forked from maximilianh/crisporPaper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotMismatchFraction.py
203 lines (178 loc) · 6.92 KB
/
plotMismatchFraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from annotateOffs import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
from os.path import isfile, join
import logging
#minFrac = 0.01
# an alternative version of this plot can be created by specifying the argument "supp"
doSupp = False
if len(sys.argv)>1 and sys.argv[1]=="supp":
global doSupp
doSupp = True
def countMms(string1, string2):
" count mismatches between two strings "
mmCount = 0
string1 = string1.upper()
string2 = string2.upper()
diffLogo = []
for pos in range(0, len(string1)):
if string1[pos]!=string2[pos]:
mmCount+=1
diffLogo.append("*")
else:
diffLogo.append(".")
return mmCount, "".join(diffLogo)
def readSiteCounts(crisporDir, guideNames):
" return a dict with mismatchCount -> number of genome matches from dir "
mmCounts = defaultdict(int)
for guideName in guideNames:
# special handling for Kim's two cell lines:
# use only the Hap1 data, skip the K562 data
# as they are identical
guideName = guideName.replace("/Hap1", "")
if "K562" in guideName:
continue
fname = join(crisporDir, guideName+".tsv")
if not isfile(fname):
logging.warn("Could not read %s -- YOU MUST ADD THIS FILE!" % fname)
continue
for line in open(fname):
if line.startswith("guideId"):
continue
fs = line.split("\t")
mm = int(fs[3])
mmCounts[mm]+=1
return mmCounts
def plotFractions(fractions, mmAllCount, minFrac, baseOutName, otCount):
""" create plot with read fractions for each mismatch count and total sites in genome from mmAllCount
fractions: mismatchCount -> list of (guideName, freq)
"""
outfname = baseOutName+".pdf"
# get the total OT count
totalCount = 0
maxMM = 7
guideNames = set()
for i in range(1, maxMM):
print i, fractions[i]
totalCount += len(fractions[i])
for guideName, frac in fractions.iteritems():
guideNames.add(guideName)
print "check: totalCount of all validated off-targets= ", totalCount
labels = []
xVals = defaultdict(list)
yVals = defaultdict(list)
for mmCount in range(maxMM, 0, -1):
otScores = fractions[mmCount]
count = len(otScores)
countPerc = (100.0*float(count)/totalCount)
#avgHitCount = mmAllCount[mmCount] / len(guideNames)
hitCount = mmAllCount[mmCount]
label = "%s mismatches: \n%d genome hits\n%d / %d offtargets (%0.1f %%)" % \
(mmCount, hitCount, count, totalCount, countPerc)
#labels.append(str(mmCount)+" mismatches: \n"+str(count)+" offtargets (%0.1f %%)" % countPerc)
labels.append(label)
for name, otScore in otScores:
study = name.split("_")[0]
xVals[study].append(mmCount)
yVals[study].append(otScore)
colors = ["green", "orange", "black", "indigo", "red", "grey", "black", "black", "blue", "orange"]
markers = ["o", "s", "v", ">", "<", "^", "+", "x", "o", "s"]
studyNames = []
studies = xVals.keys()
studies.sort(reverse=True)
i=0
figs= []
for study in studies:
sXVals = xVals[study]
xYVals = yVals[study]
sXVals = [x - 0.3 + (0.1)*i for x in sXVals]
sXVals, xYVals = xYVals, sXVals
# linewidth=0 makes circles disappear
edgecol = matplotlib.colors.ColorConverter().to_rgba(colors[i], alpha=0.5)
fig = plt.scatter(sXVals, xYVals, alpha=0.5, marker=markers[i], color=colors[i], s=25, edgecolor=edgecol)
figs.append(fig)
#study = study.split("/")[0]
studyNames.append(study)
i+=1
xLabels = ["%d%%" % int(100*x) for x in np.arange(0, 0.31, 0.05)]
print xLabels
plt.xticks(np.arange(0, 0.31, 0.05), xLabels)
plt.yticks(range(maxMM,0,-1), labels)
#plt.title("Off-target cleavage by number of mismatches")
#plt.ylim((0,0.30))
ax = plt.gca()
#for tic in ax.xaxis.get_major_ticks():
#tic.tick1On = tic.tick2On = False
ax.yaxis.set_tick_params(width=0)
if doSupp:
plt.xlim((0.00,0.10))
else:
plt.xlim((0.00,0.30))
plt.ylim((0.5,6.5))
for yGrid in range(1,6):
ax.axhline(y=float(yGrid)+0.58, ls=":", linewidth=0.2, color="black")
#plt.ylabel("Fraction of off-targets with indels")
label = "Modification frequency"
#if minFrac!=0.0:
#label += " > %0.2f%%" % (100*minFrac)
plt.xlabel(label)
plt.legend(reversed(figs),
reversed(studyNames),
scatterpoints=1,
loc='upper right',
ncol=3,
fontsize=10)
plt.tight_layout()
plt.savefig(outfname)
print "wrote %s" % outfname
outfname = outfname.replace("pdf", "png")
plt.savefig(outfname)
print "wrote %s" % outfname
plt.close()
def indexOfftargets(inRows, minFrac, targetSeqs):
" index offtargets by mismatchCount and return as dict mismatchCount -> (guideName, frequency) "
fractions = defaultdict(list)
datCount = 0
for row in inRows:
guideSeq = targetSeqs[row.name]
otSeq = row.seq
mmCount, diffLogo = countMms(guideSeq[:-3], otSeq[:-3])
if float(row.score)>=minFrac:
fractions[mmCount].append((row.name, float(row.score)))
datCount +=1
print "minimum frequency=%f: total off-targets %d" % (minFrac, datCount)
return fractions, datCount
def parseRawOfftargets(inFname, onlyGuides = None):
""" parse the raw list of off-targets, in the format of offtargets.tsv.
returns list of rows and a dict guideName -> guideSeq
"""
targetSeqs = {}
inRows = []
for row in iterTsvRows(inFname):
#if removeCellLine:
# by removing the prefix before /, treat Kim's two cell lines as one experiment
#study = row.name.split("_")[0].split("/")[0]
if onlyGuides:
if row.name not in onlyGuides:
continue
if row.type=="on-target":
targetSeqs[row.name] = row.seq
else:
inRows.append(row)
return inRows, targetSeqs
def main():
inFname = "out/offtargetsFilt.tsv"
onlyGuides = None
if doSupp:
inFname = "offtargets.tsv"
onlyGuides = ["Tsai_HEK293_sgRNA4", "Tsai_VEGFA_site2"]
inRows, targetSeqs = parseRawOfftargets(inFname, onlyGuides=onlyGuides)
siteCountsByMismatch = readSiteCounts("crisporOfftargets", targetSeqs)
fractions, otCount = indexOfftargets(inRows, 0.0, targetSeqs)
plotFractions(fractions, siteCountsByMismatch, 0.0, "out/mismatchFraction-all", otCount)
fractions, otCount = indexOfftargets(inRows, 0.01, targetSeqs)
plotFractions(fractions, siteCountsByMismatch, 0.01, "out/mismatchFraction-min1Perc", otCount)
fractions, otCount = indexOfftargets(inRows, 0.001, targetSeqs)
plotFractions(fractions, siteCountsByMismatch, 0.001, "out/mismatchFraction-min01Perc", otCount)
main()