-
Notifications
You must be signed in to change notification settings - Fork 82
/
eval_IC03.cpp
761 lines (641 loc) · 28.2 KB
/
eval_IC03.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
#define _MAIN
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h> /* srand, rand */
#include <time.h> /* time */
#include <tinyxml.h>
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "region.h"
#include "agglomerative_clustering.h"
#include "stopping_rule.h"
#include "utils.h"
#include <caffe/caffe.hpp>
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <map>
#define VDEBUG 0 // visual debug for manual inspection of intermediate results
using namespace std;
using namespace cv;
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
bool nmsHClusterSort (HCluster i,HCluster j) { return (i.rect.area()>j.rect.area()); }
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& label_file,
int batch_size = 100);
std::vector<Prediction> Classify(const vector<cv::Mat> &images);
cv::Size getInputSize();
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
int batch_size_;
std::vector<string> labels_;
};
cv::Size Classifier::getInputSize() {return input_geometry_;}
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& label_file,
int batch_size) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 1)
<< "Input layer should have 1 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
batch_size_ = batch_size;
input_layer->Reshape(batch_size_, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
/* Return the top predictions. */
std::vector<Prediction> Classifier::Classify(const vector<cv::Mat> &images) {
Blob<float>* input_layer = net_->input_blobs()[0];
if (images.size() != batch_size_)
{
batch_size_ = images.size();
input_layer->Reshape(batch_size_, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
}
std::vector<cv::Mat> input_channels;
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < batch_size_; ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
images[i].convertTo(channel, CV_32FC1);
input_channels.push_back(channel);
input_data += width * height;
}
net_->ForwardPrefilled();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* output_data = output_layer->cpu_data();
cv::Mat output(batch_size_, output_layer->channels(), CV_32FC1, (void*)output_data);
std::vector<Prediction> predictions;
for (int i = 0; i < batch_size_; ++i) {
Point maxIdx;
double maxVal;
minMaxLoc(output.row(i), NULL, &maxVal, NULL, &maxIdx);
predictions.push_back(std::make_pair(labels_[maxIdx.x], (float)maxVal));
}
return predictions;
}
/* Diversivication Configurations : */
/* These are boolean values, indicating whenever to use a particular */
/* diversification strategy or not */
#define PYRAMIDS 1 // Use spatial pyramids
#define CUE_D 1 // Use Diameter grouping cue
#define CUE_FGI 1 // Use ForeGround Intensity grouping cue
#define CUE_BGI 1 // Use BackGround Intensity grouping cue
#define CUE_G 1 // Use Gradient magnitude grouping cue
#define CUE_S 1 // Use Stroke width grouping cue
#define CHANNEL_I 0 // Use Intensity color channel
#define CHANNEL_R 1 // Use Red color channel
#define CHANNEL_G 1 // Use Green color channel
#define CHANNEL_B 1 // Use Blue color channel
static inline bool is_not_alnum(char c)
{
return !(isalnum(c));
}
int main( int argc, char** argv )
{
// Global Stats
int correct = 0; //true positives
int misses = 0; //false negatives
int err = 0; //false prositives
ofstream outfile("RES_evalAll_cnn.txt", ofstream::out | ofstream::app);
vector<string> full_lex; //global lexicon
vector<string> empty_lex; //empty lexicon for the generic recognition case
vector<string> lex50;
ifstream labels("./lex/ICDAR2003/lex_FULL.txt");
string line;
while (getline(labels, line))
full_lex.push_back(line);
// Read GT bounding boxes (to evaluate the classifier)
TiXmlDocument GTdoc( argv[1] );
if (!GTdoc.LoadFile()) {
cerr << "Failed to open XML file!\n" << endl;
cerr << " ./eval_IC03 <XML_GT_FILE>" << endl;
return 1;
}
// Params
float x_coord_mult = 0.25; // a value of 1 means rotation invariant
float weak_classifier_threshold = 0.4;
float cnn_classifier_threshold = 0.95;
int min_word_lenght = 3;
float nms_IoU_threshold = 0.2;
float nms_I_threshold = 0.5;
int lexicon = atoi(argv[2]);
switch (lexicon)
{
case 0:
case 1:
weak_classifier_threshold = 0.01;
cnn_classifier_threshold = 0.85;
break;
}
// TextProposals Pipeline configuration
bool conf_channels[4]={CHANNEL_R,CHANNEL_G,CHANNEL_B,CHANNEL_I};
bool conf_cues[5]={CUE_D,CUE_FGI,CUE_BGI,CUE_G,CUE_S};
/* initialize random seed: */
srand (time(NULL));
double t_cnn_load = (double)getTickCount();
::google::InitGoogleLogging(argv[0]);
string model_file = string("dictnet_vgg_deploy.prototxt");
string trained_file = string("dictnet_vgg.caffemodel");
string label_file = string("lex.txt");
int batch_size = 128;
Classifier classifier(model_file, trained_file, label_file, batch_size);
t_cnn_load = ((double)getTickCount() - t_cnn_load) / getTickFrequency();
TiXmlNode* GTroot = GTdoc.FirstChild( "tagset" )->FirstChild( "image" );
while (GTroot) // foreach image
{
TiXmlElement* GTimage = GTroot->ToElement();
string GTimagename = GTimage->FirstChild( "imageName" )->ToElement()->GetText();
string in_imagename = string("data/ICDAR2003/SceneTrialTest/")+GTimagename;
cout << in_imagename << endl;
outfile << in_imagename << endl;
string lex_fname = string("lex/ICDAR2003/")+GTimagename+string("_voc.txt");
ifstream labels(lex_fname.c_str());
string line;
lex50.clear();
while (getline(labels, line))
lex50.push_back(line);
vector<Rect> gt_rects;
vector<string> gt_words;
vector<Rect> dc_rects; // do not care
vector<string> dc_words; // do not care
TiXmlNode* gt_rectangles = GTroot->FirstChild("taggedRectangles")->FirstChild("taggedRectangle");
if (gt_rectangles)
{
TiXmlElement* xml_object = gt_rectangles->ToElement();
for( xml_object; xml_object; xml_object=xml_object->NextSiblingElement() )
{
string x = xml_object->Attribute( "x");
string y = xml_object->Attribute( "y");
string w = xml_object->Attribute( "width");
string h = xml_object->Attribute( "height");
Rect box = Rect(Point(atoi(x.c_str()),atoi(y.c_str())),Size(atoi(w.c_str()),atoi(h.c_str())));
TiXmlNode* tag = xml_object->FirstChild("tag");
if (tag)
{
TiXmlElement* tag_el = tag->ToElement();
string tag_s = string(tag_el->GetText());
std::transform(tag_s.begin(), tag_s.end(), tag_s.begin(), ::tolower);
if ((tag_s.size() >= 3) && (find_if(tag_s.begin(), tag_s.end(), is_not_alnum) == tag_s.end()))
{
gt_words.push_back(tag_s);
gt_rects.push_back(box);
} else {
dc_words.push_back(tag_s);
dc_rects.push_back(box);
}
}
}
}
// Local Stats (x image)
int im_correct = 0; //true positives
int im_misses = 0; //false negatives
int im_err = 0; //false prositives
///// BEGIN loopable code (x image)
// Stats
int nodes_total = 0;
int nodes_evaluated = 0;
int nodes_rejected_by_inheritance = 0;
int nodes_rejected_by_weak_classifier = 0;
int nodes_rejected_by_hash = 0;
double t_algorithm_0 = (double)getTickCount();
double t_mser = 0;
double t_feat = 0;
double t_clustering = 0;
double t_cnn = 0;
double t_sr = 0;
double t_nms = 0;
// Hash table for proposals probabilities by their bbox keys
std::map<string, Prediction> pmap;
vector<HCluster> max_clusters;
Mat src, src_vis, src_grey, img, grey, lab_img, gradient_magnitude;
img = imread(in_imagename);
img.copyTo(src);
if (VDEBUG)
img.copyTo(src_vis);
int delta = 13;
int img_area = img.cols*img.rows;
Ptr<MSER> cv_mser = MSER::create(delta,(int)(0.00002*img_area),(int)(0.11*img_area),55,0.);
cvtColor(img, grey, CV_BGR2GRAY);
grey.copyTo(src_grey);
cvtColor(img, lab_img, CV_BGR2Lab);
gradient_magnitude = Mat_<double>(img.size());
get_gradient_magnitude( grey, gradient_magnitude);
vector<Mat> channels;
split(img, channels);
channels.push_back(grey);
int num_channels = channels.size();
if (PYRAMIDS)
{
for (int c=0; c<num_channels; c++)
{
Mat pyr;
resize(channels[c],pyr,Size(channels[c].cols/2,channels[c].rows/2));
channels.push_back(pyr);
}
/*for (int c=0; c<num_channels; c++)
{
Mat pyr;
resize(channels[c],pyr,Size(channels[c].cols/4,channels[c].rows/4));
channels.push_back(pyr);
}*/
}
cout << "Go!" << endl;
for (int c=0; c<channels.size(); c++)
{
if (!conf_channels[c%4]) continue;
if (channels[c].size() != grey.size()) // update sizes for smaller pyramid lvls
{
resize(grey,grey,Size(channels[c].cols,channels[c].rows));
resize(lab_img,lab_img,Size(channels[c].cols,channels[c].rows));
resize(gradient_magnitude,gradient_magnitude,Size(channels[c].cols,channels[c].rows));
}
// TODO you want to try single pass MSER?
//channels[c] = 255 - channels[c];
//cv_mser->setPass2Only(true);
/* Initial over-segmentation using MSER algorithm */
vector<vector<Point> > contours;
vector<Rect> mser_bboxes;
double t_mser0 = (double)getTickCount();
cv_mser->detectRegions(channels[c], contours, mser_bboxes);
//cout << " OpenCV MSER found " << contours.size() << " regions in " << ((double)getTickCount() - t_mser0)/getTickFrequency() << " s." << endl;
t_mser += ((double)getTickCount() - t_mser0) / getTickFrequency();
/* Extract simple features for each region */
double t_feat0 = (double)getTickCount();
vector<Region> regions;
Mat mask = Mat::zeros(grey.size(), CV_8UC1);
int max_stroke = 0;
for (int i=contours.size()-1; i>=0; i--)
{
Region region;
region.pixels_.push_back(Point(0,0)); //cannot swap an empty vector
region.pixels_.swap(contours[i]);
region.bbox_ = mser_bboxes[i];
region.extract_features(lab_img, grey, gradient_magnitude, mask, conf_cues);
max_stroke = max(max_stroke, region.stroke_mean_);
regions.push_back(region);
}
t_feat += ((double)getTickCount() - t_feat0) / getTickFrequency();
unsigned int N = regions.size();
if (N<3) continue;
int dim = 3;
t_float *data = (t_float*)malloc(dim*N * sizeof(t_float));
/* Single Linkage Clustering for each individual cue */
for (int cue=0; cue<5; cue++)
{
if (!conf_cues[cue]) continue;
int count = 0;
for (int i=0; i<regions.size(); i++)
{
data[count] = (t_float)(regions.at(i).bbox_.x+regions.at(i).bbox_.width/2)/channels[c].cols*x_coord_mult;
data[count+1] = (t_float)(regions.at(i).bbox_.y+regions.at(i).bbox_.height/2)/channels[c].rows;
switch(cue)
{
case 0:
data[count+2] = (t_float)max(regions.at(i).bbox_.height, regions.at(i).bbox_.width)/max(channels[c].rows,channels[c].cols);
break;
case 1:
data[count+2] = (t_float)regions.at(i).intensity_mean_/255;
break;
case 2:
data[count+2] = (t_float)regions.at(i).boundary_intensity_mean_/255;
break;
case 3:
data[count+2] = (t_float)regions.at(i).gradient_mean_/255;
break;
case 4:
data[count+2] = (t_float)regions.at(i).stroke_mean_/max_stroke;
break;
}
count = count+dim;
}
double t_clustering0 = (double)getTickCount();
HierarchicalClustering h_clustering(regions);
vector<HCluster> dendrogram;
h_clustering(data, N, dim, (unsigned char)0, (unsigned char)3, dendrogram, x_coord_mult, channels[c].size());
nodes_total += dendrogram.size();
t_clustering += ((double)getTickCount() - t_clustering0) / getTickFrequency();
int ml = 1; // a multiplier to update regions sizes for smaller pyramid lvls
if (c>=num_channels) ml=2;
if (c>=2*num_channels) ml=4;
//CNN evaluation of proposals
double t_cnn0 = (double)getTickCount();
int node_idx=0;
while (node_idx < dendrogram.size())
{
vector<Mat> batch;
vector<int> batch_node_indexes;
while ((batch.size() < batch_size) && (node_idx < dendrogram.size()))
{
if (dendrogram[node_idx].inherit_cnn_probability > 0)
{
nodes_rejected_by_inheritance++;
node_idx++;
continue;
}
if (dendrogram[node_idx].probability < weak_classifier_threshold)
{
dendrogram[node_idx].cnn_probability = 0;
nodes_rejected_by_weak_classifier++;
node_idx++;
continue;
}
Rect proposal_roi = Rect(dendrogram[node_idx].rect.x*ml,
dendrogram[node_idx].rect.y*ml,
dendrogram[node_idx].rect.width*ml,
dendrogram[node_idx].rect.height*ml);
proposal_roi = (proposal_roi + Size(10,10)) - Point(5,5); // add a bit of space in the border
proposal_roi = proposal_roi & Rect(0,0,src_grey.cols,src_grey.rows);
dendrogram[node_idx].rect = proposal_roi;
// check if we already have a result for this bounding box in the hash table
stringstream sstr_key;
sstr_key << proposal_roi.x << "x" << proposal_roi.y << "x"
<< proposal_roi.width << "x" << proposal_roi.height;
if (pmap.count(sstr_key.str()) > 0)
{
// TODO maintain a list of bbox correspondences between dendrograms so we can build the heterarchy
Prediction p = pmap[sstr_key.str()];
dendrogram[node_idx].cnn_probability = p.second;
dendrogram[node_idx].cnn_recognition = p.first;
nodes_rejected_by_hash++;
node_idx++;
continue;
}
/* we apply here the holistic word recognition CNN to each proposal */
Mat proposal;
resize(src_grey(proposal_roi),proposal,classifier.getInputSize());
// image normalization as in Jaderberg etal.
Scalar mean,std;
proposal.convertTo(proposal, CV_32FC1);
meanStdDev( proposal, mean, std );
proposal = (proposal - mean[0]) / ((std[0] + 0.0001) /128);
batch.push_back(proposal);
batch_node_indexes.push_back(node_idx);
node_idx++;
}
if (batch.empty()) break;
nodes_evaluated += batch.size();
//cout << " Resize and normalization time (batch) " << (getTickCount() - e1)/ getTickFrequency() << endl;
//e1 = getTickCount();
std::vector<Prediction> predictions = classifier.Classify(batch);
//cout << " CNN time (batch) " << (getTickCount() - e1)/ getTickFrequency() << endl;
for (int ib=0; ib<predictions.size(); ib++)
{
Prediction p = predictions[ib];
dendrogram[batch_node_indexes[ib]].cnn_probability = p.second;
dendrogram[batch_node_indexes[ib]].cnn_recognition = p.first;
Rect proposal_roi = dendrogram[batch_node_indexes[ib]].rect;
// TODO when in pyr lvls the bbox may be not exactly the same but we must be able to find it
// a possible solution would be to insert the same value with a range of different keys
// that span along the near vicinity of the bbox, e.g. +/- 5 pixels
stringstream sstr_key;
sstr_key << proposal_roi.x << "x" << proposal_roi.y << "x"
<< proposal_roi.width << "x" << proposal_roi.height;
pmap[sstr_key.str()] = p;
//visualize only the best recognitions
if ((p.second > cnn_classifier_threshold) && (p.first.size() >= min_word_lenght))
{
//rectangle(src, proposal_roi.tl(), proposal_roi.br(), Scalar(0,0,255));
cout << "(" << batch_node_indexes[ib] << ") " << proposal_roi
<< std::fixed << std::setprecision(4)
<< dendrogram[batch_node_indexes[ib]].probability << " "
<< p.second << " "
<< dendrogram[batch_node_indexes[ib]].nfa << " "
<< p.first << endl;
//imshow("",src_grey(proposal_roi));
//waitKey(-1);
}
//visualize good proposals
if (VDEBUG)
{
for (size_t vj=0; vj<gt_words.size(); vj++)
{
float I_area = (float)(proposal_roi & gt_rects[vj]).area();
float U_area = (float)(proposal_roi.area() + gt_rects[vj].area() - I_area);
float IoU = I_area / U_area;
if (IoU >=0.5)
{
rectangle(src_vis, proposal_roi.tl(), proposal_roi.br(), Scalar(0,255,255));
cout << "(" << batch_node_indexes[ib] << ") " << proposal_roi
<< std::fixed << std::setprecision(4)
<< dendrogram[batch_node_indexes[ib]].probability << " "
<< p.second << " "
<< dendrogram[batch_node_indexes[ib]].nfa << " "
<< p.first << endl;
break;
}
}
}
}
} // end while to eval all nodes in one dendrogram
t_cnn += ((double)getTickCount() - t_cnn0) / getTickFrequency();
// here apply a miximallity criteria to the dendrogram
double t_sr0 = (double)getTickCount();
StoppingRule sr;
vector<int> maxIdxs;
switch (lexicon)
{
case 0:
sr( dendrogram, maxIdxs, lex50, min_word_lenght, weak_classifier_threshold, cnn_classifier_threshold, true );
break;
case 1:
sr( dendrogram, maxIdxs, full_lex, min_word_lenght, weak_classifier_threshold, cnn_classifier_threshold, true );
break;
default:
sr( dendrogram, maxIdxs, empty_lex, min_word_lenght, weak_classifier_threshold, cnn_classifier_threshold, true );
}
t_sr += ((double)getTickCount() - t_sr0)/ getTickFrequency();
//accumulate Max clusters in the global list max_clusters for nms ... Optionally visualize
for (size_t ib=0; ib<maxIdxs.size(); ib++)
{
if ( (dendrogram[maxIdxs[ib]].cnn_probability > cnn_classifier_threshold)
&& (dendrogram[maxIdxs[ib]].cnn_recognition.size() >= min_word_lenght) )
{
max_clusters.push_back(dendrogram[maxIdxs[ib]]);
Rect proposal_roi = dendrogram[maxIdxs[ib]].rect;
//rectangle(src, proposal_roi.tl(), proposal_roi.br(), Scalar(0,255,0));
cout << KBOLD << KRED << " MAX (" << maxIdxs[ib] << ") "
<< proposal_roi
<< std::fixed << std::setprecision(4) << " "
<< dendrogram[maxIdxs[ib]].cnn_probability << " "
<< dendrogram[maxIdxs[ib]].nfa << " "
<< dendrogram[maxIdxs[ib]].cnn_recognition << KRST << endl;
// TODO NOTICE that small groups still may be selected as maximal ... but these have usually less a much smaller number of elements.
//cout << Mat(dendrogram[maxIdxs[ib]].childs).t() << endl;
//imshow("",src_grey(proposal_roi));
//waitKey(-1);
}
}
} // end for each similarity cue
free(data);
} // end for each channel
// TODO here do non-maximal suppression of detections in the different dendrograms
double t_nms0 = (double)getTickCount();
std::sort (max_clusters.begin(), max_clusters.end(), nmsHClusterSort);
for (size_t i=0; i<max_clusters.size(); i++)
{
for (size_t j=max_clusters.size()-1; j>i; j--)
{
float I_area = (float)(max_clusters[i].rect & max_clusters[j].rect).area();
// case :: small boxes with low probability inside bigger boxes with better recognition
// TODO here in img_200 you priorize "courthouse" ove ("court" and "house") !!
// case :: small boxes with large intersection with bigger boxes with better recognition
if ( (I_area > nms_I_threshold * max_clusters[j].rect.area()) &&
(max_clusters[i].cnn_probability >= max_clusters[j].cnn_probability) )
{
max_clusters.erase(max_clusters.begin()+j);
continue;
}
float U_area = (float)(max_clusters[i].rect.area() + max_clusters[j].rect.area() - I_area);
float IoU = I_area / U_area;
// case :: boxes with very large overlapping and same recognition string
if (IoU > nms_IoU_threshold)
{
if (max_clusters[i].cnn_probability >= max_clusters[j].cnn_probability)
{
max_clusters.erase(max_clusters.begin()+j);
continue;
}
else
{
max_clusters.erase(max_clusters.begin()+i);
i--;
break;
}
}
}
}
t_nms += ((double)getTickCount() - t_nms0)/ getTickFrequency();
for (size_t i=0; i<max_clusters.size(); i++)
{
Rect proposal_roi = max_clusters[i].rect;
//rectangle(src, proposal_roi.tl(), proposal_roi.br(), Scalar(0,255,0), 2);
cout << KBOLD << KGRN << " FINAL ("
<< proposal_roi
<< std::fixed << std::setprecision(4) << " "
<< max_clusters[i].cnn_probability << " "
<< max_clusters[i].nfa << " "
<< max_clusters[i].cnn_recognition << KRST << endl;
}
cout << " Total Nodes " << nodes_total << endl;
cout << " Nodes evaluated " << nodes_evaluated << endl;
cout << " Nodes inherited " << nodes_rejected_by_inheritance << endl;
cout << " Nodes filtered " << nodes_rejected_by_weak_classifier << endl;
cout << " Nodes hashed " << nodes_rejected_by_hash << endl << endl;
cout << " Time loading model " << t_cnn_load << " s." << endl;
cout << " Time full algorithm " << ((double)getTickCount()-t_algorithm_0)/ getTickFrequency() << " s." << endl;
cout << " time mser " << t_mser << " s." << endl;
cout << " time reg feat " << t_feat << " s." << endl;
cout << " time clustering " << t_clustering << " s." << endl;
cout << " time cnn " << t_cnn << " s." << endl;
cout << " time sr " << t_sr << " s." << endl;
cout << " time nms " << t_nms << " s." << endl;
///// END loopable code (x image)
for (size_t i=0; i<max_clusters.size(); i++)
{
bool matched = false;
for (size_t j=0; j<gt_words.size(); j++)
{
if (max_clusters[i].cnn_recognition != gt_words[j]) continue;
float I_area = (float)(max_clusters[i].rect & gt_rects[j]).area();
float U_area = (float)(max_clusters[i].rect.area() + gt_rects[j].area() - I_area);
float IoU = I_area / U_area;
if (IoU >=0.5)
{
im_correct++;
gt_words.erase(gt_words.begin()+j);
gt_rects.erase(gt_rects.begin()+j);
matched = true;
if (VDEBUG)
rectangle(src, max_clusters[i].rect.tl(), max_clusters[i].rect.br(),
Scalar(0,255,0), 2);
break;
}
}
if (!matched)
{
im_err++;
if (VDEBUG)
rectangle(src, max_clusters[i].rect.tl(), max_clusters[i].rect.br(),
Scalar(0,0,255), 2);
}
}
im_misses += gt_words.size(); //false negatives
if (VDEBUG)
{
for (size_t i=0; i<gt_words.size(); i++)
rectangle(src, gt_rects[i].tl(), gt_rects[i].br(), Scalar(255,0,0), 2);
}
correct += im_correct;
err += im_err;
misses += im_misses;
cout << " RES True Positives " << correct << endl;
cout << " RES False Positives " << err << endl;
cout << " RES False Negatives " << misses << endl;
float p = (float)correct / (correct+err);
float r = (float)correct / (correct+misses);
cout << " RES precision = " << p << endl;
cout << " RES recall = " << r << endl;
cout << " RES f-score = " << (2*p*r) / (p+r) << endl;
outfile << " RES True Positives " << correct << endl;
outfile << " RES False Positives " << err << endl;
outfile << " RES False Negatives " << misses << endl;
outfile << " RES precision = " << p << endl;
outfile << " RES recall = " << r << endl;
outfile << " RES f-score = " << (2*p*r) / (p+r) << endl;
GTroot = GTroot->NextSibling("image");
if (VDEBUG)
{
cout << endl << endl;
cout << " IMAGE True Positives " << im_correct << endl;
cout << " IMAGE False Positives " << im_err << endl;
cout << " IMAGE False Negatives " << im_misses << endl;
if ( (src.cols > 1024) || (src.rows > 768) )
resize(src,src,Size(src.cols/2,src.rows/2));
imshow(GTimagename.c_str(),src);
imshow("proposals",src_vis);
waitKey(-1);
destroyAllWindows();
}
} //end foreach image
outfile.close();
}