAfQEkYw75Ps457PUzuGcHwZwJ2OsGYB/ALgPRKCp\nwQRgOuf8ddn5FwE8XnP+7QBeYox9VBP3D4wxHYB3ag5/mHO+SHH9YwDGMcZWARgCYDIAm36sgRHA\n15zzh2XncgCnVI5VhUbsadCgQYMGDT5CfWcuVMJdd0hXRIkoR5BmmZkUP83fn+oYF0dEBkBkRHQ0\n8OmndEzr1vYuqXI3tsRE+t9ZIoRdu8igLi+3jznGmG2yirw8ErCsW0fGtjDkCwupDatXExE2fLh9\njCR55se33yZSLDRUIgJMJrqGvC+josj18sIFoFUraqtQkg0aJPX9uXNUVp8+tteUjwmrleJieTIm\nRPKEU6foPlVW0j2qqiIiQigaT54kBVlEBJEMzoxKX8AZqVJWRuSu2Uz1CQkBPuv7fi2xp4aA8gJU\nGCkTgdvE92ef2X5XxDzyBGrPUlERtUNONnNO90D0p7cJNTx9dq9tewb45/8AmXoFkHx+HKGUBeHT\nltOwus2jyCiJQGgocMMNQGohxYg7e5bGiVCa1sdYqU+oZXN1RbA5coOOiyNVprgnIm5mZqaUuAeQ\n7smIEQq32NIysKNHKLHEf2WusDWxxeIBfFz/XVILa1gEcuOTccyYjPTwZOTGJ6P14C7odU2gR/eY\n5qhUJCQcRkHB98jNXYWSkh2wWM6joqIQ/v4haNGiK1q2TEH79v/AvX9swch02bOu0wEJCWBpaWD9\n+gFTptiVb5uNOBa9e+/G77/Px+HD3+DChSOoqipDYGBr9OkzEG++ORnJyY5TC//73//GsGHD8Pbb\nb2Pjxo3IzMxEVVUVEhISkJKSgltvvRUmBVPr5+eHDz74ABMnTsSCBQuwZcsWZGVloaSkBNHR0ejc\nuTOuvfZajB07Fi1bqgtujhwhBW9ennu/S+PGjcPWrVsREBBwSSfNcIVmzZqBc468PElgtXDhQjDG\nMHnyZFXCDgBGjBgBk8mEixcvYs+ePTbxFN3Bxx9/DMYYJk2aJJF6AP1olpQA69ejx/r1SAJwqLwc\nGwcMwLhx44DrrgOuIlqaMYabbrrJhtSTw2w2Y+PGjWCM4dlnn1V10R4wYACuueYabNlir55OT0/H\nxo0bYTAYMEXxXMhxzz334O2338aGDRvAOVclCadNm+aiRxAIyih7zNWBCojgiKGMsSDOeanTo+sB\nNSq3QQD+D0QyWgG86WExqwEMBnA1HBN7JQDecLDvPyBirwWAGwCsq9k+EEA7ANlKUk+BzwEMramD\nGrEHAK85Od8lNGJPgwYNGjRo8BG8VZB4C18pBHv2BN55h4yr8nJSggmcPEnnJiVRWwICiD8pKaGY\neuKdXG4Mi3h0aWkSKegsRlhpKRlDRqNrkqO4mD4XLwJXX21PkrlSUAmXWp0O6NeP3H0Bcm2trrY/\nPiCA2l9QQO0NCSG1XFWV5Gol3P2UxJzIumm10vFbt0qqwJYtqZziYudjQrgNNmsm3eOuXW0JIauV\nPNpef53cA2Ni3Cc73YUaAaVGqoh74+dH4619ezFGGBZM3IGHFqrqeHDbN2Ow6O4N7hPfnAP33it9\nj48n5tVFnR1B7VnKzCSSUk42FxfTOJXXzZssvq6e3Zbn9uLqrbORdPhb2uCmeisvoj22XD0NW9ve\nhQ1bAqDXS6SkXwWNQ4Ce5X79aOxWVZHyrC5ZfhsTTuPOKeDMDToujuaskhKpz4z6KsQXpKHb/hpl\n3fl9aJH1J8LKztvdkwbhQgMDJUWdUNclJdlICuWxT+UkU2UlsPEbYNUG9+cDUda8efRcNms2Eq1b\nj4TFQr8VgYGkzk5IoH7LzAQ28DCMxAIUBscg8+YHEf6vBzG9dyvMcNBBahmi9Xp/XHXVk7jqqidr\njzt3juZPmdDPIbp27Yr333/f9YEK9OnTB32UqzMu8MsvG7F8ORGTBoMUs1HA0e/STzVhBP5OSTPU\noFTVZWVlIT09HYwxTJw4sdZVVw3CZTo9Pd0jYs9qtWLnTgrxMGPGDLzyyivynTbHCrox/dAhKSOO\nv3+tj37/6GhppUyBP/74o5Zoc+ZKPWDAAFVi77fffqutbxf56oEClppYDyUlJcjNzbVTFgJAqnsu\nIN4MtF0ALgKIBbCTMfY+gA01SrT6woCa5B5KcACVACZzzu06lDGWDOARAP0AtAEQAvup2dkv3S7O\neZnaDs75UcZYNoBoAL0gEXv9a/5GMMacZRUSvzptHOwv5px7HktEBo3Y06BBgwYNGnwIbxQk3sIX\nCkHOyc0zK4tUaXo9kVk6naROys6mfR07EpmWlkYGTHk5bS8qIgNQkAhhYaRqu3CBjDYRjF7N4BZu\niZWVqu/NNqispLYYDESuKOGugkpu3Iv6KN3w5GU2a0b7rVYy0KqrqZ2nTzsma5XGtclEdvi5c9Qn\n589TUP7x44G+fR2PCTW3QVEv0ZZjx8gFrKqKrtO2rW1bvXEXFaSkK7cyJaly9iwl2YyKsiesslr1\nQW5EB0SaT9hdr/2pn3FgP0dEM+Ye8T1bEXbmwAG366wGtWcpM1MimwWpXF5OWVGFghVwneDC1fVg\ntaJ/8Tpc+9uraHNmq3sF1OB0XD8s7zwNhf1vBmeS8uXMEXtSsrqaiBh5H3hDSl7KYAwINloQkHEa\nXQokF9iY7H0IL0h3fOLB+quTFQznoq9EdddkhF2bjLDrrgS7ojtNPB7+UDhKDCLf7+58IMr66iua\n+0RYBPn+khIaPxkZ9LyVlwMBhoGYHP8NCgaMhLnYgGYfALdkOiYSHc1xSjTVsapGTMqh9rtUWXkS\na9asqVWU/Z1hNpvBGENkDSMrj5GXm5vrVhmlpZ6JxPLy8lBRUQHGmGo2XtVryL/IUr5HffQRsGgR\n3bjrrqNP//5ASIhNvEW5e64ScQ5WqURfWK1W5OTkOK2fSObhqC+Cg4Odnl8Dj7O+cM4LGGPjAXwB\nihc3r6Y+BaBkGd+AXEg9SvTgApWQOFcOoAxAFsjl9yPO+XHlCYyxJ0ExAJnsvHxQEgtAShTirKMy\nXdQrE0TsybO0iBvvr9iuBl5TDzVcdHGuS2jEngYNGjRoaJKo7xhh9QlPFCSA+21VHucLhWBGBvDB\nB/QeGxVF5IXFYhuPvbKSPkVFpAIzmSihQE5ObQx3VFXRJyeHjLdmzYjcy8ggcsRZBuDUVGDZMlul\noBoKCugagmhzVJ4rA1AtxllcHPWf2r2wWIggSU2l9vz5J3nzxMaqk7XOjOuEBFvC1c/PuTLNVfZU\n4S4aFER9kpVFij55Wz11F3Wk+HFHAfj7746NdM6B1+46hP/OU2FlAbwU9iaazXzaNfFttQLPPy99\n798fltBwrFjuXZ1FPymfpdxcqrPZTOPfaCRSLzFRXdnpdhbfigqwL77AqNmzMfq4nX3iHGPHAs89\nRzJbAHuXAZs/p6QG8svKSUnA1oVY2W5PScmmBs6BzLNWHFiXheyf9qF5xj60zt+H9oX7EJplLypx\nOxJ5XdGli23MuiuuoIdR4XrIOBDno986b0gmR/OBXC0cHk6/DcqygoPpeTt0iMIyREUB+fkh+D1m\nHAZ1AFq5QST6KkN0Y8FTYnLTpkJ8/vkjsFqt6Nu3L/r37+/8xEsYJSUlOHnyJACgQ4cOACT1GQAc\nPXoUnTp18t0FayY6i4wkW/vKK7ixfXuayPPz6e///Z/bReoBevHYto0+s2fTj8i779KDUQNHMfSc\nQfRFdHS0DeHZ1MA5/5kx1g7AaJAbaj+QW+8tAIYBeI4x9g9F1t26YBvn/Hp3D2aMJUEi9ZaA3Gn3\ncc4tsmMeAvA+fC+uFm8Uv3HO65IBx4MUXOrQiD0NGjRo0NAkUBe1TVOHst7utlUE4/79d8fH1VUh\nuHYtJZFo3pxUaJWVRIYIFZ7BQHHndDrafuwYkVGlpbRfpyNlkNVK/+v19H9OjpSYokULIk0cITWV\nvChPnKD3ZEd1zcujMg0G52SYOwagMsaZmhueuFeCEDGZyGC+5hpSpSk8P2vhrnFdUkIu0OvXU58q\n7y3gOnuq3F20uFhyEVb2YUwMkVWu1C51Vfw4MtJFFuK0tAC8GL0AL5+3DxZ/xaIpsHz8tOvn/NFH\nbeu8foNPVErKZ+n114lMDg21jTWpdq6j5DQAyJh87z1KDV1SUrvZnemMP/Y42DNTbGWYMqi59Moz\nvAqouRALeERKNiRERtj9+ylW3Z9/0l9F5mMG8q1qCBFXdev20PdMBhNkXXIyMVre+rhDmut90fe+\nVL/JyzKb1Rc+KitpjgKkzNByAtkVkViXDNFNZay6S0yuX/8M9u//FitXZsNqrYTBYMDcuXMbppIN\nCfGjWVSENUuWwGKxgDGGAYGBwAcfIObUqdo4FqcfeACdjEaJcBPkm6tVPnGd665T3RUJIjksnOP0\n1Km+a5uAxQJkZqKFjJTMyspC69atVQ/PzFQXgsXUTNoXL15EWVkZAgMdibkaHzUuql/UfETcuzsB\nzISk5BvbSNUbB4q9d4BzfpeDY5wErKmFq8jXYr9cXpld89eRi22DwSNiryY98HQA1wGoBvkW/5dz\nrkw3DMbYDAAvcs418lCDBg0aNDhFXRRClxpctfWHHyj2VWgoERVHj9rGZTMY1PvEE4WgHD/+SMeH\nhNA58kQV8nI4J5Lj9GkiocLCqM7FxRLZJr9mdTWRC8JVVy08jpxUu/124j0uXLBPYCHcICsrpUQG\nrhKPuDIAlYRIaCip6Q4etO0PQYjExtrG0nNGjrkyrgXJdewYEaBWK9Cpk/p4d5U9Va7MUrpaiiD/\nmZn0yc2lTMai/WqEb10UP46MdGV22c2JDwIqxB4AbH5zDwZM6el4/FZVkcRU4M47kZlr9JlKSa62\nBSg/R3Kya8WtzRhPTwfmzLFLdOESQUHgU6eBPfYoNQauyT9H7vjCtdyZC7GAU1KyPlBQQKySSC4h\nPmq+8A2AwtBYnI9ORnbMlciOTkZ2dDIOV3ZAXqEBt99OixJCZOcro6a+FrJ8qX6Tl+Vo4aOwkOYd\nf396BoxGdQLZEZGopp52hgYfqy7gCTFZVpaL0tKzMBhC0Ldvb7z88sseJ4TwqGKVlfTwywkz+f+u\nvjsj19x4yaiCpI4N4xwj33sPALEfcQCyOMeqzZtxoxfNk/taqsEPQCqA7QBWAXjQi2u4hMWCHj16\n1Cr1Nm3a5DAJyqZNm1S3C7WmxWLBmjVrMLrhpagijp3HT1SNOu9/jLEwAM8DXt1KX0Ess/7p5JhB\nTvYJpDLGjJzzcuUOxlgiiBzkAHbLdv1W8zeeMXZFXePk1QVu/z7V3LRtANpDuvlXAriXMXY753yz\n2ml1r6IGDRo0aPg7w5cxgZo6XLXVYqF4d6+8IiVoCAykjyCVEhLIQL9wwXGfuNs/nFMiDEdJK5Rl\nGo1kk+t05J4lL0cJnY4IK+W9dGTM3ngj8NdfwNKlVCeTifqgulpygzSZqIzERHWCQg5XBqAaIZKY\nSPvS0mjMWa10/TZtiNBs1sy9xCfOjGslydWiBd1nEZ5HOd579wYWL1a3o+TKLKWrpaSQq4l7FUDH\n5Oc7J8vrovhxZKSrZZcdc1Umvtthz84O/FcvZNzOHROnw4fbfl+0CLtW1E+MLneT0xgO7sW0P2aj\n1/JvXRcqR/v2wLRpwF130Q2C5y/OjtzxAwPpOaqocO5C7CpjttsoLQUOH5ZIOqGuc5ex8TFKAyOR\nHZOM89HJOGpMRnpYMh74X2fEdyQ3cIsFWLmS+ky+wFJRARSdsw1h4CBpp9eor4UsX6rflGU5Wvgo\nKqJ5mjGaZxwRyM6IRF9ld28MOCUmOYfeUgn/ymIElpvxSK9Hkd/8DsSF5OPOm830Y79unXOCzR3l\nWhNEOYCJAP4AzWnTAMjzED8I4CVQluj7ASQ7KcsMIEKxzQSgEFK6VjU8BCIufgSwFsBNHl5DFW3a\nAGPGUEiEPn0QodNh4MCB+OWXXzBnzhzccccd8POzpVc2b96MLVu2qLrqduzYEQMGDMCmTZvw/PPP\n48Ybb0Sok5cbs9mMiAi3auouxMgNd3QAY8yfc17paD8o/h0gkYSNgYKav6pvAYyxYaBsuI64YIFg\nAFMAvKKy78WavxcB/CLbvgHAKQDtALzJGBvsLN4gYyyCc252UQ+v4MnC01QAHQDMB/AyiIi/H6Tg\nW8sYG8M5X+P7KmrQ4BpNSZKvQYMGz+DLmEBNHc7aKrLIZmaSoZSXRySNINBEoPKDNUHcO3du+D7h\nnAijkBAp82loKLmCVlXZZsgVcfpEwPUdO8hIdWbM3nwz0KED8M03lIRBJPKIjiaiIiKC+iAhoe4G\noCNCxGSiOpw9S0ZqfDwZqn36uKekcWVcK0muoiJb91nleJ80icaAGrkkV2bJXS2V5GFUFB1rNtP9\nuuIKx2R5XRU/aka6WnbZi/6x+N50D0YWfmZX9t5NhYi/y2S3HUVF5DsuMG0aoNf7RKWk9h6hRv7q\nYEXH42txzZZX0frsb/AIV19NdR482KdskZo7vk5HatDoaIloUesfpxmzKytpsAqSThB2soDxDYrg\nYJuYdRvzkrFga1ck9CRD2NH957yG0N0PxHekbQ2Z5EhZl/payPKl+k1ZFmO2Cx85OTTHiSzqFotz\nAhlwTCT6Kru7KuTKNSWB5q56zQW59poH1anF996c1LTBARwGufO9C2I6GIB7ADyjOHYKgO8YwwHO\nMUCnw6w2bTC+Qwc0i44GIiJQYDRie34+vjx0CHszMnBw0SKK0xERAYSHo9stt+C3bdvwxdix+Mei\nRaourHdZrVh8003YsGEDRvr748UXX8TEiRPRsmVLYPp0lL78MnYBWArgSxC5p4qoKOC++4jM69nT\nbnDPnDkTGzduxMGDBzFs2DDMmzcPHTt2hMViwYoVKzBp0iQ0a9YMeXl2Do4AgHnz5qFv3744duwY\n+vTpg9deew2DBw9GQM1iT1ZWFn7++WcsWrQIHTp0wAdyxXrdIdICmRhj4zjnS1WO+TdjrC+omzZy\nzjMBIvwAjATwL9Dt/8FHdXJFvqlhLYCnAFzBGHsbwHTOeT5jLAjAvQD+ByLk7NMJ26IAwEuMsSoA\n73LOSxhjzUE89B01dXuJc15VW1nOqxljk0Ac8kAAmxhjLwDYImL8McbaAxgM4ruXAnjdiza6hCfE\n3ggAeznnj8m2vc4Y+wnAagDLagaEr26qBg0O8XeOxaVBw+WGSz0jnidw1lY54SNsEbk9wRgRQYIA\njIure58wRgvQu3e7p5aoqCCCoH174I8/aFtwMBlsFRVUZ2vNmq2/P72DR0ZSvZcsIRLKmTH7zTek\nkvn0U9u4gsHBZGy3agXMn0+8gi8MQEfGffPmwB130PmxsZ5xMK6MayXJpZapFJDu7ZkzzjMfx8ZS\n3YODJQJHTSEnV/Q5Ist9ofhRM9KViRwAsrNntvsUI/fZE3uJM24D7lJZK1be0FmzvK6z1UqJRly9\nR4y4qQJtf/kCcZ+9iugi+2y+TqFIdFGfkLsQjx5N7fv+exo3JSWSgkpnrUa4+RSis/ch9MSfiM7e\nhy5V+xC08Gy911EVer1tgokrr6SBHBHhdELiHFj6GJBdApz9mchxEXtTGQvREaGr7LOGWCSu74Us\nX6rflGXpdLSgFBcnufeLHAWBgUBKCu23u26Ncs2voBitdPlge2wJtLg8M541m5G+Px/hyEcEzAgs\nN8NYnk+fMjP8rFVSeQvd7w8NLmA0SoRZDWnm9PvXXwMLFoADaClbqamoqEBhYSGsNS8AjDG0aN4c\nr7zyCh544AG7ywYDWJedjTFjxmDHjh144vRp/DM9HWFhYbBarSis+QFljFFyjYEDbc6f9Mgj2LZ9\nO7799lusWLECUVFR8PPzQ3x8PLZs2QIA0Ol0WLZsGe6880788MMPePHFF/Hiiy/CZDJBV1WFAkgM\nkt3PR+fO5CZRVETBVu+912EX9u/fH2+88Qaefvpp/PTTT0hISEB4eDjKyspQUVGBbt264f7778fk\nyZNhNNonjkpKSsK6deswduxYHDt2DCNHjoRer0d4eDhKS0tRVlZW2xcdO3Z0WA9vwDk/wRj7GcD1\nAL5mjH0EKRvtm5zzt0Gx626q+YAxVgZS6UWAuFvB6U7xUbW8cQv+iTG2FBTj73EAjzPG8gGEguq/\nE5RU4y1nxQD4DpQ59zUArzDGCkFqRtHOhZzz+SrXX88YuxXApwD6ghR9VTXnhwAIkF3jG0/b5y48\nIfbaggh4G3DO/2SMXQNgI4BvGWO3cs5X+qh+GjTYobFjcWnqQA0afItLPSOeJ3DWVjnhIxJPFBfT\nYrEcISG0PzOTki7WtU9uvhnYu5eu5cy9taiIDLuEBKrT6dM0B5eUkHLPz4/2Wyz0f2Qk/fX3p21H\nj1LSCbkxq4wBl59PSSmeeILqNWoUHSePGXfLLY5JLnm22dtvdx2HT5Tta+PemXEtJ7kcZSoV9QoN\nJdJ11ix7ZaE887G/P9VfKGUyM0lJIx87askTlMSwu4of0S41xY9S5RYdbZvIwTbmG8PHPbbg/k+v\nsSk/8eRacCsH08kKzs6mQSQwfz7AGBg8VylFRBDppfYesexjM/DKexh+6FX4VZRCDyDFvaKBxx8H\npjhOdFFvsFopy44sXp1u3z6M/usvNNpUmZRknxE2OtonL1DiPXDTJiJkw8NpfFVU0PORlkbzVGKi\nRMq7k3ShId7t6nshy6H6TeYWaizPR0mGGf1LzbguJx/4UF2tdst5M/qdzEfQunwEV5ihl5NrasiC\ne5odheCIAUis+VyWEOSaK4JNuS88nF4IhC90Q2Dz5lqX0pwaVpcxhuDgYLRs2RKtW7dGjx49cMMN\nN2DYsGF2bqlyxMTEYOvWrVi6dCmWLFmC3bt34+LFi9DpdGjXrh26d++OQYMGYdy4cXbn3nnnnWCM\n4YMPPsCBAweQnZ0Nq9UKnWIVLiQkBCtWrMC6deuwaNEibN++HefPnwe3WBAPyvgwEMCtANC9Oy3G\njB1LqeXbtQMrLnarb5988kmkpKTg9ddfx/bt21FWVoa2bdti7NixmDp1KhYsWAAACJdl0ZWjb9++\nSEtLw4IFC7By5UocOnQI+fn5CAwMRNeuXdGzZ0/cfPPNGKGShYwxpurmqwJHSrgxIA/MoQBa13wA\nyT33AwAZoK7qDqAliPzKA3AIwLcAFrhw1/UE3EldneF2AE8CmAAgATS17INE6N3romwGgHPOb2WM\nPQLgPtC0VFxTzruc868dVprz5YyxLQAeA3AzKGtwGIASEPG5CySGU/Nw9bbNtg3gaoFx1A5k7CKA\nRZxzVTa2JgXyJgDRAG4Dxd+bzjlvcmHOGWMpAPbs2bMHKSluv65paALgHFi+XHJhUL4jCtWH2UxG\nnS9icWnqQA0a6g+cA08+SUa+iDHmDFlZ9A781luX3nPnqq0bNhDhERZGWWorKsgY7djRvq3CpXLQ\noLr3ydmzwIQJRNQJO0E5r4r42+3aAbfdBqxZQ+Si2SzFWbJYyLgODSV3VoOBlHXC7TMrCxg/Xipb\nLQacTkcuvi1bkmhHbZHGaWysIvptcHdxp74WajIygBkzqA+URObataTSE8o6q5XECCYVz1P5vQWk\n3yKhLAwOBnr1on5Yv15SAf38M92z8HD75AlKRc2pUzQeZ9dEOV+2jEhJuapSScBWVUnxDx94gD7K\nWJHyeyTGc2CgFC9RTrw8/UY8TEWKrIFvv00Mr0BgIDVC3plwXGc1cE7ET6dOlN8iIgJICEhH/+3/\nQ5/f33F8ohqCg4GpUylDr29jHkmVzcmxzwgrfPEbAx07SkSd+LRq5fsgdE4gfw88doy+y7tfhCwo\nK7Md78px3ijgHM//qxL5GcVIiCI1WmC5GcYySZ1W+70iHzwvH+Ewo3WIzHW0ygW5psE7BAS4T6jJ\nv4eFASEhsOgMWLmK+eR3SUMDYNcuiq+RkkIx88aMkXzN6wF33XUXlixZgokTJ+LDDz+st+sosXfv\nXvQkxXhPzvneBrvwJQbG2OcgV9uPOefqmb0uAXii2DsNoIejnZzzU4yxgSDl3jewzRaiQYNP0NCx\nuBpbHahBw98dvowJ1NThrK3yJAiM0V+rVfquPFYk1hDusXXpk/h44JFHgDffJFKtuJg4FL2eiBuR\nWbNlS+IwUlMp5ndJCWVZjY62z6ALSBkSW7Ykt135IoijGHCApPgzGNTjTNUlNpY3CzXekH9qsdkA\nKSZeeTn1j7NMpYD9vVW6Wgo+xWIh9+EffiDuJzeXrms2S0SaPPaVvE1KJZNS8aNGwOr1Utk//0zX\nlv8OKu/R4sVUr5AQqn9cHP0v6v/2P4/jhVcUMZL++U+J2BMXF/jeNkCVJzG6OpfswYglr+GqDA8T\nXXTsSPHx7rijNtGFxxDZS+QZYQVh11hB8uPjJRdYQda1b08PYROE/D0wMZG6Tj6e1UIWCBK9d29I\nk61YrfA0U2h+Pg18L6EWkV0DgQcEgMkINB4RYfPdIcFWQ67ZpWZXu0Y9Lebo0TgxGzV4ia5dgRMn\naK6rZ6SlpWHZsmUAgJtucpbCQ4OGusGTX+1fATzBGIvmnJ9XO4BzflJG7vWFDySFGjTI0ZCxuC6n\nTJ0aNMjR0O7ml3JGPE/hqK3yJAgA2Shms2SgVlYSISiUcVVVlFDyDWCRAAAgAElEQVShsJA+Kt4Z\nboMxcnnV6SjG3alTRHhVVdG+sDBS6t16K11HpyPS6pNPiPQRLrxyJZ6wg0NDSUmWl0cEYGGh4xhw\nAkIJFh3teJHGG/dZdxdqhg0jAqguKm3GiOjKy6PYghs3Etkl3JIvXJBUiY4CzSvHuytScsQIyaj8\n73+JfwgNpfoKheixY5LiTsQjs1hsVaFyUtJqpXIOHZIIWIDuucFAXFBYmPrvIGNUVmoqEY1//UXE\ncW4uidCMRqo/EX1GrL5pHoaulSn0AGKEe/SwV1IoBrwakcoYwDglurh6y6to42Gii/RWV+Oz+GlI\nenowRo91oUgrKaFOUpJ1xcUeXdNnaNHCXlmXmAjuH9A0PBDUyDU3Cbbm2Wa8X5QPg1VGrh1zcq0/\nZf8vr68G/Y0ggqMqCLYSQwQyisNx0hyOAhYBiykCbZLDkZAajsiOEVi7IxwrfwnBhXwDwsKZnVpt\nyBCaT9autZ1/Kysp03qzZvYL5b4Yig3pddMYMRs1eImQEPuXjzpgxowZiIqKwvDhwxEfHw/GGEpL\nS7Fq1SpMmTIF5eXl6Nq1K0aOHOmza2rQoIQnxN4ykETxHgD/dXRQDbk3AETutapT7TwAY+wxUNKd\nGJAf9BOc898b6voaGgYNGYvrcsrUqeHyhrMXXzGu6/PltF4z4jUxOGtrXJykPhGx6fR6iQyprpZE\nNCIL6o8/0v2pa2x+vZ7IvdRUe1dPudoAoLFitRKxU1ZG8aVDQiRlWV4eiauMRilbYlAQuT4WF5ML\nptVqHwNOQJ5Mwt1FGlfj092FmiVLKHvvhQvEJ3ir0hauqNu2SQSa2Uz3raKCyFGTifrCkRejfLx7\noh4Xv3nCNVWoI5WKu4oKGm9lZZQFWIwvxqRswV9/TepMo1ESmykVgKL+yt9BeZ2FgjAri/7q9VJG\n5dxcqtvBFo9jKBTEXq9ewNatttu2bbPrK1FnfXUF8uYtxs2LX0VM6UknI8Ieh7qOxdb+z+FcLD1M\n+uoKVOw/hupPFwPbZYRdbq5H5foMoaHgycko6ZCMtKArsa0kGacDu8AvPMQtksJiAVYsl40hE0eg\nXxUKL5Tgp71mHFxkxvUp+ejbxQx9gZtkWx2Ua97CPvT83w/Ven+UG8ORzyIQGBuByPZuxl8TsRRU\nlGt1IZkYKPp755qPWllDOwFXXq+uVhMLDt9+27AL5Y3tdaORepcP9u/fjxUrVuCJJ56AwWBAaGgo\n8vPzYbVawRhDq1atsHTpUug1966mjEv+iXWb2OOc/wYKlujOsadAyTYaBIyx2wDMAfAQKDDhZADr\nGGMJnPOLDVUPDfULX2Tr8wSXU6ZODZcvlC++JhMJKc6do7hVfn4Uo2j8eKBv3/pRdDhS2wh4kxCh\nqcJZW+PiiIC5cIG2JSZSRtSSEiJSgoOlhAWBgWQglZYSWbNnD9C6dd3ujSu1gdpYufpqmv/OnpVc\nb/V6MqAMBiL0EhKorH37iAQ6eJDKCghQd3uVJ5Nwd5HG1TzvzkJNdDRw8iSpFvv39974VJKIffrY\nuiBzTmTZkSPUX1ddZUvuKcd7bKyU3dRdo1gQyKIcNZdnzuk+FBYC331Hx3TrRvUVCsCLF0nBKVSU\ngYHqWUfF7+DOnVJ2XdEH4eH0u2210vWLiyWv04ICOra8nOo5e1I6pr7fRmqc1Qr062fbwX37Sv+b\nzcB77wGvvgp9aSk8Ea4eDe6J6iAT4svSEF6ciaTD3yLpsAP33NUeFOwJ/PxITde1K7mExceTX3N1\ntUSi1RBq1jwzco6ZUfLjHkSVbcDd1WYEVSqUa06gBzC65uMQWuo7Cf7+nsdbE9+duIU6ir+pxLlz\nNAxmzgTgg3dLX/5uq5Xl7PcjI4MWoRpyoVzzutHQkHj66acRFxeHbdu24dy5c8jLy4PJZEJCQgKG\nDRuGxx57zGHijL8bGGPZ8NBrk3PuFsdUz/BJAovGRNMMoOE5JgP4gHP+GQAwxiaBMrtMBPB6Y1ZM\ng+/Q0LG4LqdMnRouTyhffLt1I+VMWhqpeESg+z/+IGIkKYncFH2xuq2MiSQUQo6yfkZEEMkxfPil\n/fLtrK1CTVVQQMH9ExPJuNPpiGy1WomIqa6WEuH16kUE2+rVRMb4cnFBaQQ5MpISEmhe3rOHyLug\nICKj5ARQURG5YjJGZNaZM+oGnlrmVrVFGk/dq5wt1Ihyi4ooVwEguSEr+8Md49MZicgYffr0oXJO\nn6b7GxPjeLxnZXmuHhcE8ief0POs9DqyWqmeublEGOt0lOAiKIiOF0qWv/6izMtt26qTp/KkGmlp\nlJjg999JAfjzz8RzBAVR/wcFkYeo3K28vJw+qan0HPxV0Rqlt9yKoB++sW8oQIU+/jjw7rvq+z1A\n55I9lKuuMVFdTQ/Onj0uD9WBXFIuKxgMtaQZj4jA+coI7DkejkJdOCymCBQZIlDsF45ifTjyeATO\nFEUgsyQcLCIcITEhgL8/kroxzJvXdH43LpeFLHfnXzl8uVCued1oaEhcc801uOaaa1wfeHmghYfH\nNzqZxjm/G8DdjV2PuuKSJ/YYYwYAPQG8KrZxzjljbAMozp+GvxEaKhZXQ6sDNfy9cKmMA/mLb3Q0\ncPSopOyRZ5wuKiJjvLLS+9Vtd4iYyyXwtLPkD8OHk0hn+3ZyCbVYKBZbcTHdB52OvnfvTkaISLpQ\n36phV2RVWBjV6+xZ+j811TbLa2goEYAHD9J8abVSeyIjab8yc6s8mYRykcYb9yr5Qo1ahleDQaqD\nyUTbu3RR7wtXxqc7RqxOR0o9vZ7upV7veLx7YxSPHk0E8s6dtE30m0iIcvGidD1xnZwcqpfIYrxk\nCR0j4vMpnz15Uo2yMvoOEBG5di31YWQkXc9spjnFYKB71aKFlHAlJ4fmgg4dqK5rJ3yF0Y6IvRtu\ncN4JGnwPGbnmtmJN7hbq7++TiTuzRul2tjnNM8KN36boaIAXARYrcGUfcv+//vqm9bvhq4WsS+U9\nA2ichXLN60aDhsYB51zzN24kXPLEHoDmIA8DZUKP8wDqL2+1hkZBQ8Xiamh1oIZLGw0ZnNmXkL/4\nOktmEBJCxndVFdlqnq5ue0LEXC6Bp9XclgAaRzt30n3IyyPCJCCASBAxlkwm+36pb9WwO0ZSZibV\nraJC+l9AuBYDNM5ELL5mzWh8qGVuBdQTSHjqXgVICzVKMkq4DldUEFnAOR0TEOB4/LkyPt01YnU6\nIif0elK6Obqet0axyKjcuzddS5CYIolHZCT1oSjX318iNIWS5ehRmsuUqiFlVuPoaFIYhYRQX547\nR/2bnS3VLSeH7nlkJHmbCvWi/LqhocDvuxlGL1lC/v8aAABV8EOBLgKVQRGoCglHVVA4ygMjUGaM\nQLkxnD6BESg1RuDouXBcMzwC142MwJrt4Vi1MQQbf/OHlTOEhdHzVlFBYz8hwTZOIkCu17GxNCab\nEnbtIoVp69akJD12jMayXk/jxmSisSR+rw4dAlq1apoxWb3J7H2pvmc01kK55nWjQYOGyw1/B2LP\na0yePBlhYWE228aPH4/x2stkk0VDujBcTpk6NXiPxg7OXBfIX3wzM8kQj462P05ufHfu7Nnqdl3i\n3DRFI6W+YLXax68TpJNOR6onYYCo9Ut9q4ZdGUkiyaVI7qGmeNPpaPzExZERdeQIEQwREepx2wD7\nRRpv3auCgsjFWUlGCQUfQLENKyqIPAgIcN4fjvrb10ZsXcoD6NyICCJqunSRyLrCQltSD6B7V1Ul\n1SUmhvopPZ1CwMmPVS4EcE59FxJC8wPn0gJBYSH9HxhI5Qt3Z0Huya9bW/9bbwNrau9ifn7uJTBQ\n2+eGck38lqxaBRw+TPOAeKYuXKA5IiyM+i0x0Z6QEzgVBJTlAfkHga9/rKlKBJUvlLCcUz8fPEjf\nO3eWqtZUPRB27KBn+PRpWggoL6e+0etpnOfmEjEWGUltPXsWeOSRpuvK6iqmqRyX8ntGYyyUa143\nGi5HLFmyBEuWLLHZVlBQ0Ei10dAY+DsQexcBWAAozdFoANnOTnzzzTeRkpJSX/XSUA9oyFhcl1Om\nTg3e4VIOzqx88c3MJCLJUf2E8Q14trqtxblxDUfj6MQJcg0NC3NshAvUp2rYHSOJMfLYq6iwJ4iU\nx5lMQLt2pEL085PGhjuLNN66V6WmAgsWUJlGI9X14kX6zRAuqhUV0vnl5bRPrjqUw1F/+9qIrWt5\nynMFia/2rMuzEYtjW7cmAk/5O6hcCCgupj4sKKBrGo1EvgjlY0UFbff3p++5udS3AQG2162tf1Ul\n8OijlBhDDp2OCoqIILljZKRTQu2dxeE4WxSOyI4RqPAPhUVP5JpcuSliW5aU0N+EBDq9IYkSMQd8\n9RX1oXjug4Npf1kZ9Y0Yl87mgoAAIk9/+EF6tg4dojIFGJMI2bQ0SQkMNE0PBKuV2pCeTirfDh1o\nDIls4cLFPCOD+i84mHKRDBvWtNrhDM4WTS7V9wyBhl4o17xuNFyOUBMn7d27Fz179mykGmloaFzy\nxB7nvIoxtgfADajJ58UYYzXf327MummoH3jjwuANLpcAxxq8x6VMWslffIXaypkBKze+PVnd1uLc\nuIajcRQXR8kowsIcG+GA+8aQt2oEd42kuDhabDEYbAkitXoUFwN33EFjzpNFGm/dq1JTKd+C2UxG\nf2YmjWk/PzpWuAOXl1NbheuqGrHnqr99bcTWpTzluY6edWU2YoHwcNqWl2f7OyjIQUBKghEeLiXj\nCA0lsiEggO6pnOj196f5o7CQ1Gfiujb1DwigG1aHJBmcA2mrgPIAIDDIdp9cPSpiLVZXU5vuvJOS\nmzSka6OYA/z9iZRThkTQ66WxWlJCfaw2FwDS88O5NO+KuUQ5hoTbqhjrTdUDISuLFHgGg9QvzZtT\nnUUiFouF+shgIOKve3dJQXwp41J+zxBojIVyzetGgwYNlxtURPyXJN4A8CBj7B7GWGcA7wMIAvBp\no9ZKQ71BuDCMHk1xYN56i/6OHk3bffEyLtSBt99OL/z795MLSFYWxaA5cIC2/x0yddYVwu3rcoMg\nrdTcV+WIiSFCYdeuhqmXu0hNJXUDQMaQxaJ+nNLor6ggw9KdMe8NEXO5wdE4iosjA7+kJnNnSAgR\nKJmZtsc5MoY4JwXLsmXAc88BTz5Jf5cto+2ePLdirDg7Jy6OiJGiIucLHdnZRAK1aSPFs6uoIBfR\njAwaB3feCcycSYs4goSqi3uVIEDKyij+G2M0ho1GOi4gQCKqqqsl9Y+j+jszPlNTSVV0Xhn518Ny\nfFGe8lyhrFQ+62rZiAF67rt3p3B34nfw1Cmaz0pLiRSyWik2IiApAU0mSbkp3JorK6U66PU0TuTX\n9bX6XRDS4rpq+00mclEeNAhISQFuvBEYM8Z37xHuQswBglwWSj2B0FDqf39/aXyqzQWCpABs513l\nXCIgD7MANF0PhF27qP6ANAeJRaYWLUid17EjuScbjUQw17UNTeW9pr7eMxqyfWKh3Gym+Vd5bc5p\ne34+KWV9sVDu63lYgwYNGpo6/gZrWQDn/BvGWHMA/wG54P4JYDDn/ELj1kxDQ6G+XsAbSh14qeFS\nDeLsa1zqwZnlq+iOFB2ArfHtyeq2FufGPTgaR/JMsiJmmTzRgDPVsIjJ9MMPtBhRUSERB8uWUVD5\n8eOBCRPcU7W4o7gIDSUjOz9fyjKrpnI2m8kVd/58+j8sjIiUqCg6t6xMyv4rP78u7lWc03X8/Khv\n5Aoyq1VS+0RH03jPzydjT94Gd1XavlZ716U8tXPlzzrgOBuxeNZHjLD/HTQa6R517UrlhYTQwpcg\nYUVyjpwcSe0r4kQaDHRueTl9kpKoDgUFvle/e6LaKS5uPNWOmAOOH6d5UFlXk4nIKqG2LC6m8amM\nZSlIc8D2uVabS8Q1/PxoXsjK8t098PUcvmsXuYVXVtJvhDLBEyBdz2KhceUpUdNU32t89Z7hbft8\ncS8bMoyOgOZ1o0GDhssNXhN7jLEWAO4D0BtAOCgzrRKcc36Dt9fwBJzz9wC85/JADRo8hCcBji8H\nXMpBnH2JvwNpJX/xNRjIWJcbTcLYlRv9nqxua3FuXMPZOGLMNpPs+fMSCXXypGTcK40hebyu/Pz/\nZ+/No+O47jvfbzU2giBAEFxAorVZlihSoiRHIiFZdjY7GUfRLiU2ZWfeTBLnJbE9zyeJM1HeLJKT\n2M42k4ltvczJy4uTyIpIJ2NZspY4XrMpJijJFknLErSQotAAQYoESAAUlgbu++PLO10o9FJdXdVd\nVf39nIMDoLq66tate6v7972/heLK7Czv7+rVFFheeQX4xCdYXfITn6gs7vk1ktauBd77Xib7L2a8\n9fZS1Hv1Vd7ravNFBQ2vchyKFq2tFAimpgrhe21thaqaNvfea6+xHa+9Vr3xGbYRW8vxir23tbVw\nvzKZ4tWIgeVz3fs5uHMn8PnPL8/xZnMs2vNu2FAQE1av5utTU3zG5PN8Jm7aRLFqcTEa7/ck5Mq1\nz4C2ttIpEdxCqTGFvJBWoAaWixT79hUqEgPFnyVWnLXzopZ7EKUoZvunt7e0OGn3m57m2DrvPBaM\n8Uu132vq9Tke1veMaq7PpiEI+17We6G8EWKiEEI0kkDCnuM4VwH4BoB1AMo9CmPiyC5EeDTzh38a\nkjiHRRpEK/cX3y9/mUbB+DiNo44OekdYo3/r1mCr28pzU55K48ibC+x73yt4T5YyhnI5GjKTk/zb\nXQHW0ttL8e0LX2AI2wc/WP7++DWS3v9+Jqw/dqy48Xb++fTUW78+WL6ooEKNe/zZsNuNG4uPy40b\nKXacfz69BoMYn2EbsbUcz/veoSG+9/Bh9u2OHRQ1q/FMvO464Iknlt8Hm2PR9qnjsJ/PO4+hkqdO\nUSR4802O923bCmJBVB5RSfDacT8D3OKod58NG/j32BiFeltt+MiRlSKFMSufu/ZZ0tPDqruvvcZn\nfD4P/NAPAb/0S8C11xavtFuOqBf73P1TTJy0hTPs59WFF3JM+70OP99rjh0D/vzPWZnXcernzRfG\n94xqvrctLXHbE09Edy/ruVCuqBshRDMR1GPvvwHoA/A7AP4/ACPGmBLZmYQQaSENSZzDJA2ilfuL\n77e/Dfz1XzPX2Ztv8gvvli305vje94KtbifBY6bRVBpHNhdYdzc9dD7wAeYBK8XQEMPqiiXhdx9z\n40bg6FEadDfeWHmuVmMklTLevvhFht8GLabiV6iZmGC+tH37gM9+lu18+WUKABMTHGtWfPIyPc0+\nu/xy4JOfLPRXtYRtxNZyPO9783mK+Y89RmGoWk+WUiG+w8OF4g7T0zzejh0Fzz57f/J54L77KJ5G\nSVK8duwzYGCA477YvbXi3twcPR3feIP7DwysnH/FnrvuSsBvvsljzc4WQlf/5/+sXrSp12Kf7R/H\nWVn0ZGGBz7lsln1x5AiFZ79U+l5jDIXf4WHem127uG9UUQpe78cDB/jsOnuW87e7u3TIbLHvGe7r\n8y7wAIXvbUtLLEK9ejX7sh4Lt/WYb4q6EUI0C0GFvbcD+JIx5r+G2RghRLxRhdPlpEW0sl98f+qn\nKBiNjFC0scJNV1fw1e0keMw0mmrHUSWjdWiIxv/sbPmE61YwHBnxP1eDGEnu12vNF+VHqFm7luG+\nTz3FcWVft0Vgjh7luM5ml3v1uEPPBwYonoRpAIZtTNZyvNbW6j1Z3Pe62H3o6aFY9NJLzAe3du3y\nEF/vXHePtyiN7SR47dhnwNzcypQIbqanOS8uvpi59UqJo97nbn8/Rb1DhyiCbdrEc7S0AFdfzXt0\n/Hj1ok29Fvu8z8ienkLhE/fYGRtjwYRqPmvLfa8xptBvNvQ3kymE+dYidhUb88W8H3t7ue/QEOfW\n1q28X16PxGLfM4wBnnyS38fa2oDvfIe/s1n+uEXCri6maNi6Nd0LtxL1hBBpJaiwNw/glTAbIoSI\nP0kvFhE2aRStHIeG4vnnh+dllASPGUvQ6y32Pr/HCnMc2ZxMp04VKpSWo7WVBuLQULC5Wk1fefNF\nVeqfUvmiygk1O3fy2r/6VRr4bq+Tyy+nd8/8PIWn2VkKUa2ty0P5rriC+xUL400TlURaYwqib6lc\nW9770N3Nn9OnC3k7jx1bOddvuaVyHi/bxnpca6Oxz4A9e+hJm8stzyNnRec33+Q1zM8XqvcWw/vc\nHRqi15fN43fixPLciplMMNGmXot95Z6RxUTjaj5ry32vmZqip571fM7nlxcsqUbsqpSHcGCguPej\nzal46BDn0cGDPJ7XC9Z77VYk/Mxn+FpfH5+dc3P8HB4eXi4Sjo7Sa+/s2fL91SwLt0IIkTSCCnv/\nAGBnmA0RQsSbNBSLCJukiVZBCKPNcfaYqaVSoPd9nZ3MVwfQ88HvscIcRzYn0/w8f1fCFjE4e7Y+\nczWfp9fJ889TYCjlPQKUz0tZSqgZGQHuvZdGrNfrxIaKdnXRSJ+aYh9nMoVQvmyWAsqZMxT/7rkn\nPtUxo8Z9TdXkTfPeB6AwN4rN9c2bgUcfXXns06eBP/1T4P77uW1ggPcpin6P2/1zPwMefZR9ceoU\nx2BLS6Fq84YN7Idbb638LHA/dz/9aRas6e5mX5eac9WKNvVa7Ivqs7bS95pcjgsAmzbx/9bW5RW1\nLZX6zc98evvbgX/5l5Xej46zPLfg5CTwzDO8v7Ygjffa3QWUlpY4bnp6ll/3zAzFQoAiYS5HsbfY\n9XnvRTMs3AohRNIIKux9DMC3Hcf5mDHmD8NskBAinljBIMnFIqIgzqJVnIijx0zQpO/5/EphorWV\nht2ePbyut7wFeOtb/edhKjWO+vpo0FYzjgYHmcsuny+/nw1N7e+n2BXl/bB9/eKLzOG4aRP7rJT3\nSLm8lKXyjwHlPYi6u4FLLwW++132ja0GumlTIT/X1BRFx1WreM96e5uv6nctedPs71Jz3Rjg4YdX\nHtvmf7OeR47DezEw0Dz97n4G7NsHfOMbLHBic0JefDHwoz/KUHy/zwL73M1kgBtuYGGJSgsDfkWb\nei/2RfFZW+l7TS7Hdttj5vNcBCj2/CnVb37n0+c+x+O/5z0r2+EuojQyAjz3HOfJ1Vcvv3aArz/5\nJD31lpa4X2srr6O9ned2HIrmxvDZOzBAQQ+gWFipD5th4VYIIZJGUGHvPwE4BOD3HMf5JQDfBVDs\nY9EYY34+aOOEEPEiDcUioiCOolXcaXT/VCNeGMOxvH9/IZn54cMMV77iChp0L77IHFW2cuXx4xSM\ntm3j/37yMDkOjTMbArpvHw3noSH+79dwHRxk2155hcJUqf2npylgdXZGO1fdfb1lC72QWlsLOcSK\neY+480VV41VZzoPIGP4sLFD8y+fZFscBXn+dv9euZbve+la21a+glSbCzpvm7qNix3bnMevspPg0\nPc3iEFdeCVx0UXP0O7D8s+SuuwqfJbV8prgFOD/H8CvaNGKxL4rP2lLfa+yzwgrJdiGkVJhvqX7z\nO5++/W2+f3p6uXede7+eHqYU6Ozk8+lTnyq87l6oOniQgp5NNfDGG/Q8XL+e22z71qzhZ9XoKPeb\nnfUXxtwsC7diOfpuK0S8CSrs/XvX3xef+ymGASBhT4iUkJZiEVGjLz7xx6+xtbjI0MCNG2nMtLZS\nMAMoBp04QSPz9ddXVqAdHqaR1NPjTwgJ6kHoJZtlWNYnP8n2bdy40mC1RSJs5eMo56q3KuPCAkUc\ndw4xt/eIzXm3ezf77eGH/fVJJlPag8iKR88/Ty/I/n4atLOzBa+8TIaCbX//SlEPqF7QSipR5k0r\ndmxvHjOgIDjYfGal+j3thqbXEzLoMaIS4Bq92BfGvS/1vcZx6L02N8f/7UJIKeGrVL/5mU/GFMLR\nc7niwp4bb/oE70JVWxufcz093NdWPz5+nO+34p7j8Ly5XMFr2xYGKdfWZlq4bWaCpioRQjSGTOVd\nivIWnz+lBD8hRAKxCawnJlh9zuZTshjD7ZOTNLaTUCxCNCfW2CpXNdYYGlovvlgwzDKZgsCzaRMF\ntueeo4Dmzmm3Zg2NqVyusG3zZs4d64HnPZc1zNraeK6LLqKRddFF/L+tjV5Ljz66cu65cRzgZ38W\neO97mWz/6FGed2qKv48fZ4hWNkuh7JZbop2r7r62+aJ27GAbxsf5vJiaouA3Ps6FAVtg4dFH/fcJ\nUMgv6MUtHnV300C31UVvvBH4sR+jmNfayns5NVX6esrdxzQQJG9aLcfO5ThOu7qWH9sKDpbNmzmO\nnnySoeb33AN89KP8/cUvMgSx3LxoJrz9MDjIZ1ml/qlWtBkcpIA0Pl5+vzgv9pX7XpPN8jl+5gx/\nb93KMe+lXL/5mU92vLe0LB/zpZibW54+wbt4ks8XFn/a2yk42naePLn8GdnSwmdweztzxFYqnhHn\neynCY3GRi2r33kvx/tgxzoFjx/j/vfcCX/oS9xNCxINAHnvGmNfCbogQIv5ElcBaiHrjx9iammKh\nh9Wraew4TiHBuDuUaWSEhtLCAr0jgOXChLuCYqk8TGGHP7a2Ap/4BA21PXvoUdjSwvb19xdCuW65\nJfq56u5r6y1oDNu4uMgwsc5Oes5t3cr+uv32yn0CrOyTUh5EVjyyQq47rM5tHPf08FlWzmsmLcnj\nS1VyjipvWqlje+eUxVuowBiKL5/5DEOlg3q0ppFKnjW7dkXjbZ+GyvDlvtcsLvK5YQzwtrdxUaLY\nOC/Vb9XMJ5s/b36+/HwqJiK6vQK9noaOU0gRcfIk5+vYGMW+fL6Qw/Hnfo7X+7d/y32TeC9FONSS\nZ1UI0TiChuIKIZoUFYsQScevsWUrIq5ZUxAY3DmX7LEyGXqfnTnDsFdLsQqKpYSQKMIfW1uBD36Q\nHmlug7+rq/JcDSvE0d3XtkDC8DCN5VWrKJ51dbGf8/nlidttn1x5ZeFYU1O8L7lcoaquLXqxbx8L\nCxQTMLzikTeszt7b1tbC/laQLUYSk8f7DauKKmyz2LGLzSx513cAACAASURBVCmLu1CBDaU+epTH\nuPJKzjv3cZrV0PQTwn/TTcBP/ARFmzAFuLQs9pX6XnPJJfTq/f73iy8EVeq3auZTNlv4zCjXT8VE\nRO9CVTbLe2GfT1bc6+mhqJfP81yrVvHngx8E7riDz+jW1mTfS1E7YS80CiHqQ03CnuM4HwDz7b0N\nQA9YQOM7AP7CGPPXNbdOCBFLokhgLUS98Gts2YqIi4vc3+sJYY/V2kqRYWpqubBXrIJiuTxM1YY/\n+vEW8ztXg+TS8ZPY3/a1DWm2BRJsWK77WDMz9JDs7qbnygMPAC+/XEjsDvA4+TyN0ZYW9ufBgzSG\nH3yQIoPXgwgoiEfu/II7dhTC6tz3tpgg6yVpyeOryd8YZd4077GLzSl7bHehAhtK3dpKz86MJ5FM\nsxqafj1r9u5laP773sd7HaZok8TFvlKVtYs9KxcXGeofVOzyO5/WrGGftbZSfPMrvhZbqMpmOV9m\nZgp5Kx2Hn2f2HD/xEzxePs/FH8cpfi+np+N9L0X4RJlnVQgRHYGEPcdxWgB8AcDtABwAswBGAfQD\n+DEA73Yc5y4AP22MWQqprUKImKIveaLe1ComVzK2rCdRJkPvMmtEZbPMqed+X3c3BZLFxeVil7eC\nYikhJMrwRy/F9vcr+txyCw3BffuAr38dOHKE+/f1AW95C/Cud9Fjzmv4DQ4Cf/qnfK+3wIi7XV1d\nDMt96SXgYx+jEd3SQuFnfJznamujKOgWQY1h3sCDB2mAWwPbbYjPzrLPzp6lKLhjx8qwOuvl0ta2\nUpB1k7Tk8W7xp7e3clhVVGGbwPJCBVbcLTanvB6VNpQ6kynvTdZshmY1njVPPAHcdx/vQdgCXNwX\n+4IsXNj/SwmXfX1cSKjUb36Ljo2Ps+LtDTewQq5fEbHYQlV3N9MaeIsUAYWFET8emjbfYNDclXEb\nB8IfUS00CiGiJajH3v8F4A4A/wzgN4wx/2pfcBznegC/B4p+/wHAH9faSCGEEM1N2NXZKhlb1pNo\nYoKCk1vY83pC2PCmxcXSwgRQWgjx40HoNpDC9Bbz6/Hz0EM0NsfHGZZ26lQhdPXYMfbJ00/TML31\n1uV5zgYHWVl4chK48MLSbZme5rnfeIP9vnkz+9lWdbTJ4k+cKISWWa+v9nbu9/jjNMC9hvjx4/T+\nu/JKig/d3Sv7z97bycnyYbhJSh5vDO/L/fczv1ZHB8d1Nssf2w9ub7edO5d7Pfb3rwx7DRK2aQx/\n1q8Hvvxljo+1aymQtLTw/q9ZU9yjMpdjmKB7LhYjyYZmEBGkWs8a2y9RC3BxEnPCqDZuBWg75/ft\n42eQLaBT7jOo2jyEt91WSJ/gV3wt5gl72WV8bXiYz7+ODs7jiQl+NtnK426RsFRfTU356ytVUU0+\n9VxoFEKES1Bh798BGAbwbmPMgvsFY8y3Hcf5MQAHAPwsJOwJIYSogTAMMy9+jK3OTn7BfdvbCgJD\nMU+ItrZCRdypKW6fmysIE36EEK9hVimf3K231tanFj8eP/39wKuvAl/4AnDBBRRe1q4tCG02jNa2\n96GH+F6b58xW33Wcgnjj7evp6UIl2jVr2O/nnUdPrvl5GqHu8508SUG1o6Nw/k2bgH/6J+AXf5FC\nhzUm77iDob333cc+LFUUo7ubodSTk9zPa6gkLXm8nTf33w88/zz7J5/n2HzuORr8W7dSAMhklnu7\n7dxJ8eLJJ9m3q1fz9bVredy+vurCNt1z+ORJHmt0lEVdXn+d7VpY4D1et265R+XSEvs8ny9dldRN\nUgzNMESQWj1r4tw/YRBWEYBaPoOqzUOYyVTv/VhsoSqTAbZt4ziynyOTkzyXzb3qHmO19lUUn9Oi\n/lSTFxJIXloKIdJMUGFvK4DPekU9izFmwXGcLwP4SOCWCSGEaHqiqs7mx9hav57iQm/v8rAntyfE\n+DiFh9Wruf/oKPd5y1toSB854j8PkzXMNm1aWWTC5vAbHqYAMjdH4eX662vzhPDj8TM1RY+PfJ7F\nC/r6lofTOg7/N4bedJs2rcxzZgXJN94oeI+0tPCY8/O8xo0bKfqsXs1rHBjg9Y6N0TPQXl97O4Wb\nM2fotTcyQoPVMjrKNnjDiP14zaxdy1xkJ07UJ3l8VOKTe96cOsX+WLdu+eszMxSoAQoANhz6wQcZ\ntnnqFMf65CT75tVX+fqNNwIf+hBFXj9t987hq6/mdisEj4wwd+LkJOfMpk2FUEHb75kMvT1LVSV1\nU8nQjIPgF4YIIs+ayoRRBCCMz6Ba8hD6uVelFqochwsZ3d38HJuYAO6+u3gba+krVVFNF1HmWRVC\nREdQYW8eQFeFfbrO7SeEEEIEIsrqbJWMrV27uG3v3sJ5HKfgCTEwAHzve/Q4uvhiehldcgmP/cor\n/ivQAgXDbM8eCigjIxS4+vv5+okTNIzm52mkHT7Max4ers0Two/Hz8hIITxyeprCyYkTbEdPD4UF\nK+4dP8422jC1884rvDYwwFBYtxdiZ2chLHTfvuXFSnp6gEsvBV57jX3uDjNraaEIMjtLsXDDBh5j\nepoioA35dRuT7tx7zz1HQ9cr2r3//YVcglEUAqhXqJqdN/Ya8/nlr7vF2OHhQljusWMUo9/1rpXG\n+dIS7++RI8Czz1LYq6Yt3jnc3c2Q5+3b2Y6xMd7Td7+bc8Dd7ydPUmys1DfFDM24hQeGJYLIs6Yy\nYRQBCOszKMo8hH69Au++u/SiRC19pSqq6cJvXsgkpaUQohkIKux9B8B7Hcf5hDFm1Pui4zhbALwX\nwLO1NE4IIURzE3V1tkrG1sBAeWPp/POBX/5likGtnk/Uagw3a5idOgX8/u9T9LK5jU6d4k97O8+3\ncSMFrMlJhgm/+WYwTwg/Hj9LS+zXU6cotNjQyPl5fuk/eZJigc13195Oj7m3vnV52J/1ALjoouVi\nDsBrHBmhmJPP8/jbtnH7ZZfx/OPjPL/13FtYoKjX0sJzWwHRW4nYGpNf/jL3WVqiN9j8PL0i162j\nd+Wtty4v/BGFAV7PUDX3vClWddZixdhcjtd++DC3bdmycl8brlutcW7bcuWVvFZveLkVdjdvpki7\nfj3wC7+wvN9HRgo5HqsxNKPq81rGRK2eUe7zyrOmPGEUAYjqMyhsgbXW6sS19JWqqKaLavNCxj0t\nhRDNQlBh778DeATA047j/DcA/wBgHKyK+yMAfhVA37n9hBBCiEDUuzpbvUOovOdat47efz09FMhm\nZijcbdzIEEWvd9zoaEEkq9YTopLHjzEUv8bHKepkMmzjqlWF1xcW2A6AAltra0GUdIf9FfMAsMcf\nHqZIt7hIwa2lhft985vMqXbFFYVjTk9zv9ZWCnjW48/m3vNWIgbYb3//98A997Bf165lH23axBBQ\nW211y5Zw7mOpvqxnqJp73thqv8XEHyvG5nIFofeaa8ofu1rjfGiIc9MbXt7SsjLf35o1hTnsbmsl\nQ3Npif3nNjTD7PMwvf6qEUEOHGCew/Xri583ygrGSSesUOWwP4OiDIUOuihRa1+pimq6qDYvZDN5\nAQsRZwIJe8aYLzuO8zEAvwvg9z0vOwDyAD5mjHmsxvYJIYRoUuKSQyrKECov+/fTQL/oIlaYff55\nCiH9/cvP6RZktm8P7glRzuPH5vRrby+87vZKtG1wF7OwHnPz8wUvPmClMNPfT6Hn0CHuv3EjDYbZ\nWQps69fz3h86RKGzu5vi29q1FOPGxyn2LSzwvvf0FHL1uYU9G2o6Ps7jv/OdhWvL5ShKvvQS8NRT\n9Aj7yEcK3n9hUs9QNe+8KVbJ2Y0VY4eHKRpVOm8l49wtgtkCHGfOUJBdt64QXm772J3vb2CA4cPe\n8VjM0GxtpZA3NsY5YvP/WWEyrD4P2+vPrwhiDK/vs5/lHCh23ptu4jX/zd/Is8ZLGKHKYXwGNTIU\nvBqP8aB9FZfPaREutXqACiHqT1CPPRhj/rvjOF8C8AEAbwPQA+AMGKb718aYV8NpohBCiGYkTjmk\n3EZIVF9kixlIo6MUq4qd0woytm1BPCHK5dLJ5SiYrF/Pv623oNcgcxezWFoqFMpwh/15hZmhIeYh\ntNdw4kShAIktFmJzwL3+OgWXAwd4nnyeRkcmQ9Hl2DH+dHWxmIi7aqoVJzs7CxV0vZ5jHR0UBffs\nYT6/970v/MqN9QxV886bYpWc3fdvYYF9evYs/nfRl0qUMs6LiWD5PIVfx+H9GB0tFE+xeRq7unis\nw4dLF8iwhuY117DS71e+Qg/O1aspfPX28t7+1m9RaMvna+/zsD0t/Yogdpy+9hr75sorOd695927\nF/jpn+aYffxxedZ4qTVUudbPoCRVig3aV3H6nBbhUs9FTSFE7QQW9gDgnHj32yG1RQghhFhGo3JI\nBfWyqOWLr9dAsqGupQw+bz65IJ4Q5UIcc7mCGAbQKJ2dLYTFutvd0kLxZssWvtbdvTLsz+0B8OlP\nM6dedzf3z2YpCI6OFiq1rllTCDk+dYrtyOf5u6eHwtzCQkHwMKbQVksuxza3tfHH7SXo9oJ0nyeK\nyo31DlXzzht3JWdvVeI33qDX59q1K0W/UpTybiomgr34Iu91JkPhF6Dg0d7OeWXzNPb10ftu9ery\n537mGQpeb387w6mLCV579nBs9PTU1udhe1r6FUGsIN3WxvvivkaLPe+TTwL33cd7Ls+a5XgXLko9\nG8uFKgf9DEpapdhaCiYo12Nz0IzPECGSRE3CnhBCCBEljajOVo2XRSYTbpiV10AqVfigWD65IJ4Q\npXLptLVRcJmdpSfUFVewL1paaJgB3Md68C0u8mfjRrbrrruKh/1ZD4BMBrjhBlavdbfXeovZ8NlV\nq9iG73+/kBuvt5f7WCFu0ya+NjcHvPwyC4z09HAf62k4P8/xYb33vCGpNqzYeq2FWbmxEaFq3nlj\nKzlns8uLVywuUtT73d8Fjh4FPv/54MZ5MRHMGHpjLi2xDR0d/HthgZ5oq1YV8jS++SbnzsxM6XP7\nFdqWloB//mcWl/FDufxqYXta+hFBcjmOmUymkC/Qho+7C49Y79ihIc65envWxN2DZ2CAXrx/8RcM\ntW9vLywkZLN8DnhzM3oJ+hmUtEqxtRRMUBVVIYRoPL6EPcdxfujcn0PGmFnX/xUxxvxjoJYJIYRo\neqKuzuY1TKvxslhcpOEdZpiV10DKZllcwNvO6enl+eRq8YQolUtn7Vq24Qd+gCLM8DC9r+bmKMKc\nPbtc2OvuZntuvbV82J9b6PLuU0yAOnmS77GGr/XCOn0a+Na32P6ODh7PVnjt6Sl4PM7NUcwDCvkK\ni2HDgvv76dUXVuXGRoSqlZo3PT382baN3nGnT3Pe7NxJb8snnghunBcTwc6c4dy0gt7SEtuxuMjr\n7OqiQDU/X6icm8mUFoz8Cm1bttAbcWyMYciVKNXnUXha+hFBbDGTVat4LS+8UCgyY70t5+YoJi4s\nAA8+yDlsnzNRpgtoVL64arELNE89xbEwM8Ox2NrKKsutrcwDun17+VDloJ9BSasUW0vBBFVRFUKI\nxuPXY+9bAAyA7QCGXf/7ocFZI4QQQiSVsKuzVTJMjfHvEfQnf8L3ZrPhhVl5DaSBgeWFD4yhqDc7\nC+zYUfBwq9UTolgunYcfpkDZ3c3XreA2MsJcaJOTFMo6O2lE33UX8NGPVjbuKwldXgFqzx5uGxuj\nV1lbWyF015s7zl1QBCgU5Lj6am4vla8QKIQ2ZzLVh8NW8lyqd6hakHlTq3FeTAQbHeX7Ojv5+803\nOVbs3zYcuLWVgpXNrViqj6oR2qw4HLTPo/K09FPhd3KS/XLppezD732Pfbhp08p7cvw4haFHHgHu\nuCM6YS1J+eK8CzTveQ+fm3axYH6+kObghhs4V4qFOwPBP4OSWCk2aMGEsD+nhRBCVI9fYe+3QCHv\nDc//QgghRKSEVZ3Nj2G6YQM9xK6+uvyxuroY9nnZZeGGWXkNpCNHGHr62mtsZ0sLxakdOwp508bG\nwveEcJyVnkVWcLv8cv5YAWN0lH370Y8WLz5Q7L74EbqWlhiCOzZG0WR6uuCp9NxzFDwvvZRhwi+9\nxHYuLbEtr77K/dev53u3bmVflhIcvKHNlUSaaj2Xwsj1VS3VzptajPNSIlguR9HCFrno6Ch4fALc\nf/16jquZGV5/KVGzWqFtyxb297Fj/LsUpfo8Kk9LP/2cyTBMfWAA+Id/KB4+bo/V3s5+ffxxXkMU\nXl9JyxdXLAzWLhZs316Yf2NjDNG98cby/VbtXEpypdhiizx+2pSmKqpxuA9CCFEtvoQ9Y8x95f4X\nQgghoiSosWHxa5g+8kh5EcBiPZHK5QMDgoVZeQ2kffsoMIyM0AC88EIaqK+9Fq0nRCXPImB5OKfN\nBeZH8KoUjmirgj7zDD30Nmwo5Nazr8/M0JNpxw7gR36k4NlkQ5R37WK+vT/5E+Z5K5WvEFgZ2lxO\npAniuRRGrq8gVDtvvGPP3kM/HjteEcyGQnd302syn+c1t7byPG1trGZrmZjg9lLCXrVCW2srPT4n\nJ/l/kPBAv56WS0vVeVpWEkFOnuQ4Gh1l323aVPw4VpC+8kr2X1ThnEnLF1cpDNbey2qez9XMpUaE\n30dFtTlbk1hFNUkh5kIIUQoVzxBCCJEI3EZCtV+y/Rim/f0UA0ZHaaTbAgyljrdqVaFKazkDL0iY\nlddAWlpiu9wiwIYN0XpCVOvBtbTkX/CqJBqeOQN897uFEGCbZ899/21o8vAwj7dtG4WkD3yAYcEA\nX7/5Zp5n9WoKfO7wuGKhzeXCYYN4Ltl+qTXXVxgECVXv7PQ3zrwimONQvMtkKFocP87X2trYD+vX\nF85p78E115QXWKoJaZ6eBt7/fopoQcMDSwnQ3mIWk5O8zpMneU/9zMdyIsjICAXgZ5+lmF/qWFaQ\nPu88njuqcM6k5YurRxhspWM3a6XYWj6nG0GSQsyFEKIcgYQ9x3G6AWwE8LoxZsG1/X0AbgUwC+B+\nY8yzobRSCCFE0xHmKrofw9Rx+KX+9dcLBRhKtWthoSBSVGpDGGFWmUxjPCH8hlcBzMlXjeBVTjR8\n4QUKPdddVwhHtHkG3axZUyiY0dvLc193XeF1tzi5dy9FwGPH+L58nt5O7tBmG55XKhy2Ws+lnTvZ\nZ2Hk+oqaWg3cYiKYLf5iPc5OnuTxMhn+TEywDzo6+J73v79yrsJqqm9ef33BezNIeGAxAdp6kw4P\n85lkDMfShReybd/+djAhwN2GbBb4yZ8E/vEfeYxiRX68gvT0dHThnEnKFxeXMNhmqRSbZG+3pIWY\nCyFEOYJ67P0+gJ8B0A9gAQAcx/llAJ8FYB95ux3HudYY80LNrRRCCNFUhL2K7tcwPe+8grBnCzB4\ncRx6Wc3N+QuZjCLMqp7GhZ/wqpGRYKF6pUTDM2eACy4o3ANvkQy3R0hbG4WWyy4rHlJpxcmdO4HP\nfAb48pd5T3p7C6GwtghJpXyF1Xou/d3fUeipJddXPUTcMAzcYiJYNlsQwNav572YnKTh39lZCEdu\na+Pf119fvp1BCnzUEh5YzGt1cpJh8NYbcdUqjk8rDIchBDgO3/vggzzn+DjPY4uNFBOkowrnjItQ\n5pe4hME2Q6XYpHu7JS3EXAghyhFU2PthAF8zxpx1bbsHQA7A+wFsBvBXAH4dwM/X1EIhhBBNRdir\n6NUYptksBYfTp8sbpqtX06gfGKh8LWkKswKK90nQUL1iogvAQhyzs4Vz2UIhw8P00OvoKIgcU1O8\nZ+97X+mQSsdhvr1PfQp4+9sp7k1M8H3T0/Qk8xOaWa3n0pNP8pqqyfVlq7nW0wMmDAO3mAjW08Mw\n45de4vbeXva/FaOAgrhx113FxQ2vR9D0NL0cX36ZAlt/f6Eoh597WG3fub1Wn3wS+OxnWTxn7drl\nwrD7XoYhBLS0MKz87Fn24+gor7uzc+V5o3zOxEUoq4Y4hMFWm8ogaZ5gafB2S1qIuRBClCOosLcF\nwN/ZfxzH2Q7gfAD/0Rjzz+e2/RSAH6q5hUIIIZqKsFfRqzFMu7sp1h07xp9SXharVgFvfSuN7rVr\nSx8v6WFW5XAbzWGF6tn3e+9XJsMcelb0yuUKIse6dayMe8cdpc9v21pL5UZbsKMaz6VDh+hV5bdf\n9u3j/2F5wPj1mgrLwC3Wvz09vLbTp+nltmoV54UfcaOUR1B3N+fewkIhH2aU1TetAL1+PQt+XHll\n+ZDpsISA664DnniC/eauRO0l6udMHISyaohLGGyaKsV6SYO3W5JCzIUQohJBhb0OAPOu/38YgAHw\n965tr4L59oQQQgjfRLGK7tcwBehVNDgIvPFGaS+Ln/1ZFkX4m78ptCVtYVZeSuVS2rWLXnRtbf6O\n4ydUr9j9cpyVYawAx8C7372y/yt5vd15Z+XQTO9xnnqKYZCXX77SU8uL9Tjs6PDXL+3tvJbDh4G+\nvmAeMEHzXYVp4JbywrTt8ituVPIIuugi9sfEBPCjP1pe2A0L20+V8iCGJQQUC+d0U6/nTFyEMr/E\nKQy2llDwOJN0b7ekhZgLIUQlggp7IwDcj/KbAZwyxhxwbVsPYDpow4QQQjQnUayiV2OY9vUBH/kI\nj19OiFhaqq3iZpIol0vp858HXnmF/bNlS2XRw0+onp/7VarQRbV5n0q1o9hx+vqYz++55xgWbHOr\nea/ZFje44AIKgX6YnKT49fa3B/OACZrvKmoD1+5TrbhRjUfQ449zDEQpHLj7yU/7wxAC4hLOGSeh\nzA9x6bdSbUsDSfd2S2KIuRBClCOosPckgA87jvOHYAXcnwBz6rnZCuBoDW0TQgjhohlWiqMSGao1\nTN3530oJEWkOs3LjJ5fSzAzw/PPAxo30pivnAecnVC+okBBW3qdSx+nroydnJsP/Dx3i/tu2LT+O\nuyrrE0/4C2E8epTjub+/fN8U84Cp5bobYeDWMzw4DKwn5OuvM7ff6tX0UC2WY88SlhAQh+dMnIWy\nUsSh39JKWrzdkhZiLoQQ5Qgq7H0KwC0AfvXc/2MA/qt90XGcTQDeAVbJFUIIEYCgYXVJJiqRoVbD\ntNTx0xpm5aaY55Q1dGy+u5kZjs9/+Rf268BAbbnAgt6vsPI+lTpOd3ehQu+qVfwZHuZc7OlZKTju\n3Mlqt8U8D919+OKLFI02bgReeKF8mG8xD5harzuOBm5cPILcnpCjo4VcgXNzHJfFPDfD7qc4PGeS\nKJTFod/SSL0XA6K6b0kLMRdCiHIEEvaMMcccx7kCwLvPbfpHY4z78b4BrIj7lRrbJ4QQTUnQsLo0\nEJXIUA/DNI1Go9dzammJQtTwMPDmmxS3MhmKK8ePc2y+8530YnMLHdWG6gW5X2F5eZU6juMsr9B7\n9iz74OBBiplewTGTKe55aPvwxRfZJwAN5cXFymG+wEoPmFqvO24Gblw8gryekDfcAHzrW7wnVsid\nmVnpuRl1PzXqOeMVypaWKofex4k0Pp8bRZSLAfVa1ExaiLkQQpQjqMcejDFvAnisxGvPA3g+6LGF\nEKKZCSucMKlEKTLIg6N63J5TxlCMOnSIFWn7+wv9Zz3MpqZYZOLECeCSS5hjLmioXrX3Kywvr3LH\n8Vbo/d73WMBh587igqPX87Cnh55fL73E7evWUcQbGaFItHZtcbHIjdcDptbrjpuBG5f8V15PSGMK\nHpvGAGvW8McYirEDAxQh0ioENKMXuShOVJ/T9VzUTGKIuRBClCKwsCeEECIawgonTCr1FBnC/qKe\nZKGwWNu9nlNTUxQwOjspaLixOejWraPIcuIEjbSBgfp4RIbl5eXnOI5TqNC7di29Fj/5yZXHcZyV\nnoff+AbnuBX0bNgtQMMSWC4W2TBf93HdHjBhXHccDdw4hAd7PSG9Hpvj4+zPlhbg5EkK2jt2pFMI\naGYvcrGSKD6nG7GomcQQcyGEKEZgYc9xnMsBfATALgC9AIp9jBtjzFuDnkMIIZqROCWNbwRxFBlK\nkWQPFr9td3tO5XIMPS1V4GFxkSLVO97BsXnTTcBdd9XnesLy8gp6HIBed+X603rJjYwAV1+9/NzZ\nLMWimZmCJ9jx4+xzt7Dn9YAJ67rjZuDGITy4mCek4xQ8815+mQK2Mcy719cH3HdfofhOWmh2L3Kx\nkig+pxu1qClPfiFEGggk7DmO88MA/g5AB4A8gPFzv1fsGrxpQgjRnMQlaXwjiZvIUIwke7Dk88Cj\nj/pru9tzKpejd1qxfjeGYbf2vnR3A08/XT9hDwjPy6va41x7LfDww/76c2gI6O1deVx3YQ4b5tne\nzj7fvr28B0xY1x0nA7fR4cHFPCGL5ZfcsoXz6fRp4LXX+KwaGIjfnK+FZvciF8UJ+3M6LouaEvWE\nEEkkqMfe75577wcB/KUxZjG8JgkhRPMSl6TxtRBWW+IkMnhJmgeL2ztv3z6KR6+8AlxwAXDFFfQI\ns+3ztn3XLhr1x44BCwulBYvpaQodVmCpdmyGcX9LeXl5j13Jy6sab7HeXubY+9rXKo8FW2yh2Pz2\nhnkeP07xOJ8HXn2V/VvKAyYq77ZGjtlGe+56PSHL5Ze0ZDJ8JjhO4+d8mMRFcBHxI8zPaS1qCiFE\ncIIKe1cD2GOM+fMwGyOEiC9xElXSTFySxldDvcJR4zT+kuTB4vUsbG1lCCEAHD3KUEJ3BVZv23fu\nLHhOzc1xuxtjKDrNzjK/mM0XV2lsRjFurJfXnj0UfhYWWKhiYYGhkgMD/L2wANx9d2kvr2q8xX78\nx5lbzc9YePxxip/z88XP6y3M8fzzFEiz2fIeMI32bouKRnvuuj0hy+WXtN6qV11FobfRcz5s6i24\npO37RtqupxxBrzMNi5pCCNFIggp7MwCOh9kQIUS8SHLusKQTh6TxfklyOKpfit2HpHiwFPMsfOEF\nCkibNnGfUhVYbdv37y94Tn32sxSbAAqE+TwFjVWrKOpddhn3qzQ2oxo3jsP37dvH0NipKaCri21d\nWKDn25o1wB13UAgrNb+q8RbL5+mx53csXHIJxcZShaEGEwAAIABJREFU89sW5ujuZps/8IHK4cyN\n9m6LkkZ67ro9IScmSueXdHurdneny2utHoJL2r5vpO166kESFzUbhcRMIUQxggp7TwD4wTAbIoSI\nD80g1sSZOCSN90PSwlH94scoS0rIUDHPwlyOxrdte6kKrN623347hYp77il4/nV28j1W0LDHLDc2\noxw31svw8GGee35+pcdeeztff/zx8sf26y32m79Z3ViYmWGRBb/z+7rr/F17o73b6kU92+/2hHzx\nxeXzBijurVpszifZEI9acEnb9420XU89SdKiZhSUum4JxUIIPwQV9n4dwD87jvNpAPcYY86G2CYh\nRANJq1iTJBodVufXCE1SOKpf/BhlN91EY76eIUNB3+v1LDSmeJ68UhVYvW3fuRP48Ic5NteuZeGA\nasdmlOPGHruvr3Dsyy9f2X9jY/6OXclbLIg3UyYTzfy2bYtrXsokYj0hAeA//2fea8fh/CnlrQpw\nPIyPA//rf1HgS7ohHpXgkrbvG2m7nnqTlEXNsPAj2C0tSSgWQvgjqLC3B8A0gA8D+PeO4wwDKLaW\nZ4wx7w7aOCFE/UmjWJNE6hlWF3Q1OCnhqH7xa5Tt3UtxzOaSq0SQkKGwVui9noWOQ8+1ubnl+znO\n8gqspdpeTcjnLbfUf9yUOra3HUHHpPc4Qb2Zwpjf8uKoDy0tDN3+2teA73+fc39hobS36tISc1ie\nOsXw3TQY4lEJLmn7vhH0eiTAk0YvatYTv4uIi4vA3/6thGIhRGWCCns/4vp7DYBrSuxnSmwXQsSU\ntIk1SaCUgb5rF/BLv8QCB08/HU1YXS1hQ0kJR/VLNUbZyy/zPl10UfghQ2GFcpXyJstmKSZ5jUmb\nh85uL9X2UiGffX3AO9/JffbtA775zeJCU5TjphFjMog3U61hs4uLwJe+BDzxhLw46oHjAD/2Y/T0\ntJ+NpULmXngBeOkleoqmxRCPSnBJ2/cNv9fT3885/+lP04NXojxJc65QN34XET/3OY6NSy5Jh/At\nhIiWQMKeMSYTdkOEEPEgbWJN3Ckn4nz+8xRLbr4Z+J3fKVQsDYtawobSWMGuGiPz6FGG4YXtwRJm\nKFcpb7Jslvn0ZmaWV/fM5+mF5CdPnjfkM58HHn20shh5yy3RjZtaxqS9piAE9WaqNmzWLgDs2wc8\n+CCFjjVrgEsv5XPCeo0lVTyKA+XugZ/7PDUFPPcc78uOHcU9PJNoiEcluKTt+4af61laYr7Gl14C\nXnkFuOEGifJumiFXqN9FxFdf5SJiWoRvIUS0BPXYE0KkkDSKNXEmiIgTJrWEQUWdUL0RVGNkbtzI\nPHsTE+F6sIQdmlbMm6y7G9i6lZVwjSmIe/PzbGe1bTeGop7fcdzZGc24qWZMGsN7t7jI4he1eMyE\n5c1U7nzuBYBcjsZeWxuPffAgRYKtW5nnLZNJpnjUCKoJZ/Zznw8d4mfiDTeUD9VPoiEetuCStu8b\nfq7HGIp6hw5x/nZ3AxdeuHzBTKJ8+nOF+l1EtON9dJTfTUqRFOFbCBEtNQt7juOsAbAVQJcx5p9q\nb5IQolGkUayJM43OL1RrGFSaKthVa2SuWsUiE+96F+9hmB4sYYamFfMychwKQAA9944fp3DkOPQm\nOXiwurZXO46vv57njWLc+BmTS0sMl9y/H9i0ifexFo+ZqMPHvAsAPT0Mm960qeChNzNDsQAAtm0r\n9HnSxKN6Um3Iu5/7fOwYPSjtPShFUg3xMAWXtH3f8HM9U1N89nV2Mu1Be/vy60mqR6dfgo6XuN7z\noPhZRDSGnvCrVq3MfVuMuAvfQojoCSzsOY5zEYA/BvCTADJgPr3Wc6+9A8D/C+BDxphv1dpIIUT9\nSJNYE3canV+o1jCoNFWwC2pk3nEHryuskKGwQ9NKeRllMhQfBgYoCI2MABdfDLz1rcEKdFQzjgGG\njkYxbiqNSesx8/TTNJje8Y7lnhBBPWaiDB/zCqeHDrHt9liOQ69LYygaZLMU/5IqHtWDoCHv5e7z\nzp28Ty0tnF+VSIMhXmu70/Z9o9L15HLAm29SlD9xorT3blpEeRX4WYnfRUTHoVcnsDz3bSniLnwL\nIaInkLDnOM4FAL4NYD2ARwBsBvB21y77AGwAcDeAb9XWRCFEPUmTWBN3GplfKIwwqLRVsAtiZIbp\nwRJFaJofL6MLLgA+9CHmv2sN8K2g2nH8yivRjZtKY/LMGeC73+W2q6+mAOZtY1CPmajCx9zCqTE0\n8op5Eq5ZQ+/LXK5wXWkQj6Kg1jQEpe7z/v0cu36QId7Y7xtRzIlK15PLUZSfmeHvcmH5jRDlw+yT\nsIpApY1qFhGzWebzbWtLh/AthIiWoB57HwewDsAPG2OechznXriEPWNM3nGcfwLwjhDaKISoI2kT\na+JKJRHH+wU7bAM9jDCoqEMQ600YRmYt1xhVaFqU3mRBxMizZwvjIexxU2lMvvACMDsLXHcdw5FL\nHTsMj5mwxrtXOG1r4zUUO197+/KwLYlHxQnTW9rdt2nzQIuaen7fqIf3WLnrMYZ5TOfm6NG5Y0f5\nPIz1EOWj6pMwi0ClEb/PiYEBjpXVq8sfTwvtQggguLD3HgAPG2OeKrPPawDeFfD4QogGkTaxJq54\nRRxr6OVy/FlYoAGfzfJndjZ8Az0MIzRNFeziIGpHJQxE5U0WVIxsbY1u3JQbk2fO0ENx+/Zk5ECz\nwmlbG9ueywEnT3IcnjpFzzybI9Bx2K82bAuQeFSKqLyl5fFeHfX6vlEv77FK1zM5ybl5zTXlFxaA\n6EV52yePPcZCQmH2SaPzB8cdv8+JmRmmx+joAMbGtNAuhChPUGGvD8CRCvs4ADoCHl8I0UDSJNbE\nGSviLC4yN9bwMPPvrFrFezA3Bzz3HHOCrVrFL9hhnz8MIzQq0ajexEHUrpcwEAeBOMpxU+zYAPDR\nj1Ik93OeOISxOg7n/sGDNN5s2zMZCn5vvkmhb/16YMMGJlvv7OQ+Y2MSj4oRZTXWOCwOJI2ov2/U\n23us3PXcfjs/V2z16nJtjkqUN4Y5VT/zGVYzb20tfM719RW8CGvpk0bnD447fp8Tp08zTYbjhFuk\nSwiRToIKe+MALq2wz5UAjgY8vhCiwaRFrIkzg4MUkPbt4wp3ZyfQ37/yC96JE/yCNzER7n2Iygit\nJO7EeRw1WtROojAQpkAcNna82WMnrQqnFSRfeonPhk2b+L/jMJ+erdZ6/Dj3XVqiaDA2Fq8xEiei\nCnm3x2704kCY1Ot5HeX3jUZ4j5W6npER4N57OV8b4dFpvfS+8AXgX/+ViwZWuH7uOS4ubt3KZ0gt\nfdLI/MFJoNrnRCYTbpEuIUQ6CSrsfRXAv3Uc5ypjzAHvi47j/CAYhvs/ammcECI+6EtD+GSzwNvf\nDnzykxT1urpWijjT09x26aX8In7jjeGtbNfDCE1iVbxGitpJFAbiJEZWGm+7dgGf/3xycqDlckye\nbp8Nts0bNvD3yZOF0NtcjmNjaorGcpzGSNyIMhdeoxcHaiEuz+swzxEH7zF7PY18Vro9FycmVi4k\nGsNxeugQ/9+2rXif+JkzUXnEpolqnxNaaBdCVCKosPc7AH4KwD86jvMHAC4BAMdxbgRwA4BfBfAG\ngD8Io5FCCJFGHAfo7aUXzvw8V/E7OviFL5/ntlWrmGR761bge98L3+iI0ghNS1W8en+BTpowEBcx\n0s94u/56zrmk5EAbGmIfXn01578xrH7rOBT3enp4fW+8wf36+4EPfpDFQeI0RuJG1CHvSfR4T8vz\n2kucvMca+ax0ey7a6rzu4zsOny3G0HMvm+XzZc0a4Bvf4D5+xN4oPWLTRtDnRDP2lRCiMoGEPWPM\nEcdx3gNgD4DfBmDAnHqPnft9FMBPGWPGwmqoEEKkkWee4cr4+vXLC2d0dhYKZ3R3R2t0RGGEqipe\nbSRNGGi0GOl3vH31q8Bb3gIcPtx470I/WFHiggvYzuFhXofNw5nPM/x2YICC5eAgcNddjW1zEqi3\n51Sc5y6Q3ud1HL3HGvWstJ6LV17J7xilxNk1a7jImMvx77Ex4OmnGUbc2+tP7FV16GAkYU4JIeJL\nUI89GGP2OY5zKYBbAFwHFtQ4A2AfgEeMMfPhNFEIIdKJNTo6OgrVLbdvL/1luF4hK2EcW1XxwiUJ\nX/gbKUZWM96OHwf+zb9haHucQ53dokQmwwWAbLb0AsDUFItpxF0EjgNx8TKNC2l9XsfVe6wRz0q7\nSJDJsMr23FzptrW3c0wAzO+5bh29hv2KvaoOLYQQ9SewsAcAxpg8gIfP/QghhKiCUkZHqS/4SQpZ\niUNeI9FY6jlOqx1v69YBH/94vEOdvc8Hxym/AHDyJMNzG93upNBoL9M4kebndRK8x6IeY17PxWyW\nYnapPmlt5Vx48UW+vnXryv3Kib1xyrsqhBDNQk3CnhBCiNpIgtERhDjlNRLpp9rx9vTTDFmNe6hz\nueeD11BO0vMhLiQt5D0q0vy8lvfYykWCbJZh/TMzDLf1YnP8vvkm+6Sc8FZM7K3FI7ZZ56AQQtRK\nYGHPcRwHwG0ArgYwAKCtyG7GGPPzQc8hhBBpJ41GRxzzGon0EsZ4i+u4S8LzIU3zNi3XUQ1pf17L\ne4y4Fwm6u+mFd+jQ8oI8AP+fmwNmZwveet3dpY9bSuz16xELMH9foysxCyFE0gkk7DmOcwlYKONS\nsFhGKQwACXtCCFGCNBodcc1rJNJJmsdbHJ8PxjD/lgzxdBCX+ROVUKh8isS7SHDZZdw+PMy8ox0d\nFOOmptgv7e3ARRdxv0p9UkrsreQRm9ZKzEII0QiCeuzdD2ArgD8B8BCAMQD5sBolhBDNQlqNjrSG\nGIt4ktbxFrfngwzxdNKI+VNPgVj5FAuLBHv2ANPTDLW1BTKMoYeeMSyusXs37/PMDP+vhF+x17so\nkcZKzEII0SiCCns/COBRY8yHw2yMEEI0I2k0OpIQQijSQ5rHW1yeDzLE40ut3m71nj+NEIibPZ+i\n47BP9+0DHn6Ywl1XFwtl5PMUVru62De//dtcSIhS7E1rJWYhhGgUQYW9KQAvh9kQIYRoZtJmdMQx\nhFCkl7SPtzg8H2SIx4ewvd3qOX/iIhBHNX/i+tlt5+Xhwxwj8/PA6CiwsAC0tQEDAxRXDx/mPN+1\nq3qxt5prT3MlZiGEaARBhb2vArghzIYIIYQoEEfDoBriFkIo0k29x1ujjfdGnFuGeDyIwtutnvMn\nbQJxUnJO2n7v6yv0++WXr3yWjY2x33furCz2jo3x5/LLgc9+trprT3MlZiGEaARBhb1fB/CvjuP8\nAYD/YoyZDbFNQgghUkBcQghFcxDleEuK8R4lMsQbT5TebvV6XqdJIE5SzslS/e69n7bf9+8vL/ae\nOVMouPLii0Bvr/9rT3slZiGEaASBhD1jzJjjOO8B8K8A/k/HcV4CUKyeljHGvLuWBgohhEgucQgh\nFM1DFOMtScZ7VMgQjwdRe7vV43mdFoHYLbL29sY/52TQfi8m9vb1Af39wPe/zxDeYt585a49LpWY\nhRAiTQQS9hzH+QEwHLf33KZrSuxqghxfCCFEOtEXc1FPwgi5jUM+sEYjQzwe1NvbLez7lxaB2Bjg\n6aeB++/n/WhvZ566bJY/3d3xCimutd+9Ym8uB9x7L681qMCc1krmQgjRKHwUMS/K/wBFvd8AcAGA\nNmNMpshPSteuhRBCCJF2vB5SXgPUGrC9vTRgc7nGtLMeDA4Cp0/T0C5HPQzxSm1IK0G8ruKEFYjn\n5/3tPzfHSq1xEvUWF1lV9p57gOefB5aWWFV2eprhqt/8JvDCC9wO8PkwMcF71yjC7HfHKQjM/f3l\nj1Pu2gcH6fk3Pl7+GEmsZC6EEI0gqLB3LYC9xpg/MMaMGGMWw2yUEEIIIUSjCcOATQuNNMSNAUZG\ngC9+kYLKRz/K31/8Irc3g9BXi9dVnIiTQFwt1oN3zx7g5Elg0yaO9e5uivubNjEc/9Ah5p2z3mhx\nEFnD7PcwBGZbiXliggU4vO2yxTkmJ5nqIGmVzIUQot4EFfbOAKjw1U4IIYQQIrkk3UMqTBpliFsP\nqXvvZejesWPA7Cx/P/AAt3/pS9wvzaTB2w1IpqeWFZb/7M+A++6jp974OAWwubnCXHAcYM0aYNUq\nYHiYrwPxEFnD6vewBGZbiXn3bno8HjgAHDkCjI4Chw8zlDyfD6+SuRBCpJ2gVXEfAfAux3Eyxpil\nMBskhBBCCNFo0pIPLCysIV6qSubUFAWBMA1x5ThcThryklmBeO9etrNY4YVjxygQ797tTyCOcs65\ni+ccPMh2bdjA7SdP8hmxfj232TasWQMcP87Q/J6eeOScDKvfw8y3Wa9KzEII0QwEFfZ+Ayye8aDj\nOB8zxqQ4q4wQQggh4kA9RTMVjFhJvQ3xqKvAJo3BQfbH+Hjx/rDEydvNSxgCsS3gMDTEn7NnOVcH\nB8Mdg15hua2NXm89PcDGjbwPjkMRDyiIe47D68nlgG3b4iGyhinMhykw16MSsxBCNANBhb3vAmgH\nsBPAex3HmQDDc70YY8xbgzauEo7jXAjgvwB4F4DNAHIAHgTwCWPMQlTnFUIIIUT01MuAL0UaPKTC\npp6GeL2rwMadKLzdGkEtArHbg+7UqYI4deYM5+rjjzMU/NZbeZ5acAvL/f3Ad75TOGZPDz32HAdo\nbeXfPT303AW4bWGB4elxEVlL9XtfH0U/v8/UKAXmSueW8CeEEMUJKuxlACwAOOraVuwxG/Wjd9u5\nc/wCgFcA7ADwZwBWA/iPEZ9bCCGEEBFRTwO+FGnwkCpHGEZylEZ2kByHd94ZXXsaTSPCoaMiiEBc\n79Bst7DsOPTYm5vja+3tFCKPH6eIl8/z2bRxI1/P5/kMO306XiKr47At9lm1bx8XTGzhHz/iXj0F\n5kYv7gghRFIIJOwZYy4KuR2BMMZ8BcBXXJuOOI7zhwB+CRL2hBBCiEQSl9xqafGQsiTJSFaOw+Kk\nNS+Zn/bWOzTbKyxnsxRT7RjbsIHbT56kd96JEyycsbAAvPEGsH17/ETWMBZM6iUwx2Fxp1bS/jwS\nQsSHoB57caYXwKlGN0IIIYQQwYhLbrU0eUglzUhWjsPSNGtesnqGZhcTlrNZVrudmWGBDCvu9fRw\noWF2lt57i4sU9X73d4GdO+Nzb8JaMDEmeoE5Los71ZKkxRMhRLpIlbDnOM4lAD4C4Fcb3RYhhBBC\nBCNOudXS4CGVVCNZOQ79EYd7VQ/qGZpdTFju7ga2bgUOHeKYs+JeRwdf27IFuOKKQvhtnEQ9IPiC\nSSWx6o47wheY47K4Uw1JWzwRQqQLX8Ke4zj/FYABcL8x5tS5//1gjDG/XW2jHMf5FFh5t+RxAWw3\nxgy73pMF8CSAvcaYP6/2nEIIIYSIB3HLrZZ0D6mojeSo+iPtOQ6FfxoRmu0Vlh0HuOwyvjY8zPx6\nHR1AJgNMTDAMd3Exvh68QRZMtmxpjFgVp8UdPyR18UQIkR78euzdB4ppe8Ew1/t8vs8AqFrYA/CH\nAD5XYZ9X7R+O4wwA+AaAfzbG/KLfk/zKr/wK1q5du2zb3XffjbvvvruKpgohhBAiLJKQWy0JBpm7\nP8I2kusVbpa2HIelSJpQ3AgaEZpdTFjOZIBt2zjWcjn+TE5SzPngB4Ebb4yvB2+1Cya2oEYjxKq4\nLe5UIokehiJdPPTQQ3jooYeWbTt9+nSDWiMagV9h70fP/T7q+T8SjDEnAZz0s+85T71vANgP4Oeq\nOc8f/dEf4Zprrqm+gUIIIYSIBOVWC0Y5se3rX2cesDCM5HqGm6Upx6Eb5eEKRr1Ds0sJy47D+dTd\nDfT20lvv7rvj7YXlXjDxIyR3dNAj8bHH6i9WJWFxx0vSPAxF+ijmnPTss8/i2muvbVCLRL3xJewZ\nY/6h3P+N4pyn3rcAHAar4G5yzj3RjTHjjWuZEEIIIYKi3GrVUU5s+6u/YthgNgtceCE9jspRzkhu\nRLhZGnIculEeruDUOzTbr7B8993xFpatkPz668DLL1NEbmvjvMlmKVB6226vz5j6i1VJXNxJmoeh\nECJ9JL14xo8DuPjcz+vntjlgCLC+DgkhhBAJRLnV/ONHbHvtNeCll4C+PoYROk5p0bSckdyocLOk\n5zi0KA9XbTQiNDvpwrJbSB4dZWGPtjbO8wMHKPpv3crcgVb0twsmQOPEqiQt7iTRw1AIkT4CCXvn\nwl9vB7ALwIZzm0+A4bAPG2PGwmleeYwxfwngL+txLiGEEELUh2bJrRYGfsS2rVuBffvoVXP2LEMH\nFxZWeu0A5Y3kuISbJdUYVh4uf5QSPBoVmp1UYdkrJN9wA/Ctb1HA6+nh6zMzrPILFET/Y8cYYgwA\nrT4txbDFqiQt7iTRw1AIkT6qFvYcx/k4GPbaDnrHufk/APyh4zifClINVwghhBAirbnVosCP2LZl\nC/vo6FEanxs20BPJ67XT01PeSE5yuFkcxJi4CKNxo5qcg3HwoKv22I0ae14h2RjO80OH+PeaNfwx\nhs+AgQH2vV0w2bePwpkfwhar7OLOnj3JWNxJkoehECKdVCXsOY7zCQC/CWAOwOfB/Haj514eAItq\n/DSA+xzHaTHG3BdaS4UQQgjRNMTBgE8ClcQ2YxiCt7jIfRYWlu9vDDA9DTz9NI3nX/u14kZy0sLN\n4ligIsnCaFQEyTkYdw+6uIw9r5DsOAy5BSjkjY8Dq1bRg+/kSeCpp4AdOwoLJsbUX6xy992+fXyG\nvPAC23nhhfQknJ+P3+JOkjwMhRDpxLew5zjOxaCn3mEANxpjhovs9jnHcX4HwFcA/N+O4/ylMeZw\nOE0VQgghRDMRdwO+WsJuvx+xbWqK+fU2bmRY3dRUwaBvaQHyeRrKra3cdu21pcMgkxJuFscCFUkT\nRutBWDkH49Q/cRp7xYTkTIYht9ksBbRcjmJ/Tw+3ffzjBeGx3mJVsb4bGOBz5+hR4MUXgfPPp/h4\n223xWtxR+gghRKOpxmPv3wHIAPi3JUQ9AIAxZthxnJ8B8E9gaO7Ha2uiEEIIIUQ8DLhqiNpzx4/Y\nlssBs7PApk0U8davBy6+uGDQd3ayHQMDwJEjwDPP0DOmGEkIN4trgYokCaP1Im05B+M09soJyY5D\nIa+nB9i+nfuOjVHYdz+T6ilWleu7bBa4/HL23alTwPXXx6+wjNJHCCEaTTXC3jsAHDLGPFVpR2PM\nvziOcxDADwZumRBCCCFEQqmX504lsS2Xo/cXQM+8bdtozFuD3v2enp7y4Z9JCDeLs1iUBGG0nqQt\n52Ccxl41QrLjFBeS6ylWxanvgqL0EUKIRlKNsLcdwBNV7D8E4MbqmiOEEEIIkWzq6blTTmwzhl55\nLS3Mo2c9cizec1YK/0xCuFmcxaIkCKP1JG05B+M29sIQkuslVsWt74KStvQRQojkkKli314Ax6vY\n//i59wghhBBCNA1e7xOvYWe9T3p76X2SywU/lxXbJiYYTmfM8vPYvHqzs6yI2d1d+lhzc0BXV2lD\n1Hrw7N7NsN4DBxi+OzoKHD5Mgzufb2y4WRCxqF6Uu1dAISRycpLenGnOw1VLzsG4ErexNzgI9PVR\nSC5HJSHZilV33gl86lPAH/8xf995J7eHMc/j1ndhIVFPCFEvqvHY6wSr4fpl/tx7hBBCCCGahnp6\nn1QKl7PFMd72NlbELFc910/4Z5zDzeJeoEJ5uAqkLedgo8ZeufdH5WEb9j2I+7wVQogkUI2wJ4QQ\nQgghKlDvEMNyYts73wl8/etsT6ZMnEY14Z9xDTdLglhU6l719cWv0mfUpCnnYL3GXjUFeZIiJJfq\nu1LjIu4irxBCNIJqhb2fcRznep/7XlJtY4QQQgghkkyjvE9KiW3G0Ajeu5f7RZEXL04GdhLEIsdh\nP1sRdd8+jpmhIf7fLOJe2nIORj32ghTkqdbDtlEi/eAg8Fd/BZw+zdB+W7W7rY3ty2YLaQTiLvIK\nIUQjqFbYuwTVCXYxzoQhhBBCCBEucfEaS5rXTlgkQSyqV8XkuJOEYizVEOXYq6UgTzkP22o8AKPk\n2muB++8HnnyS5+vo4Nifm+Mza3iYOUJ7epIh8gohRL2pRth7S2StEEIIIYRICXHzGotzXrywibtY\nVM+KyXEnbaJzrWOv3PPCW5DHiy3IYwz7cteu0nk77TniIjAbAzzzDAv8LCywHd3dy8XH6Wng6ad5\njb/2a/EXeYUQot74FvaMMa9F2RAhhBBCiDQQR6+xuObFC5u4i0VhCjRpIE2ic7VjDwBGRvx5y4Vd\nkCdOArOdE1dcwTYPD/Pcq1ZxfNgCQK2t3HbttckYD0IIUU9UPEMIIUTkpFVEEKIYcfcaA9I9H+Ms\nFtWzYnJSSJPo7HfsLS0BDz/s31su7II8cRKY3XNiyxb2Ty5XyLPX2cltAwPAkSP07rvwwmjaIoQQ\nSUXCnhBCiNCJS94eIRpB3L3GmoG4ikX1rpicROJwn2qh0tir1lvuttuCF+Sx7fESJ4HZOyd6eviz\nffvKvuvpac45IYQQlZCwJ4QQIlTikrdHiEYSZ6+xZiQO/dyoismisXjvXRBvOb8FeYzh5+7SEvCb\nv1l6US0uAnOlOeFtn+aEEEIUR8KeEEKI0IhT3p4gyFgQYRJXrzHRGOJSMVk0liDecn4K8iwtAS+8\nQBFu82Z6txVbVLvllvgIzJoTQggRDhL2hBBChEac8vb4QSHDop5oLIm4VUwW9SeIt9yHP1y+IM/S\nEvDii8w/t2oVcMMNPIfFu6jW2RkfMU1zQgghaifT6AYIIYRID9YTob+//H6bNwMTE9y/USwuMnn5\nvffSqDh2DJid5e8HHuD2L32J+wkhRBgMDgJ9fRRZylHPismifgQNxx4YYEGeiQlgbIxC3pkzwPe/\nD3zta8CjjwJf/SowPQ1s3UpvPTd2Ua23l4tql1wCnD5dyMNXrr1Ri2maE0IIUTsS9oQQQoRGEE+E\nRuAOGW5rY0jURRfReLroIv7f1kbvhkcfrWzGj1lBAAAgAElEQVT8CCGEH2zFZCvQeJ8txnD75CTD\nJhtRMVlEhw09nZ/3t//cHNDVBWQyLKKxezff+5WvAF/+MrBvH8dLLsd9W1qA119nSO7S0srj2UU1\noH5iWqXPT80JIYSoHYXiCiGECIUkJYZPWsiwECIdqGKyCBp62tLCsfPGG8DwMAW/9vbCj+MAGzfy\nc/XQIb5n27bl57CLaq+8QjFt716eZ/Pmlflwjx2jmLZ7d3ViWrUpLjQnhBCidiTsCSGECIUkJcEO\nkrxcwp4QIgxUMbm5GRwsny/PUsxbbnQU+Pa3gSuvLCw+AcDf/R2Qz3PMrFnD7cPDHEfesNyODopt\nViQLU0xbXKQ3/OOP8zPWHtNbwOPWWzkPLJoTQghRGxL2hBBChEZSkmAHCRm+8876tE0IkX5UMbl5\nsaGnQbzlvItS9n1tbRTkLGvWAMeP03POK+zZRbXW1nDFNHeKi3Xr2EbvdbkLeNx++0rPPc0JIYQI\nhoQ9IYQQoVGLJ0K9SFLIsBCiOdCzpXmoJfS01KJUNsvj2M8px+Hxcjlg+/bCft5FtTDFtLBTXGhO\nCCGEfyTsCSGECI1aPBHqRZJChoUQQqSPIKGn5RalslmG3s7M0FsPoEfewsJysa7Solotn3PWm/DK\nK8vvF3aKCy26CSGEhD0hhBAhkpQk2EkJGRZCCJFOqvWWK7co1d0NbN3KohnGUNzL54HOTr4vykU1\nWyzjgQeAl19mHsC2Np4jm2XbihXwCJriotriHEII0QxI2BNCCBEqSUiCnYSQYSGEEM2Dn8/EUotS\njgNcdhn/Hh7mZ9vZs8CmTcDhw9EtqtliGXYhr6WlsJB34ADbsnUr25bJFN4XNMVF0OIcQgiRdiTs\nCSGECJ24J8FOQsiwEEII4abcolQmA2zbxs+rgwdZPOP884H+/mgW1bzFMjZvpljX3V14fWaGXoQA\n22bPHSTFRa3FOYQQIs1I2BNCCBE5cftynZSQYSGEEOml2kWvSotSAMW0vj7gQx/i55zbUy5MvMUy\nJiaA555bXsBjzRr+PzzMtvf0BE9xEXZxDiGESBMS9oQQQjQlSQgZFkIIkR5qzQ9X7aJUVKIeUCiW\ncdVV/L9YAQ+Afx8/zuvu6Qme4sJ7vlKEXZxDCCGSgIQ9IYQQTUvcQ4brRbNetxBC1Iuw8sPFZVFq\naIjXYM9TrICH9dxrb6ew19sbPMWF93ylqLU4hxBCJBEJe0IIIcQ5kiZuBRXkVFVQCCHqR9j54Rq9\nKGUMPzfa25e3yVvAY9UqCpFnzwLT0xT+gqS4KHa+cgQtziGEEElFwp4QQgiREMIQ5FRVUAgh6kvU\n+eHqLV45Dj97zpxZvt1dwCOX48/CAoW2rVuB3/qtYAtHpc5XiiDFOYQQIslI2BNCCCESQBiCnKoK\nCiFE/UljfrjBQX72eL3iHIe59Hp6gO3bgaUlhuf+zM/Udk2lzuclaHEOIYRIMhGmVBVCCCFEGLgF\nubY2GocXXQQMDPD3VVdx+549wKOPcv9ieL1GvMaR9Rrp7aXXSC4X9ZUJIUT6CZIfLu4MDrL67vh4\n+f3Gx4MVywh6vqDFOYQQIslI2BNCCCFiTliCnPUa6e8vf77Nm4GJCe4vhBAiOLXkh4sz2Sxw0038\nrBgbW9leY7h9cpLe5NUWy2j0+YQQIkkoFFcIIYSIOWGFcamqoBBC1Je05odzHOC22/j7sceAAwcK\nKSLm5hgOu25dsGIZcTifEEIkCQl7QgghRMwJQ5BTVUEhhGgMac0P19LCXKy7dvFzav9+fm6sX89t\nYVdZr/f5hBAiKUjYE0IIIWJMWIJcWr1GhBAi7gwOMp3C+HjxqriWJOaHcxx6iJ93HheUol4Mqvf5\nhBAiCSjHnhBCCBFjrCA3P+9v/7k5oKuruKEzOAicPl05d1PSvEaEECLONFN+uHqLbBL1hBBCwp4Q\nQggRe8IS5FRVUAgh6o/ND7d7N5DPMz/ckSPA6Chw+DBzo+bzyg8nhBAiGArFFUIIIWJOWGFc1mtk\n716KgN4Ku8bwGJOTNDCT7DUihBBxQvnhhBBCRIWEPSGEECLmhCXIqaqgEEI0DuWHize6H0KIpCJh\nTwghhIg5YQpy8hoRQoh4oOdsYzEGyOX4WTg0xEJVq1fzc1CfhUKIJCFhTwghhEgAYQpy8hoRQgjR\nzCwuAo88wjQXp04VFsvOnAEeeIDbb76Zi2UtLY1urRBClEfCnhBCCJEQohLkJOoJIYRoFoyhqLd3\nL73dr7pqZXqL8XFgzx7+f/vt+pwUQsQbVcUVQgghEooMDSGEEKI6cjl65K1btzJnLcD/N28GenuZ\n/iKXa0w7hRDCLxL2hBBCCCGEEEI0BUNDDL/t7y+/3+bNwMQE9xdCiDgjYU8IIYQQQgghRFMwNMSc\nepW83h0H6O5mTlshhIgzEvaEEEIIIYQQQqQeY1j9tr3d3/4dHSxUZUy07RJCiFqQsCeEEEIIIYQQ\nIvU4DrB6NTA/72//uTmgq0s5bYUQ8UbCnhBCCCGEEEKIpmBwEDh9urIXnjHA1BSwa1d92iWEEEGR\nsCeEEEIIIYQQoikYHAT6+oDx8fL7HTvGyrmDg/VplxBCBEXCnhBCCCGEEEKIpiCbBW66iRVvx8ZW\neu4Zw+2Tk8DNN3N/IYSIM62NboAQQgghhBBCCFEPHAe47Tb+fuwx4MABVsltb2dOvakpeurt3g3c\neqvy6wkh4o+EPSGEEEIIIYQQTUNLC3D77cyfNzQE7N/P6rfr13Pb4CA99STqCSGSgIQ9IYQQQggh\nhBBNheMA553HnzvvZAiuhDwhRBJRjj0hhBBCCCGEEE2NRD0hRFKRsCeEEEIIIYQQQgghRAKRsCeE\nEEIIUSXeKopCCCGEEEI0AuXYE0IIIYSogDFALsck60NDwNmzwOrVTLCuJOtCCFEZ5bATQohokLAn\nhBBCCFGGxUXgkUeAxx8HTp0C1q4F2tuBM2eABx7g9ptvBm69lZUWhRBCaEFECCHqhYQ9IYQQQogS\nGENRb+9eYN064KqrlhuixgDj48CePfz/9ttlqAohhBZEhBCifkjYE0IIIYQoQS5HA3TdOmDz5pWv\nOw63GwM89hiwaxdw3nn1aZvC2oQQcUQLIkIIUV8k7AkhREqQkS9E+AwN0dvkqqvK77d5M3DwIPeP\nSthTWJsQIgnEeUFECCHSiIQ9IYRIKDLyhYieoSGGkFWaS44DdHcD+/cDd94ZfjsU1iaESApxWhAR\nQohmQMKeEEIkEBn5QkSPMRTM29v97d/RAczMhO89q7A2IUSSiMuCiBBCNAsS9oQQImHIyBeiPjgO\nvWDPnPG3/9wcsH59+PNNYW1CiKQQlwURIYRoJjKNboAQQojq8Br53i/C1sjv7aWRn8s1pp1CpIHB\nQeD0aRqd5TAGmJqiqBY2Nqytv7/8fps3AxMT3F80D5XGphD1xC6IzM/7239uDujqkqgnhBC1IGFP\nCCEShox8IerH4CDQ10cv2HIcO0axfXAw/DYECWsT6cUYYGQE+OIXgXvuAT76Uf7+4he5XUKfaDRx\nWBARQohmQsKeEEIkDBn5QtSPbBa46SaK5GNjKw1VY7h9cpJ5LbPZcM9fS1ibSB+Li8DDDwP33st8\nqseOAbOz/P3AA9z+pS9xPyEaRRwWRIQQoplQjj0hhEgQyl0jRH1xHOC22/j7sceAAwcKxWrm5uht\nsm4dsHs3i9UEnWel5mhc8vyJxqP8qiIp2AWRvXs5Lr1pQ4yhqDc5yWdn2AsiQgjRbEjYE0KIBCEj\nX4j609JCkWTXLnrM7t9PwXz9em4bHKRhWs08M4b5L4eG+HP2LOf24ODK4w0O0hurkkCvsLZ0oyIq\nIinUa0FECCEEkbAnhBAJQ0a+EPXHcSiSnHcecOedtXnBLi7S8+rxx5kv0xq8Z85wbj/+OMN6b72V\nouLgILeNjxcXdCwKa0s3Nr/qVVeV32/zZuDgQe4vYU80iigWRIQQQhRHwp4QQiQMGflCNJ5aQm6r\nDadUWJsAguVXvfPO+rRNiGKEuSAihBCiNCqeIYQQCaPRyfyFEMHxhlN6jVwbTtnbyxC2XK4Q1rZ7\nN5DPM6ztyBFgdBQ4fJjeWfm8wtrSjIqoiDSgZ5MQQkSDPPaEECJhKHeNEMklaDilwtqaG+VXFUII\nIUQpJOwJIUQCkZEvRDKpJZxSYW3NjfKrCiGEEKIYqRH2HMdpBzAE4CoAbzPGHGhwk4QQIlJk5AuR\nLGoJpyw2tzXfmwvlVxVCCCFEMdKUY+/3AYwAUDYRIURTIiNfiHhjwynn5/3tPzcHdHVpbgui/KpC\nCCGEKEYqhD3HcW4E8OMAPgZAX3+FEEIIEUsGB4HTpysXNVA4pfCiIipCCCGEKEbiQ3Edx+kH8KcA\nbgXwZoObI4QQQghREoVTilpQflUhhBBCeEm8sAfgcwD+H2PMdxzHubDRjRFCCCGEKIUNp9y7l155\nmzcvF2GMoag3OUnPK4VTCi/KryqEEEIIN7EU9hzH+RSA3yiziwGwHcBPAFgD4PfsW6s5z6/8yq9g\n7dq1y7bdfffduPvuu6s5jBBCCCGEL2w4peMAjz3GcMq1a1lQY26O4bfr1imcUvhHY0QIIZqbhx56\nCA899NCybadPn25Qa0QjcEylJC8NwHGc9QDWV9jtMIAvALjZs70FQB7Ag8aYny1x/GsAPPPMM8/g\nmmuuqbW5QgghhBBVYQyQyy0Pp+zqUjilEEIIIWrn2WefxbXXXgsA1xpjnm10e0S0xNJjzxhzEsDJ\nSvs5jvMfAPwn16YBAF8B8F4AQ9G0Tggh0oHCt4RoHAqnFEIIIYQQYRBLYc8vxpgR9/+O48yA4biv\nGmNGG9MqIYSIJ24PoaEh4OxZYPVqegfJQ0iIxqK5J4QQQgghgpBoYa8E8YstFkKIBrO4CDzyCKtx\nnjpVyOl15gzwwAPcfvPNzOnV0tLo1gohhBBCCCGE8EOqhD1jzGtgjj0hhBDnMIai3t69TMp/1VUr\nq3COjwN79vD/22+X95AQQgghhBBCJIFMoxsghBAiWnI5euStWwds3rxStHMcbu/tZZXOXK4x7RRC\nCCGEEEIIUR0S9oQQIuUMDTH8tr+//H6bNwMTE9xfCCGEEEIIIUT8kbAnhBApZ2iIOfUqhdc6DtDd\nDezfX592CSGEEEIIIYSoDQl7QgiRYoxh9dv2dn/7d3QAMzN8nxBCCCGEEEKIeCNhTwghUozjAKtX\nA/Pz/vafmwO6ulQ8QwghhBBCCCGSgIQ9IYRIOYODwOnTlb3wjAGmpoBdu+rTLiGEEEIIIYQQtSFh\nTwghUs7gINDXB4yPl9/v2DFWzh0crE+7hBDLUQi8EEIIIYSoltZGN0AIIUS0ZLPATTcBe/dSONi8\neXmorTEU9SYngd27ub8QInqMAXI5FrgZGmI+zNWrKa4PDnIuKixeCCGEEEKUQ8KeEEKkHMcBbruN\nvx97DDhwgFVy29uZU29qip56u3cDt94qIUGIerC4CDzyCPD448CpU4U5eeYM8MAD3H7zzZyTLS2N\nbq0QQgghhIgrEvaEEKIJaGkBbr+d+fOGhoD9+1n9dv16bpN3kBD1wxiKenv3UlS/6qqVXrTj48Ce\nPfz/9tv///buP8rus64T+PvjtCmkVJoG24FEQURQxIjFDCvIjxVZ0YQ0hnUNoJzFgxxcfx0QAQ8H\nUdADAoqioEdBkApt8Ky2bnBBlB/yewoF0qPFsltQCe2IbfNjW0gxffaP5wam00kmaTNz53vn9Trn\nntt57nPv/dzkdjL3PZ/nefy/CQDA4gR7AGtEVbJ5c7/s2tXDA2EBrLz9+3tH3oYNfWn8QlV9vLXe\nZbt1a///FgAAFnJ4BsAaJdSD8Zid7ctvL7jgxPOmp5ObburzAQBgMYI9AIAVNDvb99RbKlyvSs45\npy+dBwCAxQj2AABWSGv99Nt1605u/lln9f0wW1veugAAGCbBHgDACqlK1q9Pbr315OYfOZKcfbal\n8wAALE6wBwAM1hA72WZmkoMHl669teTw4X54BgAALMapuADAYLTWT5Wdne2XW27pHXAzM/2yadPq\n726bmemn4s7NLX4q7jHXX99Pzp2ZWbnaAAAYFsEeADAIR48ml1/eQ7Ebb+wHUKxblxw6lFx8cR/f\nvj3ZsSOZmhp3tce3aVOybVuyZ08PKqenbx9GttZDvQMHkt27+3wAAFiMYA8AWPVa66Henj29i23L\nljuGYXNzyaWX9q937ly9nXtVyUUX9eu9e5N9+74WUh450pffbtjQQ70dO1bv6wAAYPwEewDAqrd/\nf+/I27Bh8eWrVX28tR6Wbd2abN688nWerKmpHj5u3dqXFF9xRT/9duPGPjaUZcUAAIyXYA8AWPVm\nZ/vy2y1bTjxvejq56qo+fzUHe0kP7TZv7pddu3ooKcgDAOBUOBUXAFj1Zmf7ctWlgq+q5Jxzegfc\n0Aj1AAA4VYI9AGBVa62ffrtu3cnNP+usvqy1teWtCwAAxk2wBwCsalXJ+vXJrbee3PwjR5Kzz9YB\nBwDA5BPsAbAm6eYalpmZ5ODBpf/eWuunym7dujJ1AQDAODk8A4A1obV+sursbL/cckvvApuZcQLp\nEMzM9FNx5+YWPxX3mOuv7yfnzsysXG0AADAugj0AJt7Ro8nll/dg6MYb+yEM69Ylhw4lF1/cx7dv\nT3bsSKamxl0ti9m0Kdm2Ldmzp4e009O3D2Jb66HegQPJ7t19PgAATDrBHgATrbUe6u3Z0zu5tmy5\nYyA0N5dcemn/eudOnXurUVVy0UX9eu/eZN++rwW0R4705bcbNvRQb8cOf4cAAKwNgj0AJtr+/b0j\nb8OGxZdwVvXx1npgtHVrsnnzytfJ0qamevC6dWtfTn3FFf30240b+5gl1QAArDWCPQAm2uxsX367\nZcuJ501PJ1dd1ecL9lavqv73s3lzsmtXD2QFeQAArFVOxQVgos3O9iWbS4U/Vck55/QuMIZDqAcA\nwFom2ANgYrXWT79dt+7k5p91Vl/a2dry1gUAAHA6CPYAmFhVyfr1ya23ntz8I0eSs8/WBQYAAAyD\nYA+AiTYzkxw8uHQXXmv9ZNWtW1emLgAAgLtKsAfARJuZSc47L5mbO/G866/vJ+fOzKxMXQAAAHeV\nYA+AibZpU7JtW3LTTcl1192xc6+1Pn7gQLJ9e58PAAAwBGeMuwAAWE5VyUUX9eu9e5N9+/opuevW\n9T31Dh/unXq7dyc7dthfDwAAGA7BHgATb2oq2bmz7583O5tccUU//Xbjxj42M9M79YR6AADAkAj2\nAFgTqpLNm/tl166+BFeQBwAADJk99gBYk4R6AADA0An2AAAAAGCABHsAAAAAMECCPQAAAAAYIMEe\nAAAAAAyQYA8AAAAABkiwBwAAAAADJNgDAAAAgAES7AEAAADAAAn2AAAAAGCABHsAAACnoLVxVwAA\n3RnjLgAAAGA1ay3Zvz+Zne2XW25J1q9PZmb6ZdOmpGrcVQKwFgn2AAAAjuPo0eTyy5O3vz258cbk\nnvdM1q1LDh1KLr64j2/fnuzYkUxNjbtaANYawR4AAMAiWuuh3p49yYYNyZYtt+/May2Zm0suvbR/\nvXOnzj0AVpY99gAAABaxf3/vyNuwIZmevmNoV9XHzz032bu3zweAlSTYAwAAWMTsbF9+e8EFJ543\nPZ3cdFOfDwArSbAHAACwiNnZvqfeUstrq5JzzkmuuGJl6gKAYwR7AAAAC7TWT79dt+7k5p91VnLz\nzf1+ALBSBHsAAAALVCXr1ye33npy848cSc4+2+EZAKwswR4AAMAiZmaSgweX7sJrLTl8ONm6dWXq\nAoBjBHsAAACLmJlJzjsvmZs78bzrr+8n587MrExdAHCMYA8AAGARmzYl27b1E2+vu+6OnXut9fED\nB5Lt2/v8U2VPPgDuijPGXQAAAMBqVJVcdFG/3rs32bevn5K7bl3fU+/w4d6pt3t3smPHye2v11qy\nf38/cXd2th/QsX597/abmenhoH36ADhZgj0AAIDjmJpKdu7s++fNziZXXNFPv924sY+dShh39Ghy\n+eXJ29+e3Hjj10LCQ4eSiy/u49u395Bwamr5X1trQkSAoRPsAQAAnEBVsnlzv+zadecCsdZ6qLdn\nT+/y27Ll9o/RWt/L79JL+9c7d57+0E23IMDkEewBAACcgjsTfu3f3zvyNmxIpqcXf8zp6R6+7d3b\nuwE3b77rtR6z2roFATg9BHsAAADLbHa2B2pbtpx43vR0ctVVff7pCvZWQ7cgAMvDqbgAAADLbHa2\nd8ktFZhVJeec0/fyO10WdgsurOFYt+C55/Zuwf37T99zA7C8BHsAAADLqLW+n926dSc3/6yz+gEd\nrZ2e5z/WLXjBBSeeNz2d3HRTnw/AMAj2AAAAllFVP6Ti1ltPbv6RI8nZZ5++5bDj7BYEYHkJ9gAA\nAJbZzExy8ODSXXitJYcP98MzTodxdwsCsLwEewAAAMtsZiY577x+SMWJXH993wtvZub0PO+4uwUB\nWF6CPQAAgGW2aVOybVvfw+666+7YEddaHz9wINm+vc8/XcbVLQjA8jtj3AUAAABMuqrkoov69d69\nyb59fd+7det6l9zhw71Tb/fuZMeO09sxNzPTT8Wdm+sHZBzP6e4WBGD5CfYAAFaJ1ix/g0k2NZXs\n3Nk74mZn+yEVN9+cbNzYx2Zmeqfe6f4+cKxbcM+e/n1mevr2z9FaD/UOHOjB4unsFgRgeQn2AADG\npLVk//7+AX92tm9wv359/3C/XB/wgfGqSjZv7pddu1Ym0B9ntyAAy0uwBwAwBkePJpdf3pfH3Xjj\n1z5kHzqUXHxxH9++vX/Inpoad7XAclmpEG1c3YIALC/BHgDACmuth3p79vQumS1b7rgsbm4uufTS\n/vXOnT5srzaWTTNE4+gWBGB5TUSwV1XbkrwoyZYkX07y3tbarvFWBQCwuP37e0fehg2Lb2Rf1cdb\n68vmtm7tH8QZH8ummUTeswDDN/hgr6qelOSPkrwgybuTnJnkIWMtCgDgBGZn+/LbLVtOPG96Ornq\nqj5fsDc+lk0DAKvVoIO9qppK8jtJfrG19qZ5N316PBUBACxtdraHQ0t1y1Ql55zT98LaZS3CWFg2\nDQCsZl837gLuoguT3CdJqurKqvpCVf11VX3HmOsCAFhUa30Z57p1Jzf/rLP6BvetLW9dLG7hsumF\nod2xZdPnntuXTe/fP546AYC1aejB3v2TVJIXJ3lJkm1Jbkry3qo6d5yFAQAspqrvzXbrrSc3/8iR\n5OyzdYGNy7Fl0xdccOJ509PJTTf1+QAAK2VVBntV9bKquu0El6NV9cB8rf5fb61d1lr7RJKnJ2lJ\nfnRsLwAA4ARmZpKDB5fuwmstOXy4H57BeNyZZdMAACtlte6x96okb1xizrUZLcNNcvWxwdbarVV1\nbZJvWupJnv3sZ+ee97zn7cae/OQn58lPfvKpVQsAcApmZvryzrm5xU/FPeb66/sS0JmZlauNr7kr\ny6Z1WAKwEi655JJccskltxs7ePDgmKphHFZlsNdauyHJDUvNq6qPJzmS5EFJPjQaOzPJ/ZL881L3\nf/WrX50LL7zwLtUKAHCqNm1Ktm3rBzK0dse921rrod6BA8nu3X0+K+/YsulDh05u/pEjycaNQj0A\nVs5izUlXXnllHvawh42pIlbaqgz2TlZr7XBV/WGSX6uqz6eHec9LX4r752MtDgDgOKqSiy7q13v3\nJvv29eWe69b1cOjw4d6pt3t3smOHoGicZmaSiy9eugvPsmkAYBwGHeyNPDfJV5K8Ocndk3w0yfe3\n1vSeAgCr1tRUsnNnD4JmZ/vebDff3Du+tm7tgdKmTUK9cbNsGgBYzQYf7LXWjqZ36T1v3LUAAJyK\nqmTz5n7ZtcvebKuRZdMAwGo2+GAPAGBSCPVWH8umAYDVTLAHAAAnYNk0ALBaCfYAAGAJlk0DAKvR\n1427AAAAGBqhHgCwGgj2AAAAAGCABHsAAAAAMECCPQAAAAAYIMEeAAAAAAyQYA8AAAAABkiwBwAA\nAAADJNgDAAAAgAES7AEAAADAAAn2AAAAAGCABHsAAAAAMECCPQAAAAAYIMEeAAAAAAyQYA8AAAAA\nBkiwBwAAAAADJNgDAAAAgAES7AEAAADAAAn2AAAAAGCABHsAAAAAMECCPQAAAAAYIMEeAAAAAAyQ\nYA8AAAAABkiwBwAAAAADJNgDAAAAgAES7AEAAADAAAn2AAAAAGCABHsAAAAAMECCPQAAAAAYIMEe\nAAAAAAyQYA8AAAAABkiwBwAAAAADJNgDAAAAgAES7AEAAADAAAn2AAAAAGCABHsAAAAAMECCPQAA\nAAAYIMEeAAAAAAyQYA8AAAAABkiwBwAAAAADJNgDAAAAgAES7AEAAADAAAn2AAAAAGCABHsAAAAA\nMECCPQAAAAAYIMEeAAAAAAyQYA8AAAAABkiwBwAAAAADJNgDAAAAgAES7AEAAADAAAn2AAAAAGCA\nBHsAAAAAMECCPQAAAAAYIMEeAAAAAAyQYA8AAAAABkiwBwAAAAADJNgDAAAAgAES7AEAAADAAAn2\nAAAAAGCABHsAAAAAMECCPQAAAAAYIMEeAAAAAAyQYA8AAAAABkiwBwAAAAADJNgDAAAAgAES7AEA\nAADAAAn2AAAAAGCABHsAAAAAMECCPQAAAAAYIMEeAAAAAAyQYA8AAAAABkiwBwAAAAADJNgDAAAA\ngAES7AEAAADAAAn2AAAAAGCABHsAAAAAMECDD/aq6lur6rKq+mJVHayq91fVY8ddFxxzySWXjLsE\n1gjvNVaK9xorxXuNleK9xkrxXgNOt8EHe0nenmQqyWOTXJjkU0n2VtX54ywKjvGPNyvFe42V4r3G\nSvFeY6V4r7FSvNeA023QwV5VbUzygCQvb639Q2vt/yZ5QZL1SR4y1uIAAAAAYBkNOthrrd2Q5NNJ\nnlZV66vqjCQ/nWQuycfHWhwAAAAALDTMBXIAAA4jSURBVKMzxl3AafD4JJclOZzktvRQ7wmttYNj\nrQoAAAAAltGqDPaq6mVJnn+CKS3Jt7fWrknyuvQw75FJvpzkGel77H1Pa23uOPe/W5JcffXVp69o\nOI6DBw/myiuvHHcZrAHea6wU7zVWivcaK8V7jZXivcZKmJd13G2cdbAyqrU27hruYLR33sYlpl2b\n5DFJ3pHk3NbazfPuf02S17fWXnGcx39KkrecpnIBAAAAVpunttbeOu4iWF6rsmNvtHfeDUvNq6q7\np3fv3bbgptty4v0D35nkqUk+l97lBwAAADAJ7pbkfunZBxNuVXbsnaxRZ9/VSd6X5KVJvpTkmUl+\nLsnW1tpVYywPAAAAAJbNJJyK+4Qk90jyd0muSPKIJDuEegAAAABMskF37AEAAADAWjXojj0AAAAA\nWKsEewAAAAAwQGs+2Kuqb62qy6rqi1V1sKreX1WPHXddTKaq2lZVH6mqW6rqxqr6i3HXxOSqqnVV\n9cmquq2qtoy7HiZLVd23ql5fVdeOvqd9pqp+tarOHHdtDF9V/UxVfbaqvjT6d3PruGti8lTVL1fV\nbFUdqqq5qvrLqnrguOtislXVC0Y/m/32uGthMlXVfarq4qr699HPaJ+qqgvHXRfLZ80He0nenmQq\nyWOTXJjkU0n2VtX54yyKyVNVT0ry5iRvSPKd6Qe9vHWsRTHpXpHk80lspspy+LYkleSnkjw4ybOT\nPCvJb4yzKIavqn4syW8leXGS707/2eydVXWvsRbGJHpUkt9L8vAkP5DkzCR/U1V3H2tVTKzRLyme\nmf59DU67qjo3yQeTHEnyg0m+PckvJrlpnHWxvNb04RlVtTHJF5M8qrX2wdHYPZIcSvIDrbV3j7M+\nJkdVTSX5XJIXtdbeNN5qWAuq6oeSvCrJk5L8Y5KHttb2jbcqJl1VPTfJs1prDxh3LQxXVX0kyUdb\na78w+rqS/GuS17TWXjHW4phoo/D435I8urX2gXHXw2QZfc78eJKfTvKiJJ9orT1nvFUxaarq5Um+\nt7X2mHHXwspZ0x17rbUbknw6ydOqan1VnZH+jXYu/ZsunC4XJrlPklTVlVX1har666r6jjHXxQSq\nqguS/FGSH0/ypTGXw9pybpIbx10EwzVayv2wJH93bKz130L/bZLvHVddrBnnpne5+z7Gcnhtkv+l\neYRl9sQkH6uqt422GLiyqp4x7qJYXms62Bt5fHrocjj9A/AvJHlCa+3gWKti0tw/fcnai5O8JMm2\n9Hbo947apeF0emOS17XWPjHuQlg7quoBSX42yR+OuxYG7V7pW6TMLRifSzK98uWwVow6Q38nyQda\na/847nqYLFW1O8lDk/zyuGth4t0/vVnpn5L8lyR/kOQ1VfUTY62KZTWRwV5VvWy0IenxLkfnbYz7\nuvQfFh+ZZGuSy9L32LtgXPUzHKfwXjv2/9qvt9YuGwUuT0//rfCPju0FMBgn+16rqp9Pco8kv3ns\nrmMsmwE6xX9Dj91nU5L/nWRPa+1PxlM5wF3yuvT9QnePuxAmS1VtTg+Nn9pa+8q462HifV2Sj7fW\nXtRa+1Rr7Y+T/HH6PshMqIncY2+0d97GJaZdm+QxSd6R5NzW2s3z7n9Nktfbx4WlnMJ77fuSvDvJ\n97XWPjTv/h9J8q7W2ouWr0omwUm+1z6b5G1Jti8Yn0ryH0ne0lp7+jKUxwQ52e9rrbX/GM2/T5L3\nJPmQ9xd31Wgp7i1JntRa+6t5429Kcs/W2o+MqzYmV1X9fvrytUe11v5l3PUwWarqoiR/keRovvYL\n16n0X/AfTXJWm8QP5YxFVX0uyd+01p45b+xZSV7YWvvGsRXGsjpj3AUsh9HeeTcsNW904lVLctuC\nm27LhHYzcnqdwnvt4+knEz0oyYdGY2cmuV+Sf17GEpkQp/Be+7kkL5w3dJ8k70zy35LMLk91TJKT\nfa8lX+3Ue3eSK5L85HLWxdrQWvvK6N/MxyX5q+SrSyQfl+Q146yNyTQK9S5K8hihHsvkb5N854Kx\nNyW5OsnLhXqcZh9M/8w534PiM+dEm8hg7xR8OMmBJG+uqpem77H3zPSw5e1jrIsJ01o7XFV/mOTX\nqurz6d9Yn5ceLP/5WItjorTWPj//66q6Of23w9e21r4wnqqYRKNOvfemd4o+L8n5PX9JWmsL90eD\nU/HbSd40Cvhmkzw7yfr0D8Jw2lTV65I8OcmOJDfP24rnYGvty+OrjEkyWhl2u30bRz+f3dBau3o8\nVTHBXp3kg1X1y+kreR6e5BlJfmqsVbGs1nSw11q7oaqekOQ30k9fOzPJPyTZ0Vq7aqzFMYmem+Qr\nSd6c5O5JPprk+x3Uwgrwm2CWw+PTN2i+f5J/HY1V+vttalxFMXyttbdV1b3SD5u6IMknk/xga+2L\n462MCfSs9O9Z710w/vT0n9dgufjZjGXRWvtYVf1IkpcneVH6L2B/obV26XgrYzlN5B57AAAAADDp\n7CMHAAAAAAMk2AMAAACAARLsAQAAAMAACfYAAAAAYIAEewAAAAAwQII9AAAAABggwR4AAAAADJBg\nDwAAAAAGSLAHAAxOVT2mqm6rql8Zdy3Lrap+dfRaHz3uWgAAWF3OGHcBAMDaVFX3TfLZBcNfSnIg\nydVJPpjkT1tr1x7nIdroMulW1eusqm9I8owkFyZ5WJL7JWmttalx1gUAsBZVa6vm50QAYA2ZF+z9\nnyR/Nho+K8n5SWaSPCTJbUle0Vp74YL73i3JNyX599bajStW9BhU1XlJ7pXkX1prX14F9TwmyXvS\n/24+k+Qbk9xdsAcAsPIEewDAWMwL9t7RWvvhRW5/RJKLk3xzkpe21l68wiWyiKo6P8kDk3yitXZz\nVV2d5IGCPQCAlWePPQBgVWqtfSjJDyU5kuR5VbXp2G3H22Ovqj5XVddW1ddX1R9U1Req6v9V1fuq\n6rtHc+5dVX9WVXNVdUtVvbOqHrBYDVV1v6p6fVX9c1V9efR4b6yqb1pk7m1V9e6qOr+q/rSqvjh6\n/A+PutwWzp+uqt+tqmtG826qqn8c1X3OvHnH3WOvqp5YVe+pqgOjx/hkVT27qqYWzLvv6DH+pKq+\npar+sqpuHP3ZvKuqtiz5FzLSWvu31toHWms3n+x9AABYHoI9AGDVaq1dk+RtSdYl2XkydxnNfVeS\n701yaZLLkzwyybuq6kFJPpzk/undgH+T5PFJ9lZVzX+gqnp4kk8m+YkkH0vyO0n+PslTksxW1f0W\nef5zk3wgybcneXOS/5nke5K8o6oePO+x757kQ0l+Jn0p8muSvDHJPyX58STfsOA13WGJRVU9Z/Ta\nHpLkLUl+P8ndkvxW+p/ZYr45yUdGdb5h9Pofl+Tdo73zAAAYEIdnAACr3XvTw7WtJzn/3knen+Sp\nrbXbkqSqPpnkN9NDvTe01n7p2OSqem2SZyW5KMllo7Ez0kPBJNnaWts3b/4jkrwvye+O7jPfdyV5\nbWvt5+fNf0+S1yf52ST/YzT8uPRDJ367tfbc+Q9QVeuTfOVEL7Cq7p/k5UmuT/I9rbUvjMZfmOTv\nkuysqqe21t6y4K6PTvL81tqr5j3WS5K8MMnTk7ziRM8LAMDqomMPAFjtvjC6vtcp3Oe5x0K9kUtG\n11NJXrRg7iVJKj2UO+aJSe6b5JXzQ73kq0uEL0/yw1V1jwWPdXOSFywY+9Mk/5HFg8k7HIbRWrul\ntXbCYC/JU9Nfy28dC/VG9/1KkuePXs9/X+R+n50f6o28YTT/ZINTAABWCR17AMCkuam1tn/B2HWj\n688scrLssdvuM2/s4enLX7+tqhY7tGM6/RekD0xy5bzxa1prt8yf2Fo7WlVz6ctfj/n70fO+oKoe\nmmRvkve11q4+8Uv7qoeOrt+38IbW2oer6svz5sz3yUXGPj+6PneR2wAAWMUEewDAancscPviSc4/\ntHBgFK4telt6N12SnDlv7Lz0LrannOB5WpKzl3ruec/x1QMtWmuHRnv4vSS9O/CHklRV/WuSl7fW\n/uAEz5skXz+6njvO7XO5fVB53Prm/dk41RYAYGAsxQUAVrv/nB6iXbGCz3lo9JzbW2tTx7mc0Vp7\n/519gtba51trP9la+4Yk353keelh4u9X1Y+dRH1JcsFxbr8gxw8ZAQCYEII9AGDVqqoHJvnRJEeS\n/OUKPvVH00O2R6zEk7XW9o32vnvK6Hl3LHGXT4zmPXbhDVX1n9JPx/3EaS4TAIBVRrAHAKxKVfXI\nJO9Msi7Jy1pr1y1xl9Pp8iT/kuQ5VfWoRWo7Y1TfnVJVD66q8xe5aXp0fYdDNRZ4a/ry3udU1b3n\nPe6Z6af/tiRvurP1AQAwDPbYAwDG7QHzDqhYl+T8JDNJvjM9vHppa+2lK1lQa+3WqvqvSf46yfuq\n6t1JrkoPzO6b5FFJ/j3Jg+/kUzw+ySur6oNJrklyQ5L7p3fqfSnJa5eo79qqen6SVyXZV1VvSz+R\n94npB3pc1lp7652sbUlV9ab0P4skufdo7I3zprystXbNcj0/AACdYA8AGKeW5FuS/Mro6y8lOZDk\n00l+LcmbW2ufPcF923HGT2X+ore11j5WVd+V5JeS/HD6stwjSfanLwu+5BQef2Fd70wPCB+d5EeS\n3GP0uJckeWVr7dMneJxj9b26qj6T5DlJnpoeil4z+vr3TuY1nkLtCz1tkflPm/ffbxzVAgDAMqrW\nTuVnOAAAAABgNbDHHgAAAAAMkGAPAAAAAAZIsAcAAAAAAyTYAwAAAIABEuwBAAAAwAAJ9gAAAABg\ngAR7AAAAADBAgj0AAAAAGCDBHgAAAAAMkGAPAAAAAAZIsAcAAAAAAyTYAwAAAIABEuwBAAAAwAD9\nfzmKI26Zh89hAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create a biplot\n", + "vs.biplot(good_data, reduced_data, pca)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Observation\n", + "\n", + "Once we have the original feature projections (in red), it is easier to interpret the relative position of each data point in the scatterplot. For instance, a point the lower right corner of the figure will likely correspond to a customer that spends a lot on `'Milk'`, `'Grocery'` and `'Detergents_Paper'`, but not so much on the other product categories. \n", + "\n", + "From the biplot, which of the original features are most strongly correlated with the first component? What about those that are associated with the second component? Do these observations agree with the pca_results plot you obtained earlier?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Clustering\n", + "\n", + "In this section, you will choose to use either a K-Means clustering algorithm or a Gaussian Mixture Model clustering algorithm to identify the various customer segments hidden in the data. You will then recover specific data points from the clusters to understand their significance by transforming them back into their original dimension and scale. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 6\n", + "*What are the advantages to using a K-Means clustering algorithm? What are the advantages to using a Gaussian Mixture Model clustering algorithm? Given your observations about the wholesale customer data so far, which of the two algorithms will you use and why?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** The advantage of **K-means** is the simplicity of its underlying assumptions which allows the algorithm to be robust, reliable and fast. This also allows the model to outperform other algorithms on large datasets. In addition, while K-means always converges(locally or globally) on the K-clusters after a given number of iterations, this algorithm performs best on data that is clearly defined and well sperated.\n", + "\n", + "On the other hand, the advantage of a **Gaussian Mixture Model (GMM)**, is its capability of incorporating the covariance between the points into the model to identify more complex clusters. Unlike K-means which assumes, during each iteration, that any given point can only belong to a specific cluster, GMM also takes into account the level of certainty with which a point belongs to a given cluster. This uncertainty is also revised during each iteration making the algorithm more flexible when assigning points to a cluster and capable of performing well on in less clearly defined datasets.\n", + "\n", + "From the biplot, it can be observed that the data points are mostly densily packed on an area of the plot but do not form clearly deliniated clusters as certain points seem to be in the border bettween two or more groups. We can also observe that certain dimensions in the data (i.e. Milk-Grocery-Detergents and Fresh-Frozen) have a strong degree of correlation between each other. Based on these facts and on the previous discussion, we can safely conclude that applying a **Gausian Mixture Model** will produce the best outcome for the problem at hand. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Creating Clusters\n", + "Depending on the problem, the number of clusters that you expect to be in the data may already be known. When the number of clusters is not known *a priori*, there is no guarantee that a given number of clusters best segments the data, since it is unclear what structure exists in the data — if any. However, we can quantify the \"goodness\" of a clustering by calculating each data point's *silhouette coefficient*. The [silhouette coefficient](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html) for a data point measures how similar it is to its assigned cluster from -1 (dissimilar) to 1 (similar). Calculating the *mean* silhouette coefficient provides for a simple scoring method of a given clustering.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Fit a clustering algorithm to the `reduced_data` and assign it to `clusterer`.\n", + " - Predict the cluster for each data point in `reduced_data` using `clusterer.predict` and assign them to `preds`.\n", + " - Find the cluster centers using the algorithm's respective attribute and assign them to `centers`.\n", + " - Predict the cluster for each sample data point in `pca_samples` and assign them `sample_preds`.\n", + " - Import `sklearn.metrics.silhouette_score` and calculate the silhouette score of `reduced_data` against `preds`.\n", + " - Assign the silhouette score to `score` and print the result." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.411818864386\n" + ] + } + ], + "source": [ + "from sklearn.mixture import GMM\n", + "from sklearn.metrics import silhouette_score\n", + "\n", + "# TODO: Apply your clustering algorithm of choice to the reduced data \n", + "clusterer = GMM(n_components=2).fit(reduced_data)\n", + "\n", + "# TODO: Predict the cluster for each data point\n", + "preds = clusterer.predict(reduced_data)\n", + "\n", + "# TODO: Find the cluster centers\n", + "centers = clusterer.means_\n", + "\n", + "# TODO: Predict the cluster for each transformed sample data point\n", + "sample_preds = clusterer.predict(pca_samples)\n", + "\n", + "# TODO: Calculate the mean silhouette coefficient for the number of clusters chosen\n", + "score = silhouette_score(reduced_data,preds)\n", + "\n", + "print score" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Question 7\n", + "*Report the silhouette score for several cluster numbers you tried. Of these, which number of clusters has the best silhouette score?* " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Based on the scenarios run, the best silhouette score is achieved when using only 2 clusters:\n", + "\n", + "For **2 Clusters**, Silhouette score = 0.412\n", + "\n", + "For **3 Clusters**, Silhouette score = 0.374\n", + "\n", + "For **4 Clusters**, Silhouette score = 0.332\n", + "\n", + "For **5 Clusters**, Silhouette score = 0.295" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cluster Visualization\n", + "Once you've chosen the optimal number of clusters for your clustering algorithm using the scoring metric above, you can now visualize the results by executing the code block below. Note that, for experimentation purposes, you are welcome to adjust the number of clusters for your clustering algorithm to see various visualizations. The final visualization provided should, however, correspond with the optimal number of clusters. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAALSCAYAAACs1QrmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xm8VfP+x/HX55TmRCqkOE5CJJTpEpGha04SyjVEVPeG\nXMN1SZPp4nJlCrdRMmeo/C4arsyNuEiIlEoqmudzvr8/vt99rLPO3ufsczpDdd7Px2M/aq/1Xd/1\n3Wt91zp7ffZ3MOccIiIiIiIiIiJScWSUdwFERERERERERKRsKSAkIiIiIiIiIlLBKCAkIiIiIiIi\nIlLBKCAkIiIiIiIiIlLBKCAkIiIiIiIiIlLBKCAkIiIiIiIiIlLBKCAkIiIiIiIiIlLBKCAkIiIi\nIiIiIlLBKCAkIiIiIiIiIlLBKCAkIhWWmc0zs6HlXQ4BM9vHzHLM7NLyLouUPjP7r5lNKu9ypGJm\nl4f6uHd5l0VKT6iHk9NI1ybUhxPKolylxcwuC5+jZSnvJ63rx8yGm9nq0izLti7Uwc/LuxwiUnEp\nICQiOxwzyzKzJ81srpmtN7OVZva+mV1rZtUiSV0plqG6mfUtyweISFDlhrLaZwkrtfOxLYg8jCVe\n681sjpk9YmYNkqRvYGYPmNlsM1trZmvMbLqZ3WZmdVLsY2rI+5oilq1vrGybzOwHM3s41b620rZ+\nrh1plDHJcVtrZj+a2RvhobhKcQtgZqebWd/ibl+SzOwwMxtlZvPNbIOZLTezd8JnLLXvkmbWLBzj\n0grMOSCnCGm3mpkNC3VlhZlVTbJ+v0h9Ko17eVlce2ldP0VIt1XCjz85ZvZwknWJYF+H0i5HCtv6\nvVBEdnCVy7sAIiIlyczOBF4ENgAjgS+AKkBr4D7gIKB7GRSlBtAX/2VvShnsb7vmnPvRzKoDm8u7\nLKXMAX2AeUA1fL3sAZxuZs2dcxsAzOxI4E18PRoFzAjbHwHcAhwP/DGasZntF9b/AHQBnixG2boD\na4GawMlAL+BwYLtuGVHKosetKrAX0A4YClxvZmc65xYWI98zgJ5A/5IqaHGY2VXAE8DPwDPAt0Bt\nfP34N7AHcG8p7f4g/H10MjC/FPI/tRTyTMcW/LV9NvBybF0X/N+vfMEiKbZE4Kmbmd3jnPs5yXoR\nkQpJASER2WGYWSbwHP6BuK1z7pfI6ifMrA9wZlkVp1QyNavhnFtXGnmXpOKU0zm3qbTKs435j3Nu\nZvj/UDP7FegNnAu8EFrkvIoPjh3mnPs2su1TZnYb0C1Jvn8ClgB/BV4xs72dc0V9iH7FOfdr+P/T\nZuaATmZ2hHNuehHzqkiixw3gTjO7GB9AeQk4thh5lso9pEgFMDsGHwz6ADgjdk0PCl2PmpdmESjC\nw7qZVUsEVdPhnNtSrFJtvQ34Y3ox+QNCnYFxwPkltbPQEqmi3F9T+RI4APgbcH1sXblfa6XJzAyo\n4pzbWN5lEZFtj7qMiciO5BZ8y4YrY8EgAJxz3zvnHkm1sZn1M7N83QeSjYdgZkeY2VtmttTM1pnZ\n92Y2JKzbB/gF/yDTL9L8/47I9geY2cuh68V6M5tmZmfH9pvoYnSCmT1uZkuABUU/LEk/6yWh+9G6\nUIbnzKxRLE1rM3sxdIHZELqLPGh5u93ljgNhvqvem2a2Ct+qJXd8hND1Y3LoUvOTmd0UyyPfGEKR\nfBua2Wvh/7+Y2f3hC250+7pm9oz57oG/hW4ZLeJ5FnA89jWzl8KxWGtmH5nZGbE0ia4FF5jvtrUg\nnLsJZtYk7YOf3yT8A8m+4X13YE+gdywYBIBzbqlz7u4k+VyMDz6MB1biHyy31nvh33yfL506FNJd\nbWbfhXQfm1nrJGmSjjliKcZuMbOjQ1371XxXus/M7NpYmkKvsZDuIDObFMq3wHzAbau/HznnnsO3\noDnazE6O7K/Q68rMhuFbBxG5f2RH1t9oZh+Y2bJQ7ulmVmIBhIi++C5VXZIFeJ1zM51zIyPlMjO7\n3sy+CMf8ZzMbbGa7RLcz34XnDTM7zsw+CWnnmtmfImkuw7f2BPhv4hgk6kIkj9PCuV0PXB3WVTKz\nPqHebTDf/fEui3XhsyRjWZnZXuF+s8bMlpjZg/jWOvF7zn5m9oqZLQ7lXxCugdppHtvRwBlmtnMk\nzyOB/cK6+P52Nd+F9HPz98KV4RpoEUuXuGYuNLM7zewnfOu1pOUys13MdzWdb2ZNI8vL7Poxf/99\nKxzzheZ/vImu/8HMXk2yXdVwHJ5IYzfz8K2Gu5nZHoWUZ7iZ/ZBkeb7vCOFYDzKzjmb2ZTgOH5pZ\n87D+GjP7NhzDyZai+6OZtQzXdOL7RL5uv2ZWxcz6h/wS945/JKnXiTJ1NrMv8AHIdoUcHxGpoNRC\nSER2JGcB3zvnPinm9qnGM8iz3MzqA2/hgz73ACuATCAxBsFS/EP9YGBMeAF8HrY/GHgf+Clsvxbo\nBLxmZh2cc6/H9v942Fd/fMBrq4Qv7AOA54GngfrAtcC7Zna4c25VSHoBUD3sfzlwFL4L0V7AhZEs\nHf7vyVv4AMJfgXWRdXWB/8Mfh+eBjsC9Zva5c+6tAorq8A8WbwEfh3xPAW4AviN0iTIzw/+ifkQo\n6xx8a5sRpDcOTAPgI3wXroeBX4HLgDfM7Pwk5+NvQDZwP1AHH4gcBfyhsH2lsF/4d1n49xxgPfBK\nuhmY2dEhn+ecc5vNbAy+68nWduVJBKl+i+0vrTpkZlfir4P3gYeALOAN/DGOtl4qaCyRPMvN7FRg\nLLAI+Be+K1MzfOu/QSFNWteYme0O/Bdfz+7G19ur8Q9QJeGZkN9pwMSwLJ3rajDQEF/fu5C/BcO1\nwOv4elcFuAh40czOcs79X0kU3HwXzrbAlCJ0eXsKuBTfXe5hfP3pBRxmZsc55xJBLQc0xQcwhwDD\nga7AMDOb7pybje9qOyhsfyfwddh2diSPA/HBkyfDvueEdUNCOV4EHgCOBm4N6aOBs3jdqoYP0DYK\n5V+Mb3nXlrx/A3YC3gZ2CmX8GX/+zgJ2AdIZKHlMKHeH8PnBB3G/BmYlSZ+Fvze8hG8FuztwDT5Y\ndlCSblB9gI34+1TSFkJmVg94B38fO8E5Ny8sL8vrpzLwH/w9+CZ8V9j+ZlbJOdcvpBkF3GRmuzjn\nVkS2PQeohb/O0nEX/t6erJVQVFrfBSJOCGV5LLz/OzDOzO7Ddwl+DNgV/7diKP66jqqLD+S/iK/P\nnfCtmjc654ZD7t+5sfjWhk/i68kh+NalTfn9+0fCySGfR/F/W+YV8HlFpCJzzumll156bfcv/K+f\nOcCYImzzAzA08r4vkJ0k3WX4AMDe4f254f3hBeS9WyjPHUnWTcB/4a8cW/4+8HVsvzn4L9yWxufZ\nJ6S/oYA0e+O7It0SW34Q/oHhb5FlVZNsfwt+/ItGkWXDwvG4M0n6yWFd58iynfAP8y8mKfulSfL9\neyzPGcDUyPsOYdu/JDnO2dE8UxyTh0K6P0SW1QTmAnMjy9qE/XwBVIos7xW2P6iQ/STq0UmhfiQC\nAEuBNcCeId1yYGYR6/8jwLzI+1PCvlqkuX3fkL5pKNvewBX4B8HFQLWi1iH8g97PwPRoXQeuDMdx\nUqprLHbMs/EPq+AfPL8P56Z2AZ8n3Wssce5bxa7d35KVp4DjVjfF+jrhs75cjOvqEZLcj5LlAVTC\nB5zfKUq9KeSzHRLK/mCa6VuH9BfGlp8all8UWfZDOG7HRpbVwwdC74ssOz96/mP5JvI4Jba8Rdjf\n4Njy+0L6NpFlk2P18LqQpkNkWTXgm1g9PDTs47xiHNdhwKrw/xeBt8P/DX9fvI0k93JgpyR57R2O\n2W2xayYHP9ZTlVj6xHXWEj/20xfhszWKpSur6ydxj38otnxs+Fx1w/um4TNdHUv3OpF7dAH7+QF4\nI/x/CP6+tnvseHWIlev7JPnk+44Qtl0HNI4s6xaWLwRqRJbfFT8u/P438rrouQZm4u+9lcKyS/D3\n3T/E9n912P6YWJk2AwcUtX7qpZdeFe+lLmMisqNINLsviylsV+C/vJ9jZkVqaWlmu+IDAi8Bdcxs\nt8QL/4tzUzPbM7KJA552ziX7VbI4zg9lfym271/wDxAn5e44Mt6AmdUI6T7CP5QfniTvwSn2ucY5\nNzqS72ZgKv4X73TEB0d+L7ZtO3wg4t+xdI+R3tgQp+MDTB9FyrgW3+Ig08wOiqUf6n5v6ZAoj5He\n5zF8S5Gl+O5/o4FVQHvn3OKQZmeKUI/NrBL+l+DnI4snhX10STefULY5Ybt5+Aenb4HTXd5xWdKt\nQ0cCDfAP5tGxWkbgu7QVx+H41nj/cs4lPUZFvMZOBz52ziUG7cY5txx4tpjli1sT/s3trlOM6yqf\nWB674FsfvId/0C8pRb2ndsTfGyfGjvks/HE4KZb+K+fch4k3zrll+PqX7n0B4Afn3ITYsjPw982H\nYsv/ia+3BY0jdzqw2DmXaNVJqPtPxdIl6u8fQ0uq4hoNnBhaKZ6Mb/UzOlnCcN8EwMwyzKwuPhAx\nh+TnfbhLPS5bY+BdfJ07wTn3UyTv8rh+Hou9fxTf8u2UkOe3wCdE7mehnH8kdE8ugjvxAZe/FXG7\ngkxwzkW7cydaKb/s8na1TCyP1/EtROpYONdP4u+frcLijvjWcd/EzslkfL2OX1//dc7NQUSkEOoy\nJiI7ikQ3p3THbyg259y7ZvYycAfQ28z+C7wGjC7gC3jCfvgvbwPxX0zzZY//Erg4smze1pY5tv8M\nfJerZPvOLb+ZNcaX82z8A2c0XXwq8i3Rh4qYZMt/w7dAKMyG8IAR3zZann3wD3HxbgrJPmMy++C7\npMXNjqz/KrI8Po5TojvVrhTO4ceG+Rb/ELAkyZf2VRStHrfDd9maZr+PZWT4B4WL8a1PEt1c6sa2\n/SUSbHT41lar+b0L2L7k7/6Rbh3aO7zPk845t8XMvi/C54tqEvL8soA0RbnGUp37knqQqhX+zQ2q\nFPG6SsrMzsK3JDmMvLNRFTiFupnVjJQJfGuHZSmSF/We2hTfXSrf+G38fsyjkg14Hr+2C/NDkmWJ\n1jXxerfEzFaE9ansE98uyFMfnHPzzOyf+O6rl5jZe/iukKPc711u0/Emvm5chD+X05xzP5gfhy6P\n0GXoenwXpH3xrcLAH9tk53Bein0avovVZqCZyz/eXllfPzn4Vn9R34QyZEaWjQQeMbPGIfjSCf8c\nU6SAUDi+zwBXm1lJzY4X/5uQCBjG//atxH+ueB1f5JxbH1sWPQZT8dfXgfiAfVyy62teYYUWEQEF\nhERkB+GcW21mi9i6GW9StcKpFF/gnOtkZkfhH+oSU0zfYGbHuIJn10q0zHwAPzZOMvEHkvgXxa2R\ngf8C/keSPzyuAf8LNL7bwC74MSTm4JvZ74Vv4RFvYVrQ7CXZKZan03on1bblaWs+D/iHvpkFrP8a\nONTMKrv0ZkHqjK+7L8WW+34oZm2cc+/ix56YHJYnZm/al7wP5u+5MFuWmY0D/of/tb9VJE1adaiI\n0r720lCca6y0JO5H30Gxrqt8zOx4fFeZ/+KDA4vxD/dd8QHAgtyI7/aSMI/ULXK+wwct0wncgi/7\nEnx9THYtxB9kt/Y6goLvjSXVqjJ55s7dZGbD8V2IT8OPJfS38DdgUZp5bDI/WPJl+PPQt4DkiXG7\n/g3cjh+HKwc/1lGyelPQsXkFP8bS9fjxbqK2pesn6nl8q6/E2GhdgOkuycD7abgLPzbULfhrKa6o\n96NUdbkk6nhCBv5+3DvF9vGgVEl+bxCRHZgCQiKyIxmHn0HkaFe8gaV/AzCznWO/8mYmS+ycm4r/\n5a6P+Smmn8X/0juU1F8oE7+EbnbOTUqRpjTNxX+ZnOecK+hL/SH4XyT/5JzLbf5vZvHBMLcFP+K7\nXcSnnG6aaoMk2x+QZHmzyPqyNBY4Bt8164WCEppZDcJ09eSfvhr8ODRd8N1DPiP/YKbxgWhzOefW\nmll/YKiZdXLOJWZ8SrcO/RjSNcUHLxJlrowPRH0aSZtoZbULeQNUmbE8E/tuju8Wl0xRrrEfSV5P\nDixku3Rdir8XJB6si3JdpbqHdMA/7LWLBgzDAN6FGcHvM8dBAQ+Nzrn15mfgOsnM9nKFDyw9F9/t\n6UNXctNbFyeo8yP+4bkpkZYqoVvWLhR8Pf8IHJxkedL64Jz7Et9a7W4zOwb4ED+hwB3J0qcwGh/M\nyyZvt8+48/HjHV0dXRi6DCZrNZKKw98X5gIDzGyFc+6+yPqyvn4y8MGw6L0kcT+el1to534zs/FA\nFzMbDRyHb8VYZM65781sFH5Q7qlJkvyGrytxmcXZXxoamln1WCuhA/DnKtEKbi5+TLjJpVQGEamg\nNIaQiOxI7sOPqfDv8OU/DzNrYrGpqWMSD5u5U1yHLhZ5pi232BTKwWfh30T3jUQroTxpnXNL8Q/H\n11iSqW/DrC+laQz+V+Wkv0SHcSng9182438nrqeUf3kvhrfw4010SywI3Sv+THplfRM4yvxMXYnt\na+IH6/zBOfdVyi1Lx2B8oOafFpkGOlK2BuZn+QIfHKgBPOqcGxN/4YOk55vZTs65Fc65SbFXYV0c\nn8UPjHpLZFm6dWg6Yca92FhbV5D/YSvZtZdBmEY8Yib+Ael6M0vavaqI19ibwDFmdkRkfX18K5et\nYmad8QNofxh5iCvKdbU25LNzbHk2v8/sl9hXJj4wWCDn3LzY+f+okE36h7I+E66JPMyslZkl7o8v\nhjLlC4aYnwY+re5wMWvx9SLZPTeVN8M28Vmk/oo/buML2bahmeXORBaCrt2iicysdhi7K+pL/HVR\nlaKZjG/x85ck3beissk/Ff0F+NZlReacuxPfCuhei0xxXk7Xz1+SvN/E7zPzJTyDD9jdj2+9VmDA\nvBB34v9u3Ez+a28ufvyk3BbHYdyk9luxv4JUxgcSE/vaCR+sWoq/54G/vhqZWbf4xmZWLdRTEZEi\nUwshEdlhhF/9OuN/ZZ1tZiPxs6hUwf+a2BE/e0gqb+NbJww1s/vxX+6vwI+J0TiS7jIz6wm8Spjt\nCP/AsBL/BRnn3AYz+wq40My+xTfv/yL8ovxn/K/0/zOzp/G/yO6On7Z8L/IOLFucpuWnpBjo9FXn\n3Fdmdjv+F+198WMfrcb/QtseP5Dlg/huS3PxQYlG+PFEzqdoD2Zl5TX8r7yJAMrX+CmAE2UtLCh0\nL76rzX/MbBD+XF2OHx8jPpXv1ir0fDrnVpjZefgH10/DL9mJQVtbhrJ+EN53wc9KlurB/g183TwT\nf5yKJIz38zBwv5md5px7O1xnhdahsO3t+ADXZDN7Ad8y6Ap83Yru5ysz+xj/cLob/hxcRCxw4pxz\nZtYjfK5PzWwYvsvUgfhZ3k4PSdO9xu7Ddx15K3zOdeF4zcPPVpUOAy4wszX4e81e+G6kx+EHVO4U\nSVuU62pGyPsRM3sLP97PC/h6cUMo8+jwuRLjUqVb5rQ45z4ysz/jB/39Ooy98i3+nnci/jq7LaSd\nYmZP4rtNHYa/n24G9sffe6/FBxOL4lN8IOSWEIjfCEwsYNwjnHOfm9kI/Bgxu+Jbxx2ND+yPCd0n\nU3kaH4x4JgQ5EtPOr42laws8amYv4cd6qRzy34LvjpW2MIbX3WkkHYdvjToU3xLpEPz1P7fArfLL\nvQc5524OgbrHzWxNpNVaWV4/G/GDcw/HD7p8Bn6w6ruSjB83Hn+/uwB4s6B6UJhIK6HLyP834nng\nH8Br4W9CTXzAJtUA3ltrMXBzCOx+g7/3tQC6ud8nMHiG36ejPwn/N6ASviXrBfhuiwV1RRYRSc5t\nA1Od6aWXXnqV5As/8Oxg/Bfl9fhAzQf4L/pVIum+B4bEtj0M/2V7Pb4lwrXkn3b+MPxAlj/gvwAv\nxj8UHx7L62h8oGJ92P6OyLpMfHBqIX7Q3vn4sQzOi6TJnSI4zc+9T0if6hWd+r09/kFpVXh9iR+L\nYr9ImgPwrW9W4scGeQLfVSfPVO7hc6xMUabJwGdJlg8j75Tu+6SbL75lypbYsrr4L8wr8MGEYfgH\n8hzggjSOXSb+1+bl+Ie/j4A/xtK0ITYldaqyp9hHUc/n7vhf8GeHMq3GBwn+jn8gr49/mBpWQB7V\nwnYvF7KvvqSYPj3s61ci03OnW4dCumvw3UHW4R/4jsN395qY5By8FdItwo+X0pYk047jH0z/E873\nKnzgpUeS/JJdY+1j6Q4O5Vkb0tyKD1oVZdr5xGstvhvN6/gAQbKpwtO9rjKAf+Fbi20hMt01PmD5\ndThWX4Z99Y2mKckX/p73DH6ckg2hPkzEBwMslvZK/H1vTTg/n+IDHrtH0nwPvJ7ifhGvF13xQahN\n0bqAv//myyNy7G4P9W4DPkAxMH4+UuyvET7Yvzqcn38Cp8b2nYkPHn0TzvlS/NhQJ6ZxLFPeL5Pc\nU3pHllXBB2B+Csf2XeAoYtcSKe5TLsU9CB8gehZ/Lzm7jK+fYfjrIBN/Pa/GX/t9Ctjm0ZB3pyLU\n31T1rUmoV1vixwvf/fEz/N/vr/CB+HzXWCjLw4Wdv1TnJtTBz/BBtg/Ccfwe6J6kvJXw44B9jr/2\nl+GvtduAWgWVSS+99NIr1cuc29Za/ouIiGw9M2uP/7W+tSu8a4yIiGzjzOxBfJBwD5d/ZkkRESki\njSEkIiLbPTOrFnufAfTCtx5RM3oRke2cmVUFLsG3eFQwSESkBGgMIRER2RE8EsZN+gg/qOv5+Jm6\nbnUlN+ORiIiUsTBQ9an4sajqAoPKt0QiIjsOBYRERGRHMAk/0O6Z+HFzvsPP2vNEuZZKRES21kH4\ncfuWAL2cc5+Xc3lERHYYGkNIRERERERERKSC0RhCIiIiIiIiIiIVjAJCIiIiIiIiIiIVjAJCIiKy\nwzKznczsITNbYGY5Zja6vMtUUszseTObXd7lKE1m1j2ctwblXZaKyMwOCMe/Zxntp1Mh6RL14aDS\nLE9RmFm7UKajSin/e0P+NUojfxERqdgUEBIRkZTCg0hhr2wzO6G8y5pCD+A64Fn8dMWPlm9xSpQL\nrwKZWYaZdTWzqWb2q5mtNLOvzWyYmbUsg3JujbQ+Y7oiD++J1wYzW2xmE83sZjOruxV5H2Jmfc2s\nYUmVN+R7TaS8+c5XOL9LwvoXS3Lf26ASrQ+phGBrtJ5sNrMfzWyUme2folylZas/s5k1NbN/m9n3\noc6vMLMpZtbTzKqUUDlFRGQ7pFnGRESkIJfE3l8GnBKWW2T5ttpS5STgO+fc38q7IOXoKaAr8DIw\nAsgBDgDOwJ+3meVXtHJzP/AZ/ntQfaA1cBdwg5md75z7oBh5tgD6Av8HLCqpgkasBzqT/3ydCtQD\nNpbCPisqB6wGuuPvczsB++EDzO3M7EDn3PJyLF/azOw8YDSwBhgJfAlUB44HHgL2B64vtwKKiEi5\nUkBIRERScs7l6WJlZn8ATnHOPZfO9mZWzTm3oVQKl54GwIqSyszMDKjinNsuHr7NrDE+GPSwc653\nbPX1ZrZbORRrW/Cuc+7NyPt/htY3bwOvmlmzYjzwG6XbUuRN4ELgxtjyzsAH+IBFiUjU85LKbzu1\nMX6fM7NZwEvAH/GtDrdpZtYUeAaYA5wcq9OPhdZOpxSw/XZ1vxMRkaJTlzERESkRke4455nZP8xs\nIbDGzKqYWb0wls8XZrYmdFkYGx8LJJLHOWbWz8wWmtk6M3vLzPaJpT3QzF4zs5/NbL2ZzQ9dOqon\nxiQBjgGOiHRtOypsW9vMBpnZT6ELxWwzuzaWf9Ww3X1mdrmZfQVsANpYZGwVM7vOzH4In+tNM9vd\nvAEh/7Vm9pKZ1U5yzM42sw8ix+S1ZF1SzKyTmX0ZPuenZnZmmqclK/z7YbKV0QfEYpyjc83sTjNb\nZL4b2mgzq2Fm1czsMTP7xcxWmdmTZlY5sn38uH4TPtcnZnZMOh8q3eNWFM65mfhgSz18y5DEvrLC\nZ/gm1MWlZvacmTWKpLkG3/oC4OMk9e38UDcWhfr2jZndEh640yoevpXHXmbWJrLfakCiBUi+vMzs\nVjP70MyWh7J/YmbnxNKkrOfJCmK+i9qIkN/pkeV1zexR8+N1bQyf8YYk29cN1+nKUK6ngXzXRiFq\nm9kQ810gV4T/5+ZhvsvXwhTln2I+sFMcS/DHeUtBiczsJDN72fw9aYOZzTN/T8wXZDOzg83slVCv\n1pnZV2bWt5D8m5jvwjbDCu7m+Hd8a6DLkgU4nXPfOOceD3kWWA8sjXtmSHdGuDZXmNnqkK5vLM0N\n4XOuDefwEzPrUNBnFhGR0qEWQiIiUtIGAmuBfwA1gWx8F6U/4rst/QjsiX/o/q+ZHeScWxbLoy++\nC8y9wG7AzcBwfBewxIPwO/juTw8BvwCNgXOAWvguO5cA/fEPcH3Cv9+ZWQa+W88xwJPAF8CZwL/M\nbHfn3G2xspwBdAEeA34Dfoqsuwr/48pD+NZINwLP4bv1HAHcDTQD/ox/mPxLYkMzuwrfneuN8Plq\nhXTvm9mhzrnFId3ZIc9Pgb/huzg9CyR94I35Mfx7oZm9Ucgv/cU5R6uBO8Nn7Il/gNwZ//3iDnxX\nrKuAb4EHYtu34/dxnbaEz/6WmbVyzn2XqpDpHrdiej7kfRq+CxnAH4DDgVH4Y94kfNaWZtbcObcZ\nmAA8gT9edwDfh20Tn6Mrvu7cD6zDd/O6B6iBP47pmIOvVxcD74Zl5wJVgRdT5HMd8AI+WFUVf7zH\nmNlpzrlJsbQF1XMAzKwSvu6dBZztnJsYltcC3gfqAoPxx+kE4AEzq+ec+3tIl4Fv6dQy7Oc7oCPw\nb9JvXWX4c7QUuB04GH/c98LXX/CtYi4ws7bRz2m+xdxxwE3p7Md+b0FXGd8C637gZ+A/hWx7Ydjm\nUfyxPAb4K7AHvtttYgetgP/i75ePAwuApvj7Uf8UhToAmBjStnPOrSqgHGcCXznnPiukvFH56kG6\n90wzOwx4DZgG3AZswndJOzZS/l74e8GzwIP4gNVhwNHAmCKUU0RESoJzTi+99NJLL73SegGPANkp\n1rXDB2i+BCrH1lVJkn4/fNDnr0nymAlUiiy/CR9Yygrvjw7pTi+kvB8BU2PLLgzbXh9b/jr+AWav\n8L5qSLcKCn22AAAgAElEQVQR2DeW9oCwbgFQPbL8n2H5x4BFlr8CrI68rwOsAh6K5dswLP9XZNlX\n+ABDdD9nhv18lcY5ez4cu2X47i7XA/slSVfUczQNyIh9xmzg5VgeM6LljBzXzUCzyPKssK9RkWXX\nhDwbFPW4FVJHzyggzWzgp2h5k6Q5IeRzfmRZl1DWo5KkT5bHMPwDd0YhZU4cg4OAG/CBkEqROjs2\n/H8x8GJB+8WPhfN1Ypsi1POeYdtXgZXA8bF0d4bP0ji2/EF8kLB+7NrrGUmTgb9Os4FOaRyLHOC9\nWN27PWx/SnhfCR+4GRrb/tZQ7/YsZD/Phf3EXz8AzZPUqTznPcX57hv2XT+y7BP8dbl7AWW5J+Rf\nA2gezvMUoFYhn6F+KPPogtKlWQ/SvWfegg/u1ihgP/9H7J6sl1566aVX+b3UZUxEREraUOdcni4V\nzrlNif+bWaXQzWEF/gEr2UxX/3bOZUfev4dvGZDoApUYF+h0M6taxPKdjh+gd3Bs+YP4X/XbxZa/\n7Zz7IUVezznn1kfefxL+HeGcc7HlNcxsj/D+DHzrqefNbLfEC/9wNYPfW0JlAgfij2nufpxz44G5\nhX3Q4GJ8EOhHoAM+aPWNmf2fme0eybOo52iYcy4nyWcfGkv3CZCZZPv/OudyByN3zn2Pbz1yepK0\nCWkdt620hkgXJhdpVWVmO4Xj8hW+pU9as7TF8qgVyvw+vjVVkyKU7XlgV+CPZrYrvkXM6FSJY/vd\nBR9Q+yBFuQuq59XxLT9OxLdKeS+2viMwCVgXOy8T8GMRtQ7pzsBfe/+OlDEH3xolXQ4YHKt7j+Lv\nD2eEPLPxQZ0OsftDZ2CyS68V2UrgZPwYO+3wrZA2Af+xWPfVfAXMe9xrhGPxIT74dVhYvhdwJPCk\nc25JGuVpCUzG170/OufWFJJ+5/Dv6jTyjkpWD9K9Z67An4fzCsh/BZBpZocWsVwiIlIKFBASEZGS\nNi++IIw7crOZzcX/Ar0M382rKf4hNW5B7P1v4d9dAZxzc/APkX8Glpsfn6V76LpSmH2ABS7/YNez\nI+sL/DwFlHNl+Dfe3SaxfNfw7374B6eP8C0+Eq9f8K1P6sfKkqwL1TcFlCuX8x5xzrXCd2vrgB88\nuR2+aw1QIudoZQHLq5pZ9djyVJ9pFzPbOck6KPy4NUixXVHUIvIQHR7o7zKzn/CtXRLHpTrJj0s+\nZtbCzN4ws5X4lkxLgafD6rTyAHDOLcK3DukMXIAPULxewH7PM7OpZrYe+DWU+4oU+5xXwK774oNP\n5zrnPk6yfj+gPXnPyVJgHD6Akzgve+OvvU2x7eeQZAykAuSpO865FWF/mZHFI/FBkbMBQgDiYH4f\n66kwm51zk51zk5xz7zjnnsJfM/XxLaJSMrNM8+Mk/YoPMC4F3gqrE8c+EQj8Mo2yGD5YugQ40zm3\nLo1tEl3Jijo+07wky9K9Zz4DTAVGmh/bbZT5Wc6i7sa3lJplZl+b2cMWxtoSEZGypzGERESkpK1P\nsmwAfoDTwfhfuX/Dd0F4guQ/TmQnWQaRh0bnXC/zA9Kegx/z5THgZjM7xjn3S/GLn0+yz5OQqpyF\nlT8D/6Dcid+DXVHxB+YS4fzAsq8Dr5vZh8DJZlbfObeUkjtHhZ67rVCqxy2MTdWEvINwP4UPvjyI\nf9hdFcowhjR+WAutQ6bgH+ZvxT9wb8CPTTQgnTxiRgP/wgdhxqYKDpjZqfhufO/gu1r9jO/O0x0/\nBlBcQfV8PD6wcquZfRhtAWiWOzD2+FCuZL4uIO9S4ZybZWZf4sdNejn8uw7f7a24ec4zs+/xwcek\nzA+gPgmohg8cfRP2m4lvGVWcH2Md/jNciu++NSKNsi41s+XAIUXcV0H1oLB9rjOzY/Etq87ABxE7\nm9mbzrmzQpr/mR8A/qywvhPQy8xudc79o7j7FhGR4lFASEREysL5wJvOuZ7RhaH7Tbpdn/Jxzn0O\nfA7caWYn4h/ErsL/Cp3Kj8BRZlbV5R1kuVlkfWlLfOYlzrn3C0iXKEvTJOv2x//SXlwz8GMx7Ylv\nwVAq56gAqT7TCpd6oNx0j1txXYz/bhQdNLgD8JRz7tbEgtASLd6KKdWgyKfgW2mc7JybEcnj4GKW\n8WV8F6kj8AO4p9IB3zrr9Gj3KjP7czH2+R4+CPE6MNrMLkx0iXTOOTObhx83Jj5QdVzi2qsSayV0\nIOkPKg2+7iS6KCa6w9Unf+uWkcBAM6sHXAS86pxbW4T9JFMZ34oslVb44M8FzrlXImWMB+ESdbl5\nmvvtFfb9bzNb5ZxLJ7A1HvhTGGy9KANLx6V9zwz1YkJ43WBm/YHbzexY59yHIc1a/GDnL5jZTqGc\nfc3svlhXWxERKWXqMiYiIiUp1Zf5bGItRMzsT/gZxNLNI7rtzmHmm6j/hX8LG1PoTXx3n+6x5b3x\nLSgKm0GoMOk80LyJbzVwe5i5KY/E7EbOuXn41hVXmFmNyPqzSWPsGTPby5JPY18VaIsPKCVmxCrR\nc5SGNtGgiJk1wbcq+L8CtknruBUiadnDjE/347tVPRVZlU3+70u9k2SxFn/8doktT7SYys0jHP94\n/UtL6B7VA+hHwXU1G9/CK/c4mVlTwjg7xdjvf/CtbDoQGQMoeBE40czytZwxs10jrYgS1163yPpK\n+K6f6TKge+z674U/r2/G0j6LD6I8hh94fFQR9pN/x76+7ouf8S+VZOfb8DO+5dY959xCfIuzq81s\nzzR27/Dd/cYCz4UWYIW5B9/9c3iya8PMDjCznvk3yyete2YIHsclAlFVk6Vxfpa+r/H1dKc0yiIi\nIiVILYRERKQkpeoWNA64ycyews9OdSi+68O8IuQRdTpwn5m9hJ/SvCp+OucNFD518cv4gXUfCMGS\nxBTKpwP3hHFatkah5XfO/Wpm1+LHkZluZi8Ay/EtC87Cjzdyc0j+N/xn+sDMhgO742d9+orCf9jJ\nBN41swn4bmBLwvZd8K0y7okMTlvS56gwXwLvmNmj/D6T1SZ8N6qkinjcUjHgpDAocyV8y5LWYful\nwHnOuV8j6ccDV4VxeL4JaY/j94HNE2bhH9pvNz94+Eb8WE1T8GMSPWdmj+C/e10a1heLc25YGsnG\n4Y/pf8Jxahjef42fPaw4+33JzGrjW6msds5dH1bdjb+G3jGzofiASW2gBT6A1AAfyHsZX7ceCsGp\nb/Hd8Yo6MHytsK8x+BY2VwMTnHMTYuVdZGaTwj6W4LvPpauqmXUJ/8/AB2C74+tqvI5Gr4f/AfOB\nR8wsCx8o7ETyVkV/wV+Xs0L31x/Dfto6546OJ3bOZZvZRfhz+6qZtXPOfZDqAzjn5oSg7ijgazMb\ngb9vVMPX4/Px090XJt175l1m1hIfIJqPb33YEx90TrToetf8OGUf44Ovh+C7NI5JMraUiIiUMgWE\nRESkqApqHZJqXT/8Q18nfLecafw+7k98m1R5RJfPwHdJaI9/6FiLfyA/LUnXiDz5OedyzOx0/Pge\nHYEr8TNpXe+ceyTJtumUJ53leRM5N8zMfsRP1XwL/tfxhcC7RFoyOOfeMLPO+GN4Dz4o0Rn4E/6B\nuyD/w09Vfga+FUYD/Bgh/wMud849E0nbj60/R6kkS/82Pih0O7AXvutfJ+dcgYNlp3vcCinLDeH/\nm/FjEX2FH99niHMuPjZRd3yg8VL8jFlT8N3APiBvi4/5oTvWTfgWNJWAPzjnpobuQg8Ad+EHdx6G\nf0Aem0Z505Wnrjrn/mNm14Ty/AvfRek6fJ2JB4TSrufOuaHmB/3+p5mtdM71dc6tMbPj8OfyfOBy\nfHe1Ofjjuj5sm7j2BuFbu2zBBzsH41vLpPs5r8G3MhqAP87D8TPpJTMSf76ei81MVpha5B2AeiU+\niHFXkiBM9LhvNLMzgYeB2/CBsJfw53xano2cmx7G3BmAD5xUxQdg4zPHRfPfZGbt8cHPsWbW1jmX\nssWSc+4VM/sfvh6cj78PbMTfA67n98HNE/vJVw+KcM98BX8/vhLfsnAp/jrvGxnr6gl8970b8Md4\nAXAfBXfzFRGRUmLqqisiIiJlJXSXWg884JwrrDWPyFYxs074KeiPdM7NLO/yiIiIbEu2yzGEzKyh\nmT1jZsvMbJ2ZfRaaqIqIiIiIJFwNzFYwSEREJL/trstYmEniA2Ai0A5Yhp9tItn0syIiIiJSgYRB\nnC/Ez/h1Ej4oJCIiIjHbXUAIP7jmfOfcVZFlZTFFsIiIiJSMgsasEdlaVfDj8KzCj1kztHyLIyIi\nsm3a7sYQMrMv8bMXNAba4AeSfNw5F58CVUREREREREREktgexxDKAnrgZ644Df/Lz6AwraaIiIiI\niIiIiBRie2whtBGY6pw7PrLsYeAI59xxSdLvhh9raB5+2lgRERERERERkR1BNSATeMs5t7woG26P\nYwgtBmbHls0GOqRI3w54tlRLJCIiIiIiIiJSfrrgx9BL2/YYEPoAOCC27ABSDyw9D2DUqFE0a9as\nFIslAr179+ahhx4q72JIBaC6JmVFdU3KiuqalBXVNSkrqmtSFmbPns0ll1wCIfZRFNtjQOgh4AMz\nuxV4ETgauAroliL9BoBmzZrRsmXLsimhVFh16tRRPZMyobomZUV1TcqK6pqUFdU1KSuqa1LGijxE\nznY3qLRzbjpwHnAx8D/gNuA659zz5VowEREREREREZHtxPbYQgjn3JvAm+VdDhERERERERGR7dF2\n10JIRERERERERES2jgJCIiXo4osvLu8iSAWhuiZlRXVNyorqmpQV1TUpK6prsq0z51x5l6FUmVlL\nYMaMGTM0oJeIiIiIiIhsk+bPn8+yZcvKuxiyDapXrx5777130nUzZ86kVatWAK2cczOLku92OYaQ\niIiIiIiIyI5i/vz5NGvWjHXr1pV3UWQbVKNGDWbPnp0yKFRcCgiJiIiIiIiIlKNly5axbt06Ro0a\nRbNmzcq7OLINmT17NpdccgnLli1TQEhERERERERkR9SsWTMNdSJlRoNKi4iIiIiIiIhUMAoIiYiI\niIiIiIhUMAoIiYiIiIiIiIhUMAoIiYiIiIiIiIhUMAoIiYiIiIiIiMg2ITMzk65du5Z3MSoEBYRE\nREREREREpFR9//33XHPNNTRp0oTq1atTp04dWrduzaBBg9iwYUNuOjMrtTKsX7+e/v37M2XKlFLb\nRypDhgzhoIMOonr16uy///48+uijZV6GOE07LyIiIiIiIiKlZvz48XTq1Ilq1apx6aWX0rx5czZt\n2sT777/PzTffzFdffcXgwYNLvRzr1q2jf//+mBknnHBCqe8v4cknn6RHjx5ccMEF/PWvf+W9997j\n2muvZf369dx0001lVo44BYREREREREREdjDLli3jqaee4vVXxrBp40aOO7ENf/7zn2nWrFmZlmPe\nvHlcfPHF7LvvvkyaNIkGDRrkruvRowcDBw5k/PjxZVIW51yp5Ltu3Tpq1KiRdN2GDRu4/fbbOfvs\ns3nhhRcAuPLKK8nOzmbgwIFcffXV1KlTp1TKVRh1GRMRERERERHZDmRnZzNp0iRGjRrFe++9lzLA\n8c0333Dowc25s88dZM38liO//ImXn/w3h7ZowauvvlqmZf7HP/7B2rVrGTJkSJ5gUEJWVha9evVK\nuX2/fv3IyMgfuhg+fDgZGRnMnz8/d9n06dNp164d9evXp0aNGmRlZXHllVcC8OOPP9KgQQPMLDfP\njIwMBgwYkLv9nDlz6NixI7vtthvVq1fnyCOPZOzYsXn2O2LECDIyMpgyZQo9e/Zk9913p3HjxinL\nP3nyZH799Vd69uyZZ/mf//xn1qxZU2bBsGTUQkhERERERERkG/fOO+/Q7Yqu/Ljwp9xlBzTZj+Gj\nnuGYY47JXeac45KLLmbn5auYnrMve7ITAI9syeFPtpguF1/M/J9+ol69ennyX7FiBc888wwzZsyg\nZs2adOzYkRNPPHGrx/QZN24cWVlZHH300cXa3sySliG+fOnSpbRr144GDRpw6623sssuuzBv3jzG\njBkDQP369Rk8eDDdu3enQ4cOdOjQAYAWLVoA8OWXX9K6dWsaNWrErbfeSs2aNXnxxRdp3749Y8aM\n4dxzz82z/549e9KgQQP69u3L2rVrU5Z/1qxZALRq1SrP8latWpGRkcGsWbPo3LlzMY7M1lNASERE\nRERERGQbNm3aNM4640zaZFflBTJpQVWmsp5bf1jMqW1PZvqsmRxwwAEAzJw5k2mzZjKORrnBIICq\nZPC42503Nn/PyJEjueGGG3LXvfvuu7Q/+xzWrFnDERk1WGrZPP7447Q75VTGvP5ayu5QhVm9ejUL\nFy6kffv2W3cA0vDhhx+yYsUKJkyYwOGHH567PNECqEaNGpx//vl0796dFi1a5AvCXHfddWRmZjJt\n2jQqV/ahkh49etC6dWtuueWWfAGhevXqMXHixEIDZosXL6ZSpUr5AnA77bQTu+22G4sWLSr2Z95a\n6jImIiIiIiIisg27a+BAmrqdGOcacTTVqU4GbajJ2zmNqLM5hwcffDA37ezZswE4iZr58qlHZVpk\nVM9NA75lzTlnnkXLtTnMd1l8lN2Yb7fsw1ga8f7kyVx/3XXFLveqVasAqF27drHzSNcuu+yCc443\n3niDLVu2FGnb3377jcmTJ3PBBRewcuVKli9fnvs67bTT+Pbbb1m8eHFuejOjW7duabWeWr9+PVWq\nVEm6rlq1aqxfv75IZS1JCgiJiIiIiIiIbKOys7MZN/5NumbXogp5AxC1yOBPW2ry+iuv5C6rW7cu\nAN+zKV9em3HMZ3NuGoChQ4eyaf16XszZM7dFkWGcRW3uyK7LyBEjWLZsWbHKvvPOOwO+pVBpa9Om\nDR07dmTAgAHUq1eP9u3bM3z4cDZtyn8c4r777jucc/Tp04f69evnefXr1w+AX375Jc82mZmZaZWr\nevXqKcuwYcMGqlevnlY+pUFdxkRERERERES2UTk5OWTnZFM7RXuO2mSwceOG3Pcnn3wyDeruxl2/\nLmc0DbFIEGkIK1iyZWOe7lIff/wxJ7jq7JYkPNCB2tyy+RdmzZrFqaeeWuSy165dm4YNG/LFF18U\neduEVK1wsrOz8y178cUXmTp1KmPHjuWtt96ia9euPPjgg3z88ccFdnvLyckB4MYbb6Rdu3ZJ0+y3\n33553qcbyNlzzz3Jzs5m2bJlebqNbd68meXLl9OwYcO08ikNaiEkIiIiIiIiso3aaaedOPLwlryS\nkX/gYofjlUrrOO741rnLqlatyoODHuZ5VtHOfmIMq3iHNVzDYnryM92uuopDDz00T/qVGclnK1uJ\nD7pUq1at2OU/66yzmDt3Lp988kmxtt91112B37ufJcybNy9p+qOOOoqBAwcydepUnn32Wb744gue\nf/55IHVwKSsrC/DHum3btklfNWvm74KXjsMOOwznHNOnT8+zfNq0aeTk5HDYYYcVK9+SoICQiIiI\niIiIyDbsr7fczFs5q+nHUtbjW7OsJpvrWcLM7LX0/utf86Tv0qULr732GksP3pfzWchpLGBcg6rc\nc++9DH7yyTxp27dvzyfZa5lB/rFsHuM3dt+tXrFnCAO4+eabqVGjBldddVW+blcAc+fOZdCgQSm3\nb9KkCc45pkyZkrts7dq1jBw5Mk+6FStW5Ns2EfjauHEjQG4roXja+vXrc+KJJ/Lkk0/y888/58un\nuF3mANq2bUvdunV54okn8ix/4oknqFmzJmeeeWax895a6jImIiIiIhXWmjVreOihhxj61BAWLPqJ\nxg0b0fXqK+nduze1atUq7+KJiABw4YUXMmfOHPr27cugSqvYz6ow221gvcvh0UGPcvLJJ+fb5txz\nz+Wcc85hwYIFbNq0iczMzNzZs6I6dOjAYc0P4cyvv+EfW+pyNrX5hS08zK8MYyWPDXgs5aDI6cjK\nymL06NFcdNFFNGvWjEsvvZTmzZuzadMmPvjgA15++WWuuOKKlNufdtpp7L333nTt2pWbbrqJjIwM\nhg0bRoMGDViwYEFuuhEjRvD4449z3nnn0aRJE1avXs3TTz9NnTp1OOOMMwDf0umggw7ihRdeoGnT\nptStW5fmzZtz8MEH89hjj3H88cdzyCGH0K1bN7KysliyZAkfffQRCxcuzJ0+HsC55C2qkqlWrRoD\nBw7kL3/5C506daJdu3ZMmTKF0aNHc/fdd7PLLrsU46iWDAWERERERKRCWrNmDSe3acvnn37OJTmn\n0JLzmPnTt9zd7y7GvTaWie9OUlBIRLYZd9xxB507d2bkyJEsWrSIczIzueyyy2jcuHHKbcyMvffe\nu8B8q1SpwtuTJtL1ssu5/P/eBPxsWrvuvDMPD3yYHj16bHXZzz77bD7//HPuv/9+3njjDQYPHkyV\nKlVo3rw5DzzwAFdffXWeMke7dlWuXJnXXnuNnj17cscdd7DHHnvQu3dv6tSpQ9euXXPTtWnThmnT\npvHCCy+wZMkS6tSpw9FHH83o0aPZZ599ctMNGTKEXr16ccMNN7Bp0yb69u3LwQcfTLNmzZg+fTr9\n+/dnxIgRLF++nAYNGnD44Ydzxx135Pk86cwuFtWjRw+qVKnCP//5T8aOHUvjxo3517/+Ra9evYp6\nKEuUFSWytT0ys5bAjBkzZtCyZcvyLo6IiIiIbCMGDhzI3f3u4oOcQbRk/9zlM5hD64zr+Hu/2+jT\np085llBEKoqZM2fSqlUryvu59bvvvmPWrFnUqFGDtm3blusMWOIVVjcS64FWzrmZRclbLYRERERE\npEIa+tSQ0DJo/zzLW3EAXXJOZuhTQxQQEpEKZb/99ss3m5bsuDSotIiIiIhUSAsW/URLmiZd14r9\nWbDopzIukYiISNlRQEhEREREKqTGDRsxk2+TrpvBNzRu2KiMSyQiIlJ2FBASERERkQqp69VXMipj\nAjOYk2f5DObwbMZEul59ZTmVTEREpPRpDCERERERqZB69+7NuNfG0vrT6+iSczKt2J8ZfMOzGRNp\ncVgLevfuXd5FFBERKTVqISQiIiIiFVKtWrWY+O4k/t7vNiY2+pJeGY8wsdGX/r2mnBcRkR2cWgiJ\niIiISIVVq1Yt+vTpo9nERESkwlELIRERERERERGRCkYBIRERERERERGRCkYBIRERERERERGRCkYB\nIRERERERERGRCkYBIRERERERERHZJmRmZtK1a9fyLkaFoICQiIiIiIiIiJSq77//nmuuuYYmTZpQ\nvXp16tSpQ+vWrRk0aBAbNmzITWdmpVaG9evX079/f6ZMmVJq+0jmiSeeoFOnTuyzzz5kZGRsMwEv\nTTsvIiIiIiIiIqVm/PjxdOrUiWrVqnHppZfSvHlzNm3axPvvv8/NN9/MV199xeDBg0u9HOvWraN/\n//6YGSeccEKp7y/hvvvuY82aNRx11FH8/PPPZbbfwiggJCIiIiIiIrIDmjNnDuPGjWPTpk0ce+yx\nnHDCCaXaAieZefPmcfHFF7PvvvsyadIkGjRokLuuR48eDBw4kPHjx5dJWZxzpZLvunXrqFGjRsr1\nU6ZMoXHjxgDUrl27VMpQHOoyJiIiIiIiIrKdcM6xcePGAoMbGzdu5E9dLuHAAw/kjptv5/4+93Li\niSdy5OFHsGDBgjIsLfzjH/9g7dq1DBkyJE8wKCErK4tevXql3L5fv35kZOQPXQwfPpyMjAzmz5+f\nu2z69Om0a9eO+vXrU6NGDbKysrjyyisB+PHHH2nQoAFmlptnRkYGAwYMyN1+zpw5dOzYkd12243q\n1atz5JFHMnbs2Dz7HTFiBBkZGUyZMoWePXuy++675wZ7UilsfXlRQEhERERERCSFNWvWMHDgQPZt\nnEnlSpXZt3EmAwcOZM2aNeVdNKlgli9fzo033ki9XXejWrVqNGywJ3369ElaF6/t1YuXnn+Jp/gr\ny3NeZ3n2a0zgAZZ9uYg/ntKOLVu2JN3HwoULGT9+PP/973/ZtGlTiZR73LhxZGVlcfTRRxdrezNL\n2qopvnzp0qW0a9eO+fPnc+utt/Loo49yySWX8MknnwBQv359Bg8ejHOODh06MGrUKEaNGkWHDh0A\n+PLLLznmmGOYM2cOt956Kw8++CC1atWiffv2vP766/n237NnT77++mv69u3L3/72t2J9tvKmLmMi\nIiIiIiJJrFmzhpPbtOXzTz/nkpxTaMl5zPzpW+7udxfjXhvLxHcnUatWrfIuplQAy5cvp/Uxx7H4\nh4VclX0Gh7Av05bN4cF7HuDtN99i0pTJ1KxZE4Cff/6ZoUOHcW9ON7pxVm4eJ9OKl7f048hvuvPG\nG2/kBkIAfvvtN7pffQ0vv/IKOS4HgD3q7c7Ae+7kqquuKna5V69ezcKFC2nfvn2x80jXhx9+yIoV\nK5gwYQKHH3547vJEC6AaNWpw/vnn0717d1q0aEHnzp3zbH/dddeRmZnJtGnTqFzZh0p69OhB69at\nueWWWzj33HPzpK9Xrx4TJ04s8y54JUkthERERERERJJ46KGH+PzTz/kgZxBPcyM9OJenuZH3cx7m\n808/56GHHirvIkoFcc8997D4h4VMzX6cB+jBZfyRR7mOKdn/4rNPP+PRRx/NTfvuu++yJXsLl3Ja\nvnyO4AAOqrwv77zzTu6yzZs388dT2zHh1bd5xPViAS8ygyc5dVkLunXrxpAhQ4pd7lWrVgFlM27O\nLrvsgnOON954I2ULqFR+++03Jk+ezAUXXMDKlStZvnx57uu0007j22+/ZfHixbnpzYxu3bpt18Eg\nUEBIREREREQkqaFPDQktg/bPs7wVB9Al52SGPlX8B2WRdDnnGPbvoVyVfQb7k3csmlYcwIU5JzL8\n6WHFzv/1119n6oxpjMu+i560pxH1acn+jOBWunAKd/y9D5s3by5W3jvvvDPgWwqVtjZt2tCxY0cG\nDBhAvXr1aN++PcOHD0+r69t3332Hc44+ffpQv379PK9+/foB8Msvv+TZJjMzsxQ+RdlSQEhERERE\nRMaSYCgAACAASURBVCSJBYt+oiVNk65rxf4sWPRTGZdIKqJNmzbx68rfOIR9k64/hCwW/bwo932b\nNm2oXKkyI3k7X9rpzOGrLT9w6qmn5i4bM2YMR1Q6kD9wcJ60hnEtHVj0y2KmTp1arLLXrl2bhg0b\n8sUXXxRreyBlK5zs7Ox8y1588UU++ugjevXqxaJFi+jatStHHHEE69atK3AfOTm+m9yNN97IhAkT\n8r3eeecd9ttvvzzbVK9evZifaNuhgJCIiIiIiEgSjRs2YibfJl03g29o3LBRGZdIKqIqVaqwR73d\nmcacpOun2Rwy98nMfb/HHnvQtesV3JYxhKcZxwY24XBMYAYdK/fjoP2bcc455+SmX7duHbtlJ+/S\ntRs756YprrPOOou5c+fmDu5cVLvuuivwe/ezhHnz5iVNf9RRRzFw4ECmTp3Ks88+yxdffMHzzz8P\npA4uZWVlAbDTTjvRtm3bpK/EGE07EgWEREREREREkuh69ZWMypjAjNiD+Azm8GzGRLpefWU5lUwq\nEjPjqu7dGFbpP/nq4mRmMYb3uKp7tzzLBz3yCBdcdAFX8092yziXupXO5VRupN7BDfnPhLdyB00G\nH0CZkvE/fiN/t67X+YCdKu/EoYceWuzy33zzzdSoUYOrrroqX7crgLlz5zJo0KCU2zdp0gTnHFOm\nTMldtnbtWkaOHJkn3YoVK/Jtmyj3xo0bAT+wdLK09evX58QTT+TJJ5/k559/zpfPsmXLUpZve6ZZ\nxkRERERERJLo3bs3414bS+tPr6NLzsm0Yn9m8A3PZkykxWEt6N27d3kXUSqIW265hbfffIvjPr2W\nC3NO5BCymGZzGMN7nHTSiVxzzTV50letWpVnnh1Fn753MHbsWDZt2sSxxx7LCSeckK+VzJVXXsnd\nd97NJRvuZqT7G7tRB4djMrPoX2kknTt3pkGDBsUue1ZWFqNHj+aiiy6iWbNmXHrppTRv3pxNmzbx\nwQcf8PLLL3PFFVek3P60005j7733pmvXrtx0001kZGQwbNgwGjRowIIFC3LTjRgxgscff5zzzjuP\nJk2asHr1ap5++mnq1KnDGWecAUC1atU46KCDeOGFF2jatCl169alefPmHHzwwTz22GMcf/zxHHLI\nIXTr1o2srCyWLFnCRx99xMKFC5k1a1buvpxzRToG48aN47PPPsM5x+bNm/nss8+46667ADj33HNp\n3rx5kfIrMc65HfoFtATcjBkznIiIiIiISFGsXr3aDRgwwGU22sdVyqjkMhvt4wYMGOBWr15d3kWT\nHciMGTNcYc+ta9ascffee687sMkBbueatV2Lgw5xgwYNchs3btzq/b/11luuZvWarmpGFdfWWrpD\nKjdxgDvhuOPdqlWrtjp/55z77rvv3DXXXOOysrJctWrV3M477+yOPfZY98gjj+T5DPvuu6/r2rVr\nnm1nzZrl/vCHP7hq1aq5zMxM9/DDD7vhw4e7jIwM9+OPP+am6dKli8vMzHTVq1d3e+yxhzv33HPd\nzJkz8+T18ccfuyOPPNJVq1bNZWRkuP79++eu++GHH9zll1/uGjZs6KpWreoaN27szjnnHDdmzJjc\nNIn9FiXGcPnll7uMjIykrxEjRhS4bWF1I7EeaOmKGC8xV8TI1vbGzFoCM2bMmEHLli3LuzgiIiIi\nIiIiecycOZNWrVpRns+tv/zyC8OGDWPGjBnUqFGDjh07cvrpp1OpUqVyKY94hdWNxHqglXNuZlHy\nVpcxERERERERkQquQYMG3HLLLeVdDClDGlRaRERERERERKSCUUBIRERERERERKSCUUBIRERERERE\nRKSCUUBIRERERERERKSCUUBIRERERERERKSCUUBIRERERERERKSCUUBIRETk/9m7++C27vNO9N9z\nAJKQDZGSTckSBEhkby3FiULTgK2dNmzlFZkX20l8c9c7G4eq3ZAMR9pWpdC4N5UoWBRZ6W6qrClb\nrZRQV7yZRoqTmW43XmfcvWtDsXKtvo3BsExVr6ROJAc06cRxbAnYSGlEPPcPEhBA4uUAOAfnHOD7\nmeGMBeLld4Ajmuer5/c8REREREQ1hoEQEREREREREVGNcZq9ACIiIiIiIiIC3njjDbOXQBZj5DnB\nQIiIiIiIiIjIRM3Nzbjtttuwfft2s5dCFnTbbbehublZ9+dlIERERERERERkovXr1+ONN97Az372\nM7OXQhbU3NyM9evX6/68DISIiIiIiIiITLZ+/XpDLvqJcmFTaSIiIiIiIiKiGsNAiIiIiIiIiIio\nxjAQIiIiIiIiIiKqMQyEiIiIiIgMEI/HMTIyglZfC5wOJ1p9LRgZGUE8Hjd7aURERGwqTURERESk\nt3g8js6t2zA1OYXtiS748RlMTF/CoaGD+O53XkT47Bm43W6zl0lERDWMgRARERERkc5GR0cxNTmF\nc4nn4MfG1O07Ep9Cx+QARkdHEQqFTFwhERHVOm4ZIyIiIiLS2fjYyYXKoI0ZtwewCd2JToyPnTRp\nZURERPMYCBERERER6Sw6Mw0/7s76vQA2IjozXeEVERERZWIgRERERESkM5/Hiwlcyvq9CC7C5/FW\neEVERESZGAgREREREemsp78Xp9RXEMGFjNsjuIDTahg9/b0mrYyIiGgem0oTEREREeksGAziu995\nER2TA+hOdCKAjYjgIk6rYbS1tyEYDJq9RCIiqnGsECIiIiIi0pnb7Ub47BnsHRpE2Hseu9SjCHvP\nz/+ZI+eJqAQigqeffhrPPvtsUY979tln8fTTT0NEDFoZ2RUrhIiIiIiIDOB2uxEKhThenojKJiLY\nv38/RkZGUrcNDAwUfNyzzz6L3bt3p/584MABKIpiyBrJfmxdIaQoyh8ripJQFOUZs9dCRERERERE\npLdsYdDu3bsLVgotDoNGRkawf/9+VgpRim0rhBRFeQBAP4B/NHstREREREREREZYHAYlJcOebJVC\ni8OgpOTzDA8P67xKsiNbVggpiuIGcApAH4D3TV4OERERERERkSHuvPPOnN/LVimUKwzS8nxUW2wZ\nCAH4cwAvisgZsxdCREREREREZJSBgQEcOXIk5/fTQ6FCYdCRI0c09R6i2mC7LWOKonwWQDuA+81e\nCxEREREREZHRkiFOrrBn9+7deYMggGEQLWWrQEhRFC+AIwC6RORXZq+HiIiIiIiIqBIKhUL5MAyi\nbGwVCAEIAFgFYEK5NSvPAeC3FUX5fQANkqNlejAYRFNTU8Ztjz/+OB5//HEj10tERERERESki1JC\nIYZB1eP555/H888/n3Hb1atXS34+xU4j5xRFuR3AhkU3fx3AGwD+k4i8keUxfgCRSCQCv99v/CKJ\niIiIiIiIDFSoV1ASw6DqNzExgUAgAAABEZko5rG2aiotIv9LRP45/QvA/wLwbrYwiIiIiIiIiKja\naA15GAZRPrYKhHKwT4kTERERERERUZkWj5ov935Um+zWQ2gJEdlm9hqIiIiIiIiIKkHrdjHgVq8h\nVgpRNtVQIURERERERERU9YoJg5J2797NSiHKioEQERERERERkcWVEgYlMRSibBgIEREREREREVlY\noTDoyJEjEBEcOXIk530YCtFiDISIiIiIiIiILEpLGJTsETQwMMBQiDRjIERERERERERkUe+++27O\n76WHQUmFQqF8z0e1hYEQERERERERkUUdOHAAoVBoye3ZwqCkXKFQKBTCgQMHdF8j2RMDISIiIiIi\nIiKLUhRlSSiULwxKWhwKJcMgRVEMWyvZi9PsBRAREREREZEx4vE4RkdHMT52EtGZafg8XvT09yIY\nDMLtdpu9PNIoGQoBwJ133lkwDEpK3u/dd99lGERLKCJi9hoMpSiKH0AkEonA7/ebvRwiIiIiIqKK\niMfj6Ny6DVOTU9ie6IIfd2MCl3BKfQVt7W0Inz3DUIjI5iYmJhAIBAAgICITxTyWFUJERERERERV\naHR0FFOTUziXeA5+bEzdviPxKXRMDmB0dDRrbxoiqg3sIUREREREpJN4PI6RkRG0+lrgdDjR6mvB\nyMgI4vG42UujGjQ+dnKhMmhjxu0BbEJ3ohPjYydNWhkRWQEDISIiIiIiHSS35xwaOoiu6c04mtiF\nrunNODR0EJ1btzEUooqLzkzDj7uzfi+AjYjOTFd4RURkJdwyRkRERESkA27PIavxebyYmL6U9XsR\nXITP463wiojISlghRERERESkA27PIavp6e/FKfUVRHAh4/YILuC0GkZPf69JKyMiK2AgRERERESk\nA27PIasJBoNoa29DhzqAPhzGcbyAPhxGhzqAtvY2BINBs5dIRCZiIEREREREpAOfx4sJcHsOWYfb\n7Ub47BnsHRpE2Hseu9SjCHvPz/+ZI+eJah4DISIiIiIiHXB7DlmR2+1GKBTC5egV3Jy7icvRKwiF\nQgyDiIhNpYmIiIiI9BAMBvHd77yIjskBdCc6EcBGRHARp9Uwt+cQEZHlsEKIiIiIiEgH3J5DRER2\nwgohIiIiIiKdJLfncLw8ERFZHSuEiIiIiMh08XgcIyMjaPW1wOlwotXXgpGREcTjcbOXRkREVJVY\nIUREREREporH4+jcug1Tk1PYnuiCH5/BxPQlHBo6iO9+50VutyIiIjIAAyEiIiIiMtXo6CimJqdw\nLvEc/NiYun1H4lPomBzA6Ogot2ARERHpjFvGiIiIiMhU42MnFyqDNmbcHsAmdCc6MT520qSVERER\nVS8GQkRERERkqujMNPy4O+v3AtiI6Mx0hVdERERU/RgIEREREZGpfB4vJnAp6/ciuAifx1vhFRER\nEVU/BkJEREREZKqe/l6cUl9BBBcybo/gAk6rYfT095q0MiIiourFptJEREREZKpgMIjvfudFdEwO\noDvRiQA2IoKLOK2G0dbehmAwaPYSiYiIqg4rhIiIiIjIVG63G+GzZ7B3aBBh73nsUo8i7D0//2eO\nnCciIjIEAyEiIiIi0k08HsfIyAhafS1wOpxo9bVgZGQE8Xg87+PcbjdCoRAuR6/g5txNXI5eQSgU\nYhhERERkEG4ZIyIiIiJdxONxdG7dhqnJqYUx8p/BxPQlHBo6iO9+50VW+xAREVkIAyEiIiIi0sXo\n6CimJqdwLvEc/NiYun1H4lPomBzA6OgoQqGQiSskIiKiJG4ZIyIiIqIlStn6NT52cqEyaGPG7QFs\nQneiE+NjJ41eNhEREWnEQIiIiIiIMiS3fh0aOoiu6c04mtiFrunNODR0EJ1bt+UMhaIz0/Dj7qzf\nC2AjojPTRi6biIiIisAtY0RERESUodStXz6PFxPTl7I+ZwQX4fN4DVszERERFYcVQkRERESUodSt\nXz39vTilvoIILmTcHsEFnFbD6OnvNWzNREREVBwGQkREREQWdKuHjw9OhwOtPp+m8e16KHXrVzAY\nRFt7GzrUAfThMI7jBfThMDrUAbS1tyEYDBq5bCIiIioCAyEiIiIii5nv4fMgDg0dQNd0HEcTq9E1\nHcehoQPo3Pqg4aGQz+PFBIrf+uV2uxE+ewZ7hwYR9p7HLvUowt7z83/myHkiIiJLYSBEREREZDHz\nPXwmcS7hwwmsxU6sxAmsxWsJH6YmJzE6Omro65ez9cvtdiMUCuFy9Apuzt3E5egVhEIhhkFEREQW\no4iI2WswlKIofgCRSCQCv99v9nKIiIiICmr1+dA1HccJrF3yvT7MIux143I0atjrJ6eMTU1OoTvR\niQA2IoKLOK2G0dbexmofIiIii5iYmEAgEACAgIhMFPNYVggRERERmWxxv6Dp6Wm8jZuII7HkvgG4\nEJ2ZNXQ93PpFRERU/Th2noiIiMhEyX5BU5OT2J5YDj9WYwI38A1cRSfeRBgb4E77N7wIbsDnWVo5\npLfk1q9s4+WJiIjI/lghRERERGSiXP2CzmEDpvBLjOLd1H0juI7TagzdTz5p2gQyo9yqkmqB0+FE\nq6/F9sdERERkZewhRERERGSifP2CejGD/4IY/i+sRgQ3cFqN4UMf/jAURcE/TU0tVBS5MIEbOKXG\n0NbejvDZV223pSu9Z9H2RBf8uBsTuIRT6ivsWURERJQHewgRERER2VR0ZgZ+uLJ+734swzUksEt9\nB2GvG3uH9uOhT30S/zQ1ZdoEssX0qOyZr5KawrnEcziBp7ATj+IEnsJriWcxNTlV8WMiIiKqBQyE\niIiIiEzk83gwgRtZvxfBDWzwehfGt0cRCoVw6utfX6gMWpZx3wCWoTuxHONjY5VYNoBblT2Hhg6i\na3ozjiZ2oWt6Mw4NHUTn1m2aQ6HxsZMLlUEbM24PYBO6E50YHzvJLWUWxM+EiMjeGAgRERERmain\nvx+n1BgiuJ5xe7JfUE9/f8bt+SqKKjGBLJ1elT3RmWn4cXfW7wWwEdGZaV2CJ9KPXmEgERGZh4EQ\nERERkYmCwSDa2tvRoUbRh1kcx3vowyw61Cja2tsRDAYz7l+ooqgSE8iStFT2aOHzeDGBS1m/F8FF\nNLkbuaXMYrjNj8h8rNKjcjEQIiIiIjKR2+1G+Oyr2Du0H2GvO6NfULYG0cVWFBlJS2WPFj39vTil\nvoIILmTcHsEFnFbDSCChS/BE+tErDCSi0rBKj/TgNHsBRERERLXO7XYjFAohFAoVvG8wGMR3v/MC\nOiYn0Z1YjgBcqQlk2SqKjOTzeDExnbuyx+fxanqe+WN6ER2TA+hOdCKAjYjgIk6rYbS1t+H1H0Ty\nBk9fn/l/Sz4GKs18GPiZrN/jZ0JkvPQqvfRgdkfiU+iYHMDo6Kim/6dQbWOFEBEREZGNFFtRZKRC\nlT09/b2anmf+mM5g79Agwt7z2KUeRdh7fv7PZ89g/Tpf3i1lWoMn0k+hbX78TIiMxSo90gMDISIi\nIiKbSVYUXY5GMyaQaQmDbvWc8MHpcKDV5yu558R8/6M2dKgD6MNhHMcL6MNhdKgDaGtvK6pa6dYx\nXVk4piupY9IreCL98DMhMpdeW3aptikiYvYaDKUoih9AJBKJwO/3m70cIiIiItPM95x4EFOTkwuj\n612YwA2cWthuVkqFUTwex+joKMbHTiI6Mw2fx4ue/l4Eg0HdqpWSvTKmJqeybikLnz1T0coo4mdC\nZLZWXwu6pjfjBJ5a8r0+HEbYex6Xo1cqvzCquImJCQQCAQAIiMhEMY9lhRARERFRjZjvOTGJcwkf\nTmAtdmIlTmAtXkv4MDU5WdJkqHyVPXoptKWMwUPl8TMhMher9EgPrBAiIqKqcqtaYQzRmRn4PB70\n9PfrWq1AZFetPh+6puM4gaWj6fswi7DXjcvRqAkrIyKiYrBKj5JYIURERIRb22EODR1A13QcRxOr\n0TUdx6GhA+jc+iBHsFLNi87MwA9X1u8F4EJ0ZrbCKyIiolKwSo/0wLHzRERUNdK3w/ixLHX7jsQK\ndCxsh+EIVqplPo8HE9PZg9EIbsDnWVo5RERE1pTcssvfbahUrBAiIqKqMT42ttAod1nG7QEsQ3di\nOcbHxkxaGZE19PT345QaQwTXM26P4DpOqzH09PebtDIiIiKqNAZCRERUNbgdhii/+THx7ehQo+jD\nLI7jPfRhFh1qFG3t7UWNiSeyu3g8jpGREbT6WuB0ONHqa8HIyAi3FxNRzWAgREREVcPn8WACN7J+\nj9thiJI9J17F3qH9CHvd2KW+g7DXPf/nEkbOE9lVsiHvoaGD6JrejKOJXeia3oxDQwfRuXUbQyEi\nqgkMhIiIqGpwOwxVu1sVDT44HQ60+nxFVzTcGhMfXRgTH9V9TDyR1c33nJvCucRzOIGnsBOP4gSe\nwmuJZzE1OYXR0VGzl0hEZDgGQkREVDW4HYasSI8QJ/k8nKJHpI/xsZPYnuiCHxszbg9gE7oTnRgf\nO2nSyoiIKoeBEBERVQ1uhyGr0TPESZ+idwJrsRMrcQJr8VrCh6mFKXpkfexbYw3RmWn4cXfW7wWw\nEdGZ6QqviIio8hgIERFRVTFiO4xeFR5Ue/QMcYyeosfz3HjsW2MdPo8XE7iU9XsRXITP463wioiI\nKo+BEBERUR7cpkPl0DPEMXKKHs/zymDfGuvo6e/FKfUVRHAh4/YILuC0GkZPf69JKyMiqhwGQkRE\nRHlwmw6VQ88Qx8gpejzPK4N9a6xjvudcGzrUAfThMI7jBfThMDrUAbS1t7HnHBHVBAZCREREeRRb\n4cFtN5ROzxDHyCl6Rm9Ho3nsW2Md8z3nzmDv0CDC3vPYpR5F2Ht+/s9nz7DnHBHVBAZCREREeRRT\n4cFtN7SYniGOkVP0jNyORrewb4213Oo5d2Wh59yVsnvOERHZCQMhIiKiPIqp8OC2G1pMzxDHyCl6\nRm5Ho1vYt4aoenGCINkRAyEiIqI8iqnw4LYbWkzvEMeIKXqAsdvR6JZCfWu+8IUv8IKSyIY4QZDs\nShERs9dgKEVR/AAikUgEfr/f7OUQEZHNJLeBTU1OojuxHAG4EMENnFZjaGtvz7iodzocOJpYjZ1Y\nueR5juM97FLfwc25m5U+BKKCijnPqTzxeByjo6MYHzuJ6Mw0fB4vevp78YUvfAGPPvJpTE1OLTSe\nvhsTuIRT6itoa29jXxsii0n/u/zjt6JwiIpePIzD2AH3wj8MRXABHeoA9g4NIhQKmbxiqlYTExMI\nBAIAEBCRiWIey0CIiIiogFu/9I0hOjMLn2ctevr7EQwGMy7QWn0+dE3HcQJLt9f0YRZhrxuXo9FK\nLp1IM63nORljZGQEh4YO4lziuYwpZLygJLKeZEXQkgAXL6MNv4YwnkmFQn04jLD3PC5Hr5i7aKpa\nDITyYCBERESVMn9BdwCvJXwIpG0bi+A6OtQo9g7t5wUdEWXV6mtB1/RmnMBTS77HC0oia8kb4OIP\nsBfdCOEJAMBxvIBd6lFWCJNhygmE2EOIiIhIJ0ZOgSKi6saR9ET2MT52cqEyaGPG7QFsQje6MI6/\nTt32Oi6iyd3I3mBkSQyEiIiIdGLkFCiqvFsTY3xwOhxo9fmq/pf4Wjxmq+BIeiL7KBjg4qcA5iuG\nTuFlXItdY7NpsiQGQkRERDoyagqUXVRLoJBssnxo6AC6puM4mliNruk4Dg0dQOfWB213PFrU4jFb\nCUfSE9lHvgD3dVzEHViOPhzGR5Q/gEDwPXkGJ/AUduJRnMBTeC3xLKYmpzA6OlrhlRNlYiBERERE\nuignULBakDQ6OoqpyUmcS/hwAmuxEytxAmvxWsKHqcnJqvwlvhaP2UoKjaTnltPacOtnIbcXWVm+\nAPcUXsbPlGsIe89j2fJl+Bw60YG2jPsFsAndiU6Mj52s5LKJlmBTaSIiItJFsqn2uYQP/iKaaqeP\nPN+eWA4/XJjADZwyceR5LU6Mq8VjtppcI+k56a025Jxcpb6CtvY2hM+e4XlgEemfVXeiEwFsRAQX\ncVoNZ3xWTocTRxO7sBOPLnkONpsmvdRUU2lFUfYoivIPiqJcUxTlJ4qi/FdFUTYWfiQREREZaXxs\nbCHQWZZxewDL0J1YjvGxsayPs2JlSnRmBn64sn4vABeiM7MVXpHxSjnmSlR2Gf0aVqrIuLXl9MrC\nltMrRW05tdKxUPHmfxZO4VziOW4vsrj5noFnsHdoEGHveexSjyLsPT//57Tgjr3ByOpsFwgB+C0A\nRwH8GwBdAOoA/A9FUZblfRQREREVVM7Fd6khSqlBkpF8Hg8mcCPr9yK4AZ9naRWN2coNToo95kr0\nHDL6NZL/yn9o6KDtG75W07HUqryTq7i9yHK0BLjsDUZWZ7tASEQeFpFviMgbIvJDAL8LYD2AgLkr\nIyIisrdyL75LDVGsWI3T09+PU2oMEVzPuD2C6zitxtDT31/xNeWjR3BS7DFXorLL6NeopoqMajqW\nWlVwctXMdIVXROVibzCyOtsFQlmsACAAfm72QoiIiOys3IvvUkMUK1bjzP8S344ONYo+zOI43kMf\nZtGhRtHW3m65X+L1CE6KPeZKVHYZ/RrVVJFRTcdSq7i9qPpo3VpGZBZbB0KKoigAjgB4TUT+2ez1\nEBGRMaw2gapalXvxXWqIYsVqnPlf4l/F3qH9CHvd2KW+g7DXPf9nnZtc63F+6xGcFHvMlajsMvo1\nqqkio5qOpVZxe1F1Krc3GJGRbD1lTFGU4wA+DuAjIpL1NwJOGSMisjcrTqCqVk6HA0cTq7ETK5d8\n7zjewy71nYLTUG5NSRpDdGYWPs9a9PT3552SlP4ZdyeWIwAXIriB0zp9xplrmoHP4ym4pkrR6/zW\n47MrViWmkhn9Gq2+FnRNb8YJPJXl+Q8j7D2Py9ErJT9/JVXTsdQqrZOriIjS1dSUsSRFUf4MwMMA\nHswVBqULBoP49Kc/nfH1/PPPG79QIiIqixUnUFUrPbZu3fqX0OjCv4RGC/5LqJHVOJVofFzsetKr\ngTas82LiBxN4ObGurPPbjG13xVR2lVoFZXT1WDVVZFTTsdQqbi8iokKef/75JblGWdvYRcR2XwD+\nDEAUwK9puK8fgEQiESEiIvtp8XqlDytEcM+Sr16skBav1+wlVo3h4WFxqQ55HS0Z7/PraBGX6pDh\n4WGzl1i05DFFLHBMsVhMtvgD4lId0ocVcgxrpA8rpAGKbIFLYthU8vltxmeXfjy9C8fTixXiUh2y\nxR+QWCyW97gX3y/XawTubRenokgTVFEBaYIqTkWRwL3teR+r/RgeEJfaIL14WI5ht/TiYXGpDbLF\n/0DZz2+UWCwmw8PD0uLdIA7VIS3eDTI4OCj3twdsdyxERJWS7Wfn8PCw7X8+RiIRwXxfZb8Um60U\n+wCzvwAcA/Ae5sfP35X25cpxfwZCREQ25lBVOYY1WQOhY1gjDtVh9hKrhtYLfDuxUqCYN5yCIsNo\nLvn8Nuuzu/XLtXfhl2vvkl+uywnlYrGY3N9+nzQoamaIpqhyf/t9uhyX3S4Q0kOsPjwix7Bb+vCI\nuNQGCdzrl3379tnmWIiIKiXfz067h+a1FgglAMxl+Xoix/0ZCBER2ZiVLuhrgZYLfDupdKCYV/JD\n7AAAIABJREFU+f6pGe9f/nO5SVpQV9b5bdXPrpy/w1aq8LKK+fekQSL4mgi+l/p6HV8Vl9pQk+8J\nEVEh1fyzs5xAyHY9hEREFRFHlq+/MHttRESkPytOoKpmpfQAsrJK9tbJ1a/oT57ejw9u3IQ3p6fz\nTMxahih+lba24s9vq3525UwKO/nVrxk+2t5uzBwvf6sXVAucDidafS2c+EhEtmDmz04rs10gRERE\ntaXUUeZEQGUDxVwN0P8GG/CT2Vk4VBV/v2gdSa/jOtxQq/L8LjWUi8fj+PHMW4aPtrcbs8bLJydg\nHRo6iK7pzTia2IWu6c04NHQQnVu3MRQiIksz62en1TEQIiIiSzNyApUdlDqdieZVMlAcHxvLWc2y\nHY1QEgmcVq5lD6eUGJTG6jy/Sw3lRkdH4YSSM0x6HdcNmZ5mdT6PFxO4lPV7EVyEz+M15HXnA88p\nnEs8hxN4CjvxKE7gKbyWeBZTk1Oc+EhElmbWz06rYyBERESWZ9WtMEaz2sh0O6pkoJhva9T9WIY5\nAPXOuqzh1L333YfoW29V5fldaig3PjaGNjTgFK5mDZNO4VpNbhk1a7w8t1sUh9vriKzFrJ+dVqfI\nfOPlqqUoih9AJBKJwO/3m70cIiIizUZGRnBo6ADOJXwZVScRXEeHGsXeof0IhUImrpDStfp86JqO\n4wSWVq30YQb/DXH8XBXsHxrC+NgYojOz8HnWoqe/H8FgsGoCoGzi8ThGR0eLOm6nw4HDiWZ8C9cw\nhV+iG40IYFkqDJoD8F7sWlW/b9kkt25NTU6hO9GJADYigos4rYbR1t6G8NkzhrwnTocTRxO7sBOP\nLvnecbyAXepR3Jy7qfvr2lH6ZzQfot2NCVzCKfUVQz8jIsrNrJ+dlTAxMYFAIAAAARGZKOaxrBAi\nIiKyqHxbkD6XcOPQgQP8F2cL6envx1/kqGY5jWvwoQ4+j8f0ajcztiEWW+UXj8ex3O3GAfwMEdzA\nbVDwXxDD7+NthPELfAgN8CxsF6u1LZXzVW9nsHdoEGHveexSjyLsPT//ZwMvaLjdQjturyOyHrN+\ndlodK4SIiIgsyulw4GhiNXZi5ZLvHcd7+H28jXrVgbb29qrpN2Nn8XgcH9y4CT+ZncV2NOL+hWqW\n07iGX0cdLik3MXhgyNSqruQ2xKnJyYWw0YUJ3MApNWb6eZSsIvq/v/pVzMzMQIWCJ9B0a424ijY0\n4CtYjY+pb+GLe/4YL//1f7fksVSj+YrFg3gt8SwC2JS6PYIL6FAHsHdosKhz+1bV2ElEZ6bh83jR\n099bFdVyrb4WdE1vxgk8teR7fTiMsPc8LkevVH5hRFSVWCFERERUhfJPZ7qO9ajDawkfpiYnLfkv\nzrXWENvtduMfJiJYtXYtvoFr+H28jf+GOD6IBlxSbuLe++4zfWpYrkloZp9H6f2yVs38HA4o+Fts\nyFwjNuAf8UtsU+Z7DymKYsljqVbzvaDa0KEOoA+HcRwvoA+H0aEOoK29rahzO9/Esn/7Ww9i3759\ntu69w2lGRGQXDISIiIgsKu90JlxDD5oQwDJ0J5ZjfGzMpFVmV6sNsdesWYP/efECQsMHsN7rxc9V\n4OfeZgweGLJExUq+bYilnkd6BH/pQdW7mMPvoCn7GtGIxuWNCJ99Fae+/nXdj4Vy03O7RaEtVV8+\n9J9sPdqe2+uIyC4YCBEREVlU+nSmXswsTGeaQQfeRBsaEMSdAIAAXIjOzJq82kxWrUQpVTGhh5Wn\n4uWbhFbKeaRX8JceVEXxq7zT2q7G43C73bofCxV269y+snBuXynp3M43sWw7unCXrCyq9045E72M\nmAbGaUZEZBcMhIiIiCwqfWT6Nx3xVEPdvbgTYWyAe+F/4xHcgM+zdLKVmYyoRDFLNVU75d+GWPx5\npFfwlx7u+FCnaY16HwtVTr4tVfdjE97GzzNuyzfaPt/2s0JVReU8Nh89t9cRERmJgRAREZGFJf9F\nfu/+/ahXHfhLrEMIq9LCoOs4rcbQ099v8kozVVP1RjVVO+XdhljCeaRX8Jce7vSgCadyTWtLW6Pe\nx1JJRlSl2Em+LVWv4yJ8WL3k9ly9d8qZ6GXUNDBOMyIiu+CUMSIiIhtInw7VnViOAFyI4AZOW3Si\nUqvPh67pOE5gaZVGH2YR9rpxORo1YWXFq6Zj0fs8KjQJb5f6Dm7O3Sz4PPMTrA7gtYQPm9CATryJ\nKfwSn1uY1vY6ruObajxjjfmOZdVdd0FRgLfefhs+jwc9/f2WmV6VrEqZmpxa2DZ1NyZwCafUV9DW\n3lYTgUG+iWUfwS4MYjtCeCLjMbmmc5Uz0YvTwIioGnDKGBERUZVL3z4W9rqxS30HYa97/s8WC4MA\ne1dvLFZN1U56n0d6bdtK75e1Gz/BZ9GID6IB38A1/B7eRtizdI3ZjuUVz+2486678NO338bHZn5h\nye19RlWl2EmuLVUfUf4ACQgexL0Z98/Xe6eciV6cBkZEtY4VQkRERKQ7u1U05VNNFUJ6S6/sCaRt\nG4vgOjrUKPYO7UcoFNL0XPF4HKOjoxgfG0N0ZhY+z9qiK3uS6zmX8GVsYytlPUZhVcq8W5/3SURn\npuHzeLH9d38Hf/3iSzj/w/PoTnQigI2I4CJOq+Gc1VOsEKJaku3vTU9/r2UqIMkcrBAiIiIiS7Fb\nRVM+1VTtpLf0yp4+zC5MwptFhxpFW3t7Uc1z9ZjOZodm5qxKmZdtYtnIyAhefe1sUb13ypnoxWlg\nZCdGNUGn2sYKISIiIipZZlXHjOX6tSxWynqrqdrJCHpU9uhFr55GRmJVir7SezJprSrS47FElZbs\nvXUu8Rz82Ji6PYIL6FAHsHdo0PQKSDIHK4SIiIio4nKNY/+Tp/dj5fLl2LBunaGTk25NavLB6XCg\n1efL+3qljo+vpmonI+hR2aMXO4yiZ1WKvsqZ6MVpYGQn42MnFxrRb8y4PYBN6E50YnzspEkrIztj\nIEREREQlyTWO/W+wAQ4oWDXzc8Oa+ZYS7hQzPn5x2PThe+4BAPzwjTeyhh7FhlNkDDts78vVULlD\nHUBbe9uSbXZaR9TX8ij7bNvPtIaS5TyWqJK43ZQMISJV/QXAD0AikYgQERGRflq8XunDChHcs+Sr\nF03Sgjp5HS3iUh0yPDys62sPDw+LS3VIBC0Zr5vv9fKvd4W0eL0iIhKLxWSLPyAu1SF9WCHHsEb6\nsEJcqkO2+AMSi8UynrfY+5Nx0j+L3oXPoteCn0UsFpPh4WFp8W4Qh+qQFu8GGR4eznFuPSAutUH6\n8Igcw27pwyPiUhtki/+B1P2LuZ+W1zXqeIiodC3eDdKHR0TwvSVfvXhYWrwbTF0fmScSiQgAAeCX\nYvOSYh9gty8GQkRERPqLxWKiKIqsgkMcgLSgTobRLDFsEsE9cgxrxAEsCVv0ojXcSedQVTmGNVkf\ncwxrxKE6RKT4sKmUcIqMcyuc8C6EE17bhhPz51aDRPC1jIu/1/FVcakNqXNLy/20hkbFMup5iShT\n8u/56/hq3p8HVHvKCYTYVJqIiIiKktyuNTkxgSfQBD9cmMANnMJVtKEBYWzAbryNMH6By/h1Q5r5\nltI8WOv4+GLHzHMsPRlFawPqfPfrxZ/im44wfnNrB/7m1XO6N6Rlo1sqFkenl4ZN0CkXNpUmIiKi\nikn24vlbbMjsxYMNmMIv8Uf4CU7jGnrQBMCYZr6lNA/W2l8mOjMDP1xZnzsAF6Izsxm3FXt/Iq20\n9gzJd7/7sQn/Ovcr/H9nvm9IQ1o2uqVicHR66dgEnYzAQIiIiIiKMj42hu2J5fBjWcbtASzD59CI\nk3gfbWhAEHfq1sx3cdPm969dwzeUa0U1D55v5tuODjWKPsziON5DH2bRoUbR1t6eauZbbNhkh8lW\nZE8+jxcTuJT1exFchM/j1XS/9bgLCSQMaUhrhUa3tdxQ227m/0FhCucSz+EEnsJOPIoTeAqvJZ7F\n1ORURnN/WopN0ElvDISIiIioKPkqYu7HMtwE8Fk0Yjd+siRsKUW2iWKPXlOQEMFv4k305gl30mkd\nH1/spCo7TLYie9I6oj7v/fAKevAQfFitKVwqltbQyiisOLEXVpQRWUyxTYfs9gU2lSYiItJVvobO\nPWgSl8OhazPfXE2bv4/14lQUuaOxSdfXK3ZSlV0mW5H9pDds7sXDcgy7pRcP550y1oOHbt0P9bIF\nH5AYXpJhfF4aUKd7Q1qzG91qbbytJ05VK51Ddcgx7JZsk7KOYXequT8Racem0nmwqTQR0S23GjmO\nITozA5/Hg57+fjZyJE2S588zX/kKfnEthr/BBgTSto1FcB0dahR7h/br2kTWjKbNmX9XZuHzrM37\nd6XY+xNppbUBb/J+hw78Cf517ldYj7vQg4cQxL+HG8sQx3X8OrrxHuL4HXxUt4a0Zje61dp4Wy/p\nxztf6XI3JnAJp9RX2NhXg0p/XkS1oJym0qZX8Bj9BVYIERGJSGYVQ99CFUMfqxhqVuZobrVgdU36\n+fMkmqQVddIARXrQJMewRnp0PpfS16cAsgqOjLH22cbFU3mKPSfImvJV7DQo9bJt2zbdK1vMrJip\ndMWJkRVJtVB5ZHZFGVE1YoVQHqwQIiKaNz8a+ADOJXwZzYCNquog60r25JmanFxoDr0wNl6Noa29\nPaOfTtLi8yeOBEbxLr6G9zGDm1jZ2ITdT31Rl4qYnOtLG2vvXmiDyLHu+ijlnCBrMrtiJ9+6jBg1\nXumKE6Ner1Yqj6x6fhLZGcfOExFRQfkmQ3UnlmN8bMyklVGlJcfGn0v4MsfGJ3yYmpzMOuVl8fnj\nhooQVmEad6MHK9DYuFy3SSc517cw1n4U7wJg02Y9lXJOkDVZcTS1kY2ftTbe1otRU9VqZfqWFc9P\nolrGCiEiohrhdDhwNLEaO7FyyfeO4z3sUt/BzbmbJqyMKk1rT570vjhvTk/jz7GmIudPvvX1YgYv\nIo5PYzlOs3pFN2b0aaLaMV9heBDnEs9lTJeK4AI61AHsHRosuUK10hUnRlUIsbcOEZWKFUJERFSQ\nz+PBBG5k/V4EN+DzLL0QpOoSj8cxMjKC6elpjON9tOJfMIJ3EEcidZ8AXIjOzC4Z9d4MR8XOn0Jj\n7X+Guazj4ish+R62+nxwOhxo9fkwMjJi+9HW+d7z5DlBVCojR41XuuLEqIokrZVHt34GtcDpcKLV\n11IVP4OIyBwMhIiIakRPfz9OqTFEcD3jdm67qSyzAoX0gOd3sQJ/hjXowu04hHfRiTdToVAy3Fm8\nhWgXVuIUrlbk/CkUXm7wenE5GtVti5pWi0Oyo4nV6JqO49DQAXRufdASF2Slnl8MjMlIRm2zSnK7\n3QiFQrgcvYKbczdxOXrFsJ8PwWAQbe1t6FAH0IfDOI4X0IfD6FAH0NbehmAwWNLz+jxeTOBS1u9F\ncBE+j9fQrXdEVJsYCBER1Yj5X2Lb0aFG0YdZHMd76MMsOtQo2trbS/4llrQzM1DQ0pcnPdxZ3DMo\niDvRhgZ04E30YsbQ86fc8NKo0M3qfXbKOb8YGJunFio+tIQddmFURZKWyqNa6TNERBVU7Fgyu32B\nY+eJiFIyx0o7OFa6wubH7TokgpaM0emvo0VcqsPQcbstXq/0YUXG6ya/etAkTVAzxsY7VFWOYU3G\n/WLYJMNollVwiAJkPX9isZgMDg7KisZGcQKiAHJHY5Ps27dP83mWPuK+FysWxto3ST0UcQKy3uPJ\ned6mP7Zv4bF9WJFxbEa8h71YIS1eb8nPrYdyzq9s73mvTu8b5Tb/vj8gLrVB+vCIHMNueRIfF6fi\nkNvqllXN6HGOGi8s/VzoxcNyDLulFw+LS22QLf4HJBaLSYt3g/ThkYz3MPnVi4elxbvB1GMgInOU\nM3be9MDG6C8GQkREZBVmBgrZAp7k1zGsEQXIuOgsZa2xWEwC97ZLHRRpgJIRyNRDkfvb7ysqFBoe\nHpYNnnWiAFIHRQJwyTNYnTfgMTJ0K/QeOlRHyc+th3LPLwbGlZcMSiL4mgi+JzG8JFvwAXGhPhUQ\n9eGRjFDAam6dNxtyBlhawg4q/F46VIccw+6sgdAx7Db9Z5De0t8PVVFlRWOT3NG4smqCUiK9MBBi\nIERERDZgZqBQbFiQDFZeLyJYGR4eFqeiiAtK1kCmQVGLDmSKDXiMDN2sXiFk9cCKllpc8TGMz4sL\n9amAyOqVNNkqnHIFWFqCI6ux2pprqUIo/dx6Eh+XVqyVBtRV5XlGVK5yAiH2ECIiIqoQMxv3Ftsj\nppSeU+NjY7hdFGxHU6r3UFIAy9AtyzE+NlbUuhf3Msp4vsTS5zNyWpbV++ywMbT9LG62PI6/xnZ8\n1JBpXEYopqdNJRs/68GKDZyNmnBmRenn1v8GD2bxLv4Gf5b3PLPiZ0ZkdQyEiIiIKsTMQKHYgGe+\nceqr86PdvW7sUt8pOOo9OjODGBJ5R8YXG8gUG/AYGYpofQ+1NLU2ovG11QMrWmpxs+UofmroNK58\nSmlubeQ4+WLp3Zzbig2cjZpwZkXp55bWoNSKnxmR5RVbUmS3L3DLGBERWYTZjXuN7hHT4vVKE9S8\nzauL3VZVia1uxSj0Hmppam1U42uzzy8q3uJmyy1YU7EtQYv7syyrc0mDUlzvIqv0tClm65pWVt2e\nVStbotLPLQdUTeeZVT8zIqOxhxADISIisolqbtyb3kMoWyBTTg+h19GSmnLWgjpxLDSa3rZtW5bm\nteaFIlp6HhnZ+Noq51fmOtSqOs/1tLjZ8ifxG9KAOsOncS0OUJKvm613UYNSLysam7KGD1ouwCsR\nYCxuzq3H+1Zq2FUrgU06I445/dzSGpRaJaAkqjQGQgyEiIiITLd4ylgPmjJGxhczZSz9Obf4A9Kg\nqHIXHEuml2ULeswMRbRUNFm9OXW5jKqAKub17RRG5arU6TFwGtfiACXfBXcPHpIm3J616qbQOPl9\n+/bpXrmTjRGVIaU8pxGVSlZn1DGnn1vJZuuFglJWCFGtYiDEQIiIiCyunItUO13gxmIxGRwclBWN\njeKEIgogdzQ2yb59+8raCrVt2zapzzG9TI+tYHrRMumr2qeBGVkBVYjZYZQeKlFhsvjCueCWHKhZ\nL8ILjZMfHBzUvXInGyMqQwqFXbkmLVbieK3EqGNOP7eewMdSU8Z68JAcw27pyRKUlvKZJV+r1qq6\nqLowEGIgRERka3YKPEpRzkVqNVzg6sEuVTWsEDL3szIzjLKTxQFKwS05WLP0toVqi3wX05Wq2Ei+\nTgwvyTA+Ly1YIw6o0oI14sfdst7jK/o5C4Vd2X72Gn28egUXegYgRh7z4uq5FY1NckfjypxrLuUz\nq8WqLqo+DIQYCBER2VYtBB7lXKSadYFrtZDOLlU1WppaG9342mxmflbVHrbpZfFFfN4tOaiXYXw+\n43atVTd6Vu7kCzGGh4elQamXzWgRFzIbY9fDKb613pJ+dhUbnBjZw0av4ELvAMRqfXuK/czKrXBi\ndRFZAQMhBkJERLalNfCwWkBRjHIuUs24wF0c0j2D1RKAS+oWtoBt8Kyr+Htvlwt9LU2tzW58bbRK\nfFa5fh6oimKL4NBsi7fWxPCSbMEHxIX6jC059XDKFnxAYnhJSqn8WBw8pVfwqFDE5ajX9LOkUIgx\nOzsr69auk3o4Td2uZWS1jF5bs/Te4mX3vj3lrJ/VRWQVDIQYCBER2ZaWi0e7VxGVUzFhRrVFekgX\nwybZApe4NDRzNlIxVTVmh4damlpbZRqYEYyugMr386AOijyJpqx/X3osFByaLXkhWw9nqnn1E/iY\nOOGQ29AgDqiyCk0CQL6PIyUHB+nBU3roVOzFs5YQY4NnvekTz0rtYaOFXsGL3gGOkcdcCeVUONVi\nzyiyJgZC+Q6QgRARkaVpCTzs3hekmIqJxWGGy+GoeGVM+nqH0SwuCzRz1lpVY/fwsBoYXQGV7+dB\nPRRxAlnDqAZFtfzPikqKxWKyorFJmnB7qt/OMD6fqgbqwcNyW92yovqxZHuNZAWFH3fnHG1f6OJZ\nS4ih5cI+vZrjGfxHCWCj1MEpChTZ4FlfdjhUSg8brfTamqX3Fi8jj7kSygnI7F4dRdWjnEBIBRER\nkYl8Hg8mcCPr9yK4AZ9nLcbHxrA9sRx+LMv4fgDL0J1YjvGxsUostWQ9/f04pcYQwfWM2yO4jtNq\nDD39/QCAeDyOzq0P4tDQAXRNx3E0sRofmqvDX+BqwcfqKTozAz9cAIBxXMV2NJn+3rvdboTPvoq9\nQ/sR9rqxS30HYa97/s9nX4Xb7QYAjI6OYmpyEucSPpzAWuzESpzAWryW8GFqchKjo6MVWW8t0/pZ\nlSrfz4PtaEQ9FHTgTfRhBsfxHvowg4/gTahOB4LBYFmvXU3cbjf+8Kkv4pfqTfw9juEynkcIT8CN\nZYjgAr6phvGHX/oi9g4NIuw9j13qUYS95+f/fPaMps9x/lw4g71Dg/hnx5v4HXwMfmzMuE8Am9Cd\n6MT42MmczxOdmYYfd2f9XgAbEZ2Zhs/jxQQuZb1PBBfR5G7E1OQUziWewyh+D9/CGZzHFTyJj+PP\nMYCPznwYh4YOonPrNsTj8YLHVuh4S33Pcil0fD6Pt6LPk1TqMcfjcYyMjKDV1wKnw4lWXwtGRkZK\nfu9L1dPfi1PqK4jgQsbtEVzAaTWMnv7enI/Vcl4SWV6xCZLdvsAKISIiS9OyvcQuDYVz0Voxka3y\nIYZNshn1Ug9FetCke7VFtu1VdzQ2pSqEHICt3nu79Boym9nb6spR8OcBIMNolhbUiQOQFtTJJ+EW\nVVHNXrrlVLK6o5zKFC2VGIW2Lq1obEo9R7KJdrZqpXo4ZUVjk+X+Pui1NcsKW7ys1HunnL8DrBAi\nq+CWMQZCRES2pSUsqYaLfC09Y3IdZwybxA+XuBwOXfvN5Npe5VQUqYcir6NFWlBX0fc++T5t8KwT\nVVHE5XCIoiiy3uMp0IdnPtRQFEWeweqcYYG6sG1IaxBih+Ck2DXafVtdvp8HPWiSFtTZ9ueEGSo1\nJamci2ctIUb6hX2yL1IPHpJ61IlvrVcUKKlAqgVrcq6lBw9LE2633JYnvcK7Qu/T7OyswUdivd47\npf4dsEK4RiTCQIiBEBGRzRUKS6p9THdSpSuhcvVi+T7WSx0UaVBU8cMlDQvhUKnvvdbAIldQ0QBF\n7oJDGhQ166Su9PvWL9w3hk1L3sMn0CTL6uo0ByF2CE5KWaPde3Ll+3lQD0V2LAqL7HJcZqjkyOxy\nLp61hiHJaWN1cIoKRVahSQLYKA1KvSyrc8mT+LgIvicOqPmrlaBa8qJer88r3/tUiRCsWipr7N4/\niaoHAyEGQkREVa3ax3QnVboSKt/rPYEmWdHYKOs9HnFCKXnLWjGBRd6gYuFCP3lhX6ixcLZQwKnM\nh1xagxA7BCelrNHuFXf5fh40LrtNGhS1qn9O6KXS23bKvXjWEobkqzxpUOrFqTjkdXw1b4VQLx6W\nFqyxRDhhVGBndoWO3o2tCzEy+KxkqEqUCwMhBkJERFWvmsd0J1W6EkprRVKh9z5fBVAxgUX+oGJ+\nK1AysCi0bagOypJQ4La6+qKCEDsEJ6Ws0e49uURyn5Ozs7NV/3NCL2aEAkZfPOerPEmfmpaceJa1\nWgn1MozPGxZOaGVkYGd2hU4lX99K/YqIjMJAKN8BMhAiIiKbqHQllB6BR6EKoA2edZpfQ0uz4GRg\nUei+qqIsCQWKDULsEJyUskY7BF1kPLNDASNoqTwZHh6W9R6fOOGQetRJDx66Va2EetmCD0gML5n+\nPhgZ2FW6QmexSvbeMbsaiqgSOHaeiIioChg9rnuxnv5+nFJjZY20LzTmPTp7a4T9YgG4EJ2ZTf3Z\n5/FgAjey3jeC6/ChDhHcgM+ztsB9b2D9unW4HI3i5txNXI5GEQqFCj7G51mbcZvP48Hf4zpG8A5a\n8S9w4g204l8wgnfwd7i+5P5mKPaYAH0+d7K/ahyZrWWkeigUwptv/Rjvxd7HvuEQvtP4d/g9HMF/\nxz9gL7oRxjNwY9mSseOVHpM+PnYS2xNd8GNjxu0BbEJ3ohPjYydLfm69R88XKxgMoq29DR3qAPpw\nGMfxAvpwGB3qANra2xAMBnV7LSPfR6JqwECIiIjIQtxuN0Kh0JIwQ+8wCEj+Ut6ODjWKPsziON5D\nH2bRoUbR1t6u6Zfy8bExbE8shx/LMm4PYBm6E8tRr6qaA4vtv/u7+AtczR5U4Bo+gdtTgYXWUOPW\nRZwPb771Vu7nzxKEdD/5JL6JaziEd9GF23EUa9CF23EI7+J5XEP3k08WfH9Klb5up8OBVp8v68Vn\nKeGOHp872UeuIGPdGo+poUCp8gUzPf29OKW+ggguZDxmcbgD3PpZ++ZbP8YD/gfwrhrDm/gJvoH/\nsSSciMfj6Ny6DYeGDqJrejOOJnaha3ozDg0dROfWbYaEQkYGdsW8T0aY/8ePM9g7NIiw9zx2qUcR\n9p6f//PZM7r+/64ag08iXRVbUmS3L3DLGBERUU7l9mYqtGVJURTNfZEGBwelDoq40hpY96ApNWWs\nHkrWKWO5ttct3s72DFannkdLg+x9+/ZJPZScjav37dun62eRVEwj7lK3GZb6uRc74p7Mla9/im+t\nVxqUeluNzC7UD2Z2drakxtWFehuZse3IyC19tTQdqxq3RhItxh5CDISIiMhEtXyRXKgfzXqPR3Ng\n0eL1ypNokmE0ywbUiQqIC4oogDRCkRWNjUvCkHyhRraG1jFskh1YIXVQUn2Gcn1W+RtX5++1U845\nUezksEo1XC9lxD2Zq1CQsW7tOluFAlqCGSMaV5cTKpS6HqP77NTKdKxK9isiMgsDIQZCRERkklq/\nSNYyGU1rYKF3E+dymifHYjFRFEVWwSEOQFpQJ8Nolhg2FVxPueeEVZs+lzLiXqS2A1OzFQoyNnjW\n2yoUMKvao9QmzOVMuKqlKh4j8X2kWsBAiIEQERGZpNSL5HLodYGtx/PoORlN7yCk1IB2vvXgAAAg\nAElEQVQpeUz1UDIDHSiyBS6JYVPe9ZR7Tlh1ulkpn4/VA9NKh1WVrsowe5qU3ow4Hi2fSalBVLlb\nzWqlisdofB+p2jEQYiBEREQmqXQ1h14X2HpeqOu1ZUlLtVExSv1s8gY6UGTHwvuUaz3lnhNWrRAq\nJagyIzDVqtJhVTnVIqWqtv4peh+P1s+k1G1H1fb+E5E1cew8ERGRSaIz2seq66HQmPfR0dGKPg+g\n32Q0vadflTpePd/ktM+hESdxNe96yj0nrDoWvpQR94Wm0I2PjRmyVi30/Dug/fWmcC7xHE7gKezE\noziBp/Ba4llMTU7p/nqA+dOk9Kb38Wj9TEodk84JV0RkdQyEiIiIylDKRXI59LrAtsKF+uLR6h++\n5x587OGH8MU9f4yw141d6jsIe93YO7Qf4bOvGhIwZRvv/uZbb+GDqM/6nPdjGeYU5F1PueeEVcfC\nlxJUVTowLUal/w6Mj53E9kQX/Ni46PU2oTvRifGxk5qfK9/o9XSlBhlWVc7xZHvPnvnKf8Z/SDxY\n8DMpdUy6z+PFBC5l/V4EF+HzeEt8J4iIdFJsSZHdvsAtY0REZCC9tzkVold/mXL66+jVvyjbdp16\nKOJb65HZ2dmini/f66RvZ9vgWSfbtm2T9R6PqIoiy+rqpEFRl6zhLjhSDaSL3bKlxzlRqclhxSil\nX5RVt7+JVL5Xk179b4rdelZt/VNKOZ5c71k9nNKKtRLDS2V9JrnYfcJVtZ07RNWKPYQYCBERkUn0\nbKqshV4X2GY3CM7XW6Yeiqxb6zF8bPon4ZYGKDnXsGPR+6M10Kn0OVFJxQZVlQ5Mi5Hv70APmsTl\ncOjaaFqvfjLlNiquRfneswbUyTA+X9ZnkoudJ1yZ0fOKiErDQIiBEBERmaiS1Rx6XWAX+zyxWEy2\nbdsmdVCWjGEv5eK+0MV4HRTdL2wXh1AtqCu4hlIDnXLPiWoZ1W7lcCzf34F6KBKAS9dG03pVi+QL\nlnrwsNzRuJIVHYvkf88eknVoNixcs2uVjdHBo13fFyIrYiDEQIiIiGqEXhfYxTxPuWPYsym0XUcF\nUs+nRzhy/fp1WX3nnXIfGuQxLJdH4BYA8jBulxfhleuLtocdwxpRFcWULVtWH9WeTb7PyIrb35Jr\nXvx3oAdNUg9FNqM+Y8ugHhVNelWLFNp6pgCs6FhEy3tmtwoeoxk5Ia0aqo8YaJGVMBBiIERERDVE\njwvsWCwmg4ODsqKxUZyAKIDc0dgk+/btW/I8hcawD6O56J4r+besNckqOMShOsoOR65evSp79uyR\n5ubm5C9LWb+a4ZA9uFOuYqOY3d9Gy6h2K1UQ2THASlr8d8nlcEhgIeQ0oueRHheRZla72FW1V1Xp\nGU4kn0uBokvPq2zsvu2xGgItqi4MhBgIERERaRaLxSRwb7s4FUWaoIoKSBNUcSqKBO5tX/LLbKHw\npgV1RV8sDw8PSz2U7FvWoIgfrlTIUSgcyeXll18Wn8+XNwha/OWDU47hrpKqQfQKaQr1d9rgWWep\nAKacz8hqKt1ouhT5tp4Z2Q/Hzuze3DkfPcOJ9Odqwu05Q7Qn8DFZ0dhUcgBlZPVRJdg90KLqw0CI\ngRAREZFmg4ODUgdFXFm2gNVBkcHBwYz7O1RVnsFqGUaztKAuo4fQM1gtDqDoC/9YLCa+tR6phyI9\naFrYstYkroXtOg2KmgpXSmmiferUKXE4HKmgp66uTh5//HH59re/LZOTk/KDH/xA/umf/km+/e1v\ny+OPPy51dXUZwdCvtbSUcCGlT0hTcDudougewJQTZpk1ScyIKikrT0VLyrX1zOiJWXZm5+bOhegZ\nTqQ/1zA+Ly7ULwnRvo8jUgenNCj1JQdQek3cM4vdAy2qPgyEGAgRERFptqKxMed0rQYosqKxMeP+\n6z0euQuOJQFSPSD1C9vNslUWFTI7Oyvr1nqkDoqogKyCQ/xwSYOipkKUUio2Xn75ZVFVNRXudHZ2\nyuXLlyUajcrjj38uI/j5zGf+nUxPT8vly5els7MzdbvD4ZBXXnlF87HoWSVTKJRwORy6hhblhlmF\nPiMF0H1bm1Hb1Kw8FS1dti1CKxqb5El8vOovUkvdHlWtPV/0DCfSnyuGl2QLPiAu1KdCtB48JE7F\nIfWoKyuAsnugYvdAi6oPAyEGQkREtmOlHihG03qslXpPnEDe6VpOKBn337Ztm9TnCZAcgNzffl9Z\n/Spy9UMqtmLj/fffz9gmtnPnTpmbm5N4PC4tLb+edZtYS8uvy/vvvy9zc3OyY8eOW9vHfD65evWq\npuPQss1L62dbKJRQFEW3bU2JREK2bt0qTiX755srBDly5IiEQiFJJBIFJ8Y1QdV9W5tR29SsPBWt\nkGreFpXE3i1L6RlOLH6uGF6SYXxeWrBGVKjihEPuaFxZdphj93PV7oEWVR8GQgyEiIhsxc5NaItV\n6FhnZ2dleHhY1ns84gSWTvIy4D1RgIIVHek2eNbl7SG0Dk7DqieKrdjYs2dPRmXQ3NyciIh86Ut/\nnLr9y1/+soiI/Omf/mnqtj/6o/9TRETm5uYyKoX27NmjaZ1aqmS0nu+FQon1Hk/WzyOGTeKHS1wO\nh6ZAMZFISCgUSh3rEdyV5fNdGrodOXIk9ZhQKCQHDhzI/RktNB3Xu9LGyK1dVp2KVkg1b4tKsmvv\nFiOrk4yqEMr1XHoEUHY/V+0eaFH1YSDEQIiIyFaqqQltIYWOdd1aj7jU+clGubZx6f2e3NHYlLei\n447Gpoz7F9y2BWS9CNej4qmYio3r16+nponV1dXJ5cuXRUTk5s2b0ty8RoDbRVVVef/990Vkvppo\nfmtZo6xcuUpu3rwpIiI/+tGPUj2Fmpub5caNGwXXWahKpq7IzzZfKJEtJIthk2xGveZAcXEYlCsU\nWlxxlB4GJb++9KUvyQP3+ZeMb2+AIluyTOzSoxePHZo/m6Fat0Ul2bEyw+iqJj3DCS3PpddnYOdz\n1e6BFlUfBkIMhIiIbMUOjVv1ojUoaEFdxd6Tffv25ZzwVQ9F9u3bp/kYklPGFl+E61kFprVi48UX\nX0yFFI8//njq9h/+8IcLt7dJa+umjMe0tm4UoF0AyA9/+MPU7Z/97GdTz/Xd73634BrzVTLVQ5EA\nXLp9ttlCMj9cObf1ZQudsoVB2UKh9PVlC4PSQ6H0z8gJyCfhzjq+XY/AppZ+htAtduzdYnRVk57h\nhJbnYnXMPDsHWlR9GAgxEKp6tdRrhKgW1NK/7hecGAWI4B5xFNjGped7EovF5P72+6RBUVMTvnrQ\nJA2KmrUXUN5tWwtbghZfhJtRBfb000+nAopvf/vbqdv/6q/+auH2j8pv/uZvZzzmN37jtwT4hACQ\nv/zLv0zd/q1vfSv1XPv37y/42vkqmZyAPIPVun62i0OyYhtN5wt3kqFQ+mdV8P5HjmQ8v9GBTbFb\nCfl7hL2lgghHvahQpAVrZBifz5ioZtUKoUpUNekZThR6LlbHEFkPAyEGQlWtlnqNENWKWvrX/UIV\nQqvgEME9Fa0QEimuT0ry53B6gJQcEb8FLvk+1i+5CM923DFskmE0SxNUUQDdL8ofe+yxVEBx8eLF\n1O1jY2MCKAJ8Rj7+8U9kPOajH/24AP+HKIpDjh8/nrr9woULqed67LHHNL1+rvc0V88fPT/bUkLW\nQiGPU1Fkiz8gX/7yl4sKg0SMn9ZVzFZC/h5hbzm3XKFetuADEsNLlq5OsWNVUyGsjiGylpoLhAD8\nHoDLAK4D+DsAD+S5LwMhm6v0vzLzXxGJjGeX0c560LqVaBjN4sqxjcsK70ksFpN9+/bJbXX1ogDS\nBFU+Cbc8gaasF9aLA4oYNskWuJaMrtfzovyRRx5JhRTvvPNO6vYjR46Iqt4mwKPy8MOPZDzmE594\nSID/XVT1toxg46c//WnquR55JPMxxarE+V5qyFooFCr0lS0MEqnMtC6toWYt9SyrRvm2XDWgTvy4\n29LVKXbse0RE9lJTgRCA/wDgBoAnAHwAwNcA/BxAc477MxCyuUpWEvBfEYkqw86jnYuV71h9az3S\noKjyOloyApP0bVxWe0+0XoQv/tmdDLyMvCjPVSF0/PhxURSHAP9Ouro+lvGYbdu6BPj3AigyNjaW\nur2UCqFcKnG+lxM6lRoK5QqD0o/bCtO6aqkisRrlC1R68JC4HPWW/oe7Wu25wyoiosopJxBSYT9B\nAF8Tkb8Qkf8JYAeAXwDoMXdZZJTozAz8cGX9XgAuRGdmdXut0dFRTE1O4lzChxNYi51YiRNYi9cS\nPkxNTmJ0dFS31yKqZW63G+Gzr2Lv0H6EvW7sUt9B2Oue//PZV+F2u81eom7yHes/TERw7333oUON\nYjd+gs+iEZtQj6/jKv4Ab+P/wVXc5nbjYw8/ZPZhpLjdboRCIVyORnFz7iZ++MYbAIAP33MPnA4H\nWn0+jIyMoPvJJ3FKjSGC6wCAcVzFdjTBj2UZzxfAMnQnlmN8bKzstX3wgx9M/fcPfvCD1H97vV6I\nzAH4Od5//1rGY9577xqAXwEQrFy5MuvjP/ShDxV87Xg8jpGREbT6fBnvQzweL+l8z/d82QSDQbS1\nt6NDjeJJzOBTiGIFLuABXIHqcOBf//Vfcz52YGAAR44cKXiM6Y4cOYKBgYGca3aoKnzr1uHIV/4z\nojMz8HnWoqe/H8FgsOJ/vyv5e4SV3Po8WuB0ONHqa8l7DllVdGYaftyd9Xv3YxN+JXMIhUKW/f/G\n/N/NNnSoA+jDYRzHC+jDYXSoA2hrb0MwGDR7ibqLx+Po3LoNh4YOomt6M44mdqFrejMODR1E59Zt\nhp2D1XLOE1VUsQmSmV8A6jD/W9unF93+dQD/NcdjWCFkc5X8lz3+KyLVAm6LtJb0z0NVVFlWVycN\nimqJKsVC50q+qsr72++TwL3tqaoYtQJNs3NNGfvxj3+cmjK2apUn4zGrVnkE+C0BIP/4j/+Yur2Y\nKWN6V5eW+nyxWEwGBwdlWV2d5vHz6bRWCmWrDEpf85NoklbUSYOB2wOLYdf/t5dTYWH0qPNyXb9+\nXV588UV5+umn5bHHHpNHHnlEHnvsMXn66aflxRdflOvXr6eO447GlbbfclVr1TJGT1bLxurnPJGR\nambLGIC1ABIA/s2i278M4G9zPIaBkM1VstdILU0+otqU60KzHoo4AVnv8VT1L6lWZ6VeJ1pCiULr\n3bdvXypQci6EA0ZelF+/fl2am5sFgNTV1cnly5dFRCSRSMidd94lgE8AyI9//GMREYlGowu/QK2X\nlStXya9+9SsREfnRj34kdXV1AkCam5vlxo0beV9X78+tnOfL99gGRZUVjY15g2AtgVCh163E9sB8\nFgeZKxobU1szzf57pVW5F7dmXJBrcfXqVdmzZ0/q72mur+bmZvniF78ogXv94lQc0oC6mttyZWdm\n9E2y6jlPVAkMhBgIVbVK9hqx678iEmmV92JxocGx1XrW1BIr/QzSEkoUs95ywv1iqtr27NmTuqjs\n7OyUubk5ERHZvTso85PGIE899UciIrJ3797UfYPBPxQRkbm5Oens7EzdvmfPnoLvld6fWznPV2iq\nXRPUnBU7WiuE7mhqWvI5pL9upSfmpcsWZD6JJqmDIvVQpMcmPcvKvbi1YiPjl19+WXw+X9G9qkbx\nH2ULPiAu1KfGnPfgIWlQ6ln5YVFmTFaz4jlPVCm1FAiVvGXst3/7t+VTn/pUxtc3v/lNHd5+qoRK\nNaaspclHVJvyX2g2SQvqdDnfuS2tNFaqUtQSShSz3lLD/WK3T129ejXjonPHjh0yNzcnP/3pT2XV\nqjVZLzi93ha5evWqzM3NyY4dOzK+d/Xq1YLvld6fWznPV/CxQNb/txXbWPoxLJc+rJAGRZV1az2i\npG0JdFRge2AuuYLM7///7N1xdBzned/778wCJCgvCVGiKWGJFUnXIu2URhDA1s1NEVMRUCex6ihO\nHVcKFccGERwxDUMhVeojSmuCxCXTXvUaopgrpkDIOC5pW61zKse8rmsJquSQTepqYRiJTkvpVKS8\nKGCbcWQK65CxyX3vH8CCC2B3sbM7szOz+/ucM0fADHb23XdnVnyffd7n5Q7TYFnmlnXNvha4LlU5\ng9vcaUkWmLfTbA7xCTPLV6oyIC/m1KlTJhKJLFw/jY2N5oEHHjDPPPOMefXVV82lS5dMMpk0f/zH\nf2weeOCBhQw9wESwzR/xe+YQnzBbuN1EsE0zbzM3r2sO7PtX7/wIzvgRhBLxw+c+97llcY33v//9\n9REQMnMBnr8Ejub8bgEp4PcK/L0yhKRk9bTykZQvzMGOUgeLlXyLr9X6SpPvOrp53TrzGzQXDcJU\nSylBCaeZLOUE98uZPvXcc88Z27YXZQq9/vrr5m/+5m9MX99vLgpsfPSj/8xcuHDBvP7664sygyww\nt23YUFJfhSVDKBv0XXq+W5qbHWdtAOZfs9HsYJVZhWWasQORIRSkLLuVZO+HO2JxY1mWaYqsMrZl\nm82xO4xlWebT/FbJg9uCU8xYZe7iXYuCQtXOlsh3P2ancxpjzKVLl8yxY8fMmjVvM63z7bpw4cKi\n+xEwt7F+IcBV6wP8sNcc8mNlNWUIST2rmwwhMxfg+Shzq4rlLjv/feDtBf5eASFxJCjL5EowhT3Y\nUepgsZJv8YNUByeoCl1Hqy3bNGKZr3OH731XysC6GlmV5Q7w/+iP/mjRYLKxsdHcf//95gtf+IL5\n1re+ZSYnJ803v/lN84UvfMHcf//9SzISMI2WVXL73e6HSs5X9LFY5hAbFu3/CGvLCgZltwZYVDfo\n5SU/V/s6DlKWXTHZAM5qa5W5jfVmNY2LAjmraDS3sX5Zdk+hwW3RKWasMof4hOcD8nx+8IMfLMrY\n27Nnz8I0zgMHDpqGhoZF15Nt2wuPXZqx9zaazGoazV28y3yMD9TsAL8WiiPnvobsNL/dfNDT1+BH\nEEokKKoWEALWAF3AT+Q51gR8zGkDytmA3wIuAleAvwDeW+RvFRASEdeEPdhR6mCxkm/Sw/QNvV+K\nXUersEyDZfmepVhKUKIaWZWVDPA33nqraXQY4Hgblmm0bEftd7sfKjlfvsf20mxWY5m7aDKzbF/o\nvye5rWhfZFcTW2k62ZPcZmbZbu6iyTRhmY+xbmGVsV6a59tQnes4LJ8/2cHrQ/ySaWJV3kDOKhrM\nQ3yopMFtseyIXj5o3k6z5wPyfArV9DLGmJ/92buXXEtdpqGhcdHjl9b0+gS/YJpYZRqs4P//tly1\nUhy52llOfgShRIKiKgEhYNt8ECYDXAdeAlpyjt8GXHfaAK83BYRExE1hGWwUkjtYvDFQazZNOYPF\nSoNbYfmG3k/FC//ebG5Z1+x7lmKpQQmvsyoruedsyzKbaTARME3zBaULbbZtGwur7JX23O6HSs63\n9LG3rGs2DdbizLNSg0FZK00rywaFDrHBbKHRWGBsmK/ZU72ptWGpBZgN4Gzh9iKBnF80jTSUNLhd\nqX6KBVWfdlRo1b+s//W//pf52te+Zr7xjW8UDAgZs2TVP5rNb/ABc1Pjmpod4GvqU/nCPtVOpFzV\nCgj9R+AMsAF45/zPrwN3GAWERKRO1EKwI/sPps2xTcYC04hlOmgyn2ajK9kdYQ+aVYMX15EXta3c\nCnJU0rZKBvg3r1tnVs8vf36V7eYMreYAG0w3NxkbTGNDgzlw4IA5c+bMikvLh1m+4F47q0sOBhkz\n9z40WIWDaoklU9H8utfDUgswG8CJYBcN5NiWXdLgNohBhC9/+csL18cDDzxQ8O/S6XTRgJAxxtx/\n//03pp1xXyj+X1suFUcWEaeqFRD6LvCenN8t4DjwBvAOBYREaleYiyi7rdaCHV5kd4TlG3o/uX0d\nFapJtArLxFtiZmZmxqNXUn7bSh2gVzLAv2Vdc9El2G9Z1+z2yw2spff65k2bzM6dO0sKBmUff1dH\nZ96gUB/NJsO7AnOvh6EWYCkZQk4COUGsn/KpT31q4Rp55plnCv5dKQGhL3zhCwvn+ineWXGAK8iZ\nJG4E94L8+kTEfdUKCL0FvDvP/j9gbpWvn1VASKT2hL2IstsU7FhZWL6h95NXRYgL1STa1BLzrd/d\nqLtV7gB/5Uwsu+jja10mkzGJRGLFYFBW9n3InT62Lho1qy1b97pDN2oIfcg0sariQE4166eUGmz4\nyEc+snCdvPrqqwXPV0pA6Pz58zemd2JX9P/aoBdtrjS45+T1KXAkUhuqFRD6BvDrBY79AfCmAkIi\ntSfsRZTdpmBHacLwDb2f3L6OitckajaNlL5iltv8zKpbqVZT2DL6vJANCq0UDFrqySefNIlEwrz1\n1lu618uQb5Wx3vlATi+/WFZwYungfnPsDnPPPfeYO2Jx1wb7ToIN995770IQ59KlSwXPWUpA6Hvf\n+97CuZrXNbuQxVq4aPNjjz3ma5Ck0uBeqUWpgx4YE5HSVSsg9CjwlSLHnwYyThvg9aaAkEhlam2K\nlBsU7BA3uHkdrZQJY4Nv92o16m4Vmtb6+OOPK6NPAit73d4RixvLskxTZJWxLdtsjt1R1cCNE05W\nwPIqQ+iXf/mXy2p7VrEpWR/jA2ZNY1PVgiSFMnRmZmbKDkqVOuWsVlYzE5HKAkKWmQua1CzLsjqA\nZDKZpKOjw+/miIROQyTCscxG9rB+2bHjvMle+xLXrl/zoWUikrU1HqdnKs0oLcuO9THNn5Hmb218\nuVeLt22GsdYoF1Kpss+fTqfp3nk3kxMTPJhZSwdNjHOVU/Ys//A978GyLP56cpJdmbV00kSSq5y2\nZ2lrb2fspReJRqOVvDyRQBoaGuLI4GHOZZ6ig20L+5Ocp8vex/7Bx0gkEo7PuzW+hZ6pHYzyyLJj\nfTzBWOsrXEhdBODAgQMcOnQIgGeeeYaPfvSjec/5wx/+cP4+7KKh4b/x4x//aNnfPPPMM9x///0L\n5x0cHHTc9qyGSAPHMnvZw33Ljn2I/XyN/85f8P+62m/5zH123cPkxCQPZnro4E7GeY1T9vO0tbcx\n9tILjj6f0uk0w8PDHPrUQTIY7mAjvfwiA/wqUdYAcJwvsdc+xrXr1xy9lyISbOPj43R2dgJ0GmPG\nnTzW9qZJIlIr4rEY41zNeyzJVeKx5YM8Eamu3v5+PstlklxZtD/JFU7zFnEafbtXe/v7OWXP5m+b\nPUtvf39F5x8eHmZyYoJzmTijtLCH9YzSwtlMnFf+6q/4+Xs/yP7BA4y1RtlrX2KsNTr3u4JBi6TT\naYaGhtgaj9MQibA1HmdoaIh0Oh3oc0t+J0dOzAcZti3a38l2dmW6OTlyoqzzpqan6ODOvMc62UZq\nemrh9/e9730LPz/77LNlPV++x+eetxzxWCvjvJb32J8zycf4+Yr77cY1v4WGSANb41uWXfNzn12T\nnMs8xSiPsIf7GOURzmaOMjkxyfDwcMmvKRtcOjJ4mI/zC/wBv0MPnRzhNN38Lun5z98krxKPtQLO\n3ksRqV0KCIlIUV4P5kSqqdyBab7HPf744yQSiUAMcgcGBritpYWf4Q12M81x3qSPabp4g3fSyCvW\nj6p+r2b77MQf/lv+PnOd/5M36OQCw3yfPmboslO0tbczMDBQ0fOcHBmZzwxas2h/J2vYlVnL6T/5\nExKJBBdSKa5dv8aFVIpEIrEQDFKw4kaW1ZHBg/RMpTmW2UjPVJojgwfp3nl3RX1R7Nw/sW07mzdt\nqtt+95JXg/1iwZTcYANAT08PGzZsAOCLX/wiFy9eLOs5L1y4wJ/+6Z8CsGHDBnp6eso6T1Zv/25O\n2c+T5Pyi/UnO8xY/rLjfcoMzPVM7OJbZS8/UDo4MHqZ75z0L17ibQbuCwSWeYpLXGeY/kOQ8p+0x\nevt3A87eSxGpYU7nmIVtQzWERCqiIspSK8pdMS/f435jvlDzKqzArL43MzNjNrXETCOWscG8nYjp\noMmstuyqt6lQX6/CMg1Y5o5YzLW6WyvWT7KsZbWFss+rVRTneLl4wEor4HXSVLf97iU3li7Px+kK\nWI8++uhC7Z/u7m5z/fr1RcevX79uJicnF2oIAebb3/62yWQyC8e7u7sXzvHoo4+W1e5cxYo239S4\npuJ+K7U2T8SOmKd5OO9zPc3DK9ZXy60/1ECkYLt7+aBp5m3L6iBVupqZiARHVYpKh3VTQEikciqi\nLLWg1EHv0gLFt6xrNg2WZf6cOxYec4gNpgmr4gF0oWLI5d5bQblXKwkwOO2TUlZYKxTs0SqKc7xc\nPGCl92cLjXXb717yarDvdAWsy5cvm3g8vhDQeeihhxaCQgcOHFjYP7fdv+j3T3/60+ahhx5a+P2O\nO+4wly9frrBnbryOfEWb5wrRV9ZvpQbjKgnaLS0abmMXDS5Z8ytNLl1yvpLVzEQkOBQQUkBIRERW\nUMqgt1DGyGoscxdNZpbtxvBus4XGigfQtZydUm6AoZw+yQZ18q0ktgrLPLSkHblBB62iOMfLleBW\nPDfUbb97ycvBfqFgSqFzPvfccyYSiSzKFHr99dfNb/3Wby0JCC3etmzZsvBzJBIxzz//fNltdvLa\nKu23UjN/KgnaLc1C2sLtZQWXnL6XUrt0LYRb1QNCwJ1AP/A48KncrZzzebkpICQiIsaUNugtmjGC\nZQ6xwRjebSJQ8QC6lrNTyg0wlNMnhaa1rsIytxFZCOLlCzp4GQgJE78yhHYvyRBa2u9uZ9DVmyAN\n8E6dOrUoKNTY2Gg++tGPmieffNJ87WtfM3/5l39pvva1r5knn3zS3HvvvaahoWFRMOj06dNVa2ul\n/VZq5k8lwaelz3GIT5gmVmn6l5RlacbZ0zxs+rhX2WIhUtWAEPCbwDXgO8AE8M2cbdzp+bzeFBAS\nERFjShv0ljp4dSNDqJazU1aaJrQ5tsnx41bKLFo6Vc6yLPNpNhYN9tTye+BEsSwrt2oI5T13TpB1\nab/XcgZdpYIU6HHiueeeWzR9rJQtHo9XJTPITU4yf8p9L5dmIc3yFXMX7zJNrAFcpAIAACAASURB\nVDK9mv4lDpVa90qCq9oBoTeATzp9nF+bAkIiImJMaYPeUqe3ZGsIVTKAruXslJWmcW1qieUdoOT2\nySzbzSE2mC00msh8kWzLshx8S79ysMfLQIjfnGTXeLl4QL5z99JsVmGZHaxalMGV2++1nEFXibB/\nk3/58mXz6KOPmg0bNhQNBG3YsME8+uijrtUMqqZq1ObJl4U0y1fMIT5hmnmbsbBCEygU/3lVhF6q\np9oBobeAdzh9nF+bAkIiImJMaYPelTJbmpkLWHwsZ5Wx3jIH0H5mp3g9FWd2dtbEW2Lz/dM83z/N\npmk+CLDasvMW8bbANGObx7jVvJcm07SkIPQqrJL7t5RgT62uolhOdo2XBcmXnntzbJPZ1BIzqy27\nrHuxnrK3lqqVb/KvXr1qzpw5Yw4cOGA+8pGPmHvvvdd85CMfMQcOHDBnzpwxV69e9buJFfE6i0sr\nhImbKl3xTvxX7YDQCeAhp4/za1NASEREslYa9BYLIqy2bHPzunULj3vsscfM448/XvYA2q/slFKD\nBdm+uiMWM5ZlmaZIxNiWZTbHNpX0Ou+IxUwnTQsZPltoNIfYYGbZvuK0oAYwqypcxa3UYE9QVmZz\nUxiya1bq91rOoKuEvslfWVin1DnhVhZSPfSVrEyfK+FX7YDQo8Al4DPAvwB+J3dzej6vNwWERETC\nx69istXMGPErO6WUYEG2bast29xGxKwusnR7IZUU8d5EgyvZIbUY7Ckm+3qbIhHfs2sqvYeVIZSf\nvskvzq0pdWEIlFTaxkr7Kgx9JKVRxln4VTsgdKHI9rrT83m9KSAkIhIufheTrWYQIftcm2ObjD2f\nhWNZlrkjFvPsOZ3U1nmIm01TmZk6lRTxXmkVN9uytPLUErn3je1gFTwvgq9u3MO1Vt/JrcGzvskv\nzo0pdWGv01SqSvqqXvqoXlSj7pV4q+rLzodpU0BIRCRcwjDdxU2FBs+rLdusaWxcCH64FfQoJXMn\nG6ipZDW1Sop4F3ve3vn6TVp5arHc+6bU982r4Ksb93At1Xdyc/Csb/KLcyNgVit1mlZSSV/VSx/V\nE2V8hZtvASHAAqxKzuH1poCQiEi41NtUkWKD59VY5p8QdTXosVL/bo5tMpZlza3q5SDTZKlKingf\nYoNZXWAVt1VY5qEljwlqsLCaUx9z+7LUVfC8Cr66dQ+Xk63n13TTYtwcPOub/OLcmFJXL1lYlfRV\nvfSRSFhUEhCyKYNlWR+zLOuvgCvAFcuyJi3L+vVyziUiIpIrNT1NB015j3XSRGp6psot8tbJkREe\nzKylgzWL9neyhgdZx1/z94zSwtlMnMmJCYaHhyt6vt7+fk7ZsyS5smh/kiuctme5ZgyNBu5jLRuI\nMM7VvOdJcpV4rKXg80SjUcZeepH9gwcYa42y177Ec7Gb+Jm7d/Ld73yHm5ubeeutWT5jXebP+eGi\nx97NTWSAf2R9mz5mOM6b9DHDz/AG67F5gtsW/X0na9iVWcvJkREA0uk0Q0NDbI3HaYhE2BqPMzQ0\nRDqdLqPHypNOp+neeTdHBg/SM5XmWGYjPVNpjgwepHvn3a63Jfe+GeBW2lhNF2/QxzTHeZPdTNNl\np2hrb2dgYAAofu3l9mclbVnKyT0cjUZJJBJcSKW4dv0aF1IpEokE0Wg0799Xu89LdXLkBA9meuhg\n26L9nWxnV6abkyMnSj7X3H31AvsHH2Os9RX22scYa31l7veXXijYN/UiHmtlnNfyHkvyKvFY64rn\nSE1P0cGdeY91so3U9FRFbQyKSvqqXvpIpB44DghZlvW7wHHgK8BH57evAn9oWdaAu80TEZF6E4/F\nyg5ChFHxwfMaUvx44edKBulZAwMDtLW302WnFgVbuuwUb7/tNv7mO9/hL9jMKC3sZT2nuFwweNTb\n31/0uXIH9D+4/ANuv72F//riS/zj6R9yLLORX3nLwjbQTYrfmA9c9DHDB+z/TdtP/iS/99j+hWDS\nWGuUH1vwSW4lmuefL9lAQ1CCAsPDw0xOTHAuE2eUFvaw3tXA3lK5900UmzE2s59bGePv+G2+w+ci\n6bng3EsvLgQNvAq+tt7eUvAefpkrtN5+e1nnXYlbfe52QLHUwfON591CQ6SBrfEteZ/3xn11cT5Q\ndrFooKye9Pbv5pT9PEnOL9qf5Dyn7TF6+3eveA43gkphUElf1UsfidSDcjKE9gJ7jDGfNMb82fz2\nL4HfYm6lMRERkbKtlMGyUhAibIoHwK4Qp3HhdzcypPJl7oy1Rtk/eADLgl836xYyRnIzTXYXyTQp\nRaHB+n9lM7Zl8WfrzKK2nPnqf2LVqlXzjzYANK9dy7f4+7znzwYLiwUFJsbHiW/aVJVsIa+ybwpZ\net9EsUnwdr7IJlbZEfYfOLAsaOBG8DVf8MRevYrPFggknuIt/sG7tjt6baUGaNzocy8CiqUMnuee\n9x6ODB6mZ2oHxzJ76ZnawZHBw3TvvMe37KawmQt4t9Fl76OPJzjOl+jjCbrsfbS1t5X0mVVJoKTU\noF4QVNJXbgTeRCQgnM4xA64C78yz/07gqtPzeb2hGkIiIqFSS8VkS1G0+DKWOcSGqtVQylfkeZbt\n5hAbFmoKbY5tKnN1pNLryhQrtN2IZb7OHQVr3hR7nl6aTTN2Va6lUop3u6mc+6bSlbwKvU+NYFaB\nWYVlemk2T3O76aXZNGGZ24iYO2Kxsl7XSoWv3ehzL+oqlVIIWkV63ePmcuxO6jSFceWtcvtKtaxE\ngqXay87/NbA/z/7Hgb9yej6vNwWERETCp5pLvy9/vuoWos03kM8Onu+iycyyveIBaam8LOjtZLBe\nbFC+Css0WFbBoMeKzwOh78tCnN43lQZfi71PjWBiNJi3EzE2mEYwm2gwv88GR8EwJwEaN/rci/et\nlMGzivQGSzmBknoL6mlVKpHgqHZA6J8C15irG5SY374K/Bj4sNPzeb0pICQiIsU4yUDwKnC09Lw3\nNa4yDZZlPjafXVGtDKlKM0aKcTLQLp7lc7O5ZV1zwaBH8edpNlto9DQok+VlX7qpkuDrStlY2b7O\nzXjroMlRvzu5btzoc68yu1YaPOeu+DTLV8whPmG2cLuJYJu302wsy9JAewV+BygU1BMRv1R92Xmg\nEzgFJOe3U8BPlXMurzcFhEREpJhSMxCcBI4qVe0Mqdzn9Wq6npPBeiWD8lKn4HkxbStXPUx9LCUb\na2mQqBHLUTDMybXgRp/7kdk197xzwYRZvmLu4l2miVWLph2torHqU3H8DrA4EYTpWm4seS8iUo6q\nB4TCtCkgJCJSv0rJ6Cl1AOhFbZEg8ioYVcpgPfvcTZFI2YPy3OfpXciwWj4Fz+sMoWxb/AjsVUup\n2Vi5ARwLHL1+pwGaSvvcr8yu7HSjh/iQaWKV79OOghBgcSII07WUISQifvE8IASsy/252Oa0AV5v\nCgiJiNSnUjN6Ss1A8CtzoJYUG6znvl+dNJnVWBUVOz506JC5ZV2zseZr1xxiQ9n1mPysMRVkTgqi\nZzOENsc2ufccHgRo/MrsygZgGmkIRFAhCAEWJ4IQjCmleLiIiBeqERC6Dmyc/zkz//vSLQNcd9oA\nrzcFhERE6lOpGT2lBnqqvWpUGLgZKMl9v2bZbu6iyTQtXaXK4aDcjcF9OVMF6yWAVKgg+ioss4NV\nCwG4SgI4fgRo/JyyaVt2IKYdBSHA4kQQpmtp5a1wCNNUSJFSVSMgtBNoyPm54Oa0AV5vCgiJiNQn\np1PBVspAUIbQYm7XVFrav9nl7rfQaGwwTZFIWf9od2sKUalTBatZa6pSbgSulvbv5tgms6klZlZb\ntmsBHL+n3lVzABmUQEwQAixOBKXfFGwItrBNhRQplWoIKSAkIhJ6bmdVlJrRU2oGQlhWjaoWt2sq\nBTUDy2kgMCy1prwMXPkdwHFTtQeQQZl2FJQAS6mC0m+1LuwBr7BNhRQpVbWXnf8FoCvn938OTACf\nA9Y7PZ/XmwJCIiLB58Xg1MlAvpQBbD2sGuWE2xlTQc3AchqoCurrWCosgSu/VXsAGZRpR2ELsASl\n32pZLWTXhC3QKVKqSgJCNs49MV9AGsuy3gN8GvgKsHX+ZxEREUeGh4eZnJjgXCbOKC3sYT2jtHA2\nE2dyYoLh4WHH5+zt7+eUPUuSK4v2J7nCaXuW3v7+hX3RaJREIsGFVIpr169xIZUikUgQjUYX/c3Y\nSy+yf/AAY61R9tqXGGuNzv3+0ouL/rYepKan6aAp77FOmkhNzzg6n5P3q5risRjjXM17LMlV4rGW\nRfuc9ks6nWZoaIit8TgNkQhb43GGhoZIp9PuvIACTo6M8GBmLR2sWdLGNezKrOXkyIinz1+IX/1R\nyMmREzyY6aGDbYv2d7KdXZluTo6ccPX55j5nXmD/4GOMtb7CXvsYY62vzP3+0gtV+5wZGBigrb2N\nLnsffTzBcb5EH0/QZe+jrb2NgYGBqrSjVEHpt1o29//pSc5lnmKUR9jDfYzyCGczR5mcmCzr/9PV\nlpqeooM78x7rZBup6akqt0jEf5aZy6Ip/QGWlQZ2GGMuWpY1OP/zRyzL6gC+Yoy53YN2lm2+Xclk\nMklHR4ffzRERkTy2xuP0TKUZpWXZsT5mGGuNciGVcnTOdDpN9867mZyYYFdmLZ00keQqp+1Z2trb\n6zKI4ya337Ogvl9DQ0McGTzI2UyczpzgSZIrdNkp9g8eIJFILOx30i+5r3kuONPEOFc5VYXX3BCJ\ncCyzkT2sX3bsOG+y177EtevXPHnuQvzsj0IaIg0cy+xlD/ctO3acL7HXPlb1fqqWdDrN8PAwJ0dO\nkJqeIh5rpbd/NwMDA/rsrENb41vomdrBKI8sO9bHE4y1vsKF1MXqN8yBWngNIvmMj4/T2dkJ0GmM\nGXfy2HIyhH4E3DT/cw/wtfmf/5b5zCEREREn3M42AWX0VGqlTA23M3oqeb/cyirJd54f/ehH/MP3\nvIcuO0UfMxznTfqYoctO0dbevixTwkm/VJoZV8nrdpr5VA1eZApWKh5rZZzX8h5L8irxWGuVW1Q9\nNzInL85nTl5cljkp9aMWsmt6+3dzyn6eJOcX7U9yntP2GL39u31qmYiPnM4xA/4M+CqQYC44tGl+\n/weAV52ez+sN1RASEQm8sNRdqRel1HQKSk0lt+pPFTvPe9t/yjz22GMlFUl20i+VXPeVvu4gFkkP\n4udA2GrpiHilFurvqNaU1KpqF5W+AzgDfAvYnbN/GHjK6fm83hQQEhEJviAOTutZqQWHg7CalFvF\nkd0sslxqv1Syslql7Q1KQC9XUFaaW7qS0k2Na0yDFTEf4wMaQErdqpXgaNhXShPJp5KAkOMaQmGj\nGkIiEhY36jWMkJqeJh6L0dvfXxf1GoJaP6ZeFauDs5tpPhdJs//AgUBcm27VMvKijlWufPf3W2/N\n8itvWWU9pxvtXdymGeKxFl8/c7x+D0ox91l0D5MTk/PFpO9knNf4d9Zz2A02f3/tR9yxKa5aOlJ3\ncu+NXZluOtlGklc5bY/R1t6m4t0iPqp2DSEsy7Ity9pmWVaXZVnvz93KOZ+ISL3LBkSODB6kZyrN\nscxGeqbSHBk8SPfOu31bYadaVO8nWIrVdHova/jR9euBuTbdqj/lRR2rrEL391uzb/FZLpdVh8mN\n9payul41BWGluUIrKZ0zT2GuGwYPDqqWjtQlr1Zyu1ELbQsNkQa2xrf4urKgSL0pZ5WxnwY+B2wG\nrCWHjTEm4lLbXKEMIREJg+xKRucy8UXLQBdayUjES8UzNaYZ4+/4IpsCcW2GIUOo0P395/yQblLY\nlsWDZp2jzLggZNO4LQiZglqF6AatMiZeK5SRd8p+XllHIg5UO0PoD4GXgR3ALcD6nO2WMs4nIlL3\nTo6MzC+zvGbR/k7WsCuzlpMjIz61TOpR0UwN3qKX5sBcm25llXiZnVLo/v5Z3sYDrGPN2qjjzLgg\nZNO4LQiZgrWwkpIbsgP1I4OH6ZnawbHMXnqmdnBk8DDdO+9R9oa4olBG3tnMUSYnJn1ZWVCk3pQT\nELoT2G+M+R/GmB8YYy7nbm43UESkHng5XUXc49by5n5w0vaBgQHa2tvpslPsZnp+qfVpuniDNlYz\nwK1AMK7N3LaWsiy8W+dx0p/F7u+fZg2z6R86nrbl1usOGr+nsRVbZv5lztNoRUJzz1dCA3WphpMj\nJ+Yzg7Yt2t/JdnZlujk5csKnlonUj3ICQv8NeKfbDRERqWfxWIxxruY9luQq8djyaSFSXWGu8+S0\n7bmZGp+LpPltvsMYf8d+bmWMzUTn//kQhGvTrawSJ+dx2p9e3N9ByKapRb39uzllP0+S84v2JznP\naZ7nH17fUhdZMhqoSzUoI0/Ef+UEhI4B/49lWR+3LKvTsqy23M3tBoqI1INanP5Ra+a+MZ/gXCbO\nKC3sYT2jtHA2E2dyYiJQ35gvzV6Jb9rEt775TUdtz2Zq7D9wgFV2hC+yiQRvzwkGBefadCurpNTz\nOL0WvLq//c6mqUVzmVdtdNn72M0THOdL7OYJuvgdfpJ/wIs8WRdZMhqoSzUUy8hL8irxWGuVWyRS\nf8oJCP0p8G7gJPDfgQngmzn/FRERh8I0/SPM06YqEZY6T/myV8xbaX7drCur7W5dm15eN9W+Jp1e\nC2G6v+td7kpKn4s8z29zlBcYZz+7GOPTRFlTF1kyGqhLNRTNyLPH6O3f7VPLROqIMcbRxtzqYgU3\np+fzegM6AJNMJo2IFDY7O2sOHTpktrS2mohtmy2trebQoUNmdnbW76bVjcXvQSSQ78Hs7Ky5q6PT\nNNkR08fN5mluN33cbJrsiLmrozNQbXVbxLbN09xuDO9etj3N7SZiR/xuojHGmEOHDpkmO2KSbFlo\nXwQqanul16aX140f12Q510IY7m9ZLGJHzNM8bAz/Zdn2NA8H5p73wtznyGrzMn+46HW/zB+aJnu1\nOXToUNnnvnEvbJ6/FzaH+l6otddTTXOf3+8zTfZqs5sPmqd52Ozmg6bJXm3u6nif+lCkRMlk0gAG\n6DBO4yVOHxC2TQEhkZXV8yBfnMkXbDC827zMFtNkRyoaJPil1GDoltZW08fNeYMAu7nZbGlt9ekV\nLJavnVto9LXtXl43flyTYbkWpDJbWjebPu7NGxDazQfNltbNvrbPS14N1HPP28e95mkeNn3cG9oA\nQK29Hj8ooLaY+kPKUfWAEPDrwDlgOpsVBDwM3FfO+bzcFBASWVktDvLFG7U2EHYSDM3eJy8H/D7J\nl71yiA2mCcu3tnt53fhxTYblWpDKlJolU6sDOC9eV7ZPk/zbon0aFrX2esQ7pdxPCjBKuaoaEAL2\nAJeAx4C/A94xv//jwH9xej6vNwWERFZWa4N8Ka6S6YFhmTZVKifB0Nzg0e754NFuF6c9uTVlM9/9\nPMt2cxdNZjWW6aXZ1baXwsvrxo9r0strodhzalpvdZWSJaMBnDO1lnVVa69HvFHq54QCjFKuSgJC\n5RSV3gv8pjHmMHA9Z//LwHvKOJ+I+Cw1PU0HTXmPddJEanqmyi2qbX4WZa506XQvls/2k5PiwF4t\n8+32cvb5VrSKYvNv2Mh1C55dhyttd3Ide3nd+HFNVnvJd7evESlNboHpsdZX2GsfY6z1lbnfX3qB\naDQ6v+LcJOcyTzHKI+zhPkZ5pC5WIitHra1eVsrrufFZuYWGSANb41vqYiEGuaHUz4mTIyd4MNND\nB9sWPb4eCtmLj5xGkIAr3JgmNsuNDKE7gStOz+f1hjKERFakDKHq8bteU6XTA2ttqkwQMp7cnrJZ\njewVp9exl9dNrV2TWbkZQbZlmUYs8xA3m1m218xrrAXKEHGm1vprpdezOXaHMsik5Ou+ngvZS2Wq\nnSF0AWjPs/8XgP9RxvlExGf5MgoAklzhtD1Lb3+/Ty2rPXPfEk1wLhNnlBb2sJ5RWjibiTM5MeH5\nt8mVLp1ea8tnByHjye3l7KuRveL0Ovbyuinl3H5m5ZVjaUbQH5jb+A2a+QyX6eYN0mSA8q+ReuVF\npkatZbx4rdaWGV/p9fyDd71TGWRS8udEPNbKOK/l/bskrxKPtXrWRqljTiNIQB8wBfwzIA3cz1w9\noTRwv9Pzeb2hDCGRFflRD6Ne+Z2N5UZGTC0tnx2E7JIgZCk5Vc517OV1U+zcfmfllaNo1hiWOcSG\nwF8jQeNVrZ9ay3jxWq0tM77S67kjFtf1ISV/TpRayF5kKT9WGdsFvAZk5rcpYHc55/J6U0BIpDS1\nNMgPMr8H/34HpIImCMHQML4nfl/HToRxFcXi10Sz2UJj4K+RoPGqWKsGcM7V2qpsxV5PPU0BqrX3\n1U1OViyspYCpVE/VA0ILD4abgI2VnMPrTQEhEQkSvwf/QciICRq/g6FhfE/8vo6dCFNbs1YMuEHg\nr5Gg8SqTRwM4KaZeMsi02l5xTj4nFFiTclS7hlDudLO/M8Z8r5JziIjUE7/rNdVaDSA3RKNREokE\nF1Iprl2/xoVUikQi4fpKUYWE8T3x+zp2IoyrKBarbfUyV7iFSOCvkaDxqtZPKSuRSfUFZWWvINVM\n8rJPtNpecU4+J278m+Ti/L9JLlb13yRSfywzl0VT+gMs61bgEPBzwEZYHFQyxtziWutcYFlWB5BM\nJpN0dHT43RwRqXPZYrGTExP8WibKe1nDy1zhFG9xW0sL3xhPcvvtt3vehuHhYU6OjJCaniEea6G3\nv5+BgQH9g8MnYXtPcq/jXZm1dNJEkquctmdpa2/3ZOn1cm2Nx+mZSjPK8gLhfcww1hrlQirlQ8sK\ne/zxx/nXR45wm4nwHa4Rp5Femrmbm+ghxY8t2LxpU6CvkaDZGt9Cz9QORnlk2bE+nmCs9RUupC5W\nv2HiurnPp3uYnJicX8L7TsZ5jVP287S1t1U1UJfbll2ZbjrZRpJXOW2PVbUtXveJ7i8Rf42Pj9PZ\n2QnQaYwZd/RgpylFwFeAV4FPAh8HfiN3c3o+rzc0ZUxEAmZmZsZsaomZRixjg3k7EdNJk1lt2YEt\nciuylN9T7UoVtil5s7Oz5r3tP2VWYS0qgr2auaXnO3+yPXB9HAaq9VM/vKoXVS4/pwBln/vmdc1m\nFQ2e9Uk91UoSCaJKpoyVkyE0C3QZY77l6IE+UYaQiATN0NAQRwYPci4TX7TUeJIrdNkp9g8eIJFI\n+NhCkdoRpmwmKP758I+sb/N7j+1naGjIxxaGU1AyNcR7ylaZk3vNr8408Kvc7VmfqM9F/FVJhlA5\nNYT+J+T8C0VERBw5OTLCg5m1iwZ7AJ2sYVdmLSdHRnxqWeVu1CiI0xCJsDUe96Vug9SHUq63udoN\nL7J/8ABjrVH22pcYa43O/R6wYBAU/3x40Kzj1Gc+40/DQk61fpYLSp0dt3lVLypscuv6pLniaZ8E\nqVaSiDhTTobQ+4B/xVwdob8Gfpx73Bjzlmutc4EyhEQkaBoiEY5lNrKH9cuOHedN9tqXuHb9mg8t\nq0xuJsbcgLaJca5yKqCZGBJutXq91erngwRLkOrsuE3ZKnNy+2ErD9BD54p9cqOe3QlS01PEY630\n9u9esVaZMvBE/FXtDKEfAOuAF4DvAW/Obz+Y/6+IiBRRbAWhJFeJx5YXvw2DuW8jJziXiTNKC3tY\nzygtnM3EmZyYqPtVRsRdtXq91erngwRLLa8KpWyVObmZUr38Iqd4rmifZIM6RwYP0zO1g2OZvfRM\n7eDI4GG6d95TNHNMGXgi4VVOhtA3gGvAUeC7zBUvWmCMecm11rlAGUIiEjTZGiFnM3E6a6iGUBhX\nc5LwqtXrrVY/HyRYajmLRtkqc3Lf4zRX6OZ3meR1dtFDJ9t4mfN8zn5hoU+Gh4c5MniYc5mn6GDb\nwnmSnKfL3sf+wcf02SMSUNXOENoBfMIY84wx5kVjzEu5WxnnExGpKwMDA7S1t9Nlp+hjhuO8SR8z\ndNkp2trbGRgY8LuJZUlNT9NBU95jnTSRmp6pcoukltXq9Varnw8SLLVcZ0fZKnNyM6WirGGMT7Of\nXXyVb/DPeZJn1/3loj45OXJifvrgtkXn6WQ7uzLdnBw54dMrEREvlRMQehmIu90QEZF6EbYit6XS\nVBepplq93mr180GCJR5rZZzX8h5L8irxWGuVW+SuaDRKIpHgQuoi165f40LqIolEoq7un7ngchtd\n9j76eIJ/x9d4g+/yfXuW93W8jzf+97cX9UktBwlFpLByAkLHgKOWZX3csqxOy7Lacje3GygiUotu\n/GM1Nf+P1VTo/7Ha29/PKXuWJFcW7U9yhdP2LL39/T61TGpRLV9vtfj5IMGiOju1z2mmVDWChLW6\nsp1ImJVTQyiTZ7cBLMAYYyJuNMwtqiEkIlIduas+7cqspZMmklzldMhXfZJg0vVWHTdWHRohNT1N\nPBajt79/xVWHJNhUZ0eWmqtfdpizmaN0sn1hv1s1hGp5ZTsRv1W7htDWPNs7cv4rIiJ1SFNdpJp0\nvXkvG3Q7MniQnqk0xzIb6ZlKc2TwIN0779a3+iFW7To7ygzxh5N+XzrF7Dhfoo8n6LL30dbeVnH9\nslpe2U4kzBxnCIWNMoREREREnMuueHYuE6dDK55JmZQZ4o9y+v1GRuAJUtNTxGOt9PbvdiUjsJZX\nthPxm+cZQpZl/ZJlWY05PxfcnDdfRERERILm5MgID2bWLgoGAXSyhl2ZtZwcGfGpZfUl7Nk1ygzx\nRzn97mUxbhWtFgmmUqeMPQusz/m50PYf3W6giIiIiFRfanqaDpryHuukidT0TJVbVH+yWR5HBg/T\nM7WDY5m99Ezt4MjgYbp33hOKoFAtLWcepuCc2/1e6Wuv9ZXtRMKqpICQMcY2xnwv5+dCW6AKSouI\niIg4dWPgE6chEmFrPB7YQZ+X4rEY41zNeyzJVeKxliq3qP7UQnZNrWSGhC0452a/u/HatbKdSDCV\nU1RaREREpCapkPINvf39nLJnSXJl0f4kVzhtz9Lb3+9Ty+pHLWTX1EpmD43S6QAAIABJREFUSNiC\nc272uxuv3eui1SJSHkcBIcuybMuyei3LOmNZ1l9blvVXlmX9mWVZH7Msy/KqkSIiIiLVMDfwmeBc\nJs4oLexhPaO0cDYTZ3JiInCDPi/NDeDa6bJT9DHDcd6kjxm67BRt7e0awFVBLWTXhD0zJJsxeOTg\n/8WPMj/in3KAIT5Lej5QGtTgnJv97kZgstor24lIaUpeZWw+4PNl4IPAt4D/CVjAu4H3AH9mjPll\nj9pZNq0yJiIiIqXaGo/TM5VmlOXTofqYYaw1yoVUyoeW+ePGqkMjpKZniMda6O3vd2XVIVlZLazM\nlLva1a5MN51sI8mrnLbHAr/KWMGVuniONt7BGJ8myhqO8yX22se4dv2a301e4Ga/N0QaOJbZyx7u\nW3YsiK9dpN54vsrYvI8D7we6jTE/ZYx5wBhzvzHmJ4Ee4B7Lsj7m5MlFREREgkSFlBe7sepQan7V\noZRrqw4VEqbCvV4Le3YNhDszpOBUKZ5iktcZ5j8AwZz65ma/18q0PxFZzkmG0NeAF4wx/6rA8f3A\nTmPMz7vYvoopQ0hERERKpQwhfxXMyLCfD3w2iRfCnF0TVjey4k4wNTXFx/mFwhlajPNFBumy97F/\n8DESiYQPLfbe0NAQRwYPczZzlE62L+xPcr7mX7tIGFQrQ6gN+GqR4/8J+EknT+6EZVmbLcv6I8uy\nXrcs6+8sy3rNsqxBy7IavXpOERERqS8qpOyvsBXu9VqYs2vCaOlqWhlM0RpO3+a7dVEUWQWhRWqX\nk4DQLcB3ixz/LrC+suYU9S7mahb9JvATwADwEHDYw+cUERGROqJCyv6qhVW13HZj2t7F+Wl7Fz2f\nthck1ZxCuDQgeQcbC06VepnzrIo01kVwToFJkdrlJCAUAYpVC7sONFTWnMKMMf/ZGLPbGDNmjLlo\njDkD/BvgV7x6ThEREameGwO/OA2RCFvj8arXjpkb+LzI/sEDjLVG2WtfYqw1Ovf7Sy9q4OOxWlhV\nS9yzNGPnWGYvPVM7ODJ4mO6d97j+2bA0INnLL3KK5/LWcPqc/QL7DzxeN8G5eg9MitQqJwEcC/iM\nZVl/X+D4ahfa49TNwN/68LwiIiLiormB391MTkzwYGYtHWxkfCrNkcGDnHn2S1UNxmQHPqqJUX3x\nWCvjUypeK3NyM3Zys8YeynyIrol9DA8Pu3qfzgUkP7zw+wC/yhn+gi5+h1+jh/cuqeEUhozB3JpI\nqekp4rFWevt3B3KlwDC1VaRWOMkQ+hPge8DlAtv3gM+63cBCLMt6J/DbwB9W6zlFRETEG3MDvwnO\nZeKM0sIe1jNKC2czcSYnJuqudowbgpBx5VQtrKol7qn2FMKlq2lFWcMYn2Y/u/hTXuKfczRUU6Wq\nnWFViTC1VaSWlBwQMsZ8opTNaQMsy/p9y7IyRbbrlmVtW/KYTcwVsX7GGHPS6XOKiIhIsJwcGZnP\nDFqzaH8na9iVWcvJkRGfWhZO2YyrI4MH6ZlKcyyzkZ75jKvunXcHdnCl4rWSq9pTCPMFJKOs4YP8\nH/y9fY2Dhw6GaqpUmIq0h6mtWdWsbyXilZKXnfesAZZ1K3DrCn/2ujHm2vzfx4D/AvzXUgJQ2WXn\n3//+99Pc3Lzo2AMPPMADDzxQXsNFRETENQ2RCMcyG9mTZ32K47zJXvsS164XK2VYv4wxHDhwgFtv\nvZV9+/YB2WWiD3IuE18UZEtyhS47xf7BA6xbt47vf//7HDx4EMuy/Gr+Mpo2Illb41vomdpReNn3\n1le4kLro2vNls1QmJybZlemmc8kUsTBkBeUqp//8uv+q/V5XKvdamctiu5NxXuOU/XworxUJj89/\n/vN8/vOfX7Tv8uXLfP3rX4cylp33PSDkxHxm0AvAfwd+3ZTQ+GxAKJlM0tHR4XUTRUREpAxb43F6\nptKM0rLsWB8zjLVGuZBK+dCyYMsGg4aGhgB48skn2bdv34r9+R+bDX97+TIAiUQicEEhEcgGNg9z\nNnOUTrYv7E9yni57H/sHH3O91lctBSQbIg0cy+xlD/ctO3acL7HXPrYo0O5nkMNpW/2WvTaX1rfy\n8toUKWR8fJzOzk4oIyDkpIaQr+Yzg14E3gD+JbDRsqzbLMu6zdeGiYiISMV6+/s5Zc+S5Mqi/Umu\ncNqepbe/36eWBdfSYBDAww8/zNGjR0lNT9NBU97HXeb6QjAI5gY2Bw4coND3bGGsRSS1wY8phLW0\nmtbSmki58hVp93PaltO2+q3a9a1EvBKagBDwj4F3AN1ACpgGZub/KyIiIiE2N/Brp8tO0ccMx3mT\nPmboslO0tberdswS6XSan/u5n1sUDMp6+OGHaV67lnGuLjt2lL/li8wu258NCuV7njDWIgoS1Rkp\nXzQaZeylF+aKOLe+wl77WKiKOvvNaZF2P4McYSsoX+36ViJeCdWUsXJoypiIiEg43JiqMUJqeoZ4\nrIXe/v5QTtXwUjZIM/7Nca4V+Xdcg2Xxl2YznfM1hI7ytzzMdwv+fXa6Wa5SahFpWkRhqjMi1bZ0\nytvqyCp+dO1H/Jrp5qf5iaI1kfycthW2+k1hq3kkta0upoyJiIhIbbsxVSM1P1UjFdqpGl6am9Yx\nwX8zm3mSwjPnrxnDT1tv0McMv8qU42AQaPW3SoVx5SQJr3xLt//aj+8hQoT/0Ph1ftt6qmiGlZ/T\ntsKWDRa2jCaRQpQhJCIiIhIiSwtGr5T5s5JCwSDQ6m+VUhaBVFOlhY79KOIdVmHLaJLapgwhERER\nkTqxtGD0Pm4pmilUTLFgEEA8FstbiwggyVXiseWrmMkNqjOynGoqeafSGkB+FPEOq7BlNIkUooCQ\niIiISIjkC9KUExRaKRgE4Vn9LahBhrCtnOS1fFOaeqZ2cGTwMN077/H9/SpHkK69SgOQ1Q5yBKnv\nylFLK9JJ/VJASERERCRECgVpulhDg2WVdI5SgkEQjtXfghxkUJ2RxWqtplLQrj03ApDVCnIEre9E\n6pUCQiIiIiIuuPFtd5yGSISt8bgn33YXC9J0/FRp9RJLCQZBNmPgRfYPHmCsNcpe+xJjrdG53196\nMRDfhAc5yKApOIv5uay5F4J27YUpABm0vhOpVyoqLSIiIlKh7FLwkxMT86tyNTHOVU7Zs7S1t7se\nPLmxtPQIqekZ4rEWevv7Wb16NZ/85CdXfHypGUJhEPTCzUuXAY/HWunt383AwEAgAmrV5Oey5l4I\n2rUXpkLHQes7kTBTUWkRERERH2WXgj+XiTNKC3tYzygtnM3EmZyYcP3b7hvTOlLz0zpSrFu3rqRg\nEMDDDz/M0aNHXW2TX4JeuFl1Rm6otZpKQbv2wlToOGh9J1KvFBASERERqdDJkZH5zKA1i/Z3soZd\nmbWcHBnx9PmPHj3Kww8/7OgxtRIUqrUgQy0L05SmUgTx2gtLADKIfSdSjxQQEhEREanQ0qXgc3XS\nRGp6xrPnLicYlFULQaFaCzLUslqrqaRrr3zqO5FgUEBIREREpEL5loLPSnKVeKzFk+ddKRj05JNP\nYozhySefLPg3YQ8K1VqQoZaFaUpTKby+9sK+LHsxum9FgkEBIREREZEKFVoKPskVTtuz9Pb3u/6c\npQSDsoWj9+3bV7NBoTAEGWp5YO9UWKY0lcLLa68elmX/wAd/npuiN3GS/8TvcIw/XXeOf/HoI4G5\nb0XqgVYZExEREalQ7ipjuzJr6aSJJFc57dEqYwCf+tSnGBoaynus0CpixYJIiUSCQ4cOudpGWbzy\n09yS63cyzmucsp8P3MpPEhxDQ0McGTzMucxTdLBtYX+S83TZ+9g/+BiJRMLROYOy4p3uCRF3aZUx\nERERER/NZQq8yP7BA4y1RtlrX2KsNTr3uwfBIICDBw/mHRAWW1K+UKZQIpHg4MGDrrdRsivQTXIu\n8xSjPMIe7mOURzibOcrkxKTrK9BJbTg5cmI+WLJt0f5OtrMr083JkROOzhekjCPdEyLBoYCQiIiI\niAvyLQXv5VQYy7KWBYWKBYOylgaFssEgy7I8aWe9c3tgL+HkdNqg28uyBykIo3tCJDga/G6AiIiI\niJQnGxQCuPXWW1cMBmVl/+773/++gkEemxvYfzjvsU628Znp/1zlFkm1LZ8i9WHGp17jyOBhzjz7\n5bxTpOKxVsan3FuWvZQgjNMpaOXSPSESHMoQEhGRit345jNOQyTC1ni8bgumilSbZVkcOnSo5GBQ\n1r59+zh06JCCQR6Lx1oZx72BvYRPOdk5bi/L7nbGUSV0T4gEhwJCIiJSkWwx3SODB+mZSnMss5Ge\nqTRHBg/SvfNuBYVEpK65PbCX8ClnilQpy7I7mYYWpCCM7gmR4FBASEREKjL3zecE5zJxRmlhD+sZ\npYWzmTiTExMqDikida2Ugb3UtnKyc1Za0h5wVCQ6SEEY3RMiwaFl50VEpCJb43F6ptKM0rLsWB8z\njLVGuZBK+dCy5W4suTtCanqaeCxGb39/1ZfcFZH6EpTlvsUfW+Nb6JnawSiPLDvWxxOMtb7ChdRF\nR+d0uix9bh2jXZluOtlGklc5bY/5stS77gkR91Sy7LwCQiIiUpGGSIRjmY3sYf2yY8d5k732Ja5d\nv+ZDyxbLTm2bnJjgwcxaOmhinKucsmdpa2/3bGlwERGpb9ngzdnMUTrZvrC/UPBmqXzBk7feeotf\neetnHAWZFIQRqU2VBIS0ypiIiFQkHosxPpW/TlCSq8RjyzOH/JA7ta2DNQv7H8rcTNf81LZqrbAi\nIiL1Y2BggDPPfpmuiX15s3OKTZEqtELZCf6/otPQ8q3UFY1GSSQS+n+diCxQDSEREalIb38/p+xZ\nklxZtD/JFU7bs/T29/vUssVOjozMZwatWbS/kzXsyqzl5MiITy0TEZFatlI9oGLZOYVWKIuxIRBF\nop0UthaR4NGUMRERqUjuVKxdmbV00kSSq5wO2FSssExtExERySpUf2iIz3KYU5zjWFnT0NywPHvp\nTsZ5jVP2877UJRKpV5VMGVOGkIiIVGTum88X2T94gLHWKHvtS4y1Rud+D0gwCOantnE177EgTW0T\nERHJKrRC2QC/SowN/Ay/7dtKXYWyl85mjjI5MalVRkVCQAEhERGpWLYuwYVUimvXr3EhlSKRSAQm\nGAThmdomIiKSFY+15p0aFmUNP8t7uGnd2xxPQ3PLyZET85lB2xbt72Q7uzLdnBw54XkbRKQyCgiJ\niEhdGBgYoK29nS47RR8zHOdN+pihy07R1t5elW9TRUREnOjt380p+3mSnF+0P8l5/r39Er/7yL/g\nQuri/JcxF6v6ZUyh7CWYK2ydmp6qSjtEpHwKCImISF0Iy9Q2ERGRrLkvM9rosvf5NjUsV24R6Uwm\nw6OMMsRnSS/LvnWnsLWKVot4S0WlRUREREREAiqdTjM8PMzJkROkpqeIx1rp7d/NwMBAVb/MKFhE\nmudo4x2M8WmirHGtsLWKVouUppKi0g3eNElEREREREQqla3T5/WqYSvJLSKdWzfoIT7EP2IvDzDE\nbazntD3mSvZSwefLfIiuiX0MDw/73iciYacpYyIiIiIiIlJU0SLS9PBVvuFqYWsVrRbxngJCIiIi\nIiIiLqu1+jfFiki/l+0YG1cLW6totYj3NGVMRERERETERcvr33yY8anXODJ4mDPPfjmU9W/isVbG\np17Le8ytItJ+Pp9IPVKGkIiISI278S11nIZIhK3xeKi/pRYRCbrc+jejPMIe7mOURzibOcrkxCTD\nw8N+N9Gx3v7dnLKfJ8n5RfuTnOe0PUZv/+5QP59IPdIqYyIiIgF1Y2WZEVLT08RjMXr7+x2tLDP3\nLfXdTE5M8GBmLR00Mc5VTtmztLW3M/bSi6H7llpEJOi2xrfQM7WDUR5ZdqyPJxhrfYULqYvVb1gF\ncrOedmW66WQbSV5dKCLtdtZTtZ9PJKwqWWVMGUIiIiIBlA3kHBk8SM9UmmOZjfRMpTkyeJDunXeX\nnN0z9y31BOcycUZpYQ/rGaWFs5k4kxMTofyWWkQk6Gqx/k00GmXspRfmika3vsJe+5irRaT9fj6R\neqQMIRERkQAaGhriyOBBzmXidLBmYX+SK3TZKfYPHihpud2t8Tg9U2lGaVl2rI8ZxlqjXEilXG27\niEi9q8UMIREJJmUIiYiI1JiTIyPzU7zWLNrfyRp2ZdZycmSkpPOkpqfpoCnvsU6aSE3PVNxWERFZ\nTPVvRCQMtMqYiIhIAM0FcjbmPdZJE58pMZATj8UYn8o/vSzJVeKx5ZlDIiJSmYGBAc48+2W6Jvbl\nrX8zMDDgdxNFRJQhJCIiEkTxWIxxruY95iSQ09vfzyl7liRXlpzjCqftWXr7+ytuq4iILKb6NyIS\nBgoIiYiIBJBbgZyBgQHa2tvpslP0McNx3qSPGbrsFG3t7fqWWkTEI9FolEQiwYXURa5dv8aF1EUS\niYSCQSISGAoIiYiIBJBbgZy5b6lfZP/gAcZao+y1LzHWGp37XUvOi4iIiNQtrTImIiISUOl0muHh\nYU6OjJCaniEea6G3v5+BgQEFckRERESkolXGVFRaREQkoLLTDUpZXl5ERERExAlNGRMRERERERER\nqTMKCImIiIiIiEhNS6fTDA0NsTW+hYZIA1vjWxgaGiKdTvvdNBHfaMqYiIiIiIiI1Kx0Ok33znuY\nnJjkwUwPHXyY8anXODJ4mDPPfpmxl15QbT6pSwoIiYiIiIiISM0aHh5mcmKSc5mn6GDbwv6HMh+i\na2Ifw8PDqtcndUlTxkRERERERKRmnRw5MZ8ZtG3R/k62syvTzcmREz61TMRfCgiJiIiIiIhIzUpN\nT9HBnXmPdbKN1PRUlVskEgwKCImIiIiIiEjNisdaGee1vMeSvEo81lrlFokEgwJCIiIiIiIiUrN6\n+3dzyn6eJOcX7U9yntP2GL39u31qmYi/VFRaREREREREatbAwABnnv0yXRP72JXpppNtJHmV0/YY\nbe1tDAwM+N1EEV8oQ0hERERERERqVjQaZeylF9g/+Bhjra+w1z7GWOsrc79ryXmpY8oQEhERERER\nkZoWjUZJJBJaXl4khzKERERERERERETqjAJCIiIiIiIiIiJ1RgEhEREREREREZE6o4CQiIiIiIiI\niEidUUBIRERERERERKTOKCAkIiIiIiIiIlJnFBASEREREREREakzCgiJiIiILJFOpxkaGmJrfAsN\nkQa2xrcwNDREOp32u2kiIiIirlBASERERCRHOp2me+c9HBk8TM/UDo5l9tIztYMjg4fp3nmPgkIi\nInkokC4SPg1+N0BEREQkSIaHh5mcmORc5ik62Law/6HMh+ia2Mfw8DCJRMLHFoqIBEs2kD45McmD\nmR46+DDjU69xZPAwZ579MmMvvUA0GvW7mSKyhDKERERERHKcHDkxP6DZtmh/J9vZlenm5MgJn1om\nIhJMuYH0UR5hD/cxyiOczRxlcmKS4eFhv5soInkoICQiIiKSIzU9RQd35j3WyTZS01NVaYemX4hI\nWCiQLhJOCgiJiITEjcFhnIZIhK3xuAaHIh6Ix1oZ57W8x5K8SjzW6nkbVMdIRMIkKIF0EXFGASER\nkRCYGxzezZHBg/RMpTmW2UjPVJojgwfp3nm3BociLurt380p+3mSnF+0P8l5Tttj9Pbv9rwNmn4h\nImEShEC6iDingJCISAjMDQ4nOJeJM0oLe1jPKC2czcSZnJjQ4FDERQMDA7S1t9Fl76OPJzjOl+jj\nCbrsfbS1tzEwMOB5GzT9QkTCJAiBdBFxTgEhEZEQODkywoOZtXSwZtH+TtawK7OWkyMjPrVMpPZE\no1HGXnqB/YOPMdb6CnvtY4y1vjL3e5VWytH0CxEJkyAE0kXEOQWERERCIDU9TQdNeY910kRqeqbK\nLRKpbdFolEQiwYXURa5dv8aF1EUSiUTVlk3W9AvJUnFxCYMgBNJFxDkFhEREQiAeizHO1bzHklwl\nHmupcotExEuafiGg4uISLn4H0kXEOQWERERCoLe/n1P2LEmuLNqf5Aqn7Vl6+/t9apmIeEHTLwRU\nXFxERLylgJCISAjMDQ7b6bJT9DHDcd6kjxm67BRt7e0aHIoEnNNpP5p+IaDi4iIi4i3LGON3Gzxl\nWVYHkEwmk3R0dPjdHBGRsqXTaYaHhzk5MkJqeoZ4rIXe/n4GBgY0OBQJsOy0n8mJyfnB/Z2M8xqn\n7Odpa29TgEcKaog0cCyzlz3ct+zYcb7EXvsY165f86FlIiISFOPj43R2dgJ0GmPGnTy2wZsmiYiI\n27Jz8xOJhN9NEREHcqf95GZ6PJT5EF0T+xgeHtZ9LXnFY62MT6m4uIiIeENTxkREREQ8pGk/Ui4V\nFxcRES+FMiBkWdYqy7ImLMvKWJbV5nd7RERERApJTU/RwZ15j3WyjdT0VJVbJGGh4uIiIuKlUAaE\ngP8bmAJquwCSiIiIhF481so4mvYjzqm4uIiIeCl0ASHLsn4R+MfAI4Dlc3NEREREitK0H6lEtn7c\nhdRFrl2/xoXURRKJhIJBIiJSsVAVlbYs6zZgBPgl4IrPzRERERFZ0cDAAGee/TJdE/vYlemmk20k\neZXT9pim/YiIiIhvwpYh9MfA08aYb/rdEBEREZFSaNqPiIiIBJFljL9leCzL+n3gk0X+xADvBn4B\n+AhwtzEmY1nWFuB1oN0YM1nk/B1A8v3vfz/Nzc2Ljj3wwAM88MADlb0AERERERERERGPff7zn+fz\nn//8on2XL1/m61//OkCnMWbcyfmCEBC6Fbh1hT+7APx74J8s2R8BrgGnjTGfKHD+DiCZTCbp6Oio\ntLkiIiIiIiIiIoEwPj5OZ2cnlBEQ8r2GkDHm+8D3V/o7y7L2Ao/l7IoB/xn4KPANb1onIiIiIiIi\nIlJ7fA8IlcoYM5X7u2VZP2RulbHXjTHT/rRKRERERERERCR8wlZUeil/57uJiIiIiIiIiIRQaANC\nxpg3jDGRYgWlRUTqWTqdZmhoiK3xOA2RCFvjcYaGhkin0343TUREREREfBaaKWMiIlK6dDpN9867\nmZyY4MHMWjrYyPhUmiODBznz7JcYe+lFLXUtIiIiIlLHQpshJCIihQ0PDzM5McG5TJxRWtjDekZp\n4WwmzuTEBMPDw343UUREREREfKSAkIhIDTo5MjKfGbRm0f5O1rArs5aTIyM+tUxERERERIJAASER\nkRqUmp6mg6a8xzppIjU9U+UWiYiIiIhIkCggJCJSg+KxGONczXssyVXisZYqt0hERERERIJEASER\nkRrU29/PKXuWJFcW7U9yhdP2LL39/T61TEREREREgkABIRGRGjQwMEBbeztddoo+ZjjOm/QxQ5ed\noq29nYGBAb+bKCIiIiIiPlJASESkBkWjUcZeepH9gwcYa42y177EWGt07nctOS8iIiIiUvca/G6A\niIh4IxqNkkgkSCQSfjdFREREREQCRhlCIiIiIlWQTqcZGhpia3wLDZEGtsa3MDQ0RDqd9rtpIiIi\nUoeUISQiIiLisXQ6TffOe5icmOTBTA8dfJjxqf+/vbsPsvMs7wP8u2WRD7INnpKBRN1NbILl0DiO\now2TJhE1tUzjlALj0qRxRdIiE41J4mqWuARstihsbAj5WLBTwshIUAfFzcekKjYBUq+CG5wSyIpl\niTCWG9tUihKgkBqvIQn2Pv3jHLkrVbYkrN2jPe91zWik87xf92perc757f087725Yfv1uX3PbZm5\nc6+pnADAihIIAQAss+np6czPzeeuxRuzIesfG79q8UXZOLct09PTpncCACvKlDEAgGW2a8fOfmfQ\n+qPGx3N+Ni9uyq4dOwdUGQDQVQIhAIBldvDwoWzIecfdNp71OXj40ApXBAB0nUAIAGCZja0bzb7c\ne9xtszmQsXWjK1wRANB1AiEAgGW2ZeuVefeaOzKbe44an8092b1mJlu2XjmgygCArrKoNADAMpuY\nmMjte27Lxrlt2by4KeNZn9kcyO41M7nwogszMTEx6BIBgI7RIQQAsMxGRkYyc+feXLv9usyM7s/V\na27KzOj+3muPnAcABkAgBACcsRYWFjI1NZVzx87J2rPW5tyxczI1NZWFhYVBl3bKRkZGMjk5mfsP\nPpBHHn0k9x98IJOTk8IgAGAgTBkDAM5ICwsL2XTxJZmfm+8/sv3y7Dt0b27Yfn1u33ObzhoAgCdB\nIAQAnJGmp6czPzefuxZvzIasf2z8qsUXZePctkxPT2dycnKAFQIArF6mjAEAZ6RdO3b2O4PWHzU+\nnvOzeXFTdu3YOaDKAABWP4EQAHBGOnj4UDbkvONuG8/6HDx8aIUrAgAYHgIhAOCMNLZuNPty73G3\nzeZAxtaNrnBFAADDQyAEAJyRtmy9Mu9ec0dmc89R47O5J7vXzGTL1isHVBkAwOpnUWkA4Iw0MTGR\n2/fclo1z27J5cVPGsz6zOZDda2Zy4UUXZmJiYtAlAgCsWjqEAIAz0sjISGbu3Jtrt1+XmdH9uXrN\nTZkZ3d977ZHzAABPikAIgKG0sLCQqampnDt2TtaetTbnjp2TqampLCwsDLo0TsHIyEgmJydz/8EH\n8sijj+T+gw9kcnJSGAQA8CSZMgbA0FlYWMimiy/J/Nx8/7Hll2ffoXtzw/brc/ue23SXAADQeQIh\nAIbO9PR05ufmc9fijdmQ9Y+NX7X4omyc25bp6elMTk4OsEIAABgsU8YAGDq7duzsdwatP2p8POdn\n8+Km7Nqxc0CVAQDAmUEgBMDQOXj4UDbkvONuG8/6HDx8aIUrAgCAM4tACIChM7ZuNPty73G3zeZA\nxtaNrnBFAABwZhEIATB0tmy9Mu9ec0dmc89R47O5J7vXzGTL1isHVBkAAJwZLCoNwNCZmJjI7Xtu\ny8a5bdm8uCnjWZ/ZHMjuNTO58KILMzExMegSAQBgoHQIATB0RkZGMnPn3ly7/brMjO7P1Wtuyszo\n/t5rj5wHAAAdQgAMp5GRkUxOTnq8PAAAHIcOIQAAAICOEQgBAABXLFFFAAAVoklEQVQAdIxACAAA\nAKBjBEIAAAAAHSMQAgAAAOgYgRAAAABAxwiEAAAAADpGIAQAAADQMQIhAAAAgI4RCAEAAAB0jEAI\nAAAAoGMEQgAAAAAdIxACAAAA6BiBEAAAAEDHCIQAAAAAOkYgBAAAsMTCwkKmpqZy7tg5WXvW2pw7\ndk6mpqaysLAw6NIATpu1gy4AAADgTLGwsJBNF1+S+bn5vGzx0mzI5dl36N7csP363L7ntszcuTcj\nIyODLhPgSRMIAQAA9E1PT2d+bj53Ld6YDVn/2PhViy/KxrltmZ6ezuTk5AArBDg9TBkDAADo27Vj\nZ78zaP1R4+M5P5sXN2XXjp0Dqgzg9BIIAQAA9B08fCgbct5xt41nfQ4ePrTCFQEsD4EQAABA39i6\n0ezLvcfdNpsDGVs3usIVASwPgRAAAEDflq1X5t1r7shs7jlqfDb3ZPeamWzZeuWAKgM4vSwqDQAA\n0DcxMZHb99yWjXPbsnlxU8azPrM5kN1rZnLhRRdmYmJi0CUCnBY6hAAAAPpGRkYyc+feXLv9usyM\n7s/Va27KzOj+3muPnAeGiA4hAACAJUZGRjI5Oenx8sBQ0yEEAAAA0DECIQAAgGWysLCQqampnDt2\nTtaetTbnjp2TqampLCwsDLo0oONMGQMAAFgGCwsL2XTxJZmfm8/LFi/NhlyefYfuzQ3br8/te26z\nJhEwUDqEAAAAlsH09HTm5+Zz1+KNuTnX5JV5SW7ONfnQ4lszPzef6enpZb2+7iTgiQiEAAAAlsGu\nHTv7nUHrjxofz/nZvLgpu3bsXLZrH+lOumH79bn00AW5afHqXHrogtyw/fpsuvgSoRAgEAIAAFgO\nBw8fyoacd9xt41mfg4cPLdu1B92dBJz5BEIAAADLYGzdaPbl3uNum82BjK0bXbZrD7I7CVgdBEIA\nAADLYMvWK/PuNXdkNvccNT6be7J7zUy2bL1y2a49yO4kYHXwlDEAAIBlMDExkdv33JaNc9uyeXFT\nxrM+szmQ3WtmcuFFF2ZiYmLZrj22bjT7Dg2mOwlYHXQIAQAALIORkZHM3Lk3126/LjOj+3P1mpsy\nM7q/93qZHzk/yO4kYHWo1tqga1hWVbUhyezs7Gw2bNgw6HIAAACW3ZGnjM3PzR+3O2m5AylgZezb\nty/j4+NJMt5a23cqx+oQAgAAGDKD7E4CVgdrCAEAAAyhkZGRTE5OZnJyctClAGcgHUIAAAAAHSMQ\nAgBYIQsLC5mamsq5Y+dk7Vlrc+7YOZmamsrCwsKgSwMAOmbVBUJV9cKq+nBVfamqvlBVvzfomgAA\nTuTIAq83bL8+lx66IDctXp1LD12QG7Zfn00XXyIUAgBW1KpaQ6iqXppkR5LXJNmb5ClJLhhoUQAA\nJ2F6ejrzc/O5a/HGbMj6x8avWnxRNs5ty/T0tHU+AIAVs2o6hKrqrCRvSfKzrbWbW2t/3lr7VGvt\ndwddGwDAiezasTMvW7z0qDAoScZzfjYvbsquHTsHVBnHY3ofAMNu1QRCSTYkWZckVbWvqg5X1e9X\n1XcOuC4AgBM6ePhQNuS8424bz/ocPHxohSvi8ZjeB0AXrKZA6FlJKsnrk7whyQuT/HWSD1bV2YMs\nDADgRMbWjWZf7j3uttkcyNi60RWuiMezdHrfzbkmr8xLcnOuyYcW35r5uflMT08PukQAeNIGHghV\n1RuravEJfj1aVeuX1PoLrbU9rbWPJXl5kpbkRwb2BQAAnIQtW6/Mu9fckdncc9T4bO7J7jUz2bL1\nygFVxrFM7wOgC86ERaV/Ock7T7DPfelPF0ty95HB1trfVdV9Sb71RBeZmJjI0572tKPGrrjiilxx\nxRWnVi0AwFdhYmIit++5LRvntmXz4qaMZ31mcyC718zkwosuzMTExKBLpK83ve/y424bz/q86/AH\nVrgiAEhuvfXW3HrrrUeNPfjgg1/1+aq19mRrWhFV9feSfDbJT7XW3tkfe0qSg0le11p7x+MctyHJ\n7OzsbDZs2LBi9QIAHGthYSHT09PZtWNnDh4+lLF1o9my9cpMTExkZGRk0OXRd+7YObn00AW5Odf8\nf9tekV/KzOj+3H/wgZUvDACOsW/fvoyPjyfJeGtt36kcO/ApYyertfZQkrcn+fmqekF/Gtmvpzdl\n7HcGWhwAwEkYGRnJ5ORk7j/4QB559JHcf/CBTE5OCoPOMKb3AdAFZ8KUsVNxTZKvJLklydcn+ZMk\nl7TWvvoeKQAAWML0PgC6YNV0CCVJa+3R1tqrW2vf0lo7u7X2Q621u098JAAAnJyRkZHM3Lk3126/\nLjOj+3P1mpsyM7q/9/rOvTq6ABgKq61DCAAAlt2R6X2Tk5ODLgUAlsWq6hACAAAA4MkTCAEAAAB0\njEAIAAAAoGMEQgAAAAAdIxACAAAA6BiBEAAAAEDHCIQAAAAAOkYgBAAAANAxAiEAAACAjhEIAQAA\nAHSMQAgAAACgYwRCAAAAAB0jEAIAAADoGIEQAAAAQMcIhAAAAAA6RiAEAAAA0DECIQAAAICOEQgB\nAAAAdIxACAAAAKBjBEIAAAAAHSMQAgAAAOgYgRAAAABAxwiEAAAAADpGIAQAAADQMQIhAAAAgI4R\nCAEAAAB0jEAIAAAAoGMEQgAAAAAdIxACAAAA6BiBEAAAAEDHCIQAAAAAOkYgBAAAANAxAiEAAACA\njhEIAQAAAHSMQAgAAACgYwRCAAAAAB0jEAIAAADoGIEQAAAAQMcIhAAAAAA6RiAEAAAA0DECIQAA\nAICOEQgBAAAAdIxACAAAAKBjBEIAAAAAHSMQAgAAAOgYgRAAAABAxwiEAAAAADpGIAQAAADQMQIh\nAAAAgI4RCAEAAAB0jEAIAAAAoGMEQgAAAAAdIxACAAAA6BiBEAAAAEDHCIQAAAAAOkYgBAAAANAx\nAiEAAACAjhEIAQAAAHSMQAgAAACgYwRCAAAAAB0jEAIAAADoGIEQAAAAQMcIhAAAAAA6RiAEAAAA\n0DECIQAAAICOEQgBAAAAdIxACAAAAKBjBEIAAAAAHSMQAgAAAOgYgRAAAABAxwiEAAAAADpGIAQA\nAADQMQIhAAAAgI4RCAEAAAB0jEAIAAAAoGMEQgAAAAAdIxACAAAA6JhVFQhV1XlVtaeqPldVD1bV\nH1XV8wddFxxx6623DroEOsK9xkpxr7FS3GusFPcaK8W9xpluVQVCSd6b5Kwkz0+yIcnHk9xeVc8Y\nZFFwhG/6rBT3GivFvcZKca+xUtxrrBT3Gme6VRMIVdXTkzw7yZtaa/tba3+e5DVJnprkgoEWBwAA\nALCKrJpAqLX2+SSfSvITVfXUqlqb5JVJPpNkdqDFAQAAAKwiawddwCl6QZI9SR5KspheGHRZa+3B\ngVYFAAAAsIoMPBCqqjcm+bkn2KUleU5r7UCSt6UXAv1gkr9J8or01hD63tbaZx7n+K9Lkrvvvvv0\nFQ2P48EHH8y+ffsGXQYd4F5jpbjXWCnuNVaKe42V4l5jJSzJOr7uVI+t1trpreZUC+itDfT0E+x2\nX5KLk7w/ydmttYeXHH8gyTtaa29+nPP/6yS7T1O5AAAAAGeaza213zyVAwbeIdRfG+jzJ9qvqr4+\nvW6hxWM2LeaJ10L6QJLNSR5Ir6sIAAAAYBh8XZJz0ss+TsnAO4ROVr+T6O4kdyaZSvLlJFuTXJ3k\nua21TwywPAAAAIBVY7U9ZeyyJCNJZpJ8NMkPJHmxMAgAAADg5K2aDiEAAAAATo9V0yEEAAAAwOnR\nqUCoqs6rqj1V9bmqerCq/qiqnj/ouhhOVfXCqvpwVX2pqr5QVb836JoYXlX1NVU1V1WLVXXhoOth\nuFTVt1XVO6rqvv73tHurantVPWXQtbH6VdVPV9X9VfXl/v+bzx10TQyfqnptVX2kqr5YVZ+pqv9S\nVesHXRfDrape039v9quDroXhVFXrquo3qup/99+jfbyqNpzs8Z0KhJK8N8lZSZ6fZEOSjye5vaqe\nMciiGD5V9dIktyTZmeS70lvv6pQeAQin6M1JDqX3NEY43b4jSSX5yST/MMlEkquSXD/Iolj9qupf\nJfmVJK9P8j3pvTf7QFV900ALYxg9L8lNSb4vyaVJnpLkD/pPMobTrh9ub03v+xqcdlV1dpK7kvxt\nkh9K8pwkP5vkr0/6HF1ZQ6j/lLLPJXlea+2u/thIki8mubS1tneQ9TE8quqsJA8kmWytvWuw1dAF\nVfXDSX45yUuTfDLJRa21+cFWxbCrqmuSXNVae/aga2H1qqoPJ/mT1tq2/utKcjDJja21Nw+0OIZa\nP3T8bJJ/3Fr70KDrYbj0P2fOJnllkskkH2utvWqwVTFsqupNSb6/tXbxV3uOznQI9Z9S9qkkP1FV\nT62qten9A/1Mev9Y4XTZkGRdklTVvqo6XFW/X1XfOeC6GEJV9cwkO5K8LMmXB1wO3XJ2ki8MughW\nr/6Uw/H0nh6bJGm9n1TekeT7B1UXnXF2el21vo+xHP5jkts0HbDMXpTkT6vqt/tTYfdV1StO5QSd\nCYT6XpDeh/WH0vvgtC3JZa21BwdaFcPmWelNrXh9kjckeWF6bXsf7Lf1wen0ziRva619bNCF0B1V\n9ewkP5Pk7YOuhVXtm9Kbyv+ZY8Y/k+SbV74cuqLfifaWJB9qrX1y0PUwXKrqx5JclOS1g66Fofes\n9Jpc7knyT5P8epIbq+rHT/YEqz4Qqqo39hfqerxfjy5ZMO5t6b3J+MEkz02yJ701hJ45qPpZPU7h\nXjvy7+oXWmt7+h/UX57eT6F+ZGBfAKvGyd5rVfXvkowk+cUjhw6wbFahU/w/9Mgx/yDJ+5L8Vmtt\n12AqB3hS3pbeemg/NuhCGC5VNZpe2Li5tfaVQdfD0FuTZLa1Ntla+3hr7eYkN6e3zuNJWfVrCPXX\nBnr6CXa7L8nFSd6f5OzW2sNLjj+Q5B3mqXMip3CvbUyyN8nG1tofLzn+w0n+W2ttcvmqZBic5L12\nf5LfTvLPjxk/K8kjSXa31l6+DOUxRE72+1pr7ZH+/uuS/GGSP3Z/8WT1p4x9KclLW2vvWTL+riRP\na61dPqjaGF5V9WvpTbN4Xmvtfw26HoZLVb0kye8leTT/7wd1Z6X3g+FHk3xtW+0fwDljVNUDSf6g\ntbZ1ydhVSa5rrY2dzDnWLlNtK6a/NtDnT7Rf/wkCLcniMZsWMwSdUiy/U7jXZtNb6f38JH/cH3tK\nknOSfHoZS2RInMK9dnWS65YMrUvygSQ/muQjy1Mdw+Rk77Xksc6gvUk+mmTLctZFN7TWvtL/P3NT\nkvckj03l2ZTkxkHWxnDqh0EvSXKxMIhlckd6Txhe6l1J7k7yJmEQp9ld6X3mXOr8nMJnzlUfCJ2C\n/5Hk/yS5paqm0ltDaGt6H9LfO8C6GDKttYeq6u1Jfr6qDqX3D/LV6QWSvzPQ4hgqrbVDS19X1cPp\n/TTqvtba4cFUxTDqdwZ9ML3OtFcneUbvc3vSWjt2/Rc4Fb+a5F39YOgjSSaSPDW9D1Bw2lTV25Jc\nkeTFSR5esmTEg621vxlcZQyT/kyUo9al6r8/+3xr7e7BVMUQm05yV1W9Nr2ZA9+X5BVJfvJkT9CZ\nQKi19vmquizJ9ek9zeIpSfYneXFr7RMDLY5hdE2SryS5JcnXJ/mTJJdYwJwV4CdPLIcXpLdw4bPS\neyR40gsfW3qt8PBVaa39dv/x329I8swkc0l+qLX2ucFWxhC6Kr3vWR88Zvzl6b1fg+XivRnLorX2\np1V1eZI3JZlM7wd321pr//lkz7Hq1xACAAAA4NRYOwcAAACgYwRCAAAAAB0jEAIAAADoGIEQAAAA\nQMcIhAAAAAA6RiAEAAAA0DECIQAAAICOEQgBAAAAdIxACAAAAKBjBEIAwNCpqsWqevGg63giVXVx\nVT1aVd846FoAgO4RCAEAq0JVvbMf9DxaVX9XVX9VVX9QVS+vqjpm929O8r5B1HkK7kryLa21Ly7n\nRarqeVX1nqr6i9UQlAEAK0MgBACsJu9LL+z5tiSXJdmb5K1Jbquqx97XtNY+21r7ymBKPDmttUda\na59dgUt9Q5K5JD+VpK3A9QCAVUAgBACsJn/bWvtca+0vW2tzrbU3JXlJkn+W5N8e2WlpJ0xVfVv/\n9Y9U1X+vqi9V1Ueq6ryqem5VfbSqHqqq36+qpy+9WFW9oqo+WVVf7v/+yiXbjpz38qraW1UPV9Vc\nVf2jJft8a7875wtVtVBVn6iqy/rbLu4f/41L9n9pVf1ZVf1NVd1fVa86pp77q+q1VbWzqr5YVZ+u\nqp98or+w1tr7W2v/obX2X5Mc20kFAHSUQAgAWNVaa3+Y5ONJ/sUJdt2e5A1JvifJI0l+M8mbklyd\nZGOSZ/e3J0mqanP/mNcm+Y4k1yZ5Q1X9+DHn/YUkb07y3UkOJPnNJd1Kb0vyNf3zX5Dk55IsLC1/\nyfXGk/xWv64Lkrw+yVRV/cQx13tVko8muah//l+vqvNO8LUDABxl7aALAAA4DT6V5LtOsM8vtdbu\nSJKqemt6wcslrbUP98d2Jvk3S/bfnuRn+501SfLpqvrOJFcl+Y1jzvv+/jlen+TP0guXDiQZS/K7\nrbVP9vd94Anqm0hyR2vthv7r/9m/3r9PcsuS/d7bWnt7/8+/WFUTSf5JkntP8PUDADxGhxAAMAwq\nJ14f5xNL/vyZ/u9/dszYM5Kkqp6a5NuT7OxPJ3uoqh5Kcl2Sc5/gvH/Zr+UZ/dc3Jpmsqg9V1faq\neqLQ6jnpLTS91F1Jzjtm0exPHLPPXy25HgDASREIAQDD4DlJ7j/BPksXmW6PM3bkvdFI//dXpDcV\n7MivC5J8/0mcd02StNZ2phcg3dI/9k+r6qdPUOeJHLtY9tK6AQBOijcPAMCqVlWXpDdd7HefYLdT\nerpW/+lfh5N8e2vtvmN+ffpUztta+4vW2o7W2r9M8itJHm8R6LuT/OAxYxuTHGiteToYAHBaWUMI\nAFhNvraqnpnkrCTPTPLDSV6T5D05el2fYx3v6VoneuLW65O8taq+mOT9Sb42yfcmObu19paTOUdV\nTSd5X3rrCf399Nb6+eTSXZb8+VeSfKSqXpfe4tI/kOSn01uz6KtWVd+Q3ppGR671rKr67iRfaK0d\nfDLnBgBWL4EQALCaXJZe584jSf46vaeL/Uxr7ZZj9ju2o+Z4HTZP2HXTWttZVQ8neXV6TxF7OL31\ne96ydLcTnPesJL+WZDTJF9MLh151vH1bax+rqh9N70lnr0tvPaLXtdZ+43j7n+zXkV6I9Yf9/Vp6\nwVOS/KckW05wLAAwpEoHMgAAAEC3WEMIAAAAoGMEQgAAAAAdIxACAAAA6BiBEAAAAEDHCIQAAAAA\nOkYgBAAAANAxAiEAAACAjhEIAQAAAHSMQAgAAACgYwRCAAAAAB0jEAIAAADoGIEQAAAAQMf8X5a5\ncxkaWNcQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the results of the clustering from implementation\n", + "vs.cluster_results(reduced_data, preds, centers, pca_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation: Data Recovery\n", + "Each cluster present in the visualization above has a central point. These centers (or means) are not specifically data points from the data, but rather the *averages* of all the data points predicted in the respective clusters. For the problem of creating customer segments, a cluster's center point corresponds to *the average customer of that segment*. Since the data is currently reduced in dimension and scaled by a logarithm, we can recover the representative customer spending from these data points by applying the inverse transformations.\n", + "\n", + "In the code block below, you will need to implement the following:\n", + " - Apply the inverse transform to `centers` using `pca.inverse_transform` and assign the new centers to `log_centers`.\n", + " - Apply the inverse function of `np.log` to `log_centers` using `np.exp` and assign the true centers to `true_centers`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
Segment 08812.02052.02689.02058.0337.0712.0
Segment 14316.06347.09555.01036.03046.0945.0
\n", + "
" + ], + "text/plain": [ + " Fresh Milk Grocery Frozen Detergents_Paper Delicatessen\n", + "Segment 0 8812.0 2052.0 2689.0 2058.0 337.0 712.0\n", + "Segment 1 4316.0 6347.0 9555.0 1036.0 3046.0 945.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Inverse transform the centers\n", + "\n", + "log_centers = pca.inverse_transform(centers)\n", + "\n", + "# TODO: Exponentiate the centers\n", + "true_centers = np.exp(log_centers)\n", + "\n", + "# Display the true centers\n", + "segments = ['Segment {}'.format(i) for i in range(0,len(centers))]\n", + "true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())\n", + "true_centers.index = segments\n", + "display(true_centers)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### Question 8\n", + "Consider the total purchase cost of each product category for the representative data points above, and reference the statistical description of the dataset at the beginning of this project. *What set of establishments could each of the customer segments represent?* \n", + "**Hint:** A customer who is assigned to `'Cluster X'` should best identify with the establishments represented by the feature set of `'Segment X'`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Based on the information obtained, a customer assigned to **Cluster 0** would most likely represent some type of **market/covinience store**. On the other hand, a customer assigned to **Cluster 1** most likely represents some type of **restaurant**." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "### Question 9\n", + "*For each sample point, which customer segment from* ***Question 8*** *best represents it? Are the predictions for each sample point consistent with this?*\n", + "\n", + "Run the code block below to find which cluster each sample point is predicted to be." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sample point 0 predicted to be in Cluster 1\n", + "Sample point 1 predicted to be in Cluster 0\n", + "Sample point 2 predicted to be in Cluster 0\n" + ] + } + ], + "source": [ + "# Display the predictions\n", + "for i, pred in enumerate(sample_preds):\n", + " print \"Sample point\", i, \"predicted to be in Cluster\", pred" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "**Answer:** Sample point 0 is best represented by a Market/Convenience store. Sample points 1 and 2 are best represented as some type of restaurant. This is consistent with the predictions obtained from the clusters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conclusion" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this final section, you will investigate ways that you can make use of the clustered data. First, you will consider how the different groups of customers, the ***customer segments***, may be affected differently by a specific delivery scheme. Next, you will consider how giving a label to each customer (which *segment* that customer belongs to) can provide for additional features about the customer data. Finally, you will compare the ***customer segments*** to a hidden variable present in the data, to see whether the clustering identified certain relationships." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "### Question 10\n", + "Companies will often run [A/B tests](https://en.wikipedia.org/wiki/A/B_testing) when making small changes to their products or services to determine whether making that change will affect its customers positively or negatively. The wholesale distributor is considering changing its delivery service from currently 5 days a week to 3 days a week. However, the distributor will only make this change in delivery service for customers that react positively. *How can the wholesale distributor use the customer segments to determine which customers, if any, would react positively to the change in delivery service?* \n", + "**Hint:** Can we assume the change affects all customers equally? How can we determine which group of customers it affects the most?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** By identifying the underlying type of customer segments (through clustering), the wholesaler will be able to draw more meaningfull hypothesis about expected behavior of the customers in each segment prior to performing the A/B test. Then these hypothesis may be tested on each segment separately to find more meaningful conclusions and understand the impact level on each independent customer segment. \n", + "\n", + "For example, by observing the definitions of these two customer segments, the wholesaler could draw the preliminary hypothesis that \"market/convenient store\" customers(i.e. cluster 0) and \"restaurant\" customers (i.e. Cluster 1) will react different to a reduction in number of deliveries. Restaurants will potentially react negatively as they are more concerned with having fresh products to serve their clients. Reducing the number of deliveries to 3 days would force them to increase their inventory levels (if its even possible) and keep produce longer which may increase spoilage of certain producs, and possibly a reduction in the quality of food that they serve their clients. On the other hand, the wholesaler may draw the hypothesis that \"markets/convenient store customers\" may react positively to the new schedule as they more likely have more inventory space to store the necessary stock to supply their clients. They are also not as concern with \"freshness\" of their products as a restaurant would be. These hypothesis would then be tested on separate sample groups of customers from each segment to draw final conclusions about the impact to each segment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 11\n", + "Additional structure is derived from originally unlabeled data when using clustering techniques. Since each customer has a ***customer segment*** it best identifies with (depending on the clustering algorithm applied), we can consider *'customer segment'* as an **engineered feature** for the data. Assume the wholesale distributor recently acquired ten new customers and each provided estimates for anticipated annual spending of each product category. Knowing these estimates, the wholesale distributor wants to classify each new customer to a ***customer segment*** to determine the most appropriate delivery service. \n", + "*How can the wholesale distributor label the new customers using only their estimated product spending and the* ***customer segment*** *data?* \n", + "**Hint:** A supervised learner could be used to train on the original customers. What would be the target variable?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Thow wholesale distributor could train a supervised machine learning classification algorithm (e.g. SVC, or decision tree classifier, etc) with the initial dataset's customer product spending as inputs and the customer segments (as obtained from GMM clustering) as the target variable. Once the classifier is trained it can be used to predict the customer segment for new customers which would then determine the most appropriate delivery service (3 days per week or 5 days per week)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing Underlying Distributions\n", + "\n", + "At the beginning of this project, it was discussed that the `'Channel'` and `'Region'` features would be excluded from the dataset so that the customer product categories were emphasized in the analysis. By reintroducing the `'Channel'` feature to the dataset, an interesting structure emerges when considering the same PCA dimensionality reduction applied earlier to the original dataset.\n", + "\n", + "Run the code block below to see how each data point is labeled either `'HoReCa'` (Hotel/Restaurant/Cafe) or `'Retail'` the reduced space. In addition, you will find the sample points are circled in the plot, which will identify their labeling." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false, + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABIQAAALSCAYAAACs1QrmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XmclXP/x/HX50zLNDVtWmhfVYQ0KUuphKLcCJG6KUuF\n2zIkP2sqypJK3KW0kl1ZK4QUSag7W4toX5QJ00zTPt/fH9c1xzlnzmw106h5Px+P6zHO9/pe3+tz\nLcfD+fgu5pxDRERERERERESKjkBhByAiIiIiIiIiIoeXEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkWM\nEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIiIiIi\nIkWMEkIiIiIiIiIiIkWMEkIiIiJHATP7zMw+Lew4smJmvcws3cxqFXYs/2Rmdq1/n5rnY5sPm1l6\nfrXnt5mr982/ltH5ee78ZmZt/Ti7FnYs+SHkes4u7FhEROSfTQkhERE5YoX8eM7YdpnZSjN7xsyq\nRKlfxcyGm9lyM9tpZqlm9q2Z3W9m5bI4x9d+233zGNvAiNj2mtkaM3s6q3MdIlcAbeYnRy5ijHLf\ndprZOjN7108qlTjYAMzsAjMbeLDHZ9PuFDNLyccm8/tZ5ureH0Sb/wghCZBMyUYza2dmM8xsi5nt\nMbOt/rt0aUTVf8z15JOw6zGzyf/khLGIiBSOYoUdgIiIyCFywIPAWiAWaA3cBFxgZk2dc7sBzOw0\nYBYQB0wDFvvHtwDuAdoAnUIbNrMG/v41QA9g3EHE1g/YCZQGOgC3AqcC+r/3WQu9byWB6kBHYBJw\nh5l1ds5tOoh2LwRuBgblV6C+gki4SN5kuv9mNgjv3w0/A88B64Bj8N6DN82sh3Pu1YzqhytQERGR\nfwolhERE5GjwgXNuif/Pk8zsDyARuBh4ze+R8xawD2jmnFsVcux4M7sfuDFKu/8GtgJ3AdPNrJZz\nbn0eY5vunPvD/+fnzcwB3cyshXPu2zy2VZSE3jeAR8ysO/Ai8AZw5kG0qR/9RYSZXY6XDHod6OGc\nOxCy+ykzOw8oXijBiYiI/ENoyJiIiByNPsX78V/X/9wPOA5IjEgGAeCc+905NzRKO93xkg8zgWTg\n6nyI7XP/b/3IHWbW0x/ClmZm283sFTOrEaVeHzP7xa/3lZm1jlIn6pw9Wc0vYmatzGyWmf3hD6X7\nzsxui6jTyMze9GPbZWbfmNlFUc59gpl96se3wU+4HfJ/czjnXgEmAK3MrEPI+Vqb2ev+0LLdZrbe\nzEaYWWxIncl4vYMy5rVJN7MDIfv7m9kCM0vy4/7WzC471JhD2q9lZmPMbIXffpIfc+0sDiltZuP8\neslmNtXMykdp9wIzm+8/sx1m9r6ZnZDLmPLtfcvFua72r32Xf842Ifva+c/j4iyOSzezVjmdIuLz\nEGA7cH1EMggA59wc59ys0CIgYN7w0Q1+nB+bWdj3NDfvml9vipmlmFk1M3vb/+dtZvakmVlIvdr+\n9d1pZjf693m3eUNVW0S5H7n6DoqIiOSGEkIiInI0auD/TfL//gvYBUzPbQP+D9AGwCvOuX3ADLxh\nY4cqI0n1Z8T57gemAivxejeNxBtiNs/MyobUux5v+Mtm4G5gAfAuUDPiPNkNY4qcX+Q8YB7QGBgF\n3ImXVOscUudE4CugETDMr5MKvB36Q97MqgKfAScDQ/3r+Ddwexax5NWLeD/+zw8puwIoBYwB/gN8\ngDc0b2pIneeAOf4/9wB6+nFluA1Ygter5F683mSvm9kF+RT3acDpwCt+bGPxnu/cyGQC3vU9i3ev\nB/rX0QOvl9vflcz+DbwPpAADgMFAE+Bzy2Hy7gJ437LTzm//Rbz7WxGYnZG4cs59Bmwg+verB/CL\nc25RDucIvtPmDfVsBLzlnNuZyxgN77lfDDyJ9+6ejje8NFRu3rWMeALAh8DveL0MP8P73vSJcv4e\nQH+8e30/UAevV2JMyHXl6jsoIiKSa845bdq0adOm7YjcgGuBA0B7vLlBqgNX4v0ASwWO8+ttB5bk\nse1ngLUhn8/1z3VyLo8f6Ndv6MdWC+iNNy/OFiA2pG4tvATEPRFtnADsBf7P/1wM+A34FigWUu96\nIB34NMq9qRXRZlu//Gz/cwBYDfwKxGdzPR8D/ws9r1/+BbAi5PNIv/2EkLJj8BJgmeLJ5r5VzGJ/\nOf9a3wwpKxml3j3AfqBGxDM9kEW7JSM+xwDfA3Ny8awnAztyqBMtxpb+tfSIeG7pwCIgJqS8v39f\nuvifSwN/AGMj2qzs3+vnIu9pQb5v2Vx3uh93s5CymkBaxDN81C+LDymr5MfzYB6/uxf5570tl/Xb\n+vV/jLjnt/qxn3AQ79pk/9j7IuouBr4O+VzbP/c2oGzENRwALjyI72DYd1ybNm3atGnLalMPIRER\nOdIZ8AleEmgD8DKwA7jEObfFr1MWrxdF7hr0/q98N+DVkOJP/XPkpZeQ4fXA+B1v0uuJwCrgAudP\ndu27zK/7hpkdk7Hh/UhchZfwAq+XSRW8H/v7Q46fijek7WCcitcbYZRzLuo9MrMKfgxvAOUiYvwI\naGhmx/nVLwC+cs5lTNqNc2478NJBxhcp1f8bH9L+npBY4/y4FuIlu07NTaMRbZQHKuAN78uX5d8j\n2i9mZhXxEnF/ZXGO8S58qNNY/ASB//l8vOTYqxHPw+Elk9qTtcP9vn3pnFua8cE5twF4B+gYMnzq\nBbxJ4S8POe4qvMRcXt+djB5OeV35bVLEPf8c7z7Vyyg4iHctciL6z0PbC/Gqc25HVufO43dQREQk\nVzSptIiIHOkc3twwq/D+L/1W59zKiDo7CEkg5EJHvJ4W34TMIWLAXLx5he4BMLPieMNfQm1zzmUM\nX3FAV7wfppXxhiXVBXZHHNMA7wflL1lc317/n2v5n8PqOef2m9nqPFxfqPp+mz9lU6cB3vUPAR7J\nIsYqeD2fauMNa4kU+UwOVhn/b/DHvpnV9GO7CC+RExpXudw0amZd8IbqNMNb2SxD+qEEG9J+LHAf\n0AuvJ1tGIiRajNGe8U4z24KXvIO/n8ncKKdzeO98Vg73+xbtPD/jrfhXGe87s9LMvsFLuE7261yN\nl1zM67udce15+c6Dl1AOlTGsM/hO5fFd2+0nQyPbrEBmYed2zv3l58oy6ublOygiIpIrSgiJiMjR\n4Bv39ypj0awATjGzYhE9HbJyNd4PrDciyh14EzM75+bhrXQ11y83/29dIHQlss+dv1qWmb0P/IDX\n4yEhpE4AL/HQiegJiNQoZTnJav6gmCzKs5PRo3g43pwo0UT70V8Qmoaez8wCeENpyuPNq7ISb1he\ndbyeLDn2hvYnOH4Hb46Xm/B+VO8DrsNLAOaHZ/GGg43ES5gl4z2j13ITYxQB//ieeCvhRcruPS+I\n9y0/vACMMrNqePP0nI4/EXgerfD/npTH4zJNPu0zOKh3Lav28nxu/lnfQREROUooISQiIkXBe3g/\nLi/D+wGeJTOLw1+uHngzSpVn8HoxzAO+w5tbKNRvWbXt9/IYBEwys27Oudf9Xb/i/fBb65zL7kfd\nOr9eQ7zkRUbMxfASUUtD6mb0bihPeIKqTkSbGeduijcsLpqMHhr7nHNZ1QmNsWGU8sY5HJdb1+Al\nQjJ+FJ/kn+/fzrng0CIzi3wukHWSrCvepOMdQxOG/oTK+eUyYIpzbkBI+yXxnk+kjGc8L6RuabyV\n8mb6RRnP7fdcPJNIBfG+ZSfa+9AIb86g30PKXgVG4CXh4vB6Kr2e+dDsOedWmdlK4GIzu905l5bX\nNrKQl3ctv+XlOygiIpIrmkNIRESKgufwEjVPmVmmH6dmVsVfdQm85EAc8Kxzbkbkhreq02VmVtw5\n95dz7tOIbW9k+xFeAjbhDzvzzcDrqTEw2gH+fDPgTe77O9DP/1GeoTeZEwsZP/qDy8v7PRwiVzha\nAqwB7jCzqMOrnHO/4yUE+prZsVHiqxTycRZweuiS2WZWGa/X1SExs6vxJjT+0jmXMVQqo2dF5H/T\n3EHmBNBOv52yEeUH/LrBe2pmdfASg/nlQJQYbyPrHlt9Ip7xzX7djKXSP8QbGnVfRD0g0zOJVBDv\nW3bOMLPg/Dr+sKt/AR+GDK/MmGtqNt7qbz2ADzJ61x2EgXiTUk8MXakrJIbzzKxz5sOylZd3LV/l\n8TsoIiKSK+ohJCIiRzrLqYI/H8eleL0rlprZNLzVfsCb0Lc73nLa4P0Q3Y43UWw07wI34i3J/nZe\ng/XnX3kaeNLMznfOfeScW21mDwBDzayu324K3oSyl+BNTDvCP/YBvATXXDN7Da+nRm+8BFDoeZaZ\n2VfAY/7Es3/gTdIbiKjnzOwm/7qWmtlkvCFTjfFWV8pYdv0WvIlufzCz5/F6LFQFzsAbMpPxg/8J\nvB/0H/rXmebfr7V4S9HnhgFXmFkqUMJvvyNwFt4qS91C6q7wr/0pM6uBlyS5jOgJi8V+28+Y2Yd4\nK2+9hvde3OnH/LJ/XRnzUuU25hIhScVQfzjnxuIlEv9tZjuAZXj3rQOQlFV7wCdm9jres7gJb/jh\n+wDOuRT/ub0ALDGzV/GSN7Xw3s0v8BJOmRTE+5aDH4EPzOwZvF4/N+ElUB6OUvcFvJ55DnggD+cI\n45x73cxOwpu36VQzewWvx9MxeEPlziHvScq8vGsFIbffQcjFvxdFREQKfZkzbdq0adOm7WA3/l5a\nvXku61fFm4NjOV5vkRS8JMF9eBPQVgb2AJOzaSPWP+7NHM6V5fLp/rn+IGLZbrwf4/PwfmjuwJvo\n+WmgQUS9vnjzhaThrSh1Ft5wr08i6tXB60mSBmwGBuP9EM60JDXej8oP8Fa92oGXeLkpSnuT8Xo4\n7cYbivYO3opuofVO9OPZ6de5Fy+JkJdl5zO2nXg/5N/BGy5WPMoxjfzrTMabT2cs3hC4A8A1IfUC\nwCi83mL7CV+KvRfeD/40/75fQ8Ry7dnEnLHEeLTtZ79OOWCCH18yXhKqId6P+olR3unW/nUk+fWn\nAuWjnPtsvF5Df/j36me81exOjbin+6Mcm6/vWxb35oDfZne8OXfSgG+ANlnUL46XkP0DKJEP/45o\nh9cjagved3srXnLuXyF1MpZp7xpxbO0o71Bu37XJQHIW7/f+KOdIzOLePZjX7yBadl6bNm3atOVy\nM+cKtIeriIiIiEiu+MO7NgPvOOcihzeKiIhIPtIcQiIiIiLyT3Ep3tw/LxR2ICIiIkc79RASERER\nkUJlZi2BU/DmDdrmnDutkEMSERE56qmHkIiIiIgUtpuA/+LN73RtIcciIiJSJKiHkIiIiIiIiIhI\nEaMeQiIiIiIiIiIiRYwSQiIiIiIiIiIiRYwSQiIiIkc5MytuZiPNbIOZpZvZy4UdU34xs1fNbHlh\nx1GQzKyf/9yqFHYsRwoz+83MxuRjex39Z9AyH9t8zMx25Vd7IiIieaWEkIiISA78H4I5bQfM7OzC\njjULNwG3Ay8BPYFnCzecfOX8LVtmFjCz68zsazP7w8ySzWyFmU02s+aHIc5DkatrzK2Q5EbGttvM\ntpjZJ2Y2wMwqHkLbJ5nZQDOrll/xRrTf0MwmmNlqP+6/zGy+md1sZiVCqqaTj/fMVxDtaTJPEREp\nNMUKOwAREZEjQM+Iz9cC5/rlFlL+T+2p0h74xTn3f4UdSCEaD1wHvAlMxUsYNAIuxHtuSwovtELz\nJPAd3n8PVgZaA48Cd5rZZc65BQfR5snAQGA2sDm/AgUws0uBl4FU4AXgJ6AU0AYYCRwP3OFXrw0c\nyM/zi4iIHG2UEBIREcmBcy5siJWZnQGc65x7JTfHm1msc253gQSXO1WAv/KrMTMzoIRzbk9+tVmQ\nzKwmXjLoaedcYsTuO8zsmEII659gnnNuVsjnp/zeUh8Bb5lZE+fc9jy2aRRArxczawi8CKwEOkTE\n9V8zOx4vSQuAc25fLtqMc86l5XesIiIiRwoNGRMREclHIcNxLjWzx81sE5BqZiXMrJI/l8+PZpbq\nD3d5z8xOyKKNf5nZw2a2yczSzOxDM6sdUbexmb3tz5myy8zWm9k0MytlZo3MLB04HWgRMrStpX9s\nvJmNNrON/vCb5WZ2W0T7Jf3jnjCzXma2DNgNtM1o3x+uc7uZrfGva5aZVTXPYL/9nWb2hpnFR7ln\nF5nZgpB78rb/Az+yXjcz+8m/zqVm1jmXj6We//fLaDtDkwsH8YwuNrNHzGyzPwztZTOLM7NYM/uv\nmW0zsx1mNs7MioUcH3lff/ava5GZnZ6bi8rtfcsL59wSoD9QCegXcq56/jX87L+Lv5vZK2ZWI6RO\nX7yeOwBfRXnfLvPfjc3++/azmd1jZqG97LJyH15voGujJamccz8754JzBlnEHEL29zxMZ5jZeDP7\nHVgVsr+mmU0xb+jcLjP7xcyeySk2MzvLzOb4zz7VvGF3meYZMrP2ZrbYb3uFmfXKxTWLiIgUKPUQ\nEhERKRhDgJ3A40BpvOErjYBOeMOW1gHH4f3o/szMTnDOJUW0MRDYAzwGHAMMAKbgDQHDzGKBOXjD\nn0YC24CawL+AMnhDdnoCg/B6bjzo//3FzAJ4w3pOB8YBPwKdgVFmVtU5d39ELBcCPYD/An8CG0P2\n3YD3P5lG4vVG6g+8gjcMqwUwFGgC3AJsBf6TcaCZ3YA3nOtd//rK+PW+MLNTnHNb/HoX+W0uBf4P\nb4jTS8CmKPc+0jr/75Vm9m4OPZsO5hmlAI/413gzXsKsLN5/Zz2ENxTrBrwExPCI4zvy97xO+/1r\n/9DMEpxzv2QVZG7v20F61W/7fLwhZABnAKcC0/DueX3/WpubWVO/R87HwFi8+/UQsNo/NuM6rsN7\nd54E0oDzgGFAHN59zE5nYJlz7rtcXkNkL6WMz8/jfS8eAmIh2IPsG7yE0zjgZ6AW0A0oDuyNdgIz\n6wS8Ayz02wPvOX9mZqc757736zUHZuHdtwf88z4OHMozEhEROXTOOW3atGnTpk1bHjbgGeBAFvs6\n4iVofgKKRewrEaV+A7ykz11R2lgCxISU342XWKrnf27l17sgh3gXAl9HlF3pH3tHRPk7eD+Aq/uf\nS/r19gB1I+o28vdtAEqFlD/ll38FWEj5dCAl5HM5YAcwMqLdan75qJCyZXgJhtDzdPbPsywXz+xV\n/94lAW/gzTXTIEq9vD6jb4BAxDUeAN6MaGNxaJwh93Uf0CSkvJ5/rmkhZX39Nqvk9b7l8I5emE2d\n5cDG0Hij1Dnbb+eykLIefqwto9SP1sZkvCRRIJtYKvvneTkP39EtwJiIe5gOfBSl7mv+PT8xh3sW\nvC68BOgaYEZEvThgPfB2SNls/7lUCSk7yW8vLbfXpE2bNm3atOX3piFjIiIiBWOSc25/aIFzLtjT\nwMxizFvN6S+8H5bRVrqa4JwLnRj3c7wePhlDoDLmBbrAzErmMb4LgF3AcxHlI/B6tnSMKP/IObcm\ni7Zecc6FLp+9yP871TnnIsrjzOxY//OFeL2nXjWzYzI2vITUYv7uCVUHaIx3T4Pncc7NBH7N6UJ9\n3fGSQOuArnhJq5/NbLaZVQ1pM6/PaLJzLj3KtU+KqLcIqBPl+M+cc8HJyJ1zq/F6k1yQzbXk6r4d\nolQgOLzPhfSqMrPi/n1ZhtfTJ1ertEW0UcaP+Qu83lT1szm0rP83JdfRZxECXg+gIH8YXxe8BN5P\neWirJd7E1a9EPIM4YC5/v7slgHOA151z24KBOPeDX09ERKTQKCEkIiJSMNZGFpi39PkAM/sVr0dC\nEt4wr4Z4vT4ibYj4/Kf/twKAc24l3hCuW4Dt/vws/cysTC7iqw1scJknu14esj/b68kmzmT/78Ys\nyiv4fxvgJbgWAr+HbNvwep9Ujogl2hCqn7OJK8h5nnHOJeANa+uKN3lyR7zJioF8eUbJ2ZSXNLNS\nEeVZXVN5MysbZR/kfN+qZHFcXpQhJAHjz4v0qJltxBsSl3FfShH9vmRiZieb2btmlozXY+Z3vCFc\n5NDGDv9vpvmnDsLaiM/V8K4hL8kg8N4H8HoXRT6DnkBpP0l7HN6ws2jPeWUezykiIpKvNIeQiIhI\nwdgVpWww3uS4z+H1DvgTbxjLWKL/T5qsls0OTnTrnLvVzJ7HmzfofLwE0QB/DpNtWRx/MKJdT4as\n4swp/gBer41u/J3sChV17pZD5bxJid8B3jGzL4EOZlbZOfc7+feMcnx2h6BA75s/N1V9wifhHg9c\ngdeD7Gu8JI0DZpCL/8Ho956ZjzeH1L14iZndeHMTDc6uDefc72a2HW+Y1aHK7j3Oi4xncBt/J1Ej\nFcj7KyIikl+UEBIRETl8LgNmOeduDi30h9/kduhTJs6bvPZ74BEzawd8ije57dBsDlsHtDSzki58\nkuUmIfsLWsY1b3XOfZFNvYxYGkbZdzzePDwHazHeXEzH4fXwKJBnlI2srukv59yOKPsg9/ftYHXH\n+2/ED0LKugLjnXP3ZhT4PdEiezFlteT8uXg9fDo45xaHtHFiLmOaCfzbnzA7txNL58ZmvCRR0zwe\n9yteci/ZOfdpVpXMbAve+xntOTfO4zlFRETylYaMiYiI5L+sfhQfIKKHiJn9G28Fsdy2EXpsWX+1\nsFA/+H9zmlNoFt5QmX4R5Yl4q119kOmIvMkxfj+GNOABM4uJ3On3KsE5txZYAfQ2s7iQ/ReR/dwz\nGfWqW/Rl7Evize+yj79XxMrXZ5QLbUOTImZWH2+OoNnZHJOr+5aDqLGbWQLeKmDb8HoFZThA5v9u\nTIzSxE68+1c+ojyjx1SwDf/+R75/WRmGN4RvSrTrM7NGZnZz5sOy58/z9R5wmZnlJSn0Fd6wwAFR\nhgFiZpX89vcCnwBXhM5VZWanAO3yGq+IiEh+Ug8hERGR/JfVsKD3gbvNbDze6lSn4K32tTYPbYS6\nAHjCzN7AW9K8JHAt3lCcGTkc+yawABjuJ0sylp2/ABjmnNuci/NnJ8f4nXN/mNltePPIfGtmrwHb\n8SZf7gJ8iLekOnhLzc8AFpjZFKAq3rLny8j5f3DVAeaZ2cd4w8C2+sf3wOulMcw5l+rXze9nlJOf\ngDlm9ize0LSb8YYaDc7qgDzet6wY0N7MKgAxePM1tfaP/x241Dn3R0j9mcANZrYLb46j1sBZ/D2x\neYb/4SWbHvAnD9+DN1fTfLw5iV4xs2fw/hv0Gn9/jpxzK/3E3DRghZlNxXv2sX4slwFjctNWFPfg\nJWe+NLNxeHP71MAbktcsZKLx0KGa+83sRryhhz+Y2Qt4vY1q4PWG2oT33gA8iPdd+9LMxvox34aX\nvM2UqBQRETlclBASERE5ONn1Dslq38N4SZtueMNyvuHveX8ij8mqjdDyxcDHwCV4Q5524v0gPz/K\nsJqw9pxz6WZ2AfAIcDlwPd5KWnc4556Jcmxu4slNeXgl5yab2Tq8H+X34E3AuwmYh/fjP6Peu2Z2\nNd49HIaXlLga+Ddwcg6n+QG4E6/nzS14ky7v8st7OedeDKn7MIf+jLISrf5HeEmhB4DqeEP/ujnn\nsp0sO7f3LYdY7vT/eR/eXETL8Ob3meici5ybqB9eovEaoARegudcvERH8Lqcc+vN7BbgbmACXrLp\nDOfc12bWBRgOPAr8gbfk/CK8Hjo5B+zcdDP7wW/7MrxnuQfvOd7B3xNUZ1xfbt/BdWbWChjiX188\n3oTo7xM+HDHyO/SRmZ2Jl/C5FW/lty14k30/F1Jvsf9de9I/x3q8hF0jlBASEZFCZOGrwYqIiIhI\nQfOHS+0ChjvncurNIyIiIpLvjsg5hMysmpm9aGZJZpZmZt+ZWfPCjktERERERERE5EhwxA0ZM7Py\neN2TPwE6Akl4KzdEW3ZVREREREREREQiHHEJIbxJJdc7524IKTscS+OKiIiI5Kdcz3MjIiIikt+O\nuDmEzOwnvKVwawJt8SZQHOOcm1CogYmIiIiIiIiIHCGOxDmE6gE34S0Jej4wFhjtL0UqIiIiIiIi\nIiI5OBJ7CO0BvnbOtQkpexpo4Zw7K0r9Y/DmGlqLt1yqiIiIiIiIiMjRIBaoA3zonNuelwOPxDmE\ntgDLI8qWA12zqN8ReKlAIxIRERERERERKTw9gJfzcsCRmBBaADSKKGtE1hNLrwWYNm0aTZo0KcCw\nRCAxMZGRI0cWdhhSBOhdk8NF75ocLnrX5HDRuyaHi941ORyWL19Oz549wc995MWRmBAaCSwws3uB\n14FWwA3AjVnU3w3QpEkTmjdvfngilCKrXLlyes/ksNC7JoeL3jU5XPSuyeGid00OF71rcpjleYqc\nI25Saefct8ClQHfgB+B+4Hbn3KuFGpiIiIiIiIiIyBHiSOwhhHNuFjCrsOMQERERERERETkSHXE9\nhERERERERERE5NAoISSSj7p3717YIUgRoXdNDhe9a3K46F2Tw0Xvmhwuetfkn86cc4UdQ4Eys+bA\n4sWLF2tCLxEREREROeqtX7+epKSkwg5DRPJJpUqVqFWrVtR9S5YsISEhASDBObckL+0ekXMIiYiI\niIiISGbr16+nSZMmpKWlFXYoIpJP4uLiWL58eZZJoYOlhJCIiIiIiMhRIikpibS0NKZNm0aTJk0K\nOxwROUTLly+nZ8+eJCUlKSEkIiIiIiIi2WvSpImmzBCRbGlSaRERERERERGRIkYJIRERERERERGR\nIkYJIRERERERERGRIkYJIRERERERERGRIkYJIREREREREZFDFAgEGDx4cGGHIYXsySefpH79+hQr\nVuwfP7G7EkIiIiIiIiJyRJg6dSqBQIAlS5ZE3d+uXTtOPvnkPLc7duxYpk6deqjhReWco0qVKgwf\nPhzwYgwEAsEtLi6OU045haeffhrnXIHEALBlyxYGDRrE999/X2DnKCyzZ89m0KBB2da56667aNq0\naVjZ6tWr6du3L/Xr16dUqVKUK1eO1q1bM3r0aHbv3p3nOD766CPuuece2rRpw5QpUxg6dGie2zic\ntOy8iIiIiIiIHDHM7KD2ZWfMmDFUrlyZa6+99mDDytKiRYvYvn07Xbp0AbwYa9asyWOPPYZzjqSk\nJF5++WVL6AECAAAgAElEQVQSExNJSkpiyJAh+R4DwObNmxk0aBB169Y9qKTZP9msWbMYM2YMAwcO\nzLbOxRdfHPw8c+ZMunXrRmxsLNdccw1NmzZl7969fPHFFwwYMIBly5bx3HPP5SmOuXPnEhMTw8SJ\nE4mJiTno6zlclBASERERERGRLKWmpjJ58mRef+UVUpKTadaiBTffcgstW7Ys7NCOCLNnz6Z27do0\nbtw4WFauXDm6d+8e/Ny3b18aN27MM888w+DBgw86sZWdgux9lBsHDhwgPT2d4sWL53vbOV3bmjVr\nWLlyJZ07dwZg7dq1dO/enbp16/Lpp59SpUqVYN2bbrqJIUOGMHPmzDzHsXXrVkqVKnVEJINAQ8ZE\nRERERESKHOccCxcuZNq0acyZM4f9+/dHrbdt2zZaJbTgztvvoNJXP3Hmss3Mf/kNWrVqxbPPPnuY\no867AwcOMGTIEBo0aEBsbCx169bl/vvvZ+/evcE6devW5aeffuKzzz4LDuM655xzgvuTk5O54447\nqFWrFrGxsTRs2JAnnngi1wmWmTNnBhMRWSlZsiSnnXYaKSkpbNu2LWzf3r17GThwIA0bNiQ2NpZa\ntWpxzz33hF0DwJw5c2jTpg0VKlQgPj6exo0bc//99wMwb948WrZsiZnRq1cvAoEAMTExvPDCCwB8\n8cUXdOvWjdq1awfPceedd2YaNtWuXbuwe5OhV69e1K1bN/h53bp1BAIBRowYwdNPPx28/8uXL2ff\nvn089NBDtGjRgvLly1OmTBnOPvtsPvvss7A2Q9t4/vnng220bNmSb7/9Nlivd+/ejBkzBiD4/CIT\nMu+//z7ly5fnrLPOAuDxxx9n586dTJw4MSwZlKFevXrceuutwc+TJ0+mQ4cOVK1aldjYWE488cRM\nvYcCgQBTp05l586dme4vwLRp02jRogVxcXEcc8wxdO/enY0bN2Y69+GkHkIiIiIiIiJFyJIlS7i2\nR09+XLE8WFbj2OMYM34cF110UVjd/9xyC9tXr+UHV4fGlAQgfb+jP9u47bbbaNeuXaZ5WdLS0njt\ntdf4/PPPKVasGJ07d6Zz584UK5Z/Pz+Tk5PZvn17WJlzjn379oWVXX/99bzwwgt069aN/v37s2jR\nIoYNG8aKFSuYPn06AE8//TT/+c9/iI+P54EHHsA5R9WqVQHYtWsXZ599Nlu2bKFfv37UrFmTL7/8\nknvvvZfffvuNESNGZBvn1q1b+d///scjjzyS4zWtWbMGM6N8+fJh13TRRRfx5ZdfBnsR/fDDD4wc\nOZJVq1YxY8YMAJYtW8ZFF11Es2bNGDJkCCVLluSXX37hyy+/BKBJkyYMHjyYhx56iL59+9KmTRsA\nzjzzTADeeOMNdu3axc0338wxxxzD119/zTPPPMOmTZt47bXXgvFk1XPJzKLumzRpEnv27KFv376U\nLFmSihUrsmPHDiZNmkT37t3p06cPKSkpTJw4kU6dOvH1119nGs720ksvkZqaSr9+/TAzHn/8cS67\n7DJWr15NTEwM/fr1Y/PmzXz88ce89NJLURN1s2fP5rzzziMQ8PrEvP/++9SrV49WrVrl+FwAnnvu\nOZo2bcrFF19MsWLFeO+997j55ptxznHTTTcBXsJn3LhxfPPNN0ycOBHnXPD+Pvroozz00ENcddVV\n3Hjjjfz++++MHj2atm3b8r///Y+yZcvmKo5855w7qjegOeAWL17sREREREREjmaLFy922f3+WbNm\njSsfH+8SYkq7OdRyaTRy31LHdbZ4FxMIuHnz5gXr/vbbby4mEHDPUtU5moRte2jsji1W0t16661h\n7f/444+uxrHHOQPXolgZd2KxOAe45ief4rZu3XrI1zdlyhRnZtluJ510knPOuaVLlzozc3379g1r\n4+6773aBQMB99tlnwbKmTZu69u3bZzrfkCFDXHx8vPv111/Dyu+9915XvHhxt3HjxmCZmblBgwaF\n1Zs4caIrXbq02717d7CsXbt27oQTTnBJSUkuKSnJrVy50t19993OzNy//vWvsONffPFFV6xYMffl\nl1+GlY8bN84FAgG3cOFC55xzo0aNcoFAwP3xxx9Z3rtvv/3WmZmbOnVqpn2h8WV47LHHXExMjNuw\nYUNY7NHuU69evVzdunWDn9euXevMzJUvX95t3749rG56errbt29fWFlycrI79thj3Q033JCpjcqV\nK7vk5ORg+bvvvusCgYCbOXNmsOw///mPCwQCUa87LS3NlSpVyr3wwgvOOed27NjhzMxdeumlUetH\nE+3+dOrUyTVo0CCsrFevXi4+Pj6sbN26da5YsWLuscceCyv/6aefXPHixd2wYcOyPXdO3+mM/UBz\nl8d8iYaMiYiIiIiIFBGjRo2iWNoePj5QnXMpTSkCJFCKt111mlkpHh3894TGq1at4kB6Ou0pnamd\nEhht9pdg+U8/Bcv27t1L546dqPh7Mj9Tn2/21+TH/bX5ktpsWraCniFz5hwKM2Ps2LF8/PHHmbbQ\n3iWzZs3CzEhMTAw7/q677sI5l6s5Yt58803atGlDuXLl2L59e3Dr0KED+/fvZ/78+dkeP3v2bNq3\nb0/JkiXDypcvX07lypWpXLkyjRs3Zvjw4Vx88cVMnjw50/mbNGnC8ccfH3b+9u3b45xj7ty5AMFe\nRW+99dZBzRUUGl9aWhrbt2/njDPOID09nf/97395bi/D5ZdfTsWKFcPKzCzYW8w5x59//snevXtp\n0aJF1NXjrrrqqrAeNG3atME5x+rVq3MVwyeffMLevXvp1KkTADt27AAgPj4+19cRen927NjB9u3b\nOfvss1m9ejUpKSnZHjt9+nScc1xxxRVhz7BKlSo0bNgw+AwLg4aMiYiIiIiIFBHvTp9B9wOlKU/4\nHCvFMG48EE+/Tz4mLS2NuLi44A/51ezlBEpmamt1TDr1K1UKfn7rrbdYt2kjP1KPBpQIlp9BHKP3\nV+LKTz/lxx9/zDTE7GCcdtppNG/ePFN5hQoVgkPJ1q9fTyAQoEGDBmF1qlatSvny5Vm3bl2O51m1\nahU//PADlStXzrTPzDLN9xNq//79zJkzh8cffzzTvrp16zJhwgQOHDjAr7/+yqOPPsrvv/9ObGxs\npvOvWLEix/NfeeWVTJw4kRtvvJH/+7//o0OHDnTt2pXLL788VxNUb9iwgQcffJD33nuPP//8M+wc\nycnJOR6flTp16kQtnzp1KiNGjGDFihVhw/zq1auXqW7NmjXDPmckv0LjzM6sWbNo0aJF8B5mJJdy\nSuSEWrBgAQMHDuSrr74iLS0tWJ5xf7JLLv3yyy+kp6dneg8zji9RokSUow4PJYRERERERESKiL17\n9xKfxUCRjPKMH+hNmjShWdOTeHzZajqml6E4fycWPiCVxQd28lCPHsGyr776iuOLx3HivszJo0vw\nfjAvXLgwXxJCeXEoK3alp6dz3nnncc8990TteXP88cdneeznn39OSkoKF1xwQaZ9pUuXpn379gCc\ne+65nHnmmTRv3pz77ruPUaNGhZ3/pJNOYuTIkVHPn5EsiY2NZf78+cydO5eZM2fywQcf8Nprr9Gh\nQwc++uijbO9Beno65557Ln/99Rf33nsvjRo1onTp0mzatIlrr72W9PT0YN2s2jlw4EDU8lKlSmUq\nmzZtGr1796Zr164MGDCAKlWqEBMTw9ChQ6P2+slqxa7c9oSaNWsW1113XfBzfHw81apV48cff8zV\n8atXr+bcc8+lSZMmjBw5kpo1a1KiRAlmzpzJqFGjwu5PNOnp6QQCAT744IPgHEahypQpk6s4CoIS\nQiIiIiIiIkXEmWe3Ycbbsxiy3xEg/Mf9m5bKicc3DvagMDNGjH6ajuefT2s2cFt6OapRjNmk8kwg\nmU4dzg9bPatkyZKkuHTSydz2DryEQWQPmIJUu3Zt0tPTWbVqFY0aNQqWb9u2jb/++ovatWsHy7JK\ndNSvX5/U1NRg8iYvZs2axQknnECtWrVyrHvSSSfRs2dPxo0bR//+/alRo0bw/N9//32uz9++fXva\nt2/P8OHDGTZsGA888ABz587lnHPOyfIaf/jhB1atWsWLL75Ij5AE38cff5ypboUKFVizZk2m8tz0\ntsowffp06tevz5tvvhlW/tBDD+W6jUhZXduPP/7I+vXrM63y1qVLF55//nkWLVqU48TS7733Hnv3\n7uW9996jevXqwfJPPvkkV7HVr18f5xx16tSJ2kuoMGkOIRERERERkSLijsREVh7YRT9+4y8/SbOb\ndB4nibfcDu4ccHfYj+v27dvzyaefUvL0U+jJZs5hPRPK7ue2/nfx1rvvhPXeuOSSS9iyfzdvk3ko\nzhj+pESx4sF5XA6HCy+8EOdcWI8bgKeeegozC0sSlC5dmr/++itTG926dWPhwoV89NFHmfYlJydn\n2TMGvIRQTsvNhxowYAB79+4NW7msW7dubNy4keeffz5T/d27dweHL0UbPnXKKafgnGPPnj2Ad41A\npuvMeIaRPV1GjRqVKdFSv359VqxYEbbC23fffceCBQtyfZ3RevwsWrSIhQsX5rqNSBnXljE/UIZZ\ns2Zx7LHHkpCQEFY+YMAA4uLiuOGGG6IO+/v1118ZPXp0WLyh9yc5OZkpU6bkKrauXbsSCAQYNGhQ\n1P1//PFHrtopCOohJCIiIiJFVmpqKiNHjmTS+PFs2LyZmtWqcV2fPiQmJhZqN36RgnLmmWcyYcIE\n+vXty0vpqTQNxPIre9m+fy/33HMPvXv3znRMmzZtmL9gAVu2bCElJYVatWpF7enTqlUrLuzYiWvm\nfMzG9P1cRVnSSOd5/uIx+4O7EvtHnQsnr3I7VOjkk0/m2muvZfz48fz555+0bduWRYsW8cILL9C1\na1fatm0brJuQkMBzzz3Ho48+SoMGDahSpQrt27fn7rvv5t1336VLly706tWLhIQEdu7cyffff8+M\nGTNYu3ZtpkmTwVtCfvny5YwbNy7X19WkSRMuvPBCJkyYwIMPPkiFChX497//zeuvv85NN93E3Llz\nOeusszhw4ADLly/njTfe4KOPPqJ58+YMHjyY+fPn07lzZ2rXrs3WrVsZO3YstWrVonXr1oCXzClf\nvjzPPfccZcqUoXTp0px++uk0btyY+vXrc9ddd7Fx40bKli3L9OnToybIrrvuOkaMGMH555/P9ddf\nz9atWxk3bhxNmzbNlIzJSpcuXZgxYwaXXHIJnTt3ZvXq1YwbN44TTzyR1NTUXN+vUAkJCTjnuPXW\nW+nYsSMxMTFceeWVzJo1K+qQvXr16vHyyy9z1VVX0aRJE6655hqaNm3K3r17WbBgAW+++Wbwu3D+\n+edTvHhxunTpQt++fUlJSWHChAlUrVqV3377LcfY6tWrxyOPPMJ9993HmjVruOSSS4iPj2f16tW8\n/fbb9O3blzvvvPOgrvuQ5XVZsiNtQ8vOi4iIiEgUKSkprmXzBBcbiHE3UN6N4Vh3A+VdbCDGtWye\n4FJSUgo7RJE8y2mJ6gybNm1yQ4cOdddff727//773YoVK/Ll/Kmpqe6anj1dTCCQsRS2i4uNdffd\nd5/bv3//Ibc/ZcoUFwgEsry+du3auZNPPjn4+cCBA27IkCGufv36rmTJkq527drugQcecHv37g07\nbuvWre6iiy5y5cqVc4FAIGxp9Z07d7r777/fHX/88S42NtZVqVLFtW7d2o0cOTLsmgKBgBs8eLBz\nzrlnn33WVahQwR04cCDHGEPNmzfPBQKBsOXr9+/f75588kl30kknuVKlSrljjjnGnXbaae6RRx4J\n/ntq7ty57tJLL3U1atRwsbGxrkaNGq5nz57ul19+CWv/vffec02bNnUlSpRwgUAguAT9ihUr3Pnn\nn+/Kli3rqlSp4vr16+d++OGHsDoZXn75ZdegQQMXGxvrmjdv7ubMmeN69erl6tWrF6yzdu1aFwgE\n3IgRI6Je52OPPebq1q3rSpUq5RISEtysWbPy1EbovXbOe8633367q1q1qouJiXExMTEuOTnZFS9e\n3E2fPj1qDM4598svv7i+ffu6evXqudjYWFe2bFl35plnumeeecbt2bMnWO/99993zZo1c3Fxca5e\nvXpu+PDhbvLkyS4QCLh169YF6/Xq1cuVLVs26rneeustd/bZZ7v4+HgXHx/vTjjhBHfbbbe5VatW\nZRmfcwW77Ly5g1iS7khiZs2BxYsXL446C72IiIiIFE1Dhgxh6MODWJBek+b8PfHpYnbROrCB+x4e\nyIMPPliIEYrk3ZIlS0hISKCwf/9s2rSJhQsXUrx4cdq1a0e5cuUKLZbC0LlzZ+Lj43n11VcLO5Qi\n64033qBnz54kJSXlaYn5f5qcvtMZ+4EE59ySvLStIWMiIiIiUiRNGj+enunxYckggARK0SM9nknj\nxyshJHKQqlevzuWXX17YYRSa9u3b06ZNm8IOo0grX748o0ePPqKTQQVNCSERERERKZI2bN5Mc6pE\n3ZdALFM2bznMEYnI0aJ///6FHUKRd9555xV2CP94WmVMRERERIqkmtWqsYTdUfctZjc1qx13mCMS\nERE5fJQQEhEREZEi6bo+fZgWSGExu8LKF7OLlwIpXNenTyFFJiIiUvCUEBIRERGRIikxMZGTmzWj\ndWADN7CFsfzJDWyhdWADJzdrRmJiYmGHKCIiUmCUEBIRERGRIqlMmTJ8Mu8z7nt4IJ/UKMOtgd/5\npEYZ7/O8zyhTpkxhhygiIlJgNKm0iIiIiBRZZcqU4cEHH9RqYiIiUuSoh5CIiIiIiIiISBGjhJCI\niIiIiIiISBGjhJCIiIiIiIiISBGjhJCIiIiIiIiISBGjhJCIiIiIiIjIIahTpw7XXXdd8PO8efMI\nBALMnz+/EKMSyZ4SQiIiIiIiInJEmDp1KoFAILgVL16cGjVq0Lt3bzZv3nxQbc6ePZtBgwYdUlyB\nQAAzCyuL/CzyT6Nl50VEREREROSIYWYMGTKEOnXqsHv3br766ismT57MggUL+PHHHylRokSe2ps1\naxZjxoxh4MCBBx3TypUrCQTU30KOLEoIiYiIiIiISLY2btzIjBkzSElJoVmzZnTq1ImYmJhCi6dT\np040b94cgOuuu45jjjmGJ554gnfffZfLL788T2055w45nuLFix9yG9lJS0sjLi6uQM8hRY9SmCIi\nIiIiIkWQc449e/ZkmxBJT0+nf//+1K5Th8QB/Xl41ON06dKF+o0a8sMPPxzGaLPXpk0bnHP8+uuv\nYeWzZ8/m7LPPpkyZMpQtW5YuXbqwbNmy4P7evXszZswYgOAwtNBE1/DhwznrrLOoVKkScXFxtGjR\ngunTp2c6f+QcQllZtGgRnTp1onz58pQuXZp27drx5ZdfhtV5+OGHCQQCLF++nKuvvpqKFSvSpk2b\nPN0PkdxQQkhERERERCQLqampDBkyhLo1a1IsJoa6NWsyZMgQUlNTCzu0g5aWlsbgwYM5rmZ1YmNj\nKVexArfffjvbtm3LVPfxxx/nqREjSB9yPum/D2T/7wPh69vYGL+P9uedy59//hn1HElJScyePZs5\nc+aQlpZW0JfEmjVrAKhQoUKw7MUXX6RLly7Ex8fzxBNP8NBDD7F8+XLatGnD+vXrAejXrx/nnXce\nAC+99BLTpk3jxRdfDLYxevRomjdvzpAhQxg2bBjFixenW7duzJ49O+z8uZkv6NNPP6Vt27akpqby\n8MMPM2zYMJKTkznnnHP49ttvM7V1xRVXsHv3boYNG8aNN954kHdGJGsaMiYiIiIiIhJFamoqHdq2\n4/ulS+mZHk9zqrBkYypDHx7E+2+/wyfzPqNMmTKFHWae7N69m/Mv6MTCrxeRfk1zOPNsUpZv47/P\nT+Lt99/l6y+/omrVqsG6T4wYDrecCfd2+LuR02pxYGZv/qgzjMmTJ3PnnXeGtX9H4h1MmjyZfXv2\nAlCmXFn+7+4B3Hffffk20XJycjLbt28PziE0ePBgSpUqRZcuXQDYuXMnt99+O3369GHs2LHB4669\n9lqOP/54hg4dynPPPUerVq04/vjj+fjjj+nevXum86xatYqSJUsGP//nP//h1FNPZcSIEVxwwQV5\nivmmm26iQ4cOzJw5M1jWt29fTjjhBB544AE++OCDsPqnnnpqWHJKJL8pISQiIiIiIhLFyJEj+X7p\nUhak16Q5pYLl/dLL03rpUkaOHMmDDz5YiBHm3YQJE/hywQLc/JvhzDrB8gP9zmDzac/w8MMPBxMo\n3333HX8l/QHXJGRuqFo53HkN+WjOR2EJoe49rubdWTNJf/hcuPIU2LWP1OcX8cADD7Bnzx4GDx58\nyNfgnKNDhw5hZXXr1uXll1+mWrVqAMyZM4fk5GSuuuoqtm/fHqxnZrRq1Yq5c+fm6lyhyaC//vqL\n/fv306ZNG1599dU8xbx06VJWrVrFgw8+GBZPxrVMmzYtrL6Z0bdv3zydQySvlBASERERERGJYtL4\n8X7PoFJh5QmUokd6PJPGjz/iEkLPT54IlzQNSwYBUKci+28+nakjXmT06NEHNUnyt99+y9sz3oKX\ne0D3U//eMfJiKF2Cx598gjvuuIOKFSse0jWYGWPGjKFhw4YkJyczadIk5s+fH7a62KpVq3DO0b59\n+6jHly1bNlfnev/993n00UdZunQpe/bsCZbndUWxVatWAXDNNddE3R8IBEhOTqZcuXLBsrp16+bp\nHCJ5pYSQiIiIiIhIFBs2b6Y5VaLuSyCWKZu3HOaIDt2mzZtx/2oWfedJx7IrdSepqalUqFCBU045\nhfKVKvLXC4vhtFrhdTcnY3NWcf5jNwSLZsyYQbGq5djf7ZTMbd/amr2PfsLs2bPp0aPHIV/Haaed\nFlxl7OKLL6Z169ZcffXVrFy5kri4ONLT0zEzpk2bFhwCF6pYsZx/Cn/++edcfPHFtGvXjrFjx3Lc\nccdRvHhxJk2axCuvvJKneNPT0wF46qmnOOWUKPcHMg0/LFWqVNR6IvlFCSEREREREZEoalarxpKN\n0SePXsxualY77jBHdOjq1K7Nn99sJD3azm82ULZCeeLj4wGIjY1lwJ39ue/++6FaWbjlLCgbC9+s\nJ6bPDMpXrEjv3r2Dh6elpWHlS0FMlN4zFeOCdfJbIBBg2LBhtG/fnmeffZYBAwZQv359nHNUrlyZ\nc845J9vjs5rXaMaMGZQqVYoPP/wwLIE0ceLEPMdYv359AOLj43OMR+Rw0SpjIiIiIiIiUVzXpw/T\nAiksZldY+WJ28VIghev69CmkyA7eTTf2JX3Wcpi1PHzHj1uIeW4RN/S+Liz5cc8999D/rrsIPPgR\ngSqDKFZ5ELQcTY2U4syd83HYql4tW7Zk38rfYGXm1cp4z1vq/bTTTiuQ62rbti0tW7Zk1KhR7N27\nl44dO1K2bFmGDh3K/v37M9VPSkoK/nPp0qUB2LFjR1idmJgYzCzs+LVr1/LOO+/kOb6EhATq16/P\n8OHD2blzZ7bxiBwu6iEkIiIiIiISRWJiIu+//Q6tly6lR3o8CcSymN28FEjh5GbNSExMLOwQ8+za\na6/l7XffYeZFk+HiE3Fn1oZlWwm8+h2Nj2+UaU6kQCDAk08+ye23386MGTNISUmhWbNmdOrUiZiY\nmLC6l112GXcO6E9Sz1c5MOMaqFne27F0E8Vuf5fT27ahWbMshqvlgXMuavndd9/NFVdcwZQpU4Kr\ni11zzTU0b96cq666isqVK7N+/XpmzpxJ69atGT16NOAla5xz3HrrrXTs2JGYmBiuvPJKOnfuzIgR\nI+jYsSNXX301W7duDc5d9P333+cpTjNjwoQJXHjhhZx44on07t2b6tWrs2nTJubOnUu5cuUOKtEk\nciiUEBIREREREYmiTJkyfDLvM0aOHMmk8eOZsnkLNasdx3197iQxMfGIW3IevLlzZrw5nQkTJjD2\n+XGs/mQelatW4Yb7H+LWW2/NcrLlGjVqcNttt2XbdsmSJZn93kzOu6ATf9Qdip1VF9u1nwPfrKP+\niU147eW8rcyVlayGeHXt2jXYC+fGG2+ke/fuVK9enccee4zhw4ezZ88eqlevTps2bcKGunXt2pXb\nbruNV199lZdeegnnHFdeeSXt27dn0qRJPPbYYyQmJlK3bl2eeOIJ1qxZkykhZGaZ4or83LZtWxYu\nXMiQIUP473//S2pqKsceeyytWrXSimJSKCyr7OrRwsyaA4sXL14cnHRMRERERETkaLRkyRISEhIo\nzN8/O3bs4MUXX2T+/PkUL16czp0707Vr17Al3EUkd3L6TmfsBxKcc0vy0rZ6CImIiIiIiEi+KVu2\nLLfccgu33HJLYYciItnQpNIiIiIiIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIi\nIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkWMEkIiIiIiIiIiIkVMscIO\nQERERERERPLX8uXLCzsEEckHBfldVkJIRERERETkKFGpUiXi4uLo2bNnYYciIvkkLi6OSpUq5Xu7\nSgiJiIiIiIgcJWrVqsXy5ctJSkoq7FBEJJ9UqlSJWrVq5Xu7SgiJiIiIiIgcRWrVqlUgPx5F5Oii\nSaVFREREREREhKSkJAYPHoyZYWYEAgEGDLiH7du3F3ZoUgDUQ0hERERERESkiNu6dSstWpzOxo1r\ng2XOOZ588gneeGMGX3zxGdWrVy+8ACXfqYeQiIiIiIiISBHXr9/NwWRQYmIi27dv56677gJg7dpf\n6NOnXyFGJwVBCSERERERkQKQmprKkCFDqFuzJsViYqhbsyZDhgwhNTW1sEMTEQmzbNky3n57BlCb\n+PgKPProo1SsWJFHHnmEsmUrAvWYNet9vv/++8IOVfKREkIiIiIiIvksNTWVDm3bMfThQZy7MZVn\n0qtw7sZUhj48iA5t2ykpJCL/KG+++SYxMWUJBKpz7rntKVWqFACxsbF06NCOQKAaMTEVmDFjRiFH\nKruhzaYAACAASURBVPlJCSERERERkXw2cuRIvl+6lAXpNXme47iJCjzPcXyRXpPvly5l5MiRhR2i\niEjQt98uJj39DGJiNtOo0fFh+xo1Op6YmI2kp5/BokXfFFKEUhCUEBIRERERyWeTxo+nZ3o8zSkV\nVp5AKXqkxzNp/PhCikxEJLMVK37BueNJT/+TY445JmxfxYoVSU//E+ca8ssvawopQikISgiJiIiI\niOSzDZs305zYqPsSiGXD5i2HOSIRkaz9+eefQCWc201sbPi/u2JjY3FuD1BJy88fZZQQEhERERHJ\nZzWrVWMJu6PuW8xualY77jBHJCKStd2704BSOLefmJiYsH2BQADnDgAl2bdvT6HEJwWjWGEHICIi\nIiJytLmuTx+GPjyIfunlSQgZNraYXbwUSOG+PncWYnQicjTYvHkzc+fO5dtvv2XdunXs37+fcuXK\ncfLJJ9OyZUtat26dKbmTleLFSwJ7MSvGvn37wvbt27cPs+I4t4vY2LgCuBIpLEoIiYiIiIjks8TE\nRN5/+x1aL11Kj/R4EohlMbt5KZDCyc2akZiYWNghisgR6quvvuKJJ57gnXfeIT09Pct6tf6fvfsP\nb+uu74b/Puf4h9IottM2iS1LsU1ZQyl1FStLR2vupIu5B6yj97p1z5jTltnCS39kq/h1jcRqHDt4\n3TNW8RBwwAleaRO6ZTcPdLD1vnjw2nRJYCVyXDPoNrgwrhTbJaRpIrVJia3v84csR7L1W+fonCO9\nX9elC6yjH99zzldqzkef7+ezfj127NiBP//zP8fKlSvTvua6detw/nwAsrwSb775ZsK2cDgMWbYi\nEnkdNTW1quwDGQOXjBERERERqcxqtWL02AvY1bcHo3YrdspnMWq3Rv8+9gKsVqveQyQik3nrrbfw\nF3/xF3jve9+Lb37zm2mDQQDw6quvYteuXWhtbcWLL76Y9rGbNt0KRXkZkrQOMzOJNc5++ctfQpKu\ngyT9FO961w0F7wcZBwNCREREREQasFqt8Hq9mAwEMDc/h8lAAF6vl8EgIsrZ66+/jq1bt+ILX/hC\nzs/9+c9/jjvvvBN/93d/l/Ixt956K4SYwJUrN+Dll/8jYduPfvQTXLlyA2T5+2hr25jz+5NxmTog\nJEnSX0qSFJEk6Qm9x0JERERERESktkuXLuGDH/wgfvjDHy7btnLlSvze7/0edu/ejX379uHP/uzP\n8J73vGfZ4yKRCLq7u/GP//iPSd/jAx/4ACKRtwBcxMmTJxa6jkW7j504cRzAWczPn8cf/uEfqrlr\npDPT1hCSJOk3AfQAeFnvsRARERERERFpobe3Fy+99FLCfRaLBXv37sWOHTtQU1Oz7DkvvfQSPv7x\nj+PEiROL9wkh4Ha78Vu/9VtwOBwJj3/Pe96D971vK44f/yHm5n6NRx/14K//+nH09noXOov9Oz74\nwd9Fa2urJvtI+jBlhpAkSVYAhwG4Abyh83CIiIiIiIiIVHfq1Cn4fL6E++x2O8bGxvDpT386aTAI\nADZv3oxjx47h05/+dML9Fy9exMMPP5z0OYcOfQVNTQ0AgKee+hoaGhrw1a8eAgCsW9eIgwe/AkmS\nCt0lMhBTBoQAfAnAt4UQ/6r3QIiIiIiIiIi08Ld/+7cQQiz+XV1djeeeew433XRTxucqioLHH38c\n9913X8L93/72t/HKK68se/yNN96IV175EQYGBlBRcXUx0WOPPYaXX/ajsbGxgD0hIzJdQEiSpD8G\n4ATwGb3HQkRERERERKSFX/3qV/jGN76RcN/u3bsTagSFw2EMDAzA0dIEpaICjpYmDAwMIBwOAwAk\nScIXvvAFXH/99Qmv85WvfCXpe1osFvT29uLKlSsQQkAIgb1792LdunUq7x0ZgakCQpIk2QF8HkCn\nEOKK3uMhIiIiIiIi0sKLL76IK1euXvZaLJaE5V7hcBhbtt2JvsF9CHY0ILL/bgQ7GtA3uA9btt25\nGBSqq6uD2+1OeO1//VcutiHzFZV2AVgDYEy6unhRAfA/JEl6BEC1iM+ni+PxeFBbW5tw30c+8hF8\n5CMf0XK8RERERERERDkbGxtL+PuOO+7Atddeu/i3z+fD+MQEIiceAtrsi/dHdrwX4+1D8Pl88Hq9\nAIDf/d3fxeOPP774mJ/85Cd46623cM0112i8F6SmZ555Bs8880zCfRcuXMj79aQU8RNDkiRpJYCm\nJXc/CeAVAI8LIZYthJQkqQ2A3+/3o62tTftBEhERERERERXo/vvvx9NPP73496OPPppQYNrR0oRg\nRwNw8N7lT3YfhX10FoHJKQDRYtJLEyR+9rOf4YYbbtBm8FQ0Y2NjcLlcAOASQoxlenw8U2UICSHe\nBPCT+PskSXoTwLlkwSAiIiIiIiIiM5qfn0/422KxJPw9HTgDtG1K/mSXHdNP+lM+FwDm5uYKHySZ\nmqlqCKVgnhQnIiIiIiIioizU1dUl/P2LX/wi4W+boxEYO5P8yf5gdPuCycnJZQ9ZvXp1wWMkczN9\nQEgI8dtCiI/rPQ4iIiIiIiIitdx6660Jf588eRKRSGTx754uN+TDpwF/MPGJ/iDkI+Po6bpaSPrE\niRMJD6mvr8fatWvVHzSZiukDQkRERERERESl5rbbbkv4+9VXX8V3v/vdxb89Hg+cra2Q24cA91Hg\nwEnAfRRy+xCcra3weDwAACEEDh48mPa1qTwxIERERERERERkMK2trbjlllsS7vvEJz6Bt99+GwBg\ntVpxbPR59O3qhX10FvLOZ2EfnUXfrl4cG30eVqsVAPD1r38dP/jBDxJe57777ivOTpChMSBERERE\nREREZDCSJOHhhx9OuO8nP/kJduzYsbh0zGq1wuv1IjA5hfm5OQQmp+D1eheDQadPn172Gna7HR/+\n8IeLsxNkaAwIERERERERERlQV1cXNm7cmHDfk08+ibvuugtnzqQoKI3oMrGvfe1r2Lp1Ky5cuJCw\n7fOf/zwqKys1GS+Zi6nazhMRERERERGVi8rKSjz55JO47bbbcPny5cX7n3vuOdx4443Yvn077r77\nbtxyyy245ppr8Oqrr+L73/8+Dh06hNOnTy97vY985CP4gz/4g2LuAhmYJERpd22XJKkNgN/v96Ot\nrU3v4RARERERERHl5Dvf+Q7uueceXLlyJe/XuPPOO/HP//zPWLFihYojI72NjY3B5XIBgEsIMZbL\nc7lkjIiIiIiIiMjA7rrrLjz33HOor6/P6/n33Xcfg0G0DANCREREREREJSocDmNgYACOliYoFRVw\ntDRhYGAA4XBY76FRjrZt24Yf//jH+NM//VMoipLVc1paWvCtb30LTz31FINBtAyXjBEREREREZWg\ncDiMLdvuxPjEBCLbNwJtjcDYGciHT8PZ2prQmpzM5cyZM/jqV7+K733vexgbG8Obb765uO2GG27A\n5s2b0dnZiQ984ANZB4/InApZMsai0kRERERERCXI5/NFg0EnHgLa7Iv3R3a8F+PtQ/D5fPB6vTqO\nkPLV2NiIxx57DI899hjm5+fx+uuv48qVK6ipqWGQj7LGJWNERERERCqJLc9pcThQoShocTi4PId0\nMzxyaCEzyJ64wWVHpNOJ4ZFD+gyMVKUoCtasWQObzcZgEOWEASEiIiIiIhWEw2Fs27IVg3170REM\nY39kLTqCYQz27cW2LVsZFKKimw6ciS4TS8Zlj24norLFgBARERERkQp8Ph8mxsdxIuLAQTTgQazG\nQTTgeMSBifFx+Hw+vYdIZcbmiNYMSsofjG4norLFgBARERERkQpGhoexPbIKbUjs5OPCCnRGVmFk\neFinkVG56ulyQz58GvAHEzf4g5CPjKOny63PwIjIEFhUmoiIiIhIBYHpabRhbdJtLljw5PRMkUdE\n5c7j8eBb3/knjLcPIdLpBFz2xWCQs7UVHo9H7yESkY6YIUREREREpAKHzYYxXE66zY/LcNgaijwi\nKndWqxXHRp9H365e2EdnIe98FvbRWfTt6mXLeSJiQIiIiIiISA1dPT04LIfgx6WE+/24hCNyCF09\nPTqNjMqZ1WqF1+tFYHIK83NzCExOwev1MhhERAwIERERERGpwePxoNXpRLscgBszOIDzcGMG7XIA\nrU4nl+cQEZGhMCBERERERKQCq9WK0WMvYFffHozardgpn8Wo3Rr9+9gLzMggIiJDYVFpIiIiIiKV\nxJbneL1evYdCRESUFjOEiIiIiEh34XAYAwMDaHE4UKEoaHE4MDAwgHA4rPfQiIiIShIzhIiIiIhI\nV+FwGNu2bMXE+Di2R1ahDWsxFgxjsG8vvvOtZ7ncioiISAPMECIiIiIiXfl8PkyMj+NExIGDaMCD\nWI2DaMDxiAMT4+Pw+Xx6D5GIiKjkMCBERERERLoaGR5eyAxakXC/CyvQGVmFkeFhnUZGRERUuhgQ\nIiIiIiJdBaan0QZL0m0uWBCYninyiIiIiEofA0JEREREpCuHzYYxXE66zY/LcNgaijwiIiKi0seA\nEBERERHpqqunB4flEPy4lHC/H5dwRA6hq6dHp5ERERGVLgaEiIiIiEhXHo8HrU4n2uUA3JjBAZyH\nGzNolwNodTrh8Xj0HiIREVHJYUCIiIiIiHRltVoxeuwF7Orbg1G7FTvlsxi1W6N/s+U8ERGRJhgQ\nIiIiIiLVhMNhDAwMoMXhQIWioMXhwMDAAMLhcNrnWa1WeL1eTAYCmJufw2QgAK/Xy2AQERGRRir0\nHgARERERlYZwOIxtW7ZiYnx8oY38WowFwxjs24vvfOtZZvsQEREZCDOEiIiIiEgVPp8PE+PjOBFx\n4CAa8CBW4yAacDziwMT4OHw+n95DJCIiogUMCBERERHRMvks/RoZHl7IDFqRcL8LK9AZWYWR4WGt\nh01ERERZYkCIiIiIiBLEln4N9u1FRzCM/ZG16FhY+rVty9aUQaHA9DTaYEm6zQULAtMzWg6biIiI\ncsCAEBERERElyHfpl8NmwxguJ93mx2U4bA1aDpuIiIhywIAQERERESXId+lXV08PDssh+HEp4X4/\nLuGIHEJXT49mYyYiIqLcMCBEREREZED5tm9XQ75LvzweD1qdTrTLAbgxgwM4Dzdm0C4H0Op0wuPx\naDlsIiIiygEDQkREREQGk28NH7Xku/TLarVi9NgL2NW3B6N2K3bKZzFqt0b/Zst5IiIiQ2FAiIiI\niMhg9G7fXsjSL6vVCq/Xi8lAAHPzc5gMBOD1ehkMIiIiMhgGhIiIiIgMRu/27Vz6RUREVPoYECIi\nIiLS2dJ6QcFgELOYQxiRZY8tRvt2Lv0iIiIqfRV6D4CIiIionMXqBU2Mjy9kBa3FGC7jaVzANkxh\nFE2wxv2GV6z27bGlX16vV/P3IiIiouJjhhARERGRjlLVCzqBJkzgbfhwbvGxsRo+nQ88oFsHMq3o\n2VWNiIioHElCCL3HoClJktoA+P1+P9ra2vQeDhEREVGCFocDHcEwDmJ51k83pvENhPBXWAs/LuOI\nHMLNt9wCSZLwHxMTCxlFFozhMg7LIbQ6naZc0rU8S8r8+0RERFQMY2NjcLlcAOASQozl8lxmCBER\nERHpKDA9jTZYkm7bhBW4iEhCDZ8P/t5d+I+JCd06kC2lRmaP3l3ViIiIyhEDQkREREQ6cthsGMPl\npNv8uIwmuz2hffvhJ5/UtQNZvFhmz2DfXnQEw9gfWYuOYBiDfXuxbcvWrINC2XRV45Iy4+E5ISIy\nNwaEiIiIiHTU1dODw3IIflxKuD9WL6irpyfh/nQZRcXoQBZPrcyezPs0rUrgidSjVjCQiIj0w4AQ\nERERkY48Hg9anU60ywG4MYMDOA83ZtAuB9DqdMLj8SQ8PlNGUTE6kMVkk9mTjUz7VGtdxSVlBsNl\nfkT6i2XpOVqaoFRUwNHSxCw9ygkDQkREREQ6slqtGD32Anb17cGo3ZpQLyhZMeVcM4q0pFa2UqZ9\nikAYZpkcRakVDCSi/ITDYWzZdif6Bvch2NGAyP67EexoQN/gPmzZdieDQpQVBoSIiIiIdGa1WuH1\nejEZCCTUC0rWWSvXjCItqZWtlGmfLoZChlkmR1FGWrpIVI58Ph/GJyYQOfEQcPBe4MHbgYP3InL8\nIYxPTDBLj7LCgBARERGRieSaUaQltbKVMu3T+sZGwyyToygjLV0kKkfDI4cQ2b4RaLMnbnDZEel0\nYnjkkD4DI1NhQIiIiIjIZHLJKFpKzc5QamYrpdsnIy2ToyieEyJ9TQfOAG2NyTe67NHtRBlIQgi9\nx6ApSZLaAPj9fj/a2tr0Hg4RERGRbmKdoSbGxxfqv1gwhss4LIfQ6nTmlWEUDofh8/kwMjyMwPQM\nHLYGdPX0wOPxqJatFD/uzsgquGCBH5dxpIBxU2F4Toj05WhpQrCjIbpcbCn3UdhHZxGYnCr+wKjo\nxsbG4HK5AMAlhBjL5bnMECIiIiIqE1p0hiokWymX9zDKMjmK4jkh0ldPlxvy4dOAP5i4wR+EfGQc\nPV1ufQZGpsIMISIiKimJ2QrTcNhsqmcrEJlVi8OBjmAYB7G8vosbMxi1WzEZCOgwMiIiykWsy9j4\nxAQinU7AZV8MBjlbW3Fs9Hn+u6dMMEOIiIgIV5cwDPbtRUcwjP2RtegIhjHYtxfbtmxlC1Yqe+wM\nRURUGqxWK46NPo++Xb2wj85C3vks7KOz6NvVy2AQZa1C7wEQERGpJX45TBtWLN6/I1KH9oXlMF6v\nV8cREunLYbNhLJg8MMrOUERE5hJbsst/21C+mCFEREQlY2R4eKFQ7oqE+11Ygc7IKowMD+s0MiJj\nYGcoIiIiimFAiIiISgaXwxClp2abeCKzC4fDGBgYgKOlCUpFBRwtTRgYGODyYiIqGwwIERFRyXDY\nbBjD5aTbuByGiJ2hiGJiBXn7Bvch2NGAyP67EexoQN/gPmzZdieDQkRUFhgQIiKiksHlMFTqYhkN\nLQ4HKhQFLQ5HzhkNxWgTT2R0Pp8v2p3pxEPAwXuBB28HDt6LyPGHMD4xAZ/Pp/cQiYg0x4AQERGV\nDC6HISNSI4gTex120SNSx/DIIUS2bwTa7IkbXHZEOp0YHjmkz8CIiIqIASEiIioZXA5DRqNmECe+\ni95BNOBBrMZBNOB4xIGJhS56ZHysW2MM04EzQFtj8o0ue3Q7EVGJY0CIiIhKihbLYdTK8KDyo2YQ\nR+suepzn2mPdGuOwORqBsRRBH38wup2IqMQxIERERJQGl+lQIdQM4mjZRY/zvDhYt8Y4errckA+f\nBvzBxA3+IOQj4+jpcuszMCKiImJAiIiIKA0u06FCqBnE0bKLHud5cbBujXF4PB44W1shtw8B7qPA\ngZOA+yjk9iE4W1tZc46IygIDQkRERGnkmuHBZTcUT80gjpZd9LRejkZRrFtjHFarFcdGn0ffrl7Y\nR2ch73wW9tFZ9O3qxbHR51lzjojKAgNCREREaeSS4cFlN7SUmkEcLbvoabkcja5i3RpjidWcC0xO\nYX5uDoHJqYJrzhERmQkDQkRERGnkkuHBZTe0lJpBHC276Gm5HI2uYt0aotLFDoJkRgwIERERpZFL\nhgeX3dBSagdxtOiiB2i7HI2uylS35mMf+xiXnBKZEDsIkllJQgi9x6ApSZLaAPj9fj/a2tr0Hg4R\nEZlMbBnYxPg4OiOr4IIFflzGETmEVqcz4aK+QlGwP7IWD2L1stc5gPPYKZ/F3PxcsXeBKKNc5jkV\nJhwOw+fzYXjkEKYDZ2BzNKKny42PfexjuPt378LE+PhCYNmCMVzGYZ4DIkOK/yyfeTUIoUhA92bg\nb+4CrNXRB/mDkNuH0LerF16vV98BU8kaGxuDy+UCAJcQYiyX5zIgRERElEHsH30jw8MITM/AYWtA\nV08PPB5PwgVai8OBjmAYB7F8eY0bMxi1WzEZCBRz6ERZy3aekzYGBgYw2LcXJyKOhCxDPy6hXQ5g\nV98eXlASGUQsI2h8YmKhc+BCfbDDfqC1ARjdcTUo5D4K++gsApNT+g6aShYDQmkwIERERMUSu6A7\nHnHAxQs6IsoBA8pE5jEwMIC+wX2InHgIaLNf3eAPAu1fBHZtA7zvj9534CTknc9ifo4ZwqSNQgJC\nrCFERESkEi27QBFRaWOnNyLzGB45tJAZZE/c4LIDnW3AyEtX7zsVhLV2FYtNkyExIERERKQSLbtA\nUfHFOsaUU4Hfctxno2CnNyLzmA6ciS4TS8ZlBwIXov/fHwQO+xG6GGKxaTIkBoSIiIhUpFUXKLMo\nlba7sSLLg3170REMY39kLTqCYQz27cW2LVtNtz/ZKMd9NhJ2eiMyD5tjoWZQMqeCwLUrAPdRSHd8\nERAC4vk/Aw7eCzx4O3DwXkSOP4TxiQn4fL7iDpxoCQaEiIiISBWFtN01WmaKz+fDxPg4TkQcOIgG\nPIjVOIgGHI84MDE+XpL/iC/HfTYSLjkloHSC6qWup8sN+fDpaAZQvIWMIOlXb8E+OotVK1YCf9IG\ntL8j8XEuOyKdTgyPHCreoImSYFFpIiIiUkW6Ipvp2u7Gtzw3SrvtcizwW477bDTs9FbeUnWukg+f\nhrO1FcdGn+c8MIiEc9XpjC4T8wchHxlPOFdKRQUi+++OZgYtxWLTpJKyKiotSdJnJEl6SZKki5Ik\nvSZJ0jclSbpR73ERERGVu3RFNtP9EmrEzJRyLPCbzz4XI7NL6/cwUnZaoUtOjbQvlDufzxcNMJx4\niMuLDM5qteLY6PPo29UL++gs5J3Pwj46i75dvQmBu7RLy/zB6HYiHZkuIATgfQD2A7gNQAeASgDf\nlSRpRdpnERERUUaFXFBmKrI5HUj+j+KR4eGFzKDE/5S7sAKdkVUYGR7OeT8KZcYCv4UGA3Ld52LU\nHNL6PUqpblIp7Uu5yjeoTvqIBXADk1OYn5tDYHJqWQA33dIy+cg4errcRR41USLTBYSEEB8SQjwt\nhHhFCPEjAB8FsB6AS9+RERERmVuhF5T5/hJqxGwcsxX4VSMYkOs+FyOzS+v3MGJ2Wr5KaV/KVb5B\ndTIuj8cDZ2sr5PYhwH0UOHAScB+F3D4EZ2sra4OR7kwXEEqiDoAA8LreAyEiIjKzQi8o8/0l1IjZ\nOGYr8KtGMCDXfS5GZpfW72HE7LR8ldK+lCsuLyo92S4tI9KLqQNCkiRJAD4P4LgQ4id6j4eIiLTB\nuhjFUegFZb6/hBoxG8dqtWL02AvY1bcHo3YrdspnMWq3Rv9Wuci1GvNbjWBArvtcjMwurd/DiNlp\n+SqlfSlXXF5UmrJZWkakF1N3GZMk6QCA3wFwhxAi6X/l2GWMiMjcjNiBqlRVKAr2R9biQaxetu0A\nzmOnfBZz8+m7ocS6JA2PHMJ04Axsjkb0dLnTdkmKP8edkVVwwQI/LuOISuc4sXPTNBw2m2E6N6k1\nv9U4d7kqRlcyrd+jlDqrldK+lKtsO1cREcUrqy5jMZIkfRHAhwBsTRUMiufxePDhD3844fbMM89o\nP1AiIioI62IUjxpLt/L5JVTLbByjFdpdmg3U1GjH2Okx/H+RxoLmtx7L7nLJ7Mo3C0rr7DEjZqfl\nq5T2pVxxeRERZfLMM88si2sUtIxdCGG6G4AvAggAeEcWj20DIPx+vyAiIvNpttuFG3VC4KZlt27U\niWa7Xe8hloz+/n5hkRVxCs0Jx/kUmoVFVkR/f7/eQ8xZbJ/8BtinUCgkNre5hEVWhBt1Ygj1wo06\nUQ1JbIZFhLAh7/mtx7mL35/uhf3pRp2wyIrY3OYSoVAo7X4vfVyq93Dd6hQVkiRqIQsZELWQRYUk\nCdetzrTPVXMfjCYUCon+/n7RbLcLRZZFs90udu/eLTY5N5puX4iIiiX23WlvXi9kRRH25vWiv7/f\n9N+Pfr9fIFpXuU3kGlvJ9Ql63wAMATiPaPv5dXE3S4rHMyBERGRiiiyLIdQnDQgNoV4osqL3EEuG\nWS+O0zFSQDFtcAqS6Mf1ec9vvc5dYmBCEc12+7J/XBcSlAuFQmKTc6OoluTEIJoki03OjarsVzb7\nYCTpAmyuW52it7fXNPtCRFQsoVBItG3eJGRLlYD7NoGhewTctwnZUiXaNm8y9fdkIQEh09UQkiQp\ngujOLvWnQoinkjyeNYSIiEyMdTGKK7HezgwctgbD1NvJR7Fr66SrV3TLTTelmcvTGMVbmMQ74+7L\nbX4b9dwV8hkeGBjAYN9enIg4Egpm+3EJ7XIAu/r2wOv1ajZ2I+IxISLK3cDAAPoG9yFy4iGgzX51\ngz8IuX0Ifbt6TfvdWUgNIdMFhHLFgBARkbnFLn6ORxxw8eKHclTMgGKqAtFP4QLWNTQgODONL6E+\ndXAKs5jDTQBKa34XEpRramzEmunX8VpFBNPzV2BTKtEzVwMPrsOjeK0sA8J6BsnzKRpPRGQEjpYm\nBDsagIP3Lt/oPgr76CwCk1PFH5gKyrKoNBERlQePx4NWpxPtcgBuzOAAzsONGbTLAbQ6nYUV0qOS\nV8xCu6kKoJ9EE16bmYEiy/j3JeOIOYVLsEIuyfmdb8HrcDiMV1+bxVjVFQQ/uhGRL/0+gh/diL6q\n89iiBHAzqsqylbpe7eVjHbD6Bvch2NGAyP67EexoQN/gPmzZdmfRC7QTEeViOnAGaGtMvtFlj24v\nQwwIERGRoWnZgcoM8u3ORFHFDCiODA8vZAatSLjfhRXYjhpIkQiOSBeTB6ekEKSa0pzf+QblfD4f\noEgQ398Z/UX3wduBg/cicnInxpW3cRgXNemeZnR6dJQDoudjfGIiutwi/nwcfwjjExPs+EhEhmZz\nNAJjKYI+/mB0exliQIiIiAwv1sp8MhDA3PwcJgOBjK3MS4HRWqabUTEDiukyNzZhBeYBVFVUJg1O\n3bpxIwJnzpTk/M43KDc8cgi4f1NirQcAcNkR2e7CWMWvy7KVul7t5YdHDiGyfWPy89HpjJ4vWhQL\n5jtamqBUVMDR0sRgPpGOerrckA+fBvzBxA3+IOQj4+jpcuszMJ2xhhAREZFBsXisuaSv7TKNU/xv\nqwAAIABJREFUf0IYr8sCe/r6DFf4WWv5FLxWKioQ2X93NBNlqQMngYe/idDFiyV93JKJr1XVGVkF\nFyzw4zKOyCG0Op2aZZZlOh/yzmcxP6degXYziy2vG5+YWAiiRTMT5MOn4WxtxbHR58tu3hLpLeFz\n2ekEXPbFYJDZP5esIURERFSC0i1B+pOIFYN79/IXZwPp6unBU7iQPHMDF+FAJRw2m+7ZbnpkLuSa\n5RcOh2GtXZU6vf9UELb10UyVcltSqdcyWi63yB6X1xEZj9VqxbHR59G3qxf20VnIO5+FfXQWfbt6\nTR0MKhQzhIiIiAwqU3emRzCLKlnRNCuAshcOh/HuGzfgtZkZbEcNNmHFYjDonajET6U57N7bp2tW\nl5EzF2JZRIe+/GVMT09DAIhUKRAnd0Z/yY1ZaBG865Ofxnf/5bllXd0Oa5wpU64WWzYffyjp+ci1\nZXMpdywr5W5GRGQ8zBAiIiIqQemLx17CelTieMSBifFxQ/7iXG4Fsa1WK14a82NNQwOexkU8gln8\nE8J4N6rxU2kOt27cqHvXMKNmLsTXy1oz/ToUSHgB67Fxvhry7fuB7qPRZWLd/wDpji/C2doKIUTS\nrm5G/kyYmcfjgbO1FXL7EOBeOB/uo5Dbh+Bsbc1pbqfrWPa+O7egt7fX1LV32M2IiMyCASEiIiKD\nSls8FhfRhVq4sAKdkVUYGR7WaZTJlWtB7Pr6evznf/8XvP17sd5ux+sy8Lr9euze22eIjBUtCgOr\nsQTN5/MtBnfOYR73oRbtWIlj8w70/Xo17E+NQ374m7jmqdOorb4Gx0afx5GvfS3lkkojfibMTs3l\nFukDky9j8K8fN3Vrey6vIyKzYECIiIjIoOK7M3VjeqE70zTaMYVWVMOD6wAALlgQmJ7RebSJ4i/w\nSyF7I5dsJyN3xVM7cyFdpkcuF/Dx9bICuLLYrc0KGV6sQWDuBsyLd+Fzc9cjFH4TVqs1bVc3I34m\nSkFsbgcmpzA/N4fA5FRecztdYBLb2yDWrcwpg62QoKQWmYzsZkREZsGAEBERkUHFF4/9uhLGI5jF\nKN7CLlyHUTTBuvCfcT8uw2Fb3tlKT+kKYpste6OUsp3UzlxQawlafHDHgco0SyWvzvX0SyqN95mg\nq9IGJjc5gNkln6k0GWyFBCW1+myrubyOiEhLDAgREREZWOwX+V179qBKVvC/0Qgv1sQFgy7hiBxC\nV0+PziNNVErZG6WU7aR25oJaS9DigztdqMXhVN3a4uZ62iWVBvxMxCu3+lpLpQ1MngoCjtrl96fI\nYCskKKnVZ5vdjIjILNhljIiIyARiv2RPjI+jM7IKLljgx2UcMWhHpRaHAx3BMA5ieZaGGzMYtVsx\nGQjoMLLcldK+JHQZ63RGl+gsBIPy6TKmVFQgsv/u6EX4UgdOQt75LObn5jK+zsDAAAb79uJ4xIEN\nqMY2TGECb+NPFrq1ncIlfF0OJ8z1dJ+JNevWQZKAM7OzcNhs6OrpMUz3qvhxl2t3tHQdy3DHfmB3\nB+B9f+KTUnTnKqSjVyl9tomofLHLGBERUYmLXz42ardip3wWo3Zr9G8DXkCaOXtjqVLKdlI7c0Gt\nJWjx9bIexWv4Y9Tg3ajG07iIhzGLUdvyuZ7sM/E920pct24dfjk7i/85/ZYhl/eVUsZZvlItqZLu\n+CIQEcDWGxKfkCaDrZC6WKX02SYiygczhIiIiEh1ZstoSodZBKmly/SQ24fQt6sXXq83q9cKh8Pw\n+XwYGR5GYHoGDltDzpk9sUyjExFHQv0qPy6hXQ5gV9+erMejFc6nqNj5Hh45hOnAGdgcjfjo9vvx\n7ef+GT/68Y+zzmBjhhCVk2Sfm54ut2EyIEkfzBAiIiIiQzFbRlM6pZTtpDY1i+eq0Z3NDMXMmZUS\nlaxj2cDAAI6/8GJOGWyF1MXiZ5vMRK2ujkTxmCFEREREeUvM6pg2XL2WpfIZbyllO2nBSL9YVygK\n9kfW4kGsXrbtAM5jp3wWc/OZaxppiVkp6iqkLhY/22QmixmZJx5KLOSfR0YmlRZmCBEREVHRpWrZ\nvO+xPVi9ahWaGhs17ZyUa6emfFtMl1K2kxaSZXrkmtmjFjO0omdWiroKqYvFzzaZiVpdHYniMSBE\nREREeUlVHPckmqBAwprp1zUr5ptPcCeXYr5Lg0233HQTAOBHr7ySdDlTubcRNwozBFviC2i7MYMD\nOA83ZtAuB9DqdC5bZpft3Io9ztHSBKWiAo6WprKZg4UEJdVYqkhUDIUUUCdKhQEhIiIiyku6ei3b\nUYNzmNesc1I+nZqyrS+Ta7Ap38wjUl+uwRY95JKVku3cyra2iFZBo3IORhEVi1pdHYkSCCFK+gag\nDYDw+/2CiIiI1BEKhYQkSWINFKEAohmVoh/XixA2CIGbxBDqhQIIgZtEN+pEs92u6vs32+3CjToh\ncNOyW6r3U2RZDKE+6XOGUC8UWRFCCNHf3y8ssiL8aE54zCk0C4usiP7+/oTXzfXxpK1QKCT6+/tF\ns90uFFkRzXa76O/vF6FQSO+h5SzbudXf3y9kS5WA/1EB8bmrt1OPCtlStbj/bZs3RR/nvk1g6B4B\n921CtlSJts2b8j4+Wr0uESVa/JyfSv05p/Lk9/sFAAGgTeQYL2FRaSIiIspJLGthfGwM96MWbbBg\nDJdxGBfQimqMogmPYhajeAuTeKcmxXzzKR6cbTHfXIv+skgwaSXbuZW29Xr3P0A5Mo4td7wPL5z8\nN0ROPKxqQVoWuqVcGakQvZkUUkCdShuLShMREVHRxJZrfR9Nicu10IQJvI1P4TUcwUV0oRaANsV8\n8ykenG19mVzbgrONOGkl27mVtrbIJgciv76Cf33xBUS2t6lekJaFbikXbJ2ev0IKqBOlwoAQERER\n5SRdLZ4/QQ2+ijfQimp4cJ1qxXyXFtZ94+JFPC1dzKl4cLb1ZXINNpmhsxWZU7ZzK21tkVNBNCpV\nkOcjmhSkNUKhW9YwMg+fzxfNcDnxUDSj7cHbgYP3InL8IYxPTKheb67UGKmrI5UGBoSIiIgoJ+my\nFjZhBeYA/DFq8CheU6WYb7LCundflBARArdjCt1ZFg/Otphvrp2qzNDZiswp27nV0+WGfPg04A8m\nvoA/CPmwHz1zNbApVZoUpNW70C0zTsyFGWVExsKAEBEREeUkXdbCKVxCtaLgU/K5lJ2TcpWso9iT\nsGEUDkQk4Fs1Im2npnjZtJjOtVOVGTpbkTllO7c8Hg+cra2Q24eA7n8ADpwEuo9Cvn0/nPPRbL2e\nuRpIT51KHjQ6Mo6eLndeY0wbjCrgdbOlR8YJM5LyZ4SMMiK6ikWliYjKSKyQ48jwMALT03DYbOjq\n6WEhR8pKbP488bnP4a2LIZxEE1xxy8b8uIR2OYBdfXtULSKrR9HmxM/KDBy2hrSflVwfT5StbOdW\n7HF7PzuAyK+voFGpQs9cDTy4DlbICCOCZuXnOKdEgPtcqhWk1bvQbdqC2u6jsI/OIjA5pdr7Jezv\n9o3R4MbYGciHT7OwbxaKfb6IykEhRaV1bwuv9Q1sO09EJISItgbe3OYSFlkRbtSJIdQLN+qERVbE\n5jYXWwOXmcTW3HLG1tzx8+cB1IoWVIpqSKILtWII9aJL5bkUPz4JEGugJLS1T9YungqT65wgY4q1\nqj+VpFV9tSSL3/7t3xb25vVCVhRhb16vyjmOzR21XzcbsqJEW93Ht+GO3YbuEbKi7vfDYutvv/qt\nv/U8jsXC1ulE6mPb+TSYIUREFDUwMIDBvr04EXEkFAPWKquDjCtWk2difHyhOPRC23g5hFanM+mS\nq6XzJ4wIfDiHr+ANTGMOq2tq8egnP6FKRkzK8cW1tbcurHpnW3d15DMnyJjiz2VnZBVcsMCPyzii\n87nUqtV4sTNOtHq/csk80jujjKgUse08ERFllK4zVGdkFUaGh3UaGRVbspo8B9GA4xEHJsbHk9bc\nWDp/rJDhxRoE8RvoQh1qalap1ukk5fgW2tr7cA4AizarKZ85QcaUbfH0YtKy8HOxaxhpVQOnXLpv\nsXU6kbEwQ4iIqExUKAr2R9biQaxetu0AzmOnfBZz83M6jIyKLduaPPG1S6aCQXwJ9UWZP+nG141p\nfBthfBirdM94KCV61Gmi8jEwMIC+wX3RYEd8dyl/EHL7EPp29eadoVrsjBOtMoRYW4eI8sUMISIi\nyihdZyg/LsNhW34hSKUl1hknGAxiBG+gBT/DAM4ijMjiY1ywIDA9s6zV+/VQijZ/MrW1/xXmdct4\niB3DFocDFYqCFoejJLoLpTvmsTlBlC8tW40XO+NEq4ykbDOP2OGMiNTEgBARUZno6unBYTkEPy4l\n3M9lN8WlV0AhPsDzUdThi6hHB1ZiEOewDVOLQaFYcGfpEqKdWI3DuFCU+ZMpeNlktydtF6+1pUGy\n/ZG16AiGMdi3F9u2bDXEBVm+84sBY9KS1q3GrVYrvF4vApNTmJ+bQ2BySrPvB4/HA2drK+T2IcB9\nFDhwEnAfhdw+BGdrKzweT16va3NEawYl5Q/C5mjUdOkdEZUnBoSIiMqEx+NBq9OJdjkAN2ZwAOfh\nxgza5QBanc68/xFL2dMzoJBNXZ744M7SmkEeXIdWVKMdU+jGtKbzp9DgpVZBN6PX2SlkfjFgrJ9y\nyPjIJthhFlplJGWTeVQudYaIqIhybUtmthvYdp6IaFFiW2mFbaWLLNYO2p+kHbRFVjRtt9tstws3\n6hLeN3brQq2ohZzQNl6RZTGE+oTHhbBB9ON6sQaKkICk8ycUCondu3eLupoaUQEICRDX1tSK3t7e\nrOdZfIv7btQttLWvFVWQRAUg1ttsKedt/HPdC891oy5h37Q4ht2oE812e96vrYZC5leyY96t0nGj\n1EKhkGjbvCnahtt9W7R9+gObhFShiMprLCXTepytxjNLmAvdm6NzoXuzkC1Vom3zJhEKhYS9eX10\nnsQfw9ite7OwN6/XezeISAeFtJ3XPWCj9Y0BISIiMgo9AwrJAjyx2xDqhQQkXHTmM9ZQKCRctzpF\nJSRRDSkhIFMFSWxybswpKNTf3y+abI1CAkQlJOGCRTyBtWkDPFoG3TIdQ0VW8n5tNRQ6vxgwLr7F\nQIl/IVAS+qzAZoeApeJqgMh9W0JQwGhi88bevD5lACubYAdlPpayokSPXbKA0NA9Qlb0/Q5SW/zx\nkGRZ1NTVippr60omUEqklkICQlwyRkREVCR6Fu7Npi5PfM2NfJYQ+Xw+vDzxMhQAJ9GUsKzqJJrw\no5dfznpJQ6wmSPeOP0O1rOAHaMIptMCD69Iu01q61C3GhRXojKzCyPBwVu+fjNHr7BQ6v2LHfDIQ\nwNz8nC51msrNsmLLvheBiRngxCOmWBKUbU0bs7YaL/Zyvky1kEpp6V0mCXNry1qIpjpcvBTGxXs2\npK2dVA5LMInUxIAQERFRkegZUMg1wJNPzamR4WGsFBK2ozZ5QEbkHpDJNcCjZdDN6HV2jB6wouWW\nFVseeQnY7tKkG5cWcqlpU8zCz2owYgFnrTqcGVHC3LrhOmDmInByZ9p5ZsRzRmR0DAgREREViZ4B\nhVwDPFarFaPHXoi2drdbsVM+m7HVe2B6GiFE0raMzzUgk2uAR8ugSLbHMJui1loUvjZ6wIqWW5bx\nEbigaTeudPLJrNCynXyu1M4MMWIBZ606nBlRwtzKMlBqxHNGZHQMCBERERWJnp3e8gnw5LqEyGGz\nYRXklAGZU7iUc0Am1wCPlkGRbI5hNp2+tOo2x06C5rMs48NRW7QlQfEBFFlRcO3a67Hns/05ZVZo\n3U4+W1pkhhgp2BVj1qV3+UiYW1kGSo14zoiMjgEhIiKiIsknKKP2+2tZI6arpwdvSgKHcSF5QEbK\nPSATH+AJI4IBnEULfoYKvIKncAHvuPHGhIs9rYMimY5hNq3ptWpfr/f8iqdFBlQpWpbx8Z564OlT\nmi8JWhpAER/agCuROYiTy2sXnX55HI0Oe9Ksm2xq2hSjposWmSH5Bru03l8jLr3TYp8T5laWgVKj\nBCiJzEQS0U5cJUuSpDYAfr/fj7a2Nr2HQ0REVLLC4TC2tr8PEy+/DBlAJ2qwCStwCpdwGBfR6nTi\n+X97MacLl1g2zcunT6NOSHgDEdyHWrTBgjFcxmE5hFanMyHgEQ6H4fP5MDI8jMD0DBy2BnT19MDj\n8Wh+0dTicKAjGMZBLM+EcmMGo/bo+2d6zGQgoOk4tRQ7ZxPj4wv1n1KfK63e/+r5n4bDZiva+c9H\nbLzDI4dw5tUgKqorMReZh+hsAzbZF4NBztZW1bJABgYG0De4LxpAabMDLZ8FOm6MBlOW6v4H4Bs/\nAv7qQ8DYGciHTy+OxefzRV/n+EOAKy4rwx+E3D6EXZ/8NP7lu/8nGqzZvjF6sb7kNdTYH0dLE4Id\nDcnH7z4K++gsApNTmr9mLNCm9f4aiVb7vDhHjz8E/MsrwOAocPyRpPOsb1cvvF6vJvOAyAzGxsbg\ncrkAwCWEGMvlucwQIiIiKoJCMibMkm1htVrxwvF/w6d378KKmlV4ChfxMGbxrRrg0727cw4GxV5z\n9NgLuOPOrTiPyLLuZcmyavTslpVNzSM9u80Vg1YZUNnQajmeluIzPiLz83j9l7/C3t2Pwf6v2i0J\nWra0Jt2SnE0OIPzrpFk3mWraCCGKUtNFi8yQfAo4l2MNG632OWFu/exXQEMNcMf+aIDywEmge3nt\npHyLbrMzGZUzZggREZHuzPaLfq4KyZjQO9vCKLLJvDFCVg0zhPQ9VwMDAxjs24sTEUdCZzo/LqFd\nDmBX3x54vV5N3ttMlIoKRPbfHb14B9JnCLmPAqM/BSZ3J9wXy7aIz3CaDpyBzdGIni43PB4Pbrrl\n5qJkbCxmhvg+DPhejBYhDlyILjW69hrYfiXhzFRucy4h86XTGc1MyZCtpXWGSrpjnWvmpRqvA2i7\nz0uz51bVrAJkCeELoaRjzueclWNWF5UeZggREZFpmfEX/VwVkjGhV7aF0bKSzJJVk01R61LvBqbn\nuRoZHl4InK5IuN+FFeiMrMLI8LBm720my2r/dG0GDvuTZlbgyFh0e7y4rJt0NW3UzNxJl8XR0+WG\n9PQY8N790aVFHTcC+/9X9H//YxZCiJy/u/Ip4KxlDRu1CmerXYBby31emj134fwbuHDufMraSfmc\ns0IznJhdRKYnhCjpG4A2AMLv9wsiIjKe/v5+YZEV4UezELhp8XYKzcIiK6K/v18IIUQoFBL9/f2i\n2W4XiiyLZrtd9Pf3i1AopPMeZNZstws36hL2L3brRp1otts1eW6+QqGQ2NzmEhZZEW7UiSewVrhg\nEZWQhASIJltj0Y+9HschH/HHrht1Ygj1oht1wiIrYnObS4RCoaweY2bFOFepvg9kSRJDqE/63kOo\nF4qsqLCH5tff3y9kS5XAqUcFxOcEQp8V2OwQsFQIdP2mwNA90f+tVqL3hz4bfVzs1r1Z2JvXZ3wf\ne/N6AfdtV58X+qxA/+8INK8WkCWhWCqz+i4JhUKibfOm6Jjdt0XH575NyJYq0bZ5k5iZmRENjTaB\nKkXA/2jiWE89KuSF99Hasv3N45ilsnjOku5fVdb7p9brxGi5z8VQyPgzzUuzf5eTefj9fgFAAGgT\nOcZLmCFERES6yuYXfbNnERWSMaFHtkV8VpIP6/D3uIgf4208gFp8CfV4//SbRT/2uWTV6JndlE2n\nLyN1A9OC1hlQ6b4PFAH8+5L3jTmFy3DYli9jK0ex+iy4fT/QfRR42g9sWAvpyjwqnxqD/PA3YXlq\nDJiLAJ/7PcBaffXJOXQ8S6jpEn4b2Pblqxk8X/x9zG9vyyozJVMWx8GDByFVKMD9m1K0HN+I4ZFD\nmmdz5FvDJhtqtVRXuzW7lvtcDIVkOJVjzSgqPawhREREuqpQFOyPrMWDWL1s2wGcx075LPb07TF1\nXZBcaqosradUKUnYPr+qqPVY4sc7gLMYxDmcQJOuxz6+llJnZBVcsMCPyziypJYSay7pL9tzla90\ndYJuxxQiEPgBmuFasu0O6VXs3ttn6O+KYgqHw3A0NuLXb72Fy/PzsCmV6JmrgQfXwQoZD2Aaf7/i\nMuaEyLoeS7L3WKzP8u41wI9fA04+khiMWNIpKpls6tRMB84k1kWKd+Ak5J3PwunaeLVWzLvXRZfD\nTcwAcxHY1tuxo/tjBdWuy6eGTbaW1X1Ksn/zc3NFe50YLfe5GAqpgcSuZmQUrCFERESm5bDZMIbL\nSbf5F37RN3tdkGwzJpJlPtw8X4mncKGo9Wbis5JGcAHbUav7sc82q0bPDlcUpXUGVLrvg+2oQRUk\ntGMKbkzjAM7DjWncgSnIFcpiNyKKnqePf/KTiEQEXhJNCMzdAC/WwAoZflzCUTmMT338kznVY0n2\nHrGaLspPfgnc58orMyWbLI5ldZHi+YOw1q66ms3h+zDw96eBH88CD2wCvvT7mH6/Le86Osn2N99j\nlkqm/bM5UhwfjV4nJt99NkrtnUIynLSsn0RUNLmuMTPbDawhRERkaLEaQqfS1BBSZNnUdUGyrRmT\nrJ5SCBvEe1AlqiCJLtSqXm8mWS2Wa2tqF2vAKICpjr1Zag3pzcw1uTJ+HwCiH9eLZlQKBRDNqBR3\nwSpkSdZ76IZTzHpWsqJEa6wkq9UydI+QldTfJdnUeVlWF2lJbZyautqrr9H/O9F6SUnq6KBKETV1\ntYb7PGTav5xrCBX4OoUwUu2dhLF0b46OpXtzVmMxe/0kKh2sIURERKbl8XjQ6nSiXQ7AjZmFX/Rn\n0C4H0Op0wuPxZJVFZGTZZkwky3ywQsb30YL3oBpfV8KqZlukqsVyMXRxMSvJgcqiHvvYr8bNjXYo\nsowVFRWQZRlNjY3Lfj1OVito6swZvBtVSV/bBQtePTOdU30ho3VbSybXMZq9Jle674NTC3PWizWY\nxDsxh5swiXdiHSqwvtFW5JEaXzHrWRWSmZJNFkesLpLc/qVoXaQDJ4HufwBu3491a9bg4oWLV7M5\nRl4CtifPVsJ2Fy6KtwvOFlLb1f0bAtwL++c+Crl9CM7W1qyz3zIdp4997GMa74mxau8UktVl9vpJ\nRACYIURERPpLzFZQlmUrZJNFVAqKnQmVqsPbi1gvKiGJakkWbbCIakgFHftss1GWdjcbQr1wo05U\nQxLroIhqSU7aqSv+sVULjw1hw7JjeD9qxYrKymXPSZUNkeo9jNQNLJ8xZtvZz6jSfR9UQRI7lmSI\nmWW/9BD7bNqb1wtZURYzbbSY24VkpmSbxbHYbaxSEZAlgTUrBVx2IVVXisoV1QIPbIq+pyKnzVaC\nIhc1YyZbap2vdMepGBk6pZJZU0h2EZGaCskQ0j1go/WNASEiIvMr9TbdMcVe7pTu/e5HrairqRHr\nbTZRASnvJWu5BCzSBioWLvRjF/bpHpsqKFAhRYNc2QZCzBA4yWeMZl9Wl+77oGbFNaJakkv6e0It\nxV62U+jFczbBkHQt1aXqCiFVKNGAVPPqtAEJNK82RHBCq4Cd2q3nc1XI8sF8aBn4LGZQlSgVBoQY\nECIiKnmZsohKQbEzobLNSMp07NNlAOUSsEgfqKgVzahcDFike2wXakUlpGVBgWsqq3IKhJghcJLP\nGM1ek0uI1HNyZmam5L8n1KJHUEDri+e0mSddm0XlNZboPrc1ClRXJM1WgqUiWmNIo+BEtrQM2Omd\noVPM9zdSvSIirRQSEGLbeSIiIoPQul33UvHt5ZfKtqV9pjbvr83O4v3Tb2b1HhWKgv2RtXgQq5c9\n9gDOYydmsR/12CmfBSDSPvYR6TWsb2xEYHoGDlsDunp6sLevL/3ry2cxN3+13XLG8Sx5vB7yGaMa\n553MrxRbZmfTUr1vzx58+dAwpqenAVmK1hLaFG2VjiNjQGsDMLoDsFbrehwGBgbQN7gvWmcnvtaR\nPwi5fQh9u3rh9Xrzem21W8/nanHfjj8UrdsUo8K+pXwvDY4jkVGw7TwREVEJKGaBVwDo6unBYTlU\nUEv7TG3eAzNXW9gv5YIFgemZxb/TFw+PFguOFbLOVGh8fWMjJgMBzM3PYTIQgNfrzbk4ucNmw7/j\nEgZwFi34GSrwClrwMwzgLH6AS4YoZp5PwXU1zjuZXym2zM6mcLXX68WZqQBC5y+gv3cPar7138DD\n/y/wf/4T2LXtajBoSWHgYrdJHx45hMj2jUkLX0c6nRgeOZT3a6vdej5XahXIzoaWx5GoFDAgRERE\nZCBWqxVer3dZMEPtYBCQXYe3TJJ1RgMAF1agM7IKVbKcdcBi+0c/utjdLPFxl3AEF/EBrFwMWGQb\n1IjvwDV15kzq108SCOl84AF8HRcxiHPowErsRz06sBKDOIdncBGdDzyQ8fjkK9vOYfkEd9Q472Qe\nqeZSvd2ma1AgX+k+G7l0fYp9156ZCqDtNzdBPncZmDoPPO1fFpwIh8PYsu1O9A3uQ7CjAZH9dyPY\n0aBpJzItA3Z6d8cqpLNXrkox8EmkqlzXmJntBtYQIiIiSqnQ2kyZ6tFIkpR1XaTdu3eLSkjCElfA\nugu1i13GqiAl7TKWqoDw0oLWT2Dt4utkUyC7t7dXVEFKWbi6t7dX1XMRk0sh7nwLrud73rPtGEfG\nkG4uNTbYhGypzKvrl14yfTZmZmbyKlydqbaRHvWWtKyzU07dsfSul0RUDCwqzYAQERHpqJwvkjMV\nNV5vs2UdsGi228UDqBX9uF40oVLIgLBAEhIgaiCJupqaZcGQdEGNZAWtQ9ggdqBOVEISsiSlPVfp\nC1enLypdyJzItXNYsQqu59PinvSVbi5VS7JocDSaKiiQzWdDi8LVhQQV8h3PYhBKo4BduXTH0vo4\nEhkBA0IMCBERkU7K/SI5m85o2QYs1O5+VUiXsFAoJCRJEmugCAUQzagU/bhehLAh43gKnRNG7W6W\nT4t7Ico7YKq3bAK2ZgoK6PXZyLdNeiEdrsopi0dLPI5UDgoJCLGGEBERUQEyFVX2+XxiNRxMAAAg\nAElEQVSqv2e29WWK8TrZ1KPJti5SPgWS0wlMZ1/QOl6sc1qlAO7GqoTaQdswhTAiacdT6JzId9xa\ny1QvamR4eNlzYsdysG8vOoJh7I+sRUcwjMG+vdi2ZatmBXmzVexCwWp9drOVaS6dmX0NXq8Xgckp\nzM/NITA5pVnNMjVo8dnIZg7kW4TZ5/NhfGIi2uHq4L3Rrl4H70Xk+EMYn5hI+11QzDo7pYzHkSiD\nXCNIZruBGUJERKShYv9irVZGkpqZTWotWcom2ygX+Z6btJkwkMSOheOUajyFzgmjZgjlk8EVfyz/\nC+8Qd2CVsMMivgdHXudUTYVkb+T7fsXOJjTqXMqX2vuT7RzId9kR69cQUTEwQ4iIiEgnxc7mUCsj\nSc3MJrU6o6nd/Srf9urpMmH+BDX4Ki6kHU+hc8KobeHzyeD6f3w+3BipQDfOYgN+jhMIIYjLuA4V\nKbOKiqWQ7I1836/Y2YRGnUv5Unt/sp0D+bZJZ4crIjI6BoSIiIgKoPYyp0zyWbaj5esUYunymVtu\nugn/80MfxCc+85cYtVuxUz6LUbsVu/r2YPTYC5oEmJIt4Zk6cwbvRlXS19yEFZiXkHY8hc4Jo7aF\nz/Vi/Pz58zh3/jwm8DbG8ebCvVfHrufyNwAYHjmEyPaNQJs9cYPLjkinE8Mjh1R9PzU/c9kuPTPq\nXMpXIfuTbGnY5574W0T+r9aMcyDfZUf5LjUjIioWBoSIiIgKUOxf4NXKSCqkvo5a9YuS1Zb5v/d9\nFk+N/B2+/8MfFpRtBEQv4kaPvRANKC0EmL5nW4nbt27B7OwMamtqsPbaa/HZPX0JY6gUwF/jHMKI\nLHtNPy5jfWNj2vEUOieSjbuQwJhacr0Yr6mpwcoVK9GMSvwFVi/cO7e4XYuAaS6Knb2h1mc3l7pM\nRp1L+cp3f8LhMLZsuxN9g/sQ7GhAZP/dCHY04OJbYeDFnwPht5c/ackciGVC5lJvqafLDfnwacAf\nTNzgD0I+Mo6eLndex6FYil1ji4h0kOsaM7PdwBpCRESkofi6IJnaqqtBrRoa+byOmjVQ0tXpqYIk\nGhtsmtdwuQtWUQ0p5Rh2LDk+2dYyKvacKKZc60XFzvP30bRQ32CnACCOoEH3GkJp67t0bRZKdaWq\nXdHU+uzm2+2tnC3WAPIvrwGEakWg/3c0qfFj5g5Xxa6xRUT5Yw0hIiIinRT7F3i1MpJyfZ1wOIy7\n774bp8fGcCUyj+/hTfwKc/BhXV41UNItn9mOGvxyZkbzGi7/gbdxH2pTjuGruJDXMhs15kSxu1Fl\nK9d6UbGsoq1SIOH+P5Ve033JUrrsDRz2w/m2ompXNLU+u+k+O38UseKJz32OGR1LpFseiM424Cvf\nT7xfpQweM3e40rrGFrOPiAwi1wiS2W5ghhAREZUQtbJPcnmd2GOrICVmBkESm2ERIWzIucNPpo5V\nMrD4eolZKflnbCzN0FCA9GOQpII7p+VDj25UhYqdI3vzeiErirA3r188XqFQSDz22GMJGUIPPvig\n7vuRNHuja7NAlSLepUTntZrZN2p9dlN9dkLYIBxKlUCVwoyOJWRFiR6PZNlgQ/cISDBdBo/WtOyQ\nVgrZR+m+84iKrZAMId0DNlrfGBAiIqJSo0ab91AoJHbv3i3qampEBSAkQFxbUyt6e3uXvU6mNuz9\nuD5l2/FU0i+fqRVroAhFVlQNjiy9kG5GpSFbcmezJEitIJkasrm4e/vttxMCQqdPny76OJNZelGn\nVFcKFxKDQWrOCTU+u6k+O/24XkhVStJlUelao5eDTMsDa66tM/WFvZrfB7HXgoS0QTRZyf77fql0\nS/jMMFdLIaBFpYUBIQaEiIiIshYKhYTrVqeokCRRC1nIgKiFLCokSbhudS77x2ym4E0zKnO+WO7v\n7xdVkMSpFEGmNlgWL2rUqpeydD/6cb2wpBpDHtkgWmUyLQ1KNNkaDZVBlM3FnVEDQktlylzLJeip\nldhnYum8XVtRpVlGh9ktztFT5gxApKNm0Dwh0FFrST2f7neJmrravINoWmYfFYPZA1pUelhDiIiI\niLL2+OOPY+Lll1EhgHtRgy+iHveiBhUCmHj5ZTz++OMJjw9MT+PdqMIAzqIFP0MFXkELfoYBnMXN\nqEYAV3LuqObxeLCuoQG3YwrdmF6o0zONdkzhnajEj6Vfo6unR9VW3UtruHhwHVpRjfaEMeTXkjuX\nzk+ZZOxGNTOdUAvpQazGQTTkVcspfvyf+MQncG1dHWRJQlVlJVavXo0bbrgB73//+/GZz3wGx44d\ni/3YlqDY7dvjx6x2nSWHzYYxXE66Te+uaDGpur39cv7XRe2aZiYejwfO1lbI7UOA+yhw4CTgPgq5\nfQjO1lZda1kVamlttEK+DxLqBn1iC3DYv7zG1r/9HHjmNEKX3kzo2NY3uA9btt2Z1eev2B3+1KbX\ndx6RFhgQIiIiKjNf2r8fMoATaEq8gEAT5IXt8Rrr6/HXOIdBnEMHVmI/6tGBldiHX+Ev8UtEANx8\nyy05XVRZrVa8NObHmoYGPI2LeASz+CeE8W5U46fSHG7duBEej0e1Vt3A8gvpp3EB70I15iTg7ysv\nYaf8y7wLgqt5UZYpKFEly6oFyQDg1KlTWG934IknnsD5CxcgAFyZm8Mbb7yBn//85/je976Hxx9/\nHFu3bsXNN9+Mw4cPJwSGMl3cBadexQpL8nOYLzUDcPHUKvyspVRFy2tW1wFjKS6k/UHYHCnOkcnk\nU4zYzMWdM1EzaJ4Q6PD8D6C1AWj/4tUgWvdRSL/9FUCSIE4+knexaZuj0dRz1ewBLaJ4DAgREZEu\njNpFSQvZ7muxjkn44sWU3bU6UYPwxVDC/e9817twHpFlAaSTaIYECTIASZJyHkd9fT3+87//C97+\nvVhvt+N1GXjdfj127+1bDMiombGR7EL6RfsqPLZ3L157/Rzm5uczds1KJdNF2Ve//JWsz22moMTb\nkYgqQTIhBP7mb/4G733ve3H+whtZPeeVV17Bfffdh7vuuguzs7MAMlzcnQrgGqUCnxdrE+5+6623\nsnq/VNQMwMVLlX2TT9aYlpJ1e/vkox9P2TVNjY5ZRhAOh7Fl253oG9yXc3ZK7JgFJqcwPzeHwORU\nXp91o1EzaJ4Q6LBWA6M7gF3bgNGfAo98E3jqFFbVrALu31RQdky6Dn9mmKtmD2gRJch1jZnZbmAN\nISIiwzFjF6V8ZdrXmZkZ0d/fL9bbbKICWN7JS4NjImXoriUBCY9vsjWmrSHUiIqCOzClkqpeihpd\nn9SUqfaMBGQ93zN1o1pvsyU9HyFsEG2wCIuiZKxhND8/L7q7u2M1B/K6veMd7xC/+MUv0tdnqVJE\nP64Xb+Ndy7qMFSJTnaVCij+rUfhZD0m7ppVYxyyz1m7RsiOVmp+FbGr7ZOrYlk2xabPP1VKuSUXm\nxKLSDAgREZmKmoWCjS7TvjY22IRFVoQLFlENqSjH5Nqa2pQXEF2oFdfW1CY8PmOhXSDphYcaRZbV\natWttXQXZV2oFZU5ntt0QYlkQbIQNoj3oCrrgOKnPvWppEEeK2TxUdSKr6BefBt20YVaIUESGzZs\nSPr43/iN3xDBYDBp+3apShFtyjUihA3LAkINa9cWdLzNUPxZD6XeCtuMxYi17kilZtA8m0CHWufA\nzHPV7AEtKj0MCDEgRERkKlr+um802QYKitkCvbe3N2WHrypIore3N+t9iHUZW3oRrnbnG6NnbKS7\nKKuCJFywqHZukwXJ2mARVVkGnZ5//vmkwZ2P41pxATcmHV8kEhHf+MY3RH19/bLnud3uZRd3qJDF\nXbCKcbSI5+AQj2PNwuM/LgAICZL4zne+I8bHx/M63uX0HUJXqZGdUmxaZzWpGTTPJtDB7JgoMwe0\nqPQwIMSAUMlTq5UvERlDOf26n2lfZUAI3CSUDMu41DwmoVBIbHJuFNWSLLpQK4ZQL7pQK6olWWxy\nblz23Zr2F2hIoh/XL7sIL6csMCHSX5RVAOIJrFX13C4NklkUJasAydzcnLjxxhsTAjqyLItKSc4q\nw2B2dlbcfPPNy4JCx48fTxhfLGAT7V0X/9jPLHvuuXPnct7/XLMi+O8Ic4udP8VSKSBLAs2rBfp/\nRyD0WWH0DKFiZDWpGTTPFOhgdgyR8TAgxIBQSSunWiNE5aKcft3PlCG0BooQuKmoGUJC5HYBEfse\njg8gdaNWWCCJzbCIF7F+2UV4sv0OYYPox/WiFrKQgJK7KE91TFPV/FHz3GYbZP32t7+9LCDzV3/1\nVzllGExOTgqr1ZrwGn/0R3+U8JhYwObduCYadIIkLKgQVVAEIAtZjgaKrrtujQiHwznvby5ZEfx3\nhLmlWnIFS4XAZkc0KGTg7BQzZjVlwuwYImMpu4DQ/8/e3Ye3dZd5/n+fIztxWuWhj4llKU7KQ4Gh\nrmt3WiiepiWBnWF2Wijb2S1JS8cx/jUdwo7mgfmRxMSJM2FYZvDuFUjACdm2pPSaTlnaLjCwc3na\n0KSdhzo1hmGG2flhUjl2oNDQWG3S1tb394csV7IlWQ9H0jnS53VduhLrSEdfHR3J/t66v/cN/D4w\nCpwD/h749Sy3VUDI48r9LbO+RRQpPa8UCnZCrkuJdnOpaciwjMsNx2RyctLs2LHDXFC/yFhglhNf\nEnQXy9NOrOcGKCa50lxHg2koQ9FstynH+Z5rkPXWW29NCeRcffXVZnp6OuV3n23ZZsWyZebiZcsz\n/h783Oc+l7Kfuro684tf/GJ2ezlqP+Ua1Ky1bLVqk23JFYvrDG1Nrs5O8WLdIxHxlpoKCAH/GTgP\n3AW8Dfgy8CJwaYbbKyDkceXMJNC3iCLl4ZVCwU7I9lxDjQGzeGapTnLAJHkZl9uOSa6T8Lmf3YmA\nVzkn5W4J8JfjfM8l6BSLxcwll1ySEsgZGBjIONZsvwfPnDljGhoaUvb1rW99a96+3FD7qZYyEqtR\n1oBK568bX0O9q7+4q9WaO8oiEimfWgsI/T3wP5J+toAx4JMZbq+AkMeVs9aIvkUUKR+3TBbLIdNz\nnZiYSAkUfJ7LzdUsNjaYOjAWmIuXLTc7duxw7XHJFHTZvn17SoCiEkvicglsOBU0yqXuRj7ne77j\nSn6+d7Hc/Ef8s0vzLqhfZHbs2GF+9KMfzVsu9pOf/CRlP/n8Huzo6EjZV09PT1KWkbVgllG51FLN\nsmTVMiH3+pKrWqy5U+rOatketxrOeZF81UxACKgHXgdumXP9fcA3MtxHASGPK+c3e/oWUWqBW7Im\nJG7uUp0l9fVmsWW7IktxoXMlW9Dl2tZrTPvVrbPBLruMRbONyS2w4VRWqNOTn0LHNTk5abZv326W\n1NenbT//jivflhLAWbRokYnFYin7yOf3YFdXV8r+Vl52mWmwfeajLDdrqTeLXbI80Ku/24uZ3FZq\nQu60yclJs+ziFZ5fclVrgYpSd1ZLp1rOeZFC1FJAqBGIAdfPuf6zwDMZ7qOAkMeVs9ZIrX6LKLUj\n00RzEZapA7M6EKjqP1Ldzk1ZirkEJRYa744dO2YDSnUzwYFyTcpzCQI4dbydnvwUM65s963Hmlf3\n5+zZsyn3z+f34Mc+9rGU/flmlgRWYnlgsrmBzBXLls0uzaz0+ypXxU5uKzEhd1riGFh1PsNiX80t\nufKyStRNqoZzXqRQxQSEbERcLhwO09LaSocdoYsJDnCGLibosCO0tLYSDocde6xQIMAJzqfdNsR5\nQoFGxx5LpBL6+/sZGR7meCzEQRrZwkUcpJGnacaHxWXjL7K3dxfr191ENBqt9HBrzuGBATbFltLG\nkpTr21nCxthSDg8MlG0smc6VY7EQI8PD9Pf3LzjeI/fdR09PD6ORCJ/evYsj9iRDnEu57RDneNCe\npLO7O+NYotEofX19rA2FqPP5WBsK0dfXl/UcjYyP00ZD2m3tNBAZn3DseA8cPkRs0zXQFpzzQEFi\nG1sZOHwop/0kFDOubPf9IP6U66ampviNd9+Qchyz/R58lvMs9/tnX4cH7r8/ZfvVLKaNJRzmJTax\nvCLncTQaZf26m9jbu4sNY1H2xS7n1rMWMWO4gZNsLvHfEU7p7+9neGSE2PF74eDtsOUGOHg7sWP3\nMjwyQn9/f9b7O31OVkLiGJgn/h+4OgAdX4Cuh+HA07D5r7De8wVaW1pc+frVuvHIKWhrSr+xPRjf\n7rBqOOdFKsFrAaFfANPAyjnXrwROZ7tjOBzmlltuSbk89NBDpRqnOMjv9zN49Em29e5kMOhnq/0C\ng0F//OejT+L3+xfeSY46u7sLnrCIeEG2yeImlvFLplMm/IUqZAIvuQUxyiWXoEQ+4y00uJ9ugr9h\nLLpg4DJ7YOMcwVWrHDveTk9+ihlXtvvexAXzrvvnH/1zyns92+/BI7zE2cmzbBiL8t9ilzL92msp\nt7l+5nEjvF6x8zhdIPM+AgwSImbBo8tMSf+OcEohk9vE525obTNjJ5+Hx34IfX8L0Vfn7aMUE3Kn\nzR6Djitg8B7Yth4G/y9sfRS+/gOWLrmQo4NPuPL1q3WBUBOcyHCODY3FtzusEkEokUp46KGH5sU1\nigmMeyogZIx5HRgC1ieusyzLmvn56Wz37e/v5/HHH0+53HHHHaUdsDjG7/fPfss8NT3FaCRCT0+P\n438ElDMbSbzLy8GO7BPNJUR4vehv8QudwNeadOfRUr+ff5gzEU8od5ZiLkGJfLIqCw3u55KplE72\nwMZZpowhuKrRkaxQpyc/xWSrZrvvCc6zBCvluhXG5itf/vLsz5l+D77Heh4DPGHir4MPi6k5+z9L\nLD4G6iuWbZspkPkbXMhHzXKWLVta0r8j8pH4DGhuasK2beoaFmH7fDStWc2pkxF4x9zvP2ekmdxG\no1HWrb+Z3r17GNvQCF+8DW59J+wdhPVfSg0KlWhC7rSUCb5/MfS8D0a3w9R/g898gOhktGqDQcnB\nPV9dHaG1zZ75OwOgu7ML+8hzMDSWumFoDPvBYbo7uxx/zEoEoUQq4Y477pgX1yjmS1xPBYRmfB74\nmGVZd1mW9TbgS8AFxAtLixSlnNlI4k1eD3Zkn2ieI0Q9UNy3+IVO4GtJpvPo3GSUr3GWp3g55faV\nyFLMJSiRb1ZlIcH9QpdPhcNhLlu5cmaZ0PhMYGOcDk7yVur5xenTvOltVzqSFer05KeYbNWs9+Xs\nvGVjv2Ca58fHZ3/O9HtwyVI/H2EZHVzIKV5nJy+k7OftLOLrxB+3k+Uc4aWKZNu6Kcsum8RnwJ/t\n7OXln70A9TbTd7ZhvvBBxt8XwNTb8Nm/m5/dA2knt5mWmHHs4zAyAf3fm71vqSbkTopGo/gW12ee\n4D9bvRP8ucG92L5bGdvQSO/ePaxbf7Pr/86A+Odva0sLdsf+N5b5dT2M3bG/ZMv8KhGEEqkK+RQc\nApYAHcA70mxrAO7Kt4hRIRfgXuCnwDngGeDaLLdVUWkRcYybiv4WImuRdiyzm0uLLvLr1Y4+5ZTt\nPFqEZeosy2yeKeS8uULdmXIp6J9ceLpU4y2m2P/qQMC0stiswDZ1YCwwF2ObHVxi7mK5WR0IODJ+\np9tKF3Nc0923k+VmMZa5jgZzhreatdTPaz//3e9+N+uYEq/DL3iLaaNh3v2/TchcR4NpwDJ3sWy2\ny1gny2fGUJ7z2CufP4n31z2sMPYiX9pCuCzyGe55d04FcrMW8e28znDZhZ5qdb57925TZ1nxY5Om\nmLS1uM71v28LVS3FkcvdWc3pz2ERLylLlzHgrTNBmBjxOj5Hgcak7SuB6XwHUOqLAkIi4iSvTDYy\nSZ4svjFRW24aZiaLk1xZdHBL3foWlu086mSFuXjZ8pkOSb55rd7LJdegRGpHJ+fHW8x7zrYss5Z6\n0zC3/Tnx623Ldmz8Tk9+ihnX3PtevGy5qbMs8z1WG8PbzXcJzQvo+HzxrnCvvPJK2n02NzWZ3+RC\ns5q6effdxDJjeLuZ5Eqzm0vNGuqNBcYGc/Gy5cZn22U7j8vZmbQYifM6WLcoeyCn3pfT5Nb2+eK3\nSbef/bcZLDzV6nxNMGg+ynLT5rsgHhTqnDkGndcZa5HPLFqy2BPPoxCV6NBVLcodhBJxi2ICQpaJ\nB00WZFnWN4B64G5gBfDfgXcANxljnrcsayUwbozx5bTDMrEsqw0YGhoaoq2trdLDERGPq/P52Be7\nnC1cNG/bAc6w1X6Bqem5lTXcJRqN0t/fz1e+9GWeHz9FHRZXsZhNLOOfeY0H7UlaWlsLXia5NhRi\nw1iUg8yvE9LFBINBP6ORiBNPxbNKcR4lXtdEsedQIEBndzfhcLjg5a6p+5yYXSaW7z6LGVtfXx97\ne3dxLBaiPWnZ2BDn6LAjbOvdSU9PT9r7XrR8OefOTvI0zSlLzoY4x3s4yZJlSznz0ks5Pw+vSixP\nGhkeZmNsKe008AVe5Ee8Nu+2F198MXfccQfvete7aGpqIhqN8v3vf5/9+/czMTF/uZUfm5O8mYtJ\n/fOvUu/1dM91iPNFf645LfEZ8HHrZ8S++KH4Eq+5DjyN9fFHaVodrxkUCDXR3dmV9n0TWtscrx10\n8Pb5++l6mODgaSKjJ0v0bJyXOD53spx+fslA3VnGp18n4KundWoR37ZeYTo2XelhloSvro7Yvlsz\nnhP21seYnnL33xkiUl4nTpygvb0doN0YcyKf++ZTQ+gG4FPGmF8YY/4d+B3gu8BTlmVdkc+Dioi3\neLmIstOKKfbqFok6Lj89NcbZyUl6du/ixeCl/In9S0dqZqlb38KcPo8y1STa8+mdvOOtV3L6dNZG\nnBk5UdC/2LpbxRT7t7G4M1P7c5ZhzymwXK3S1QV6uekyrrrqqnm3ffHFF/niF7/InXfeyXvf+15u\nueUWenp60gaD6oFXiTE6J7BUyfe6V2oBJj4DAr4sdXKGxmhaHSQyepLpqSkioyczvv+qrX5K4vj4\nsenhMiJTb2LavI3I1JtYSR2rmwJF7d/NRZudKI7s5ucnIi6TayoRcBZ4e5rrvwBEgN9AS8ZEqk7y\nspGUJRcVqGniBl5ZjlBJ5agr43VOn0cL1SRqagxU7Lg7UXer0OVTCy9ftJ16mp40NTVlent7TV3d\n/GVguVwCK1eaUGNA7/UCzKshlKZOTj71YspZP6Ucy3JK+bs25Vh1XR8/Vl3Xu6bWzGwNoQLPiXye\nn5ZYiVSHctUQ+kfgzgzbvgCcUUBIpPp4vYiy0xTsyE2p68p4ndPnUfaaRMtNPVbF3quVrLu1UK0m\nt9f8KpcTJ06Y97///TkFgdasWWO+/OUvm+npaWOM3uuFSnwGLLZsc4mv3lhz6uTYDfV5ByfmTu4D\nzSHz3ve+1wRWBx2b7JcrmFLK37ULFW3evn17RYMkxQb3ci1K7fbAmIjkrlwBoU8B386yfT8Qy3cA\npb4oICRSHK8XUS4FTYDECU6eRwtlwthQsfdqOYqMpx7LNwoY79ixQxl9efi3f/s309fXZ2655Raz\ndu1ac+mll5pAIGDe8573mE984hPm29/+tpmamqr0MKtG4rxdHQgYy7KMb3G9sWzbBJpDrg3clLMD\nVql+12Yt2nxXu6lfsrhsQZJMGToTExMFB6VyLUpdLd3MRKRMRaW9SkWlRYpTDUWURapd9kLe4zxO\nlBdtKvJeLXWR8eQiwptiS2mjgROc54g9ya9ddRWWZfHDkRFXFxgWcVpfXx+9e/cQO34vtAXf2DA0\nht2xn95tOzIWY8+mGopXZy3a/Dtfgf/zb/DMVkePWzrRaJR1629meGSE2KZroC1eO8g+8hytLS0c\nHXyioOL9n97dCzEDq1dA53UQvhH8i+M3SipKXQ2vpYjElauotIjUoGoooixS7Tq7u3mAl9IX8uYs\nIeor9l4tdZHx/v5+RoaHOR4LcZBGtnARB2nkWCzEP//gB/yH3/6A6wsMu0EpmweoMUH5DRw+NBNk\nCKZuaA8S29jKwOFDBe13PHIqHrhIpz3eDc3tshZtfmoU7rq26OOWS1Hn/v7+eDDo+L3xoMyWG+Dg\n7cSO3cvwyAj9/f05P6dEcKl37x64+9fhCx+CDW+FvYOw/ksQfTV+w6Si1NXwWopI8RQQEpGs1DFK\nqkmhE9N099uxI/5NsRsmueFwmJWNjdzASTYzPtOJa5wOTvJm6vln67Wyv1cTx+wrX/oyr8ameTcn\naWeUfn6Zc5ewXBweGJjJDErTSSy2lAfvvz9rpzQFK4rvBFfovt/x1itpbmqq2eNeSqWa7DvRAavS\nsnVk4+z5oo9bcnBmbEMjsX23Mrahkd69e1i3/ubZc9zJoF2m4BLHPg4jE9D/vXkd56rhtRQRB+S7\nxsxrF1RDSKQoKqIs1aLQjnnp7vfRmULNi7Bc031vYmLCNDUGTD2WscFchs+00WAWW3bZx5TpWC/C\nMnVYZnUg4FjdrQXrJ1nWvNpCicdVF8W4UjYPWKgDXjsNNXvcSynXOjL5KrYDlhtkK9pcf0FD0cct\n19o8ts8Xf+x0j7X/NmP7stdXS64/RJ2dedyd1xmWN8yrg1QNr6WIxBVTQ0gZQiKSld/vZ/Dok1py\nIZ6XbWnRyPDwbHr+3IyR5qYgJ547wd/Gmmbv9ybq8QHP0Jx1XwtxMjtl1apV/Ou//Zie3btYHQzy\nog0vBi9l+67esr9XMx3rp2mmzrbpuueelCydZPkek2zLWp/lHD5DxqyXXM+JardQltXhgYGS7HsT\ny/gl0zV73EspWxZMcpZIvsLhMK0tLdgd+6HrYTjwNHQ9jN2xn9aWlqIz/srB7/dzdPAJerftIDh4\nGnvrYwQHT9O7bQd/+od/XPRxyzXzp5gMnblZSMRM5syma4Nw9jy923ak1CWqhtdSRByQbwTJaxeU\nISQiIia3jnmZMkYWY5nraDCTXGkMbzdrqC+6+141Z6cU2p2wkGOSyEBJ10lsEZa5Z844krNe1EUx\nrpSd4BbcN9TscS+lYluXL7TvSrZlLyUnjluumT/FZOjMy0Jac1FBmU3V/FpKfguV00gAACAASURB\nVHQueFvZM4Qsy3qLZVndlmXtsCzr08kXB2NVIiIijomMj9NGQ9pt7TQQGZ/ImDFynGZGeJV+fhnf\nF68vuK+FVHN2Si7HOp1Cjkk4HKaltZUOO0IXEzP1kya4gZNchM3nWDnn8d/Ieil0nNWmlM0Dsu/7\nHCHqU65LPu6q71S4bFkw+XavSrfvnp4eIqMnmZ6aIjJ6MmPGn9c4cdxyzfwpJkNnXhZS53VwZCjv\nzKZqfi0ld7nWvZLqlHdAyLKsjwH/AuwG/hPwoaTLBx0dnYiIiENymfRmXTrDMg7zUnxf1Bc9gS7l\nMp1KW2gZV3DVqrTbCjkmmZa1vm7Bn3IJ/jR/6iSCDuqiGFfK5gFZ981ZOlk+5/r4cS9loWuvyzVQ\npsl+YYo9brku1ysm+DSvaHj4RmhphI4vwGYt/5L8ONnxTrynkAyhHcB2Y8wqY0yrMeaapEub0wMU\nERFxQi6T3uwZI0uI8Hp8XyznSKY27zlOoKs5OyXbsT7CWaaMSTuhTz4mUWL08QJr+Xfq+BceZ5KT\np06lvV9iApfcSay5qYkf8Vra8SWCDtXcRTGf7JpMWVZOdIJLt+/NjHPDTAe8MJfM3jb5uFdzBl0x\nFChzv3wyfwoNPs3LQvIvhsF7YNt6+PoI/P7/ciwjTKqfkx3vxIPyXWMGnAWuyPd+lbqgGkIiImJy\n65iXraZMJ8vNcuL1UO5K6jLWWWD3vUrWr0nUCsjUfcuJ/YcaAzPHZ/nM8VluGrDMO1lkFlv2bH2M\n5LFYYJZjm+1cYq6lwTTM6eK2CCvn45uttlCihlC1dlEspBZT6jnhc/ScmLvv5kCTaWoMmMWWXdB7\nsZbrDJWyI5w4p9T1WNQhTJxUbMc7qbxiaggVEmD5CnBPvver1EUBIRERSVho0pstiLDYss2KZctm\n77d9+3azY8eOgifQuQQsSnUMcgkWJI7V6kDAWJZlGnw+Y1uWaQ405fQ8VwcCpp0Gs4Z64wOzhnqz\nm0vNJFcuWMS7DswirKImvbkGe0oZCKkULwQNFjrupSx07WUKlC2s1AFvN3CqaLgKCYsxxgTXrC6o\nKLm4R7kDQp8CXgDuA/4I+ETyJd/9lfqigJCIiPdU6g/6cmaMVCo7JZdgQWJsiy3brMRnFs/J1Mll\njLlM6DONpYk6Rya91RjsySbxfBt8vooHDYp9DyvwkZ4CZdk51b3RC4GSYseYElTquj4eVOq6Pueg\nkheOkeRGGWfeV+6A0GiWy0/y3V+pLwoIiYh4S6XbsZcziJB4rOZAk7FnsnAsyzKrA4GSPWYuE+1E\noOYeVpiGAjN1cnmcTLfxQdZJr21ZVf3tfyGS3zf2AscvOWhQiuCrE+/hSmXQlYpTk2cFyrJzIjuu\n2ECJV8xrXZ9HEKBWjlGtcCrjTCqnrAEhr10UEBIR8RYvLHdxUqbJ82LLNkvq62eDH04FPXLJMEhM\nOtdQX/DkM5cJfaaxZHvczpn6TZUIFrpZ8vsm19etVMFXpybl1VLfycnJc7UFypzmRMCsmECJlxSz\nTKhWjlEtUcaXtxUTECqky9gsa0Yx+xAREUlWze3Y08nUTem4WU3s9Sk+YC50tIvQQq3Wg6tWcfLU\nKR5jkpO8XnAntFw6V2UaSyfL+WqGLm5HOMtmlnui81Q+nb6Klfy+ybULXqk6eTnxHvb7/QwefZJt\nvTsZDPrZar/AYNAf//nokxm7JpXzmOfKyZbOpewIVw2c6N5YKx2X5rWuT9YejG/PoFaOUS0ptOOd\neF9BASHLsu6yLOsHwDngnGVZI5Zl3ens0EREpBZVczv2dLJNnjexjB/yqqNBj4VarU8ZQ72BW1nK\npfiyBo9CgcaMj5NuQv+3gQu44aZ1/Oz0aVYsX87Zs5PcZ73EU7ycct+buIAY8B7r+ZRJ7w2c5CJs\nPsfKlNvPDTS4IShQ7vbgye+bMJfQwmI6OEkX47Ot3ucGDUoVfHXqPZyYoIxGIkxNTzEaiWSdoLi1\nJbuTk+dCA2W1YqGAd7bPrIRiAiVeMq91fbKhsfj2DGrlGInUgrwDQpZl/SFwAPg28Lszl+8AX7Is\nq7a/lhARkaI58Qe9l2SfPC8hwuuz/3ciQypbhsFlK1fyi9OneYZmDtLIVi7KKdMkk+QJ/a9e+hWr\nVjXy9JNHed/4y+yLXc5tZy1sA+uJ8NGZwEUXE7zfPkXL1VfzJ9u3pUx6X7fgT7kEf5o/XxKBBrcE\nBUqVfZNJ8vvGj80gzWzjEgZ5hY9zmq/5ovOCBqUKvgZXNWZ8Dz/LOYKrVhW034U4dcydDijmOnnO\n9XHzDZTVkoUC3gt9ZkFxgRIv6e7swj7yHAyNpW4YGsN+cJjuzq6M962VYyRSCwrJENoKbDHG/Kkx\n5vGZyyeBe4l3GhMRESmYE3/Qe0n2ANg5QtTP/uxEhlS2DAPLgjvNstmMkeRMk81ZMk1ykWmy/jTN\n2JbF48tMyli++Z2/YdGiRTP3NgAsX7qU7/Nq2v0ngoXZggLDJ04QamoqS7ZQuZc+zn3f+LHp4TIe\noYlFto9tO3fOCxo4EXxNF8SwFy/igSxL/t70tivzem65BkqcOOalCCjmMnl2SyDT65xYUldMoCRx\nrobWNuOrqyO0trniSxYzCYfDtLa0YHfsh66H4cDT0PUwdsd+Wltash6rYo6RiLhMvkWHgPPAm9Nc\n/xbgfL77K/UFFZUWEfGUaiomm4usRWKxzG4uzbsoaqHSFXme5Eqzm0vNZfiMBaY50FTy7kjZCm3X\nY5nvsTpjQd1sj9PJcrMcuyznUrnbgxfyvim2QHGm16kezCIwi7BMJ8vNflaZTpabBiyzEp9ZHQgU\n9LwWKnztxDEvRVH7XFo611ox/VIqtlNkoR2XvNh5q9BCwupKJeIu5W47/0NgW5rrdwA/yHd/pb4o\nICQi4j3lbP0+//HK28o83UQ+MXm+jgYzyZVlmxiWsqV1PpP1bJPjRVimzrIyBj0WfBzw/LHMJN/3\nTbHB12yvUz2YAHXmMnzGBlMPpok68xkuzSsYlk+gxIljXorXLZfJs9rJu0shgZJa67ylrlQi7lHu\ngNCHgSnidYN6Zi7fAV4HPpTv/kp9UUBIRESyyScDoVSBo7n7vaB+kamzLHPXTHZFuTKkStnSOp8J\nb/YsnxXm4mXLMwY9sj/OcrOG+rJMsr3SHryY4OtC2ViJY52c8dZGQ17HPZ/zxoljXqrMroUmz8mP\nm8jKW0O98UE8O8+yNNFeQCUD+8YU18ZdRKQYZQ0ImXiQpR04AgzNXI4A1xSyr1JfFBASEZFscs1A\nyCdwVKxyZ0glP26pluvlM1kvZlKe6xK8UizbSlYLSx9zycaaGySqx8orGJbPueDEMa9Upk7icSe5\n0lxHg2nASvmcWYRV9vOm0gGWfJTz8zkT2+eLZ3+lCwjtv83YvtJ93ohIbSt7QMhLFwWERERqVy4T\nmlwngLVS46NUwahcJuuJx27w+QqelCc/TudshtX8JXjlWIZTqcBeueSajZUcwLEgr+efb4Cm2GNe\nqcyuxOPewwrTgFXxzxk3BFjy4YbPZ2UIiUillDwgBCxL/n+2S74DKPVFASERkdqU64Qm1wwE1fgo\nXrbJevLr1U6DWYxVVLHj3bt3m4uXLTfWTO2a3VxacD0mL2VKlFM+BdETGULNgSbnHqMEE/1KZXYl\nHrd+JjOo0p8zbgiw5MMNn8+5FA8XESmFcgSEpoHLZ/4fm/l57iUGTOc7gFJfFBASEalNuU5ocp1I\nlLtrlBc4GShJfr2Sl82kdKnKc1LuxOS+kEyJWgkgZSqIvgjLvJNFswG4YgIJlQjQVHLJpm1Zrvic\ncUOAJR9u+HxW5y1vUDFsqUblCAitA+qS/p/xku8ASn1RQEhEpDbluxRsoQwEr02QSs3pJSVzj29y\nYV0bTIPPV9Af7U4tIco1U8JLS22cCFzNPb7NgSbT1Bgwiy3bsQBOpZfelTPA55bPGTcEWPLhluOm\nYIO7pQTtuq6PB+26rlfQTjxPNYQUEBIR8TynJ125TmhyzUDwSteocnF6SYlbJ6D5TjS9stSmlIGr\nSgdwnFTuAJ9bPmfcEmDJlVuOW7XzesBrdlnfkJb1SXUpd9v53wQ6kn7+fWAY+BpwUb77K/VFASER\nEfcrxaQrnwlNLhPYWugalQ+nJ4xunYDmG6hy6/OYyyuBq0or93Fyy+eM1wIsbjlu1awasmtU+Fuq\nVTEBIZv8fW6mgDSWZV0FfB74NrB25v8iIiJ56e/vZ2R4mOOxEAdpZAsXcZBGjsVCjAwP09/fn/c+\nO7u7OWJPMsS5lOuHOMeD9iSd3d2z1/n9fnp6ehiNRJianmI0EqGnpwe/359ym8GjT7KtdyeDQT9b\n7RcYDPrjPx99MuW2tSAyPk4bDWm3tdNAZHwir/3l83qVUygQ4ATn024b4jyhQGPKdfkel2g0Sl9f\nH2tDIep8PtaGQvT19RGNRp15AhkcHhhgU2wpbSyZM8YlbIwt5fDAQEkfP5NKHY9Myn2c3PI5Ew6H\naWltpcOO0MUEBzhDFxN02BFaWlsJh8NlGUeu3HLcqll/fz/DIyPEjt8LB2+HLTfAwduJHbuX4ZGR\ngn5Pl9t45BS0NaXf2B6MbxepMZaJZ9HkfgfLigLvNMb81LKs3pn//yfLstqAbxtjVpVgnAWbGdfQ\n0NAQbW1tlR6OiIiksTYUYsNYlIM0ztvWxQSDQT+jkUhe+4xGo6xfdxMjw8NsjC2lnQaGOM+D9iQt\nra2aJBTJ6dfMra9XX18fe3t3cSwWoj0pKDDEOTrsCNt6d9LT0zN7fT7HJfk5x4MODZzgPEfK8Jzr\nfD72xS5nCxfN23aAM2y1X2Bqeqokj51JJY9HJm48TuUSjUbp7+/n8MAAkfEJQoFGOru7CYfD+uys\nQaG1zYxtaIwHg+bqepjg4GkioyfLP7A8VMNzEEnnxIkTtLe3A7QbY07kc99CMoReAy6Y+f8G4P/M\n/P9FZjKHRERE8uF0tgnoG+NiLZSp4XRGTzGvl1NZJen289prr/FrV12Vc6ZEPsel2My4Yp53vplP\n5VCKTMFiufE4lUsumZNSO6ohu6a7swv7yHMwNJa6YWgM+8Fhuju7KjMwkQoqJEPocWARcBzoAdYa\nY05ZlvV+4AvGmLc6P8zCKUNIRMT9SpEhJIXLJVMDcEVGj1NZJdn2886WFv7Db3+AB++/f8FMiXwy\nnYo574t93vlmPpWDGz8H3HicRCqhGrJrotEo69bfHF/6trEV2oOzwaDWlhaODj6hgKd4UrkzhD4O\nTAH/CdhijEmEg38L+E4B+xMRkRrn1voxtSqXTA23ZGA5lVWSbT8/HBlh8eLFOWVK5HNcismMK/Z5\nu7FGTCkyBQuRnHm1q7cX2+fjXdZJPsq4K46TSCVUQ3aN3+/n6OAT9G7bQXDwNPbWxwgOnqZ32w4F\ng6Rm5Z0h5DXKEBIRr0it1zBOKBComXoNbq0fU6uyZWpsZpyv+aJs27nTFeemU1klpc5OSff+Pnt2\nktvOWgU9phPjdVuNGDdkCGXKvPqqdRa7zserU9Osbqqdz2aRBGXXiLhXuTOEsCzLtizrrZZldViW\ndWPypZD9iYjUusQkZG/vLjaMRdkXu5wNY1H29u5i/bqbKtZhp1zckm0icdkyNa5lCa9NT7vm3HQq\nq6SU2SmZ3t9nJ8/yAC8VlBnnxHjdViPGDZmCmTKvjpvVmOkYvbt6K36cRCqhVNk1iYy80NpmfHV1\nhNY2V7SzoEitKaSG0LuArwHNgDVnszHG+BwamyOUISQiXpCoU3E8Fkppb6w6FVIJ2TM1xhnkFR6h\nyRXnphcyhDK9v5/iZdYTwbYsNplleWXGuSGbxmluyBSsxuNaqEQG2cDhQ4xHThEINdHd2aXMKHFM\nStbRpmviRatPnMI+8pyyjkTyUO4MoS8BzwLvBC4GLkq6XFzA/kREat7hgYGZ5QlLUq5vZwkbY0s5\nPDBQoZFJLcqaqcFZOlnumnPTqaySUmanZHp//wYXcgfLWLLUn3dmnBuyaZzmhkxBt9QxqrTERL13\n7x7GNjQS23crYxsa6d27h3Xrb1b2hjiiv78/Hgw6fm+8WPWWG+Dg7cSO3cvwyEhFOguK1JpCMoRe\nBq42xvx7aYbkLGUIiYgX1Pl87ItdzhYumrftAGfYar/A1PRUBUYmybxc5ymfsSdnanwk5udalswG\ng1pYzCDN+LFdcW46lVWS737yOZ6leH+7IZumGs3NEIoSo59fMlB3llPTr2Evqmfn9h5PvOeL0dfX\nR+/ePfGJelvwjQ1DY9gd++ndtkNZq1K0auhcJuIG5c4Q+gfgzQXcT0REMggFApzgfNptQ5wnFJi/\nfEHKy8t1nvIde3Kmxtd8UT7OaQZ5hW1cMhsMAnecm05lleSzn3yPZyne327IpqlGyZlXUWKs80Xo\nXXSGsbuvwXzxNqbvbKuJLJmBw4dmlvAEUze0B4ltbGXg8KHKDEyqynjkVHyZWDrtwfh2ESmpQgJC\n+4C/tCzrbsuy2i3Lakm+OD1AEZFaUI3LP6qNU+3NyyG5bXadz0eoqYnvP/dcXmNPFBzetnMni2wf\nj9BED5clBYPcc246VRw51/3key6U6v3ttqLQ1SAcDtPS2kqHHWEdJ3nO9yqxZ7bW3HIWTdSlHAKh\neM2gtIbG4ttFpKQKCQh9HXg7cBj4J2AYeC7pXxERyVPyJKSLCQ5whi4m6LAjtLS2Eg6HKz3EWXOD\nDWtDoZroCOKVOk/pslfM2Sh3mmUFjd2pc7OU5025z8l8zwUvvb9rXXLm1fcXT2PuurYms2Q0UZdy\n6O7swj7yHAyNpW6YaWff3dlVmYGJ1JBCAkJr01yuSPpXRDyoVif5buGV5R9eXjZVLK8Um02XvRIl\nVvDYnTg3S3neVOKczPdc8Mr7W+ISmVdmKlazWTKlnKhXW5vxans+5RQOh2ltacHu2A9dD8OBp6Hr\nYeyO/bS2tChYLlIOxpiqvgBtgBkaGjIikt7k5KS5rq3dNNg+08UKs59VposVpsH2meva2s3k5GSl\nhygusXv3btNg+8wQa4zh7bOXZ1ljGmyf2b17d6WHmLfJyUmze/dusyYYND7bNmuCQbN79+555/2a\nYNB0sSLleScum1lh1gSDFXoGqdKNcw31FR17Kc+bSpyTXjkXpDjBNasNXdcbzF/Mv2y+zgTXrK70\nEEtmcnLStF13rbEbFhk2X2fYf5th83XGblhk2q67tuC/C1L223V9fL9d1xe930qptudTCYnfwcE1\nq43t85ngmtVpfwfXCh0PKcTQ0JABDNBm8oyXFJIhhGVZd1qWddyyrHHLsppnrvsDy7JudSxSJSJl\n46XaKFJZXlk2lat8sku8UucpXfZKJ8s5wksVG3spz5tKnJNeORekOLlmyVRjhq3f7+fo4BP0bttB\ncPA09tbHCA6epnfbDo4OPlFwVlu1tRmvtudTCYmMvMjoSaanpoiMnqzKWmi5ZJJFo1HWrb+Z3r17\nGNvQSGzfrYxtaKyJQvZSQflGkIAtwAvAduAV4IqZ6+8Gnsh3f6W+oAwhkQXp2+7akmtGTDo+2zb7\nWZX2XNnPKuOzfWV4Bs7JJ7skOZNu80wm3WaHMumKeU3mSvd+nuRKcx0NZjGW6WS5o2PPRSnPm0qc\nk6U8F7I9plPniOQmlywZZdjmp9qyrqrt+Uhp5JpJtnv37vhthv4g9Vx69g+M3bDIk1nYUh7lzhDa\nCnzMGPNnwHTS9c8CVxUWlhKRSvJKbZRqUclvk4utt1KK9tmVlE92SanqwDhdAydd9oofm7/gcqYt\neHQZjow9n/O4lOdNJc7JctcEquXaXZWUS5aMMmzzU23dy3J5PqoxJLlmkg0cPkRs0zU1WcheKijf\nCBJwDmie+f8kb2QIvQU4l+/+Sn1BGUIiC1KGUPlU+tvkYuutJO7/bJXUEHJDxpPTNXDKkb2S73lc\nyvOm2s7JhOSMINuyTD2WuYcVZpIrq+Y5VgP9/sxPtWXULPR8As0h1RiSnM972+eLnyPpbrf/NmP7\nvJWFLeVT7gyhUaA1zfW/CfxLAfsTkQpTPYzyqfS3ycXWW6m29tluyHhyugZOObJX8j2PS3ne5LJv\nr9V4mZsR9AWzko+ynPt4ifWcJEoM8G7trkopxXmgDNv8VFub8YWez9ve9BbVGJKcM+MCoSY4kSFL\nbmgsvl3EaflGkIAuYAz4z0AU+C/E6wlFgf+S7/5KfUEZQiILqkQ9jFpV6W+TnciISa1l4vN0LRM3\nZJe4IUspX4Wcx6U8b7Ltu9JZeYXImjWGZXZzqevPEbcp1XlQ6c90rylV97JKWej5BFYHqyojSgqT\na4bQbA2hZ1VDSPJTTIZQoUGWjcD/BWIzlzFgcyH7KvVFASGR3FTTJN/NKj351+QllRuCoV58TSp9\nHuejEm3pi5X9nFhu1lDv+nPEbUp1HrghqOw11dZWO9vzqaUlQNX2ujop10BPtQVMpXyKCQhZJh40\nKYhlWRcAfmPMzwveSYlZltUGDA0NDdHW1lbp4YhIjVsbCrFhLMpB5i9F6mKCwaCf0UikZI/f19fH\n3t5dHIuFaE9aojTEOTrsCNt6d9LT01Oyx3ejaDRKf38/hwcGiIxPEAo00tndTTgcLkvbWy++JpU+\nj/PhpbEm1Pl87ItdzhYumrftAGfYymmmeLurzxG3KdV5kFjeNzI8zMbYUtppYIjzPGhP0tLaWpIi\n4+IdobXNjG1ojC8Xm6vrYYKDp4mMniz/wByWaJc+PDIyUxQ5vvTJPvIcrS0ts0XYa1XK8dnYCu3B\n2WWFc49P4m+SgcOHGI+cIhBqoruzq2x/k4g3nThxgvb2doB2Y8yJfO5bSA2hWcaYV9wcDBIRcZtK\n12uqthpATvD7/fT09DAaiTA1PcVoJEJPT0/Z/vDy4mtS6fM4H16s8ZKtttWznONifK4/R9ymVOdB\nuTvOSW7c0tnLTTWTSnlMcu2iVaty6ViYfNuenh4ioyeZnpoiMnqyrH+TSO3JO0PIsqxLgN3AzcDl\nzAkqGWMudmx0DlCGkIi4SfK3yR+J+bmWJTzLOY5wlpWNjfzjiSFWrVpV8jFUMiNG5vPaa+KlrAgv\nZgjt2LGDz+7dy0rj4zRThKink+XcxAVsIMLrFjQ3Nbn6HHEbL54HUhg3ZavkkxlStnGU4JjUSiaU\niFsVkyFUSEDo28Cbga8APyO+Vm2WMeb+vHZYYgoIiYjbnD59mmvb2vn5xATTGC7Bx2rq+aH1Gldf\nc42rJtMimXgliOW1JXnRaJSbf+NGRoaHuYvltNHACc7zVV4iBrRcfTVPHnvKVcfYC7x2Hkjh+vr6\n6N27J56t0hZ8Y8PQGHbHfnq37Sjra13JJUCJx/6Lz/8lZ1+JwjNbS3JMfHV1xPbdGs8MmuvA09hb\nH2N6aqrg/YtIduUOCE0CHcaY7+d1xwpRQEhE3CYxMTkeC6W0GtfERMR5XspmguyfD++xnudPtm+j\nr6+vgiP0Jq+dB1I4ZavEpWQFLbbh9qtLdkx0zEUqq9w1hP4Vkv5CERGRvBweGGBTbGnKZA+gnSVs\njC3l8MBAhUZWvESNgrWhEHU+H2tDoYrUbZDakMv55rUaL9k+HzaZZRy5777KDMzjvHYelINb6uw4\nbTxyKr4kKp32YHx7DUip6xN9raTHxE21kkQkP4VkCP068OfE6wj9EHg9ebsx5qxjo3OAMoRExG0W\n7CBkv8DUtPdSq5O/gY9PaONLXY7oG3gpgWo936r180HcxU11dpymbJW4lOOw9s9gw1sXPCaFLm9z\nS60kkVpV7gyhXwHLgL8Dfg6cmbn8auZfERHJIlsHoSHOEwrML3rqBf39/YwMD3M8FuIgjWzhIg7S\nyLFYiJHh4ZrvMiLOqtbzrVo/H8RdqrkrlLJV4lIypTqvgyNDWY9JIqjTu3cPYxsaie27lbENjfTu\n3cO69TdnzRzLp4uWiLhLIRlC/whMAf+D9EWljzo2OgcoQ0hE3KZai5uqi4+UU7Web9X6+SDuUs1Z\nNMpWiUt5jaOvwvovwcgEbGyLH5Nnx7C/9sYx6e/vd1UxbhHJXbkzhN4J/J4x5q+MMU8aY44mXwrY\nn4hITQmHw7S0ttJhR+higgOcoYsJOuwILa2thMPhSg+xIJHxcdpoSLutnQYi4xNlHpFUs2o936r1\n80HcpZrr7ChbJS4lU8q/GAbvgW3r4Tv/Cr//v1j26L+lHJOBw4dmlg8GU3fUHiS2sZWBw4cq80RE\npKQKCQg9C4ScHoiISK2o1uKmWuoi5VSt51u1fj6IuwRC8ZpBaQ2Nxbd7mN/vp6enh8joSaanpoiM\nnqSnp6em3j/hcJjWlhbsjv3Q9TB8dQhOnsH+5Xnafv1aTp2MpByTag4SikhmhQSE9gH/w7Ksuy3L\narcsqyX54vQARUSqUeKP1dFIhKnpKUYjEc//sdrZ3c0Re5IhzqVcP8Q5HrQn6ezurtDIpBpV8/lW\njZ8P4i6qs1P98s2UKkeQsFo724l4WSE1hGJprjaABRhjjM+JgTlFNYRERMojuevTxthS2mlgiPM8\n6PGuT+JOOt/KI9F16PDAAJHxcUKBAJ3d3Qt2HRJ3U50dmauvry9eQ+jYvfHzIcGhGkLV3NlOpNLK\nXUNobZrLFUn/iohIDdJSFyknnW+llwi67e3dxYaxKPtil7NhLMre3l2sX3eTvtX3sHLX2VFmSGXk\nc9znLTE78DR0PYzdsZ/Wlpai65dVc2c7ES/LO0PIa5QhJCIiIpK/RMez47EQbep4JgVSZkhlFHLc\nExmBA4cPMR45RSDURHdnlyMZgdXc2U6k0kqeIWRZ1i2WZdUn/T/jJf/hi4iIiIjbHB4YYFNsaUow\nCKCdJWyMLeXwwECFRlZbElkea0Mh6nw+1oZCnsquUWZIZRRy3EtZjFtFq0XcKdclY48CFyX9P9Pl\nG04PUERERETKLzI+ThsNabe100BkfKLMI6o91bBsr5ramXtp6ZvTx73YouR4SAAAIABJREFUwGS1\nd7YT8aqcAkLGGNsY8/Ok/2e6uKqgtIiIiEi+vJ6R4ZRQIMAJzgMwheEAZ2jhJBb/wh/yIosWLeYb\n3/gG1V5+oJL6+/sZGR7meCzEQRrZwkUcpJFjsRAjw8OeyK6plsyQxBKs3r17GNvQSGzfrYxtaKR3\n7x7Wrb/ZdZ8PTh53JwKT6mwn4k6FFJUWERERqUrVkJHhlM7ubo7YkxznZW5ijHs5zQ94BYDzvMa5\n869w2223ceutt/Hqq69WeLTVqRqW7VVLZojXlr45edydCEyWumi1iBQmr4CQZVm2ZVmdlmV907Ks\nH1qW9QPLsh63LOsuy7KsUg1SREREpByqISPDKeFwmJbWVtYR4TjxQFgbDdRbNpdfetnMrX6Lb33r\nb/iv//UPKjfQKlYNy/a8nhmSyBjc9Wd9nlr65uRxdyIwWe7OdiKSm5y7jM0EfP438AHg+8C/Ahbw\nduAq4HFjzAdLNM6CqcuYiIiI5GptKMSGsSgHaZy3rYsJBoN+RiORCoysMsbHx2lqeiOTILhqFd33\n3ks4HObee3+fhx4aZGoqjG3/KSdP/pRgMJhlb5KvajgfU7pdbWyF9uBsUMLtXcYSGYMjw8O8aqYx\nX7wtnhk014Gnsbc+xvTUVPkHmYGTx73O52Nf7HK2zJaUfcMBzrDVfoGpafc8d5FaU/IuYzPuBm4E\n1htjrjHG3GGM+S/GmKuBDcB7Lcu6K58HFxEREXGTasjIcNJPf/rTmf/9IT7fJdz64Q/Pdh36yEfu\nYGrqFNBBLDbNM88848hjqobTGxLL9oY4l3L9EOd40J6ks7u7QiPLnZczQ5IzBpt8izy19M3J455c\nT2yuIc4TCswPWIqIN+QTELoD2GuMeWLuBmPM3wF/Dmx0amAiIiIi5aaJT6oVK1bM/O8XgMHne6N/\nyCWXXDLzvzrA4sUXXyz68VTDKVVi2V6HHaGLCQ5whi4m6LAjtLS2eqbuSinbmTstuZPYp3d+Gtu2\n+BZR7p5aiv3As55a+ubUca+GwKSIpJdPQKgF+E6W7X8DXF3ccDKzLKvZsqxDlmX9xLKsVyzL+r+W\nZfVallVfqscUERGR2qKJT6p3vOMd9PXt4eKLv8MNN1zNpz71qdltP/7xj2f+dwYwvOlNbyr68VTD\nKZXf72fw6JNs693JYNDPVvsFBoP++M9Hn3RlQMXL5nYS44u38crd7fQuOsP/tl+hZXoR9g37YPNM\nUeTNf1UTRZGrJTApIvPlU0PoNaDZGJM2V9qyrAAwaoxZ7OD4kvf/H4DfBb4G/H/AO4FDwAPGmE9m\nuZ9qCImIiEhOkmuGbIwtpZ0GhjjPg/YkLa2tmoTPMMZw440388wzrxGLreTyy/+JSGSU+vrivqer\nhpo54qxoNEp/fz+HBwaIjI8TCgTo7O4mHA47/l7s6+ujd++eeCex5OLRQ2PYN+zjU6+tYDEWA3Vn\nOTX9GvaienZu7ynJWNwm9XWYIBRoLNnrICL5KaaGUD4BoWlglTHmhQzbVwLjxhhfuu2lYFnWHwP3\nGGPenOU2CgiJiIh4QDknfrmPQxOfdB555BFuv/124D3AcR555BE+/OEPF71fFa+VZMkB2niXqwZO\ncJ4jJQrQhtY2xzODDt4+f+Pmhwk+MExk6k0McY4OO8K23p309PQ49vgiIoUoV1FpC7jPsqz/le4C\nHM7ngR2yAih+wbqIiIhUlJtqxyTqboxGIkxNTzEaibi23kkmxhief/55vve97zE4OMg//dM/8fLL\nLzuy73//93+ns/NjMz8dZ8eOHkeCQaAaTpKq3EsIxyOnoC1Dcehrg5yafs1zS6WSayL56uoIrW12\nbZF2L41VpFrkExC6H/g58FKGy8+BB5weYCaWZb0Z+DjwpXI9poiIiJSGascUzxjDU089xcaNG1m5\nciXNzc2sW7eODRs2cN111+H3+1m1ahW7du3ihRfSJnwv6Oc//znvfe/7mZz8FQC9vbvYvXuXY89B\nNZwk2eGBgZnMoCUp17ezhI2xpRweGHD08QKhpsydxJ4dw/hsT9VwmlsTKbbvVsY2NNK7dw/r1t/s\nqkCLl8YqUk1yDggZY34vl0u+A7As6zOWZcWyXKYty3rrnPs0ES9i/VfGmEpkJomIiIiDyj3xqzY/\n/vGPufHGG7nxxhv52te+ljHg87Of/Yze3l5CM63cX3/99ZwfY3Jykptv3kAkMgrAwMAAO3d+mqNH\nj/KJT3wiqUV94VS8VpJFxsdpoyHttnYaiIynLW1asO7OLuwjz6XvJPa1YXZ/utdTGYP9/f0Mj4zE\nayIdvB223AAHbyd27F6GR0ZcFWj30lgTlNEk1SDnGkIlG4BlXQJcssDNfmKMmZq5fQB4Ang6lwBU\noobQjTfeyPLly1O23XHHHdxxxx2FDVxEREQco9oxhbvvvvvYsmUL58+nX2qVTXt7O4899hhNTRmW\nycx47bXXuPnm9Tz99DEAHnvsMW655RYA3v3u9/D3f/80999/P3fddVf+T2AO1XCShHIXGU9kqQyP\njBDb2Artwdm28q0tLRwdfMJT52DWmkhdDxMcPE1k9GTK1Yn338DhQ4xHThEINdHd2VXy918hY62k\nlHNl0zXxpYYnTmEfec6T54p4x0MPPcRDDz2Uct1LL73E9773PShlUWk3mMkM+jvgn4A7TQ6DV1Fp\nERER91N3qcJ8+ctf5p577sm43Y/NBVj8gmliGW5zxRVX8NRTTxEIBNJuj8Vi3Hbbh3nssUcBuOee\ne1i/fj2xWIyXX36Zzs5OAJ555hne9a53FfV8RJL19fWxt3cXx2Ih2pOyB0tZ1LlSAZFS8NXVEdt3\nazzbZq4DT2NvfYzpqTcC7ZUMcuQ71krL2pGuYz+923ao4LiUTVm6jFXaTGbQUWAUuBuYTmwzxvws\ny/0UEBIREXG5Skz8vO573/seN910E3P/lmtubub5559nl7mEHVyKhcUrxHiW83yFX3GEl+YFh66/\n/nqOHTtGXV1dyvXGGD7+8a3s3//FBcfzq1/9al42tkgxkruMbYwtpZ0GhjjPgyXqMlZt8s26qWSQ\nw2sZQl4br1S3cnUZq7T3AVcA64EIMA5MzPwrIiIiHqbaMfn5+c9/zoc+9KF5waDu7m5+9KMf0dzU\nxPNMYWEBcAE2N3IB9xPgP+KfF/j5h3/4Bz7/+c/Pe5wnn3xyJhi0FugDemcuu4DdwJ8Dv82llzYq\nGJSB6owUzu/3M3j0yXgR56CfrfYLnirqXGlZayI9OEx3Z1fK1QOHD81kBgVTb98eJLaxlYHDh1wz\n1krL2pGuPRjfLuIBnskQKpQyhERERLxBtWNyE41G+bW3vZ3nT6VOnHxYtLe1MXj0Sfr7+7NmXH3i\nj/+IRx55hJ/85Cez2/x+P6dOnWLZsmWz133iE59g374vYmNYhG/2+hiG1zDU1dVRV1fH7/7uf+b+\n+9XnYy7VGZFym7vkzbe4nqnXXsd8pBXe1Zy1JlIll215rX6TMoTETWolQ0hERESqmN/vp6enh9FI\nhKnpKU918ymnv/zLvyQyJxh0A0t4mtWMDA/T39+/YMZVT08PX/3qV7Esa3Yf0WiUBx54IGW///sb\n36CLZUzzNs7xltnLq7yVzSwjuOpyzp17WcGgDLzYOUm8K13r9tc/cjX4LOr/+odYH3+U4OBperft\nSBtgCYTiAcu0hsbi20vE7/dzdPAJerftIDh4GnvrY1nHWmley2gSyUQBIREREREP+fL+/czN7/5z\nLuc6LmBjbCmHBwYAeP8HfosL/H4O8ys+wc/4+rIYf/Sp/3d2qc0NN9zABz/4wZT9/PVf/3XKz+Vu\n+11tKrkER2pPpgCkOf5xpo1hV28vkdGTGQPtlQ5yJL4UiIyeZHpqKutYKy0cDtPa0oLdsR+6HoYD\nT0PXw9gd+2ltadEyZ/EMBYREREREPOT0Cy+k/HwF9XTMLAtrp4HnT42zft1N/MXez3DbWYsvsoq7\nWc756Mv87d98J+W+H/3oR1N+HhoaYnp6tm8HoUCAE6RvZz/EeUKB+V3h5A2qMzJfoqbS2lCIOp+P\ntaGQaio5pNgApIIcufNaRpNIJgoIiYiIiHiI/8ILU36+jiWzxaOHOM+ypX5Ghoc5HgtxkEa2cBEH\naeRYLDS7pCzh+uuvT9nXyy+/zMmTb9S96Ozu5og9yRDnUm43xDketCfp7O52+ukVxK1BhkouwXGj\nRNewvb272DAWZV/scjaMRdnbu4v1626q+OtVCDcVDS82AFnuIIebjl0hvJTRJJKJAkIiIiIiHvLm\nt7wl5edG4h3DEkEaG4tNsaW0JRWTBmhnScqSMoCVK1fO23/yZMwL3d/cHGSo9BIct+nv7885WOkF\n6Wr2jG1opHfvHtatv7ns554TAchyBTncduxEapUCQiIiIiIOKFeWyjXXXJPy8z9wLiVI81J0Mue6\nPy+//PK82yxatGj2/15o++3mIIOW4KQ6PDCQc7DSC9xWNNxLAUi3HTuRWqW28yIiIiJFSmSpjAwP\nz0x4GzjBeY7Yk7S0tjoaPPnc5z7HJz/5yZTr1gSDdHZ3Ew6Huertb2fDWJSDzK/v08UEg0E/o5EI\nAE899RQ33njj7Hafz8fk5CRLliyZd1+3WhsK5fx8K2FuG/BAqInuzi7C4bArAmrlVOfzsS92OVu4\naN62A5xhq/0CU9OlaWteCm5rPe6l1u1uO3YiXqa28yIiIiIVVM4slWuvvTblZ8uyGDx6dHZZRz51\nfx555JGU2/zar/2ap4JB4P5OaKoz8oZqK1LutqLhXip07LZjJ1KrFBASERERKVI5l8K8613vYsWK\nFbM/G2P4zGc+M/tzrnV/xsfH+Z//83+m7PsDH/iAY+Msl2oLMlQzrxQpz5Ubi4Z7JQDpxmMnUosU\nEBIREREpUjmzVJYsWcLdd9+dct2hQ4f41re+BeRW92dqaorNmzczOTk5uw/Lsuj22IQcqi/IUM28\nUKQ8H16q2eM2OnYi7qAaQiIiIiJFKncdm+eff553vOMdKUWhlyxZwkMPPcStt96a9b7RaJTNmzfz\n8MMPp1x/55138sADDzg2xnJJrt+0MbaUdhoY4jwPlqB+kxQvUVPp8MAAkfEJQoHG2fpXXnudSl2z\np5rrT3mp3pGI26mGkIiIiEgFlTtLZfXq1Xz2s59Nue7cuXN88IMfZNOmTfzgBz+Yd59XX32VI0eO\ncNVVV80LBq1cudKzXX280AmtXB3ovCCxpGk0EmFqeorRSMSVS5pyUcqaPbXQlv0D7/9N/BdcAIf/\nET7xKMu+/mM+9Ud/omCQSBkpQ0hERESkSJXIUonFYmzatImHHnoo7fYrrriCq6++mgsvvJBIJMKJ\nEydSloglLF68mO9+97usW7fO0fFJXDk70En16Ovro3fvnnhb9rbgGxuGxrA79tO7bQc9PT157dMt\nGUcp2UGbrokXlz5xCvvIc8oOEilAMRlCCgiJiIiIOKASS2Fef/11fu/3fo8HH3ywoPtfeOGFfOMb\n3+B973ufwyOThL6+Pvb27uJ4LJRSdHyIc3TYEbb17sx7Yi/Vz+m27G4KwpQi2CVSy7RkTERERKTC\nKrEUpr6+nq9+9ascOnSIZcuW5XXfG2+8ke9///sKBpVYOTvQiXvlu2zQ6bbs/f398WDQ8XvjQaYt\nN8DB24kdu5fhkZGyLhkdOHxoJigVTN3QHiS2sZWBw4fKNhaRWqeAkIiIiIiHWZbF5s2b+fGPf0xP\nTw+rVq3Kevv3vve9fP3rX+eJJ57gTW96U5lGWbvK2YFO3CmxbHBv7y42jEXZF7ucDWNR9vbuYv26\nm9IGhZxuy+6mIIzTwS4RKZwCQiIiUjQVTBWpvFWrVrF7924ikQjPPfcchw4dYvv27Xzyk59kz549\nPP7440xMTDA4OMhtt92GbevPwHIIBQKc4HzabUOcJxSY35lOqkt/fz8jw8Mcj4U4SCNbuIiDNHIs\nFmJkeDhtdo7TbdndFIRxOtglIoXTXwIiIlKUQr75FJHSqauro7W1lc2bN7Nnzx4++9nPsn37dn7n\nd35nwewhcV65O9CJ+xSybDAcDtPa0oLdsR+6HoYDT0PXw9gd+2ltaSEcDs9+GRNa24yvro7Q2uaM\nX8a4KQjjdLBLRAqngJCIiBSlkG8+RURqRTgcpqW1lQ47QhcTHOAMXUzQYUdoaW0lHA5XeohSYoUs\nG1yopT2QV1t6NwVhcgl2iUh5qMuYiIgUZW0oxIaxKAeZv+yhiwkGg35GI5EKjGy+1C5Q44QCgZJ3\ngRIRqUQHOnGPUvyezLdTV0qXsY2t0B6cDQZVotV74j0xcPgQ45FTBEJNdHd26T0hUgC1nc9CASER\nkdKq8/nYF7ucLVw0b9sBzrDVfoGp6akKjCxVYmnbyPDwTOp+Ayc4zxF7kpbWVgaPPqk/QkVExHF9\nfX3s7d3FsViI9qRlY0Oco8OOsK13Z9Y26+m+zHjxlShnb7syr7b0CsKIVKdiAkJ1pRmSiIjUilAg\nwImx9HWC3FQwNXlpW3Idh3tiK+iYWdqW7Q9yERGRQoTDYb756GN0DA+zMbaUdhoY4jwPznwhkW2J\n1PwvMy7nxFiUQ9avsheJvm9o3tV+v5+enh79rhORWaohJCIiRfFKwdRCinqKiIgUy+/3M3j0Sbb1\n7mQw6Ger/QKDQX/85wWyUzPV6bvct8gVRaLzKWwtIu6jJWMiIlKU5G8v033z6ZalWF5Z2iYiIpKQ\nqf5QHy+wc9EZzNNb4/WAEjLUECqFlLpEm66JZyydOIV95LmK1CUSqVXFLBlThpCIiBSlmG8+yykU\nCHCC82m3uWlpm4iISEKmDmVhLiE47YMb9lWsU1d/f388GHT83ngtoy03wMHbiR27l+GREXUZFfEA\nBYRERKRoiboEo5EIU9NTjEYi9PT0uCYYBN5Z2iYiIpKQ6csMPzY3Ty9hRcOFadvSl+P378DhQzOZ\nQcHUDe1BYhtbGTh8qORjEJHiKCAkIiI1IRwO09LaSocdoYsJDnCGLibosCMLFvUUERGphGxfZjxs\nR/nDP/5jIqMnmZ6aIjJ6sqxfxoxHTmUvbB3JUONIRFxDASEREakJXlnaJiIikuC2LzOSi0jHYtPw\nqW9D399C9NXUGzpU2FpFq0VKS0WlRUREREREXCoajdLf38/hgQEi4xOEAo10dncTDofL+mVGpiLS\nHBmClkYYvAf8ix0rbK2i1SK5KaaodF1phiQiIiIiIiLFStTpK3XXsIWkFJFOrht0z7vhPfvgjiOw\ncin2g8OOFLbO9Hixe97NcMd++vv7K35MRLxOS8ZEREREREQkq2xFpNnYDt/5saOFrVW0WqT0FBAS\nERERERFxWLXVv8laRPraILaxHC1sraLVIqWnJWMiIiIiIiIOml//5lrGTpyid+8eHv3m456sfxMI\nNTF2IkMQxqEi0pV8PJFapAwhERGRKpf4lnptKESdz8faUMjT31KLiLhdSv2bg7fDlhvg4O3Ejt3L\n8MgI/f39lR5i3ro7u7CPPAdDY6kbhsawHxymu7PL048nUovUZUxERMSlUjvLjBMKBPLuLBONRlm/\n7iZGhofZFFtKGw2c4DxH7ElaWlsZPPqk576lFhFxu9DaZsY2NMaDQXN1PUxw8DSR0ZPlH1gRUrKe\nNrbGawfNBGdK0fWr3I8n4lXFdBlThpCIiIgLJQI5e3t3sWEsyr7Y5WwYi7K3dxfr192Uc3ZPf38/\nI8PDHI+FOEgjW7iIgzRyLBZiZHjYk99Si4i4XTXWv/H7/RwdfILebTsIDp7G3vqYo0WkK/14IrVI\nGUIiIiIu1NfXx97eXRyPhWhjyez1Q5yjw46wrXdnTu1214ZCbBiLcpDGedu6mGAw6Gc0EnF07CIi\nta4aM4RExJ2UISQiIlJlDg8MzCzxWpJyfTtL2BhbyuGBgZz2Exkfp42GtNvaaSAyPlH0WEVEJJXq\n34iIF6jLmIiIiAvFAzmXp93WTgP35RjICQUCnBhLv7xsiPOEAvMzh0REpDjhcJhHv/k4wx3709a/\nCYfDlR6iiIgyhERERNwoFAhwgvNpt+UTyOns7uaIPckQ5+bs4xwP2pN0dncXPVYREUml+jci4gUK\nCImIiLiQU4GccDhMS2srHXaELiY4wBm6mKDDjtDS2qpvqUVESsTv99PT00Nk9CTTU1NERk/S09Oj\nYJCIuIYCQiIiIi7kVCDH7/czePRJtvXuZDDoZ6v9AoNBf/xntZwXERERqVnqMiYiIuJS0WiU/v5+\nDg8MEBmfIBRopLO7m3A4rECOiIiIiBTVZUxFpUVERFwqsdwgl/byIiIiIiL50JIxEREREREREZEa\no4CQiIiIiIiIVLVoNEpfXx+htc346uoIrW2mr6+PaDRa6aGJVIyWjImIiIiIiEjVikajrFt/M8Mj\nI8Q2XQNt1zJ24hS9e/fw6Dcf5+jgE6rNJzVJASERERERERGpWv39/fFg0PF7oS04e33snncz3LGf\n/v5+1euTmqQlYyIiIiIiIlK1Bg4fmskMCqZuaA8S29jKwOFDlRmYSIUpICQiIiIiIiJVazxyCtqa\n0m9sD8a3i9QgBYRERERERESkagVCTXAiQ9BnaCy+XaQGKSAkIiIiIiIiVau7swv7yHMwNJa6YWgM\n+8Fhuju7KjMwkQpTUWkRERERERGpWuFwmEe/+TjDHfuJbWyF9uBsMKi1pYVwOFzpIYpUhDKERERE\nRET+//buP8rO86AP/PcZKSCl102y6XGqiW6DUtI2C6iTGThdgkAOdpawtOSwqdm6dtmNjpgTh3o5\nAywQ41nLGdek2dIB0rU5I0dJg43blEPt1ECgTGxROxsCM5koNGHTrUV2FMnBm3gd3SC1kefZP+5V\ndqTKlhRr5p077+dzjo5131/3Oz7vjO77ned9XmDT6nQ6OTz/SA7celt2zj+ZkVseys75J3Pg1ts8\ncp5WM0IIAACATa3T6WR6etrj5WEVI4QAAAAAWkYhBAAAANAyCiEAAACAllEIAQAAALSMQggAAACg\nZRRCAAAAAC2jEAIAAABoGYUQAMB5er1eZmZmsqvbzdYtW7Kr283MzEx6vV7T0QAArgiFEADAKr1e\nL9fuvSZ3Hbgj1x3r5T0rV+e6Y73cdeCOXLv3GqUQwAWcLdK7u16VLVu3prvrVYp02OAUQgAAq8zO\nzubI0lIeX+nmYHbk5rwsB7Mjj610c2RpKbOzs01HBNhQer1e9l77hhy4684cu25HVt7z5hy7bkcO\n3HVn9l77BqUQbFAKIQCAVQ7NzeWmlasynu3nLJ/I9ty4clUOzc01lAxgY5qdnc3SkSNZefztycHr\nk5tfnxy8PiuPvT1LR44o0mGDUggBAKyyfPx4xrPtgusmsi3Lx0+sSw7zGAHDYu7QvVm56XXJ+M5z\nV0zszMqNY5k7dG8zwYDnpRACGBIuDmF9dEdHs5jTF1y3kNPpju5Y8wzmMQKGyfHlzyfjr7zwyomd\n/fXAhqMQAhgCLg5h/eybnMx9IyezkFPnLF/Iqdw/cjL7JifXPIN5jIBhMtp9ZbL4HKXPwrH+emDD\nUQgBDAEXh7B+pqamsntsLHtGlrM/J3JPns7+nMiekeXsHhvL1NTUmmcwjxEwTCb37c/IfZ9IFo6d\nu2LhWEbuX8rkvv3NBAOel0IIYAi4OIT10+l0Mn/40dx64PbM7+zklpGnMr+z0399+NF0Op01z7BR\n5jECuBRTU1MZ2707I3vuTvZ/MLnno8n+D2Zkz90Z2717XYp04PIphACGgItDWF+dTifT09M5uryc\nM8+eydHl5UxPT69LGZRsjHmM2BjOzh/X3fWqbNm6Nd1drzJ/HBtOp9PJ4flHcuDW27Jz/smM3PJQ\nds4/mQO33pbD84+s289O4PIohACGgItDaJeNMI8Rzev1etl77Rty4K47c+y6HVl5z5tz7LodOXDX\nndl77RuUQmwoZ4v05aOfy7NnzmT56OfWtUgHLp9CCGAIuDiEdtkI8xjRvNnZ2SwdOZKVx9+eHLw+\nufn1ycHrs/LY27N05Ij54wB4QRRCAEPAxSEMt7O3/ezqdrN1y5bs6naf97afjTCPEc2bO3RvVm56\nXTK+89wVEzuzcuNY5g7d20wwADaFUmttOsOaKqWMJ1lYWFjI+Ph403EAvm69Xi+zs7M5NDeX5eMn\n0h3dkX2Tk5mamnJxCBtYr9fLtXuvyZGlpcHk8NuymNO5b+Rkdo+NKXh4Tlu2bs3Ke97cHxl0vns+\nmpFbHsqzZ86sfzAANozFxcVMTEwkyUStdfFy9t26NpEAuNLO3ps/PT3ddBTgMszOzubI0lIeX+me\n86TAt628NHuWljI7O+v7mgsa7b4yxxY/f+GVC8cy2n3l+gYCYFNxyxgAwBo6NDc3GBm0/ZzlE9me\nG1euyqG5uYaSsdFN7tufkfs+kSwcO3fFwrGM3L+UyX37mwkGwKYwlIVQKeUbSilLpZSVUsrupvMA\nADyX5ePHM55tF1w3kW1ZPn5inRMxLKampjK2e3dG9tyd7P9gcs9Hk/0fzMieuzO2e7f54wB4QYay\nEEry7iTHkmzuCZAAgKHXHR3NYk5fcN1CTqc7umOdEzEsOp1ODs8/kgO33pad809m5JaHsnP+yRy4\n9bYcnn/E3FMAvCBDVwiVUr4/yRuT/FSS0nAcAIDntW9yMveNnMxCTp2zfCGncv/IyeybnGwoGcPg\n7Pxxy0c/l2fPnMny0c9lenpaGQTACzZUhVAp5RVJ5pLclJz3qQoAYAOamprK7rGx7BlZzv6cyD15\nOvtzIntGlrN7bMxtPwBAI4aqEEryviR311o/0XQQAIBL0el0Mn/40dx64PbM7+zklpGnMr+z03/t\nkfMAQENKrc1Ow1NK+fkkP/M8m9Qkr03ypiR/N8k1tdaVUso3JXkiyVit9cjzHH88ycL3fM/35CUv\neck562644YbccMMNL+wLAAAAAFhjDzzwQB544IFzlj3zzDP5/d8xwWruAAAbiUlEQVT//SSZqLUu\nXs7xNkIh9PIkL7/IZkeTfDDJ3z5v+ZYkZ5LcX2t963McfzzJwsLCQsbHx19oXAAAAIANYXFxMRMT\nE8nXUQhtXZtIl67W+sUkX7zYdqWUW5L83KpFo0l+J8kPJ/n42qQDAAAA2HwaL4QuVa312OrXpZSv\npP+UsSdqrcebSQUAAAAwfIZtUunzNXu/GwAAAMAQGtpCqNb6uVrrluebUBqgzXq9XmZmZrKr283W\nLVuyq9vNzMxMer1e09EAAICGDc0tYwBcul6vl2v3XpMjS0u5aeWqjOfqLB7r5a4Dd+ThBx/yqGsA\nAGi5oR0hBMBzm52dzZGlpTy+0s3B7MjNeVkOZkceW+nmyNJSZmdnm44IAAA0SCEEsAkdmpsbjAza\nfs7yiWzPjStX5dDcXEPJAACAjUAhBLAJLR8/nvFsu+C6iWzL8vET65wIAADYSBRCAJtQd3Q0izl9\nwXULOZ3u6I51TgQAAGwkCiGATWjf5GTuGzmZhZw6Z/lCTuX+kZPZNznZUDIAAGAjUAgBbEJTU1PZ\nPTaWPSPL2Z8TuSdPZ39OZM/IcnaPjWVqaqrpiAAAQIMUQgCbUKfTyfzhR3Prgdszv7OTW0aeyvzO\nTv+1R84DAEDrbW06AABro9PpZHp6OtPT001HAQAANhgjhAAA1kGv18vMzEx2dbvZumVLdnW7mZmZ\nSa/XazoaANBCRggBAKyxXq+Xa/dekyNLS7lp5aqM5+osHuvlrgN35OEHH3IrJwCw7owQAgBYY7Oz\nszmytJTHV7o5mB25OS/LwezIYyvdHFlayuzsbNMRAYCWUQgBAKyxQ3Nzg5FB289ZPpHtuXHlqhya\nm2soGQDQVgohAIA1tnz8eMaz7YLrJrIty8dPrHMiAKDtFEIAAGusOzqaxZy+4LqFnE53dMc6JwIA\n2k4hBACwxvZNTua+kZNZyKlzli/kVO4fOZl9k5MNJQMA2kohBACwxqamprJ7bCx7RpazPydyT57O\n/pzInpHl7B4by9TUVNMRAYCWUQgBAKyxTqeT+cOP5tYDt2d+Zye3jDyV+Z2d/muPnAcAGqAQAgA2\nrF6vl5mZmezqdrN1y5bs6nYzMzOTXq/XdLTL1ul0Mj09naPLyznz7JkcXV7O9PS0MggAaMTWpgMA\nAFxIr9fLtXuvyZGlpcEj26/O4rFe7jpwRx5+8CEjawAAXgAjhACADWl2djZHlpby+Eo3B7MjN+dl\nOZgdeWylmyNLS5mdnW06IgDA0FIIAQAb0qG5ucHIoO3nLJ/I9ty4clUOzc01lAwAYPgphACADWn5\n+PGMZ9sF101kW5aPn1jnRAAAm4dCCADYkLqjo1nM6QuuW8jpdEd3rHMiAIDNQyEEAGxI+yYnc9/I\nySzk1DnLF3Iq94+czL7JyYaSAQAMP4UQALAhTU1NZffYWPaMLGd/TuSePJ39OZE9I8vZPTaWqamp\npiMCAAwthRAAsCF1Op3MH340tx64PfM7O7ll5KnM7+z0X3vkPADAC6IQAmBT6vV6mZmZya5uN1u3\nbMmubjczMzPp9XpNR+MydDqdTE9P5+jycs48eyZHl5czPT2tDAIAeIG2Nh0AAK60Xq+Xa/dekyNL\nS4PHll+dxWO93HXgjjz84ENGlwAA0HpGCAGw6czOzubI0lIeX+nmYHbk5rwsB7Mjj610c2RpKbOz\ns01HBACARimEANh0Ds3NDUYGbT9n+US258aVq3Jobq6hZAAAsDEohADYdJaPH894tl1w3US2Zfn4\niXVOBAAAG4tCCIBNpzs6msWcvuC6hZxOd3THOicCAICNRSEEwKazb3Iy942czEJOnbN8Iady/8jJ\n7JucbCgZAABsDAohADadqamp7B4by56R5ezPidyTp7M/J7JnZDm7x8YyNTXVdEQAAGiUQgiATafT\n6WT+8KO59cDtmd/ZyS0jT2V+Z6f/2iPnAQAgW5sOAABrodPpZHp6OtPT001HAQCADccIIQAAAICW\nUQgBAAAAtIxCCAAAAKBlFEIAAAAALaMQAgAAAGgZhRAAAABAyyiEAAAAAFpGIQQAAADQMgohAAAA\ngJZRCAEAAAC0jEIIAAAAoGUUQgAAAAAtoxACAAAAaBmFEAAAAEDLKIQAAAAAWkYhBAAAsEqv18vM\nzEx2dbvZumVLdnW7mZmZSa/XazoawBWztekAAAAAG0Wv18u1e6/JkaWl3LRyVcZzdRaP9XLXgTvy\n8IMPZf7wo+l0Ok3HBHjBjBACAAAYmJ2dzZGlpTy+0s3B7MjNeVkOZkceW+nmyNJSZmdnm44IcEUo\nhAAAAAYOzc0NRgZtP2f5RLbnxpWrcmhurqFkAFeWQggAAGBg+fjxjGfbBddNZFuWj59Y50QAa0Mh\nBAAAMNAdHc1iTl9w3UJOpzu6Y50TAawNhRAAAMDAvsnJ3DdyMgs5dc7yhZzK/SMns29ysqFkAFeW\nQggAAGBgamoqu8fGsmdkOftzIvfk6ezPiewZWc7usbFMTU01HRHgilAIAQAADHQ6ncwffjS3Hrg9\n8zs7uWXkqczv7PRfe+Q8sIlsbToAAADARtLpdDI9PZ3p6emmowCsGSOEAAAAAFpGIQQAALBGer1e\nZmZm0t31qmzZujXdXa/KzMxMer1e09GAlnPLGAAAwBro9XrZe+0bsnTkSFZuel0y/u05tvj5HLjr\nzjz48IdyeP4RcxIBjTFCCAAAYA3Mzs72y6DH354cvD65+fXJweuz8tjbs3TkSGZnZ9f0/Y1OAp6P\nQggAAGANzB26dzAyaOe5KyZ2ZuXGscwdunfN3vvs6KQDd92ZY9ftyMp73pxj1+3IgbvuzN5r36AU\nAhRCAAAAa+H48ueT8VdeeOXEzv76NdL06CRg41MIAQAArIHR7iuTxecofRaO9devkSZHJwHDQSEE\nAACwBib37c/IfZ9IFo6du2LhWEbuX8rkvv1r9t5Njk4ChoOnjAEAAKyBqampPPjwh7K05+6s3DiW\nTOz8Whk0tnt3pqam1uy9R7uvzLGGRicBw8EIIQAAgDXQ6XRyeP6RHLj1tuycfzIjtzyUnfNP5sCt\nt635I+ebHJ0EDIdSa206w5oqpYwnWVhYWMj4+HjTcQAAANbc2aeMLR05csHRSWtdSAHrY3FxMRMT\nE0kyUWtdvJx9jRACAADYZJocnQQMB3MIAQAAbEKdTifT09OZnp5uOgqwARkhBAAAANAyCiEAgHXS\n6/UyMzOTXd1utm7Zkl3dbmZmZtLr9ZqOBgC0zNAVQqWUHyilfKyU8uellC+VUn6j6UwAABfT6/Vy\n7d5rcteBO3LdsV7es3J1rjvWy10H7si1e69RCgEA62qoCqFSyluSfCDJe5N8W5LXJ/m1RkMBAFyC\n2dnZHFlayuMr3RzMjtycl+VgduSxlW6OLC1ldna26YgAQIsMTSFUStmS5BeT/GSt9WCt9T/WWv+k\n1vrrTWcDALiYQ3NzuWnlqoxn+znLJ7I9N65clUNzcw0l40Lc3gfAZjc0hVCS8SSjSVJKWSylHC+l\n/FYp5VsazgUAcFHLx49nPNsuuG4i27J8/MQ6J+K5uL0PgDYYpkLo1UlKktuTvDPJDyR5OsmjpZSX\nNhkMAOBiuqOjWczpC65byOl0R3escyKei9v7AGiDxguhUsrPl1JWnufPs6WUv7Yq65211gdrrZ9I\n8tYkNcn1jX0BAACXYN/kZO4bOZmFnDpn+UJO5f6Rk9k3OdlQMs7n9j4A2mBr0wGS/JMk77vINk9k\ncLtYks+cXVhr/c+llCeS/JWLvcnU1FRe8pKXnLPshhtuyA033HB5aQEAvg5TU1N5+MGHsmdpKTeu\nXJWJbMtCTuf+kZPZPTaWqamppiMy0L+97+oLrpvItrzf7X0ANOCBBx7IAw88cM6yZ5555us+Xqm1\nvtBM66KUclWSP0vy9lrr+wbLXpRkOclttdZ7n2O/8SQLCwsLGR8fX7e8AADn6/V6mZ2dzaG5uSwf\nP5Hu6I7sm5zM1NRUOp1O0/EY2NXt5rpjvRzMf3kb3/6cyPzOTo4uLzeQDADOtbi4mImJiSSZqLUu\nXs6+jd8ydqlqrSeT/EqSO0opbxzcRnZP+reM/atGwwEAXIJOp5Pp6ekcXV7OmWfP5Ojycqanp5VB\nG4zb+wBog41wy9jl+KkkX03ygSTbk/xBku+ttX79Y6QAAGAVt/cB0AZDM0IoSWqtz9Zaf7rWuqPW\n+tJa6/fVWj9z8T0BAODSdDqdzB9+NLceuD3zOzu5ZeSpzO/s9F8fftSILgA2hWEbIQQAAGvu7O19\n09PTTUcBgDUxVCOEAAAAAHjhFEIAAAAALaMQAgAAAGgZhRAAAABAyyiEAAAAAFpGIQQAAADQMgoh\nAAAAgJZRCAEAAAC0jEIIAAAAoGUUQgAAAAAtoxACAAAAaBmFEAAAAEDLKIQAAAAAWkYhBAAAANAy\nCiEAAACAllEIAQAAALSMQggAAACgZRRCAAAAAC2jEAIAAABoGYUQAAAAQMsohAAAAABaRiEEAAAA\n0DIKIQAAAICWUQgBAAAAtIxCCAAAAKBlFEIAAAAALaMQAgAAAGgZhRAAAABAyyiEAAAAAFpGIQQA\nAADQMgohAAAAgJZRCAEAAAC0jEIIAAAAoGUUQgAAAAAtoxACAAAAaBmFEAAAAEDLKIQAAAAAWkYh\nBAAAANAyCiEAAACAllEIAQAAALSMQggAAACgZRRCAAAAAC2jEAIAAABoGYUQAAAAQMsohAAAAABa\nRiEEAAAA0DIKIQAAAICWUQgBAAAAtIxCCAAAAKBlFEIAAAAALaMQAgAAAGgZhRAAAABAyyiEAAAA\nAFpGIQQAAADQMgohAAAAgJZRCAEAAAC0jEIIAAAAoGUUQgAAAAAtoxACAAAAaBmFEAAAAEDLKIQA\nAAAAWkYhBAAAANAyCiEAAACAllEIAQAAALSMQggAAACgZRRCAAAAAC2jEAIAAABoGYUQAAAAQMso\nhAAAAABaRiEEAAAA0DIKIQAAAICWUQgBAAAAtIxCCAAAAKBlFEIAAAAALaMQAgAAAGgZhRAAAABA\nyyiEAAAAAFpmqAqhUsprSikPllKeKqU8U0r5d6WUa5rOBWc98MADTUegJZxrrBfnGuvFucZ6ca6x\nXpxrbHRDVQgl+c0kW5Jck2Q8ySeTPFxKubrJUHCWH/qsF+ca68W5xnpxrrFenGusF+caG93QFEKl\nlJcn+eYk76q1/vta639M8rNJXpzkWxsNBwAAADBEhqYQqrV+McmfJPmRUsqLSylbk9yc5AtJFhoN\nBwAAADBEtjYd4DK9McmDSU4mWUm/DHpTrfWZRlMBAAAADJHGC6FSys8n+Znn2aQmeW2t9bNJ7k6/\nBPquJKeT7E9/DqFvr7V+4Tn235Ykn/nMZ65caHgOzzzzTBYXF5uOQQs411gvzjXWi3ON9eJcY704\n11gPq7qObZe7b6m1Xtk0lxugPzfQyy+y2RNJ9ib5cJKX1lq/smr/zya5t9b67uc4/t9Pcv8VigsA\nAACw0dxYa/21y9mh8RFCg7mBvnix7Uop29MfLbRy3qqVPP9cSL+T5MYkf5r+qCIAAACAzWBbkm9K\nv/u4LI2PELpUg5FEn0lyOMlMklNJJpPckuQ7aq2fajAeAAAAwNAYtqeMvSlJJ8l8kj9M8vokP6gM\nAgAAALh0QzNCCAAAAIArY2hGCAEAAABwZbSqECqlvKaU8mAp5alSyjOllH9XSrmm6VxsTqWUHyil\nfKyU8uellC+VUn6j6UxsXqWUbyilLJVSVkopu5vOw+ZSSnlVKeXeUsoTg59p/6GUcqCU8qKmszH8\nSik/Vko5Wko5Nfh38zuazsTmU0p5Rynl46WUL5dSvlBK+dellL/WdC42t1LKzw4+m/3TprOwOZVS\nRkspv1pK+X8Gn9E+WUoZv9T9W1UIJfnNJFuSXJNkPMknkzxcSrm6yVBsPqWUtyT5QJL3Jvm29Oe7\nuqxHAMJleneSY+k/jRGutL+RpCT50ST/dZKpJG9L8o+aDMXwK6X8D0l+IcntSV6X/mez3yml/KVG\ng7EZfXeS9yT5W0muS/KiJL87eJIxXHGDcnsy/Z9rcMWVUl6a5PEk/ynJ9yV5bZKfTPL0JR+jLXMI\nDZ5S9lSS7661Pj5Y1kny5STX1Vo/0mQ+No9SypYkf5pkutb6/mbT0AallO9P8k+SvCXJp5OM1VqP\nNJuKza6U8lNJ3lZr/eamszC8SikfS/IHtdYfH7wuSZaT/HKt9d2NhmNTG5SOf5bke2qtjzWdh81l\ncJ25kOTmJNNJPlFr/YlmU7HZlFLeleQ7a617v95jtGaE0OApZX+S5EdKKS8upWxN/xv0C+l/s8KV\nMp5kNElKKYullOOllN8qpXxLw7nYhEopr0gyl+SmJKcajkO7vDTJl5oOwfAa3HI4kf7TY5Mktf+b\nyt9L8p1N5aI1Xpr+qFo/x1gL/3uSf2PQAWvs7yT5o1LKBwe3wi6WUvZfzgFaUwgNvDH9i/WT6V84\n/XiSN9Van2k0FZvNq9O/teL2JO9M8gPpD9t7dDCsD66k9yW5u9b6iaaD0B6llG9O8g+T/ErTWRhq\nfyn9W/m/cN7yLyT5y+sfh7YYjET7xSSP1Vo/3XQeNpdSyt9LMpbkHU1nYdN7dfqDXP7PJP9tknuS\n/HIp5R9c6gGGvhAqpfz8YKKu5/rz7KoJ4+5O/0PGdyX5jiQPpj+H0Cuays/wuIxz7ez31Z211gcH\nF+pvTf+3UNc39gUwNC71XCul/M9JOkn+8dldG4zNELrMf0PP7vPKJL+d5F/WWg81kxzgBbk7/fnQ\n/l7TQdhcSik70y8bb6y1frXpPGx6I0kWaq3TtdZP1loPJjmY/jyPl2To5xAazA308ots9kSSvUk+\nnOSltdavrNr/s0nudZ86F3MZ59qeJB9JsqfW+tFV+38syb+ttU6vXUo2g0s8144m+WCSv33e8i1J\nziS5v9b61jWIxyZyqT/Xaq1nBtuPJnkkyUedX7xQg1vG/jzJW2qtH1q1/P1JXlJr/aGmsrF5lVL+\nWfq3WXx3rfX/bjoPm0sp5c1JfiPJs/n/f1G3Jf1fDD+b5BvrsF+As2GUUv40ye/WWidXLXtbkp+r\ntXYv5Rhb1yjbuhnMDfTFi203eIJATbJy3qqVbIKRUqy9yzjXFtKf6f2vJ/noYNmLknxTks+tYUQ2\nics4125J8nOrFo0m+Z0kP5zk42uTjs3kUs+15Gsjgz6S5A+T7FvLXLRDrfWrg38zr03yoeRrt/Jc\nm+SXm8zG5jQog96cZK8yiDXye+k/YXi19yf5TJJ3KYO4wh5P/5pztb+ey7jmHPpC6DL8H0n+3yQf\nKKXMpD+H0GT6F+m/2WAuNpla68lSyq8kuaOUciz9b8ifTr+Q/FeNhmNTqbUeW/26lPKV9H8b9USt\n9XgzqdiMBiODHk1/ZNpPJ7m6f92e1FrPn/8FLsc/TfL+QTH08SRTSV6c/gUUXDGllLuT3JDkB5N8\nZdWUEc/UWk83l4zNZHAnyjnzUg0+n32x1vqZZlKxic0mebyU8o707xz4W0n2J/nRSz1AawqhWusX\nSylvSvKP0n+axYuS/PskP1hr/VSj4diMfirJV5N8IMn2JH+Q5HtNYM468Jsn1sIb05+48NXpPxI8\n6ZePNf2h8PB1qbV+cPD473cmeUWSpSTfV2t9qtlkbEJvS/9n1qPnLX9r+p/XYK34bMaaqLX+USnl\nh5K8K8l0+r+4+/Fa67+41GMM/RxCAAAAAFwec+cAAAAAtIxCCAAAAKBlFEIAAAAALaMQAgAAAGgZ\nhRAAAABAyyiEAAAAAFpGIQQAAADQMgohAAAAgJZRCAEAAAC0jEIIANh0SikrpZQfbDrH8yml7C2l\nPFtK+YtNZwEA2kchBAAMhVLK+wZFz7OllP9cSnmylPK7pZS3llLKeZv/5SS/3UTOy/B4kh211i+v\n5ZuUUr67lPKhUsrnh6EoAwDWh0IIABgmv51+2fOqJG9K8pEkv5Tk35RSvva5ptb6Z7XWrzYT8dLU\nWs/UWv9sHd7qLyRZSvL2JHUd3g8AGAIKIQBgmPynWutTtdYTtdalWuu7krw5yX+X5H86u9HqkTCl\nlFcNXl9fSvn9Usqfl1I+Xkp5TSnlO0opf1hKOVlK+a1SystXv1kpZX8p5dOllFOD/968at3Z4/5Q\nKeUjpZSvlFKWSin/zapt/spgdM6XSim9UsqnSilvGqzbO9j/L67a/i2llD8upZwupRwtpfzEeXmO\nllLeUUp5bynly6WUz5VSfvT5/ofVWj9ca/1fa60PJTl/JBUA0FIKIQBgqNVaH0nyyST//UU2PZDk\nnUlel+RMkl9L8q4ktyTZk+SbB+uTJKWUGwf7vCPJ30hya5J3llL+wXnHvTPJu5P8zSSfTfJrq0Yr\n3Z3kGwbH/9YkP5Oktzr+qvebSPIvB7m+NcntSWZKKT9y3vv9RJI/TDI2OP49pZTXXORrBwA4x9am\nAwAAXAF/kuTbLrLN/1Zr/b0kKaX8UvrFy/fWWj82WPbeJP/jqu0PJPnJwciaJPlcKeVbkrwtya+e\nd9wPD45xe5I/Tr9c+mySbpJfr7V+erDtnz5Pvqkkv1drvWvw+v8avN//kuQDq7b7zVrrrwz+/o9L\nKVNJ3pDkP1zk6wcA+BojhACAzaDk4vPjfGrV378w+O8fn7fs6iQppbw4yV9N8t7B7WQnSyknk/xc\nkl3Pc9wTgyxXD17/cpLpUspjpZQDpZTnK61em/5E06s9nuQ1502a/anztnly1fsBAFwShRAAsBm8\nNsnRi2yzepLp+hzLzn426gz+uz/9W8HO/vnWJN95CccdSZJa63vTL5A+MNj3j0opP3aRnBdz/mTZ\nq3MDAFwSHx4AgKFWSvne9G8X+/Xn2eyynq41ePrX8SR/tdb6xHl/Pnc5x621fr7WOldr/btJfiHJ\nc00C/Zkk33Xesj1JPltr9XQwAOCKMocQADBMvrGU8ookW5K8Isn3J/nZJB/KufP6nO9CT9e62BO3\nbk/yS6WULyf5cJJvTPLtSV5aa/3FSzlGKWU2yW+nP5/Qf5X+XD+fXr3Jqr//QpKPl1JuS39y6dcn\n+bH05yz6upVS/kL6cxqdfa9Xl1L+ZpIv1VqXX8ixAYDhpRACAIbJm9IfuXMmydPpP13sH9ZaP3De\nduePqLnQCJvnHXVTa31vKeUrSX46/aeIfSX9+Xt+cfVmFznuliT/LMnOJF9Ovxz6iQttW2v9RCnl\nh9N/0tlt6c9HdFut9VcvtP2lfh3pl1iPDLar6RdPSfLPk+y7yL4AwCZVjEAGAAAAaBdzCAEAAAC0\njEIIAAAAoGUUQgAAAAAtoxACAAAAaBmFEAAAAEDLKIQAAAAAWkYhBAAAANAyCiEAAACAllEIAQAA\nALSMQggAAACgZRRCAAAAAC2jEAIAAABomf8PPvml9lb0dpMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display the clustering results based on 'Channel' data\n", + "vs.channel_results(reduced_data, outliers, pca_samples)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Question 12\n", + "*How well does the clustering algorithm and number of clusters you've chosen compare to this underlying distribution of Hotel/Restaurant/Cafe customers to Retailer customers? Are there customer segments that would be classified as purely 'Retailers' or 'Hotels/Restaurants/Cafes' by this distribution? Would you consider these classifications as consistent with your previous definition of the customer segments?*" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Answer:** Both the GMM algorithm and the number of clusters chosen are highly comparable to the underlying distribution shown in the plot above. The customer segments as classified here closely match those I previously defined in Question 8 (i.e **Green points:** Market/Convenience Store, **Red Points:** Restaurants.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", + "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python [default]", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/report.html b/report.html new file mode 100644 index 0000000..3e1df5a --- /dev/null +++ b/report.html @@ -0,0 +1,26517 @@ + + + +customer_segments + + + + + + + + + + + + + + + + + + + + + +
+
+ +
+
+
+
+
+

Machine Learning Engineer Nanodegree

Unsupervised Learning

Project: Creating Customer Segments

+
+
+
+
+
+
+
+
+

Welcome to the third project of the Machine Learning Engineer Nanodegree! In this notebook, some template code has already been provided for you, and it will be your job to implement the additional functionality necessary to successfully complete this project. Sections that begin with 'Implementation' in the header indicate that the following block of code will require additional functionality which you must provide. Instructions will be provided for each section and the specifics of the implementation are marked in the code block with a 'TODO' statement. Please be sure to read the instructions carefully!

+

In addition to implementing code, there will be questions that you must answer which relate to the project and your implementation. Each section where you will answer a question is preceded by a 'Question X' header. Carefully read each question and provide thorough answers in the following text boxes that begin with 'Answer:'. Your project submission will be evaluated based on your answers to each of the questions and the implementation you provide.

+

Note: Code and Markdown cells can be executed using the Shift + Enter keyboard shortcut. In addition, Markdown cells can be edited by typically double-clicking the cell to enter edit mode.

+
+ +
+
+
+
+
+
+
+
+

Getting Started

In this project, you will analyze a dataset containing data on various customers' annual spending amounts (reported in monetary units) of diverse product categories for internal structure. One goal of this project is to best describe the variation in the different types of customers that a wholesale distributor interacts with. Doing so would equip the distributor with insight into how to best structure their delivery service to meet the needs of each customer.

+

The dataset for this project can be found on the UCI Machine Learning Repository. For the purposes of this project, the features 'Channel' and 'Region' will be excluded in the analysis — with focus instead on the six product categories recorded for customers.

+

Run the code block below to load the wholesale customers dataset, along with a few of the necessary Python libraries required for this project. You will know the dataset loaded successfully if the size of the dataset is reported.

+ +
+
+
+
+
+
In [1]:
+
+
+
# Import libraries necessary for this project
+import numpy as np
+import pandas as pd
+from IPython.display import display # Allows the use of display() for DataFrames
+
+# Import supplementary visualizations code visuals.py
+import visuals as vs
+
+# Pretty display for notebooks
+%matplotlib inline
+
+# Load the wholesale customers dataset
+try:
+    data = pd.read_csv("customers.csv")
+    data.drop(['Region', 'Channel'], axis = 1, inplace = True)
+    print "Wholesale customers dataset has {} samples with {} features each.".format(*data.shape)
+except:
+    print "Dataset could not be loaded. Is the dataset missing?"
+
+ +
+
+
+ +
+
+ + +
+
+
Wholesale customers dataset has 440 samples with 6 features each.
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Data Exploration

In this section, you will begin exploring the data through visualizations and code to understand how each feature is related to the others. You will observe a statistical description of the dataset, consider the relevance of each feature, and select a few sample data points from the dataset which you will track through the course of this project.

+

Run the code block below to observe a statistical description of the dataset. Note that the dataset is composed of six important product categories: 'Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper', and 'Delicatessen'. Consider what each category represents in terms of products you could purchase.

+ +
+
+
+
+
+
In [2]:
+
+
+
# Display a description of the dataset
+display(data.describe())
+
+ +
+
+
+ +
+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
count440.000000440.000000440.000000440.000000440.000000440.000000
mean12000.2977275796.2659097951.2772733071.9318182881.4931821524.870455
std12647.3288657380.3771759503.1628294854.6733334767.8544482820.105937
min3.00000055.0000003.00000025.0000003.0000003.000000
25%3127.7500001533.0000002153.000000742.250000256.750000408.250000
50%8504.0000003627.0000004755.5000001526.000000816.500000965.500000
75%16933.7500007190.25000010655.7500003554.2500003922.0000001820.250000
max112151.00000073498.00000092780.00000060869.00000040827.00000047943.000000
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Selecting Samples

To get a better understanding of the customers and how their data will transform through the analysis, it would be best to select a few sample data points and explore them in more detail. In the code block below, add three indices of your choice to the indices list which will represent the customers to track. It is suggested to try different sets of samples until you obtain customers that vary significantly from one another.

+ +
+
+
+
+
+
In [3]:
+
+
+
# TODO: Select three indices of your choice you wish to sample from the dataset
+indices = [47,138,359]
+
+# Create a DataFrame of the chosen samples
+samples = pd.DataFrame(data.loc[indices], columns = data.keys()).reset_index(drop = True)
+print "Chosen samples of wholesale customers dataset:"
+display(samples)
+
+ +
+
+
+ +
+
+ + +
+
+
Chosen samples of wholesale customers dataset:
+
+
+
+ +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
04446654259555717782241716465
113537425750341552493271
279658782109340232776
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 1

Consider the total purchase cost of each product category and the statistical description of the dataset above for your sample customers.
+What kind of establishment (customer) could each of the three samples you've chosen represent?
+Hint: Examples of establishments include places like markets, cafes, and retailers, among many others. Avoid using names for establishments, such as saying "McDonalds" when describing a sample customer as a restaurant.

+ +
+
+
+
+
+
+
+
+

Answer: Using the product categories as defined in the link below https://discussions.udacity.com/t/project-3-lots-of-guesswork/174839/2

+

The first customer selected could be a SuperMarket (retailer Grocery Store) based on their higher than average purchase costs across all product categories.

+

The second customer chosen appears to be a Restaurant based on their higher than average purchase costs of Fresh food (i.e. greens, fruits, etc), delicatessen (i.e.meats), and lower purchase costs of Frozens, Detergent, and other "Grocery" items.

+

The third customer chosen appears to be a Coffee Shop based on their higher than average purchase costs of Milk and Groceries (i.e. snacks, other ingredients), and lower than average purchase costs of Freshs (i.e. greens, fruits, etc), Frozens, Detergent, and Delicatessen.

+ +
+
+
+
+
+
+
+
+

Implementation: Feature Relevance

One interesting thought to consider is if one (or more) of the six product categories is actually relevant for understanding customer purchasing. That is to say, is it possible to determine whether customers purchasing some amount of one category of products will necessarily purchase some proportional amount of another category of products? We can make this determination quite easily by training a supervised regression learner on a subset of the data with one feature removed, and then score how well that model can predict the removed feature.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign new_data a copy of the data by removing a feature of your choice using the DataFrame.drop function.
  • +
  • Use sklearn.cross_validation.train_test_split to split the dataset into training and testing sets.
      +
    • Use the removed feature as your target label. Set a test_size of 0.25 and set a random_state.
    • +
    +
  • +
  • Import a decision tree regressor, set a random_state, and fit the learner to the training data.
  • +
  • Report the prediction score of the testing set using the regressor's score function.
  • +
+ +
+
+
+
+
+
In [4]:
+
+
+
from sklearn.cross_validation import train_test_split as Tts
+from sklearn.tree import DecisionTreeRegressor
+# TODO: Make a copy of the DataFrame, using the 'drop' function to drop the given feature
+# Possible features=['Fresh','Milk','Grocery','Frozen','Detergents_Paper','Delicatessen']
+feature_dropped='Fresh'
+
+new_data = data.drop(feature_dropped,axis=1)
+labels=data[feature_dropped]
+
+# TODO: Split the data into training and testing sets using the given feature as the target
+X_train, X_test, y_train, y_test = Tts(new_data, labels, test_size=0.25, random_state=30)
+
+# TODO: Create a decision tree regressor and fit it to the training set
+regressor = DecisionTreeRegressor(random_state=30)
+regressor.fit(X_train,y_train)
+
+# TODO: Report the score of the prediction using the testing set
+score = regressor.score(X_test,y_test)
+
+print score
+
+ +
+
+
+ +
+
+ + +
+
+
-0.0307317163901
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 2

Which feature did you attempt to predict? What was the reported prediction score? Is this feature is necessary for identifying customers' spending habits?
+Hint: The coefficient of determination, R^2, is scored between 0 and 1, with 1 being a perfect fit. A negative R^2 implies the model fails to fit the data.

+ +
+
+
+
+
+
+
+
+

Answer: I attempted to predict the "Fresh" product category. The R^2 score obtained was -0.0307. From this result we can infer that the "Fresh" feature is necessary in our dataset, and if it is removed our model will not accurately identify customers' spending habits. This is due to losing relevant information that is not correlated to the remaining features in the dataset, therefore making it very hard to predict based on those remaining feature, as proven by the resulting negative R^2 score.

+ +
+
+
+
+
+
+
+
+

Visualize Feature Distributions

To get a better understanding of the dataset, we can construct a scatter matrix of each of the six product features present in the data. If you found that the feature you attempted to predict above is relevant for identifying a specific customer, then the scatter matrix below may not show any correlation between that feature and the others. Conversely, if you believe that feature is not relevant for identifying a specific customer, the scatter matrix might show a correlation between that feature and another feature in the data. Run the code block below to produce a scatter matrix.

+ +
+
+
+
+
+
In [5]:
+
+
+
# Produce a scatter matrix for each pair of features in the data
+pd.scatter_matrix(data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');
+
+ +
+
+
+ +
+
+ + +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 3

Are there any pairs of features which exhibit some degree of correlation? Does this confirm or deny your suspicions about the relevance of the feature you attempted to predict? How is the data for those features distributed?
+Hint: Is the data normally distributed? Where do most of the data points lie?

+ +
+
+
+
+
+
+
+
+

Answer: From the scatter matrix, it can be observed that that the pair (Grocery, Detergents_Paper) seems to have the strongest correlation between the features. The pair (Grocery, Milk) also seem to exhibit some degree of correlation. This scatter matrix also confirms my initial suspicions that the "Fresh" product category does not have significant correlations to any of the remaining features and therefore, its information is necessary to accurately predict customers' behavior. Additionally, this scater matrix also show us that the data for these features is highly skewed and not normaly distributed.

+ +
+
+
+
+
+
+
+
+

Data Preprocessing

In this section, you will preprocess the data to create a better representation of customers by performing a scaling on the data and detecting (and optionally removing) outliers. Preprocessing data is often times a critical step in assuring that results you obtain from your analysis are significant and meaningful.

+ +
+
+
+
+
+
+
+
+

Implementation: Feature Scaling

If data is not normally distributed, especially if the mean and median vary significantly (indicating a large skew), it is most often appropriate to apply a non-linear scaling — particularly for financial data. One way to achieve this scaling is by using a Box-Cox test, which calculates the best power transformation of the data that reduces skewness. A simpler approach which can work in most cases would be applying the natural logarithm.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign a copy of the data to log_data after applying logarithmic scaling. Use the np.log function for this.
  • +
  • Assign a copy of the sample data to log_samples after applying logarithmic scaling. Again, use np.log.
  • +
+ +
+
+
+
+
+
In [6]:
+
+
+
# TODO: Scale the data using the natural logarithm
+log_data = np.log(data)
+
+# TODO: Scale the sample data using the natural logarithm
+log_samples = np.log(samples)
+
+# Produce a scatter matrix for each pair of newly-transformed features
+pd.scatter_matrix(log_data, alpha = 0.3, figsize = (14,8), diagonal = 'kde');
+
+ +
+
+
+ +
+
+ + +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Observation

After applying a natural logarithm scaling to the data, the distribution of each feature should appear much more normal. For any pairs of features you may have identified earlier as being correlated, observe here whether that correlation is still present (and whether it is now stronger or weaker than before).

+

Run the code below to see how the sample data has changed after having the natural logarithm applied to it.

+ +
+
+
+
+
+
In [7]:
+
+
+
# Display the log-transformed sample data
+display(log_samples)
+
+ +
+
+
+ +
+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
010.70248010.90152410.9254178.95956910.0929098.774158
19.5131828.3563208.5239705.0434255.5174538.092851
26.6795998.6789727.6539695.8289465.4467376.654153
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Outlier Detection

Detecting outliers in the data is extremely important in the data preprocessing step of any analysis. The presence of outliers can often skew results which take into consideration these data points. There are many "rules of thumb" for what constitutes an outlier in a dataset. Here, we will use Tukey's Method for identfying outliers: An outlier step is calculated as 1.5 times the interquartile range (IQR). A data point with a feature that is beyond an outlier step outside of the IQR for that feature is considered abnormal.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign the value of the 25th percentile for the given feature to Q1. Use np.percentile for this.
  • +
  • Assign the value of the 75th percentile for the given feature to Q3. Again, use np.percentile.
  • +
  • Assign the calculation of an outlier step for the given feature to step.
  • +
  • Optionally remove data points from the dataset by adding indices to the outliers list.
  • +
+

NOTE: If you choose to remove any outliers, ensure that the sample data does not contain any of these points!
+Once you have performed this implementation, the dataset will be stored in the variable good_data.

+ +
+
+
+
+
+
In [8]:
+
+
+
# For each feature find the data points with extreme high or low values
+for feature in log_data.keys():
+    
+    # TODO: Calculate Q1 (25th percentile of the data) for the given feature
+    Q1 = np.percentile(log_data[feature],25)
+    
+    # TODO: Calculate Q3 (75th percentile of the data) for the given feature
+    Q3 = np.percentile(log_data[feature],75)
+    
+    # TODO: Use the interquartile range to calculate an outlier step (1.5 times the interquartile range)
+    step = (Q3-Q1)*1.5
+    
+    # Display the outliers
+    print "Data points considered outliers for the feature '{}':".format(feature)
+    display(log_data[~((log_data[feature] >= Q1 - step) & (log_data[feature] <= Q3 + step))])
+    
+# OPTIONAL: Select the indices for data points you wish to remove
+outliers  = [65,66,75,128,154]
+#outliers  = []
+# Remove the outliers, if any were specified
+good_data = log_data.drop(log_data.index[outliers]).reset_index(drop = True)
+
+ +
+
+
+ +
+
+ + +
+
+
Data points considered outliers for the feature 'Fresh':
+
+
+
+ +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
654.4426519.95032310.7326513.58351910.0953887.260523
662.1972257.3356348.9115305.1647868.1513333.295837
815.3890729.1632499.5751925.6454478.9641845.049856
951.0986127.9793398.7406576.0867755.4071726.563856
963.1354947.8694029.0018394.9767348.2620435.379897
1284.9416429.0878348.2487914.9558276.9679091.098612
1715.29831710.1605309.8942456.4785109.0794348.740337
1935.1929578.1562239.9179826.8658918.6337316.501290
2182.8903728.9231919.6293807.1585148.4757468.759669
3045.0814048.91731110.1175106.4248699.3744137.787382
3055.4930619.4680019.0883996.6833618.2710375.351858
3381.0986125.8081428.8566619.6550902.7080506.309918
3534.7621748.7425749.9618985.4293469.0690077.013016
3555.2470246.5889267.6068855.5012585.2149364.844187
3573.6109187.15070110.0110864.9199818.8168534.700480
4124.5747118.1900779.4254524.5849677.9963174.127134
+
+
+ +
+ +
+
+
Data points considered outliers for the feature 'Milk':
+
+
+
+ +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
8610.03998311.20501310.3770476.8946709.9069816.805723
986.2205904.7184996.6567276.7968244.0253524.882802
1546.4329404.0073334.9199814.3174881.9459102.079442
35610.0295034.8978405.3844958.0573772.1972256.306275
+
+
+ +
+ +
+
+
Data points considered outliers for the feature 'Grocery':
+
+
+
+ +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
759.9231927.0361481.0986128.3909491.0986126.882437
1546.4329404.0073334.9199814.3174881.9459102.079442
+
+
+ +
+ +
+
+
Data points considered outliers for the feature 'Frozen':
+
+
+
+ +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
388.4318539.6632619.7237033.4965088.8473606.070738
578.5972979.2036189.2578923.6375868.9322137.156177
654.4426519.95032310.7326513.58351910.0953887.260523
14510.0005699.03408010.4571433.7376709.4407388.396155
1757.7591878.9676329.3821063.9512448.3418877.436617
2646.9782149.1777149.6450414.1108748.6961767.142827
32510.3956509.7281819.51973511.0164797.1483468.632128
4208.4020078.5690269.4900153.2188768.8273217.239215
4299.0603317.4673718.1831183.8501484.4308177.824446
4397.9327217.4372067.8280384.1743876.1675163.951244
+
+
+ +
+ +
+
+
Data points considered outliers for the feature 'Detergents_Paper':
+
+
+
+ +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
759.9231927.0361481.0986128.3909491.0986126.882437
1619.4281906.2915695.6454476.9957661.0986127.711101
+
+
+ +
+ +
+
+
Data points considered outliers for the feature 'Delicatessen':
+
+
+
+ +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
662.1972257.3356348.9115305.1647868.1513333.295837
1097.2485049.72489910.2745686.5117456.7286291.098612
1284.9416429.0878348.2487914.9558276.9679091.098612
1378.0349558.9971479.0218406.4937546.5806393.583519
14210.5196468.8751479.0183328.0047002.9957321.098612
1546.4329404.0073334.9199814.3174881.9459102.079442
18310.51452910.6908089.91195210.5059995.47646410.777768
1845.7899606.8221978.4574434.3040655.8111412.397895
1877.7989338.9874479.1920758.7433728.1487351.098612
2036.3681876.5294197.7034596.1506036.8606642.890372
2336.8710918.5139888.1065156.8426836.0137151.945910
28510.6029656.4614688.1886896.9488976.0776422.890372
28910.6639665.6559926.1548587.2356193.4657363.091042
3437.4318928.84850910.1779327.2834489.6465933.610918
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 4

Are there any data points considered outliers for more than one feature based on the definition above? Should these data points be removed from the dataset? If any data points were added to the outliers list to be removed, explain why.

+ +
+
+
+
+
+
+
+
+

Answer: Based on the outlier step, there are 42 data points that are considered outliers. However, only a few of these are considered outliers for more than one feature (i.e. indeces 65,66,75,128,154). I do not think that all of the outliers should be removed as in total they represent 9.5% of the dataset. Removing the 42 data points could cause us to lose imporant information necessary to correctly classify customer behavior. In fact some of these outliers may actually represent certain customer group behavior. For this reason I only chose to remove the 5 datapoints that are considered outliers in more than one feature to reduce the potential of skewing our results.

+ +
+
+
+
+
+
+
+
+

Feature Transformation

In this section you will use principal component analysis (PCA) to draw conclusions about the underlying structure of the wholesale customer data. Since using PCA on a dataset calculates the dimensions which best maximize variance, we will find which compound combinations of features best describe customers.

+ +
+
+
+
+
+
+
+
+

Implementation: PCA

Now that the data has been scaled to a more normal distribution and has had any necessary outliers removed, we can now apply PCA to the good_data to discover which dimensions about the data best maximize the variance of features involved. In addition to finding these dimensions, PCA will also report the explained variance ratio of each dimension — how much variance within the data is explained by that dimension alone. Note that a component (dimension) from PCA can be considered a new "feature" of the space, however it is a composition of the original features present in the data.

+

In the code block below, you will need to implement the following:

+
    +
  • Import sklearn.decomposition.PCA and assign the results of fitting PCA in six dimensions with good_data to pca.
  • +
  • Apply a PCA transformation of log_samples using pca.transform, and assign the results to pca_samples.
  • +
+ +
+
+
+
+
+
In [9]:
+
+
+
from sklearn.decomposition import PCA
+
+# TODO: Apply PCA by fitting the good data with the same number of dimensions as features
+pca = PCA(n_components=len(good_data.columns)).fit(good_data)
+
+
+# TODO: Transform log_samples using the PCA fit above
+pca_samples = pca.transform(log_samples)
+
+# Generate PCA results plot
+explained_var=pca.explained_variance_ratio_
+totl=0
+
+explained_var2=sum([explained_var[i] for i in range(2)])
+explained_var4=sum([explained_var[i] for i in range(4)])
+print 'Total Variance from first 2 components:',explained_var2
+print 'Total Variance from first 2 components:',explained_var4
+pca_results = vs.pca_results(good_data, pca)
+
+ +
+
+
+ +
+
+ + +
+
+
Total Variance from first 2 components: 0.706817230807
+Total Variance from first 2 components: 0.931090109951
+
+
+
+ +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 5

How much variance in the data is explained in total by the first and second principal component? What about the first four principal components? Using the visualization provided above, discuss what the first four dimensions best represent in terms of customer spending.
+Hint: A positive increase in a specific dimension corresponds with an increase of the positive-weighted features and a decrease of the negative-weighted features. The rate of increase or decrease is based on the indivdual feature weights.

+ +
+
+
+
+
+
+
+
+

Answer: In total, the first and second principal components explain 70.7% of the variance in the data. On the other hand the first 4 components explain 93.1% of the variance in the data.

+

Regarding spending, a customer with higher values on the first dimension would spend much more on Detergents_Paper, also on Milk and Groceries.This could represent a convinience store.

+

A customer with higher values on the second dimension would spend more on Freshs, and relatively equal on Frozen and Delicatessen. This could represent a restaurant.

+

A customer with higher values on the third dimension would spends heavily on Delicatessen, a decent amount on Frozens and really little on Freshs.

+

Finally, a customer with higher fourth dimension values would spend heavily on Milk, some on Detergents_paper, and very little in Grocery. This could represent a coffee shop.

+ +
+
+
+
+
+
+
+
+

Observation

Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it in six dimensions. Observe the numerical value for the first four dimensions of the sample points. Consider if this is consistent with your initial interpretation of the sample points.

+ +
+
+
+
+
+
In [10]:
+
+
+
# Display sample log-data after having a PCA transformation applied
+display(pd.DataFrame(np.round(pca_samples, 4), columns = pca_results.index.values))
+
+ +
+
+
+ +
+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Dimension 1Dimension 2Dimension 3Dimension 4Dimension 5Dimension 6
04.36463.9519-0.12290.6240-0.5379-0.0551
1-0.35250.0495-0.0661-2.9649-0.6829-0.1654
2-0.5383-2.22241.2415-1.0479-0.92760.8047
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Dimensionality Reduction

When using principal component analysis, one of the main goals is to reduce the dimensionality of the data — in effect, reducing the complexity of the problem. Dimensionality reduction comes at a cost: Fewer dimensions used implies less of the total variance in the data is being explained. Because of this, the cumulative explained variance ratio is extremely important for knowing how many dimensions are necessary for the problem. Additionally, if a significant amount of variance is explained by only two or three dimensions, the reduced data can be visualized afterwards.

+

In the code block below, you will need to implement the following:

+
    +
  • Assign the results of fitting PCA in two dimensions with good_data to pca.
  • +
  • Apply a PCA transformation of good_data using pca.transform, and assign the results to reduced_data.
  • +
  • Apply a PCA transformation of log_samples using pca.transform, and assign the results to pca_samples.
  • +
+ +
+
+
+
+
+
In [11]:
+
+
+
# TODO: Apply PCA by fitting the good data with only two dimensions
+pca = PCA(n_components=2).fit(good_data)
+
+# TODO: Transform the good data using the PCA fit above
+reduced_data = pca.transform(good_data)
+
+# TODO: Transform log_samples using the PCA fit above
+pca_samples = pca.transform(log_samples)
+
+# Create a DataFrame for the reduced data
+reduced_data = pd.DataFrame(reduced_data, columns = ['Dimension 1', 'Dimension 2'])
+
+ +
+
+
+ +
+
+
+
+
+
+

Observation

Run the code below to see how the log-transformed sample data has changed after having a PCA transformation applied to it using only two dimensions. Observe how the values for the first two dimensions remains unchanged when compared to a PCA transformation in six dimensions.

+ +
+
+
+
+
+
In [12]:
+
+
+
# Display sample log-data after applying PCA transformation in two dimensions
+display(pd.DataFrame(np.round(pca_samples, 4), columns = ['Dimension 1', 'Dimension 2']))
+
+ +
+
+
+ +
+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Dimension 1Dimension 2
04.36463.9519
1-0.35250.0495
2-0.5383-2.2224
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Visualizing a Biplot

A biplot is a scatterplot where each data point is represented by its scores along the principal components. The axes are the principal components (in this case Dimension 1 and Dimension 2). In addition, the biplot shows the projection of the original features along the components. A biplot can help us interpret the reduced dimensions of the data, and discover relationships between the principal components and original features.

+

Run the code cell below to produce a biplot of the reduced-dimension data.

+ +
+
+
+
+
+
In [14]:
+
+
+
# Create a biplot
+vs.biplot(good_data, reduced_data, pca)
+
+ +
+
+
+ +
+
+ + +
Out[14]:
+ + +
+
<matplotlib.axes._subplots.AxesSubplot at 0x11a9e07d0>
+
+ +
+ +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Observation

Once we have the original feature projections (in red), it is easier to interpret the relative position of each data point in the scatterplot. For instance, a point the lower right corner of the figure will likely correspond to a customer that spends a lot on 'Milk', 'Grocery' and 'Detergents_Paper', but not so much on the other product categories.

+

From the biplot, which of the original features are most strongly correlated with the first component? What about those that are associated with the second component? Do these observations agree with the pca_results plot you obtained earlier?

+ +
+
+
+
+
+
+
+
+

Clustering

In this section, you will choose to use either a K-Means clustering algorithm or a Gaussian Mixture Model clustering algorithm to identify the various customer segments hidden in the data. You will then recover specific data points from the clusters to understand their significance by transforming them back into their original dimension and scale.

+ +
+
+
+
+
+
+
+
+

Question 6

What are the advantages to using a K-Means clustering algorithm? What are the advantages to using a Gaussian Mixture Model clustering algorithm? Given your observations about the wholesale customer data so far, which of the two algorithms will you use and why?

+ +
+
+
+
+
+
+
+
+

Answer: The advantage of K-means is the simplicity of its underlying assumptions which allows the algorithm to be robust, reliable and fast. This also allows the model to outperform other algorithms on large datasets. In addition, while K-means always converges(locally or globally) on the K-clusters after a given number of iterations, this algorithm performs best on data that is clearly defined and well sperated.

+

On the other hand, the advantage of a Gaussian Mixture Model (GMM), is its capability of incorporating the covariance between the points into the model to identify more complex clusters. Unlike K-means which assumes, during each iteration, that any given point can only belong to a specific cluster, GMM also takes into account the level of certainty with which a point belongs to a given cluster. This uncertainty is also revised during each iteration making the algorithm more flexible when assigning points to a cluster and capable of performing well on in less clearly defined datasets.

+

From the biplot, it can be observed that the data points are mostly densily packed on an area of the plot but do not form clearly deliniated clusters as certain points seem to be in the border bettween two or more groups. We can also observe that certain dimensions in the data (i.e. Milk-Grocery-Detergents and Fresh-Frozen) have a strong degree of correlation between each other. Based on these facts and on the previous discussion, we can safely conclude that applying a Gausian Mixture Model will produce the best outcome for the problem at hand.

+ +
+
+
+
+
+
+
+
+

Implementation: Creating Clusters

Depending on the problem, the number of clusters that you expect to be in the data may already be known. When the number of clusters is not known a priori, there is no guarantee that a given number of clusters best segments the data, since it is unclear what structure exists in the data — if any. However, we can quantify the "goodness" of a clustering by calculating each data point's silhouette coefficient. The silhouette coefficient for a data point measures how similar it is to its assigned cluster from -1 (dissimilar) to 1 (similar). Calculating the mean silhouette coefficient provides for a simple scoring method of a given clustering.

+

In the code block below, you will need to implement the following:

+
    +
  • Fit a clustering algorithm to the reduced_data and assign it to clusterer.
  • +
  • Predict the cluster for each data point in reduced_data using clusterer.predict and assign them to preds.
  • +
  • Find the cluster centers using the algorithm's respective attribute and assign them to centers.
  • +
  • Predict the cluster for each sample data point in pca_samples and assign them sample_preds.
  • +
  • Import sklearn.metrics.silhouette_score and calculate the silhouette score of reduced_data against preds.
      +
    • Assign the silhouette score to score and print the result.
    • +
    +
  • +
+ +
+
+
+
+
+
In [15]:
+
+
+
from sklearn.mixture import GMM
+from sklearn.metrics import silhouette_score
+
+# TODO: Apply your clustering algorithm of choice to the reduced data 
+clusterer = GMM(n_components=2).fit(reduced_data)
+
+# TODO: Predict the cluster for each data point
+preds = clusterer.predict(reduced_data)
+
+# TODO: Find the cluster centers
+centers = clusterer.means_
+
+# TODO: Predict the cluster for each transformed sample data point
+sample_preds = clusterer.predict(pca_samples)
+
+# TODO: Calculate the mean silhouette coefficient for the number of clusters chosen
+score = silhouette_score(reduced_data,preds)
+
+print score
+
+ +
+
+
+ +
+
+ + +
+
+
0.411818864386
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Question 7

Report the silhouette score for several cluster numbers you tried. Of these, which number of clusters has the best silhouette score?

+ +
+
+
+
+
+
+
+
+

Answer: Based on the scenarios run, the best silhouette score is achieved when using only 2 clusters:

+

For 2 Clusters, Silhouette score = 0.412

+

For 3 Clusters, Silhouette score = 0.374

+

For 4 Clusters, Silhouette score = 0.332

+

For 5 Clusters, Silhouette score = 0.295

+ +
+
+
+
+
+
+
+
+

Cluster Visualization

Once you've chosen the optimal number of clusters for your clustering algorithm using the scoring metric above, you can now visualize the results by executing the code block below. Note that, for experimentation purposes, you are welcome to adjust the number of clusters for your clustering algorithm to see various visualizations. The final visualization provided should, however, correspond with the optimal number of clusters.

+ +
+
+
+
+
+
In [16]:
+
+
+
# Display the results of the clustering from implementation
+vs.cluster_results(reduced_data, preds, centers, pca_samples)
+
+ +
+
+
+ +
+
+ + +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Implementation: Data Recovery

Each cluster present in the visualization above has a central point. These centers (or means) are not specifically data points from the data, but rather the averages of all the data points predicted in the respective clusters. For the problem of creating customer segments, a cluster's center point corresponds to the average customer of that segment. Since the data is currently reduced in dimension and scaled by a logarithm, we can recover the representative customer spending from these data points by applying the inverse transformations.

+

In the code block below, you will need to implement the following:

+
    +
  • Apply the inverse transform to centers using pca.inverse_transform and assign the new centers to log_centers.
  • +
  • Apply the inverse function of np.log to log_centers using np.exp and assign the true centers to true_centers.
  • +
+ +
+
+
+
+
+
In [17]:
+
+
+
# TODO: Inverse transform the centers
+
+log_centers = pca.inverse_transform(centers)
+
+# TODO: Exponentiate the centers
+true_centers = np.exp(log_centers)
+
+# Display the true centers
+segments = ['Segment {}'.format(i) for i in range(0,len(centers))]
+true_centers = pd.DataFrame(np.round(true_centers), columns = data.keys())
+true_centers.index = segments
+display(true_centers)
+
+ +
+
+
+ +
+
+ + +
+ +
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FreshMilkGroceryFrozenDetergents_PaperDelicatessen
Segment 08812.02052.02689.02058.0337.0712.0
Segment 14316.06347.09555.01036.03046.0945.0
+
+
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 8

Consider the total purchase cost of each product category for the representative data points above, and reference the statistical description of the dataset at the beginning of this project. What set of establishments could each of the customer segments represent?
+Hint: A customer who is assigned to 'Cluster X' should best identify with the establishments represented by the feature set of 'Segment X'.

+ +
+
+
+
+
+
+
+
+

Answer: Based on the information obtained, a customer assigned to Cluster 0 would most likely represent some type of market/covinience store. On the other hand, a customer assigned to Cluster 1 most likely represents some type of restaurant.

+ +
+
+
+
+
+
+
+
+

Question 9

For each sample point, which customer segment from Question 8 best represents it? Are the predictions for each sample point consistent with this?

+

Run the code block below to find which cluster each sample point is predicted to be.

+ +
+
+
+
+
+
In [18]:
+
+
+
# Display the predictions
+for i, pred in enumerate(sample_preds):
+    print "Sample point", i, "predicted to be in Cluster", pred
+
+ +
+
+
+ +
+
+ + +
+
+
Sample point 0 predicted to be in Cluster 1
+Sample point 1 predicted to be in Cluster 0
+Sample point 2 predicted to be in Cluster 0
+
+
+
+ +
+
+ +
+
+
+
+
+
+

Answer: Sample point 0 is best represented by a Market/Convenience store. Sample points 1 and 2 are best represented as some type of restaurant. This is consistent with the predictions obtained from the clusters.

+ +
+
+
+
+
+
+
+
+

Conclusion

+
+
+
+
+
+
+
+
+

In this final section, you will investigate ways that you can make use of the clustered data. First, you will consider how the different groups of customers, the customer segments, may be affected differently by a specific delivery scheme. Next, you will consider how giving a label to each customer (which segment that customer belongs to) can provide for additional features about the customer data. Finally, you will compare the customer segments to a hidden variable present in the data, to see whether the clustering identified certain relationships.

+ +
+
+
+
+
+
+
+
+

Question 10

Companies will often run A/B tests when making small changes to their products or services to determine whether making that change will affect its customers positively or negatively. The wholesale distributor is considering changing its delivery service from currently 5 days a week to 3 days a week. However, the distributor will only make this change in delivery service for customers that react positively. How can the wholesale distributor use the customer segments to determine which customers, if any, would react positively to the change in delivery service?
+Hint: Can we assume the change affects all customers equally? How can we determine which group of customers it affects the most?

+ +
+
+
+
+
+
+
+
+

Answer: By identifying the underlying type of customer segments (through clustering), the wholesaler will be able to draw more meaningfull hypothesis about expected behavior of the customers in each segment prior to performing the A/B test. Then these hypothesis may be tested on each segment separately to find more meaningful conclusions and understand the impact level on each independent customer segment.

+

For example, by observing the definitions of these two customer segments, the wholesaler could draw the preliminary hypothesis that "market/convenient store" customers(i.e. cluster 0) and "restaurant" customers (i.e. Cluster 1) will react different to a reduction in number of deliveries. Restaurants will potentially react negatively as they are more concerned with having fresh products to serve their clients. Reducing the number of deliveries to 3 days would force them to increase their inventory levels (if its even possible) and keep produce longer which may increase spoilage of certain producs, and possibly a reduction in the quality of food that they serve their clients. On the other hand, the wholesaler may draw the hypothesis that "markets/convenient store customers" may react positively to the new schedule as they more likely have more inventory space to store the necessary stock to supply their clients. They are also not as concern with "freshness" of their products as a restaurant would be. These hypothesis would then be tested on separate sample groups of customers from each segment to draw final conclusions about the impact to each segment.

+ +
+
+
+
+
+
+
+
+

Question 11

Additional structure is derived from originally unlabeled data when using clustering techniques. Since each customer has a customer segment it best identifies with (depending on the clustering algorithm applied), we can consider 'customer segment' as an engineered feature for the data. Assume the wholesale distributor recently acquired ten new customers and each provided estimates for anticipated annual spending of each product category. Knowing these estimates, the wholesale distributor wants to classify each new customer to a customer segment to determine the most appropriate delivery service.
+How can the wholesale distributor label the new customers using only their estimated product spending and the customer segment data?
+Hint: A supervised learner could be used to train on the original customers. What would be the target variable?

+ +
+
+
+
+
+
+
+
+

Answer: Thow wholesale distributor could train a supervised machine learning classification algorithm (e.g. SVC, or decision tree classifier, etc) with the initial dataset's customer product spending as inputs and the customer segments (as obtained from GMM clustering) as the target variable. Once the classifier is trained it can be used to predict the customer segment for new customers which would then determine the most appropriate delivery service (3 days per week or 5 days per week).

+ +
+
+
+
+
+
+
+
+

Visualizing Underlying Distributions

At the beginning of this project, it was discussed that the 'Channel' and 'Region' features would be excluded from the dataset so that the customer product categories were emphasized in the analysis. By reintroducing the 'Channel' feature to the dataset, an interesting structure emerges when considering the same PCA dimensionality reduction applied earlier to the original dataset.

+

Run the code block below to see how each data point is labeled either 'HoReCa' (Hotel/Restaurant/Cafe) or 'Retail' the reduced space. In addition, you will find the sample points are circled in the plot, which will identify their labeling.

+ +
+
+
+
+
+
In [19]:
+
+
+
# Display the clustering results based on 'Channel' data
+vs.channel_results(reduced_data, outliers, pca_samples)
+
+ +
+
+
+ +
+
+ + +
+ + +
+ +
+ +
+ +
+
+ +
+
+
+
+
+
+

Question 12

How well does the clustering algorithm and number of clusters you've chosen compare to this underlying distribution of Hotel/Restaurant/Cafe customers to Retailer customers? Are there customer segments that would be classified as purely 'Retailers' or 'Hotels/Restaurants/Cafes' by this distribution? Would you consider these classifications as consistent with your previous definition of the customer segments?

+ +
+
+
+
+
+
+
+
+

Answer: Both the GMM algorithm and the number of clusters chosen are highly comparable to the underlying distribution shown in the plot above. The customer segments as classified here closely match those I previously defined in Question 8 (i.e Green points: Market/Convenience Store, Red Points: Restaurants.)

+ +
+
+
+
+
+
+
+
+

Note: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to
+File -> Download as -> HTML (.html). Include the finished document along with this notebook as your submission.

+
+ +
+
+
+
+
+ +