-
Notifications
You must be signed in to change notification settings - Fork 12.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[AArch64] Stack probing for function prologues (#66524)
This adds code to AArch64 function prologues to protect against stack clash attacks by probing (writing to) the stack at regular enough intervals to ensure that the guard page cannot be skipped over. The patch depends on and maintains the following invariants: Upon function entry the caller guarantees that it has probed the stack (e.g. performed a store) at some address [sp, #N], where`0 <= N <= 1024`. This invariant comes from a requirement for compatibility with GCC. Any address range in the allocated stack, no smaller than stack-probe-size bytes contains at least one probe At any time the stack pointer is above or in the guard page Probes are performed in descreasing address order The stack-probe-size is a function attribute that can be set by a platform to correspond to the guard page size. By default, the stack probe size is 4KiB, which is a safe default as this is the smallest possible page size for AArch64. Linux uses a 64KiB guard for AArch64, so this can be overridden by the stack-probe-size function attribute. For small frames without a frame pointer (<= 240 bytes), no probes are needed. For larger frame sizes, LLVM always stores x29 to the stack. This serves as an implicit stack probe. Thus, while allocating stack objects the compiler assumes that the stack has been probed at [sp]. There are multiple probing sequences that can be emitted, depending on the size of the stack allocation: A straight-line sequence of subtracts and stores, used when the allocation size is smaller than 5 guard pages. A loop allocating and probing one page size per iteration, plus at most a single probe to deal with the remainder, used when the allocation size is larger but still known at compile time. A loop which moves the SP down to the target value held in a register (or a loop, moving a scratch register to the target value help in SP), used when the allocation size is not known at compile-time, such as when allocating space for SVE values, or when over-aligning the stack. This is emitted in AArch64InstrInfo because it will also be used for dynamic allocas in a future patch. A single probe where the amount of stack adjustment is unknown, but is known to be less than or equal to a page size. --------- Co-authored-by: Oliver Stannard <[email protected]>
- Loading branch information
1 parent
52be47b
commit cc944f5
Showing
13 changed files
with
2,302 additions
and
40 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.