-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathdemo.py
39 lines (32 loc) · 1.15 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from __future__ import division, print_function, absolute_import
import tflearn
import speech_data
import tensorflow as tf
learning_rate = 0.0001
training_iters = 300000 # steps
batch_size = 64
width = 20 # mfcc features
height = 80 # (max) length of utterance
classes = 10 # digits
batch = word_batch = speech_data.mfcc_batch_generator(batch_size)
X, Y = next(batch)
trainX, trainY = X, Y
testX, testY = X, Y #overfit for now
# Network building
net = tflearn.input_data([None, width, height])
net = tflearn.lstm(net, 128, dropout=0.8)
net = tflearn.fully_connected(net, classes, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=learning_rate, loss='categorical_crossentropy')
# Training
### add this "fix" for tensorflow version errors
col = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
for x in col:
tf.add_to_collection(tf.GraphKeys.VARIABLES, x )
model = tflearn.DNN(net, tensorboard_verbose=0)
while 1: #training_iters
model.fit(trainX, trainY, n_epoch=10, validation_set=(testX, testY), show_metric=True,
batch_size=batch_size)
_y=model.predict(X)
model.save("tflearn.lstm.model")
print (_y)
print (y)