forked from HolidayXue/CodeSnap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_multilabel.cpp
209 lines (174 loc) · 6.22 KB
/
convert_multilabel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// This program converts a set of images to a lmdb/leveldb by storing them
// as Datum proto buffers.
// Usage:
// convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME
//
// where ROOTFOLDER is the root folder that holds all the images, and LISTFILE
// should be a list of files as well as their labels, in the format as
// subfolder1/file1.JPEG 7
// ....
//#ifdef MULTILABEL
#include <algorithm>
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include <utility>
#include <vector>
#include "boost/scoped_ptr.hpp"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/format.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/rng.hpp"
using namespace caffe; // NOLINT(build/namespaces)
using std::pair;
using boost::scoped_ptr;
DEFINE_bool(gray, false,
"When this option is on, treat images as grayscale ones");
DEFINE_bool(shuffle, false,
"Randomly shuffle the order of images and their labels");
DEFINE_string(backend, "lmdb",
"The backend {lmdb, leveldb} for storing the result");
DEFINE_int32(resize_width, 0, "Width images are resized to");
DEFINE_int32(resize_height, 0, "Height images are resized to");
DEFINE_bool(check_size, false,
"When this option is on, check that all the datum have the same size");
DEFINE_bool(encoded, false,
"When this option is on, the encoded image will be save in datum");
DEFINE_string(encode_type, "",
"Optional: What type should we encode the image as ('png','jpg',...).");
int main(int argc, char** argv) {
#ifdef USE_OPENCV
::google::InitGoogleLogging(argv[0]);
// Print output to stderr (while still logging)
FLAGS_alsologtostderr = 1;
#ifndef GFLAGS_GFLAGS_H_
namespace gflags = google;
#endif
gflags::SetUsageMessage("Convert a set of images to the leveldb/lmdb\n"
"format used as input for Caffe.\n"
"Usage:\n"
" convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME\n"
"The ImageNet dataset for the training demo is at\n"
" http://www.image-net.org/download-images\n");
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (argc < 6) {
gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/convert_imageset");
return 1;
}
const bool is_color = !FLAGS_gray;
const bool check_size = FLAGS_check_size;
const bool encoded = FLAGS_encoded;
const string encode_type = FLAGS_encode_type;
std::ifstream infile(argv[2]);
std::vector<std::pair<std::string, std::vector<float>> > lines;
std::string filename;
std::string label_count_string = argv[5];
int label_count = std::atoi(label_count_string.c_str());
std::vector<float> label(label_count);
while (infile >> filename)
{
for (int i = 0; i < label_count;i++)
{
infile >> label[i];
}
lines.push_back(std::make_pair(filename, label));
}
if (FLAGS_shuffle) {
// randomly shuffle data
LOG(INFO) << "Shuffling data";
shuffle(lines.begin(), lines.end());
}
LOG(INFO) << "A total of " << lines.size() << " images.";
if (encode_type.size() && !encoded)
LOG(INFO) << "encode_type specified, assuming encoded=true.";
int resize_height = std::max<int>(0, FLAGS_resize_height);
int resize_width = std::max<int>(0, FLAGS_resize_width);
// Create new DB
scoped_ptr<db::DB> db_image(db::GetDB(FLAGS_backend));
scoped_ptr<db::DB> db_label(db::GetDB(FLAGS_backend));
db_image->Open(argv[3], db::NEW);
db_label->Open(argv[4], db::NEW);
scoped_ptr<db::Transaction> txn_image(db_image->NewTransaction());
scoped_ptr<db::Transaction> txn_label(db_label->NewTransaction());
// Storing to db
std::string root_folder(argv[1]);
Datum datum_label;
Datum datum_image;
int count = 0;
int data_size_label = 0;
int data_size_image = 0;
bool data_size_initialized = false;
for (int line_id = 0; line_id < lines.size(); ++line_id) {
bool status;
std::string enc = encode_type;
if (encoded && !enc.size()) {
// Guess the encoding type from the file name
string fn = lines[line_id].first;
size_t p = fn.rfind('.');
if (p == fn.npos)
LOG(WARNING) << "Failed to guess the encoding of '" << fn << "'";
enc = fn.substr(p);
std::transform(enc.begin(), enc.end(), enc.begin(), ::tolower);
}
status = ReadImageToDatum(root_folder + lines[line_id].first,
lines[line_id].second[0], resize_height, resize_width, is_color,
enc, &datum_image);
if (status == false) continue;
datum_label.set_height(1);
datum_label.set_width(1);
datum_label.set_channels(label_count);
int count_tmp = datum_label.float_data_size();
for (int index_label = 0; index_label < lines[line_id].second.size(); index_label++)
{
float tmp_float_value = lines[line_id].second[index_label];
datum_label.add_float_data(tmp_float_value);
}
if (check_size) {
if (!data_size_initialized) {
data_size_label = datum_label.channels() * datum_label.height() * datum_label.width();
data_size_image = datum_image.channels() * datum_image.height() * datum_image.width();
data_size_initialized = true;
}
else {
const std::string& data_label = datum_label.data();
CHECK_EQ(data_label.size(), data_size_label) << "Incorrect data field size "
<< data_label.size();
const std::string& data_image = datum_image.data();
CHECK_EQ(data_image.size(), data_size_image) << "Incorrect data field size "
<< data_image.size();
}
}
// sequential
string key_str_image = caffe::format_int(line_id, 8) + "_" + lines[line_id].first;
string key_str_label = caffe::format_int(line_id, 8) + "label_" + lines[line_id].first;
// Put in db
string out_label;
string out_image;
CHECK(datum_label.SerializeToString(&out_label));
CHECK(datum_image.SerializeToString(&out_image));
datum_label.clear_float_data();
txn_label->Put(key_str_label, out_label);
txn_image->Put(key_str_image, out_image);
if (++count % 1000 == 0) {
// Commit db
txn_image->Commit();
txn_image.reset(db_image->NewTransaction());
txn_label->Commit();
txn_label.reset(db_label->NewTransaction());
LOG(INFO) << "Processed " << count << " files.";
}
}
// write the last batch
if (count % 1000 != 0) {
txn_label->Commit();
txn_image->Commit();
LOG(INFO) << "Processed " << count << " files.";
}
#else
LOG(FATAL) << "This tool requires OpenCV; compile with USE_OPENCV.";
#endif // USE_OPENCV
return 0;
}
//#endif