forked from kuaitoukid/SoftmaxWithLoss-OHEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
softmax_loss_layer.cpp
238 lines (225 loc) · 8.82 KB
/
softmax_loss_layer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include <algorithm>
#include <cfloat>
#include <vector>
#include <cmath>
#include "caffe/layers/softmax_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::LayerSetUp(bottom, top);
LayerParameter softmax_param(this->layer_param_);
softmax_param.set_type("Softmax");
softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
has_ignore_label_ =
this->layer_param_.loss_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.loss_param().ignore_label();
}
if (!this->layer_param_.loss_param().has_normalization() &&
this->layer_param_.loss_param().has_normalize()) {
normalization_ = this->layer_param_.loss_param().normalize() ?
LossParameter_NormalizationMode_VALID :
LossParameter_NormalizationMode_BATCH_SIZE;
} else {
normalization_ = this->layer_param_.loss_param().normalization();
}
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Reshape(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
LossLayer<Dtype>::Reshape(bottom, top);
softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
softmax_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
outer_num_ = bottom[0]->count(0, softmax_axis_);
inner_num_ = bottom[0]->count(softmax_axis_ + 1);
CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
<< "Number of labels must match number of predictions; "
<< "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
<< "label count (number of labels) must be N*H*W, "
<< "with integer values in {0, 1, ..., C-1}.";
use_hard_mining_ = this->layer_param_.softmax_with_loss_param().use_hard_mining();
batch_size_ = this->layer_param_.softmax_with_loss_param().batch_size();
CHECK_GT(batch_size_, 0);
int temp_size = inner_num_ * outer_num_;
batch_size_ = std::min(batch_size_, temp_size);
Dtype hard_ratio = this->layer_param_.softmax_with_loss_param().hard_ratio();
CHECK(hard_ratio >= 0 && hard_ratio <= 1);
hard_size_ = round(batch_size_ * hard_ratio);
// for (int i = 0; i < batch_size_; i ++) {
// selected_indexes_.push_back(i);
// }
// for (int i = 0; i < temp_size; i ++) {
// losses_.push_back(std::make_pair(i, 0));
// }
// CHECK(false) << inner_num_ << "," << outer_num_;
if (top.size() >= 2) {
// softmax output
top[1]->ReshapeLike(*bottom[0]);
}
}
template <typename Dtype>
Dtype SoftmaxWithLossLayer<Dtype>::get_normalizer(
LossParameter_NormalizationMode normalization_mode, int valid_count) {
Dtype normalizer;
switch (normalization_mode) {
case LossParameter_NormalizationMode_FULL:
normalizer = Dtype(outer_num_ * inner_num_);
break;
case LossParameter_NormalizationMode_VALID:
if (valid_count == -1) {
normalizer = Dtype(outer_num_ * inner_num_);
} else {
normalizer = Dtype(valid_count);
}
break;
case LossParameter_NormalizationMode_BATCH_SIZE:
normalizer = Dtype(outer_num_);
break;
case LossParameter_NormalizationMode_NONE:
normalizer = Dtype(1);
break;
default:
LOG(FATAL) << "Unknown normalization mode: "
<< LossParameter_NormalizationMode_Name(normalization_mode);
}
// Some users will have no labels for some examples in order to 'turn off' a
// particular loss in a multi-task setup. The max prevents NaNs in that case.
return std::max(Dtype(1.0), normalizer);
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
// The forward pass computes the softmax prob values.
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
const Dtype* prob_data = prob_.cpu_data();
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
Dtype loss = 0;
losses_.clear();
selected_indexes_.clear();
ignored_indexes_.clear();
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
losses_.push_back(std::make_pair(j + i * inner_num_, 0));
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, prob_.shape(softmax_axis_));
losses_.push_back(std::make_pair(j + i * inner_num_,
float(-log(std::max(prob_data[i * dim + label_value * inner_num_ + j],
Dtype(FLT_MIN))))));
loss += losses_[j + i * inner_num_].second;
++count;
}
}
if (use_hard_mining_) {
if (hard_size_ > 0) {
top[0]->mutable_cpu_data()[0] = 0;
// std::sort(losses_.begin(), losses_.end(), comp);
for (int i = 0; i < hard_size_; i ++) {
// std::cout << losses_[i].second << std::endl;
selected_indexes_.push_back(losses_[i].first);
top[0]->mutable_cpu_data()[0] += losses_[i].second;
}
}
int norm_size = batch_size_ - hard_size_;
if (norm_size > 0) {
// random_shuffle(losses_.begin() + hard_size_, losses_.end());
for (int i = hard_size_; i < batch_size_; i ++) {
selected_indexes_.push_back(losses_[i].first);
top[0]->mutable_cpu_data()[0] += losses_[i].second;
}
}
int temp_size = inner_num_ * outer_num_;
for (int i = batch_size_; i < temp_size; i ++) {
ignored_indexes_.push_back(losses_[i].first);
}
top[0]->mutable_cpu_data()[0] /= batch_size_;
} else {
top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
}
if (top.size() == 2) { // hai you zhe zhong cao zuo ?
top[1]->ShareData(prob_);
}
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* prob_data = prob_.cpu_data();
caffe_copy(prob_.count(), prob_data, bottom_diff);
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
if (use_hard_mining_) {
//for (int i = 0; i < bottom[0]->count(); i ++) {
// std::cout << bottom_diff[i] << " ";
//}
//std::cout << "\n";
//std::cout << "###" << inner_num_ << "###" << outer_num_ << std::endl;
for (int sid = 0; sid < selected_indexes_.size(); sid ++) {
int j = selected_indexes_[sid] % inner_num_;
int i = selected_indexes_[sid] / inner_num_;
//std::cout << i << std::endl;
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
} else {
bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
++count;
}
}
for (int iid = 0; iid < ignored_indexes_.size(); iid ++) {
int j = ignored_indexes_[iid] % inner_num_;
int i = ignored_indexes_[iid] / inner_num_;
//std::cout << i << std::endl;
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
}
//std::cout << "#################" << std::endl;
} else {
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i * dim + c * inner_num_ + j] = 0;
}
} else {
bottom_diff[i * dim + label_value * inner_num_ + j] -= 1;
++count;
}
}
}
}
// Scale gradient
Dtype loss_weight = top[0]->cpu_diff()[0] /
get_normalizer(normalization_, count);
caffe_scal(prob_.count(), loss_weight, bottom_diff);
}
}
#ifdef CPU_ONLY
STUB_GPU(SoftmaxWithLossLayer);
#endif
INSTANTIATE_CLASS(SoftmaxWithLossLayer);
REGISTER_LAYER_CLASS(SoftmaxWithLoss);
} // namespace caffe