diff --git a/docs/zh_cn/model_zoo.md b/docs/zh_cn/model_zoo.md
index 2f28a6856933a..c8126cb709998 100644
--- a/docs/zh_cn/model_zoo.md
+++ b/docs/zh_cn/model_zoo.md
@@ -18,297 +18,39 @@
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
|ResNet50|quant_aware| 76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |
-
-
-
-
-
-
- 分类模型Lite时延(ms) |
- armv7 |
- armv8 |
-
-
- 设备 |
- 模型类型 |
- 压缩策略 |
- Thread 1 |
- Thread 2 |
- Thread 4 |
- Thread 1 |
- Thread 2 |
- Thread 4 |
-
-
- 高通835 |
- MobileNetV1 |
- FP32 baseline |
- 96.1942 |
- 53.2058 |
- 32.4468 |
- 88.4955 |
- 47.95 |
- 27.5189 |
-
-
- quant_aware |
- 60.8186 |
- 32.1931 |
- 16.4275 |
- 56.4311 |
- 29.5446 |
- 15.1053 |
-
-
- quant_post |
- 60.5615 |
- 32.4016 |
- 16.6596 |
- 56.5266 |
- 29.7178 |
- 15.1459 |
-
-
- MobileNetV2 |
- FP32 baseline |
- 65.715 |
- 38.1346 |
- 25.155 |
- 61.3593 |
- 36.2038 |
- 22.849 |
-
-
- quant_aware |
- 48.3655 |
- 30.2021 |
- 21.9303 |
- 46.1487 |
- 27.3146 |
- 18.3053 |
-
-
- quant_post |
- 48.3495 |
- 30.3069 |
- 22.1506 |
- 45.8715 |
- 27.4105 |
- 18.2223 |
-
-
- ResNet50 |
- FP32 baseline |
- 526.811 |
- 319.6486 |
- 205.8345 |
- 506.1138 |
- 335.1584 |
- 214.8936 |
-
-
- quant_aware |
- 475.4538 |
- 256.8672 |
- 139.699 |
- 461.7344 |
- 247.9506 |
- 145.9847 |
-
-
- quant_post |
- 476.0507 |
- 256.5963 |
- 139.7266 |
- 461.9176 |
- 248.3795 |
- 149.353 |
-
-
- 高通855 |
- MobileNetV1 |
- FP32 baseline |
- 33.5086 |
- 19.5773 |
- 11.7534 |
- 31.3474 |
- 18.5382 |
- 10.0811 |
-
-
- quant_aware |
- 36.7067 |
- 21.628 |
- 11.0372 |
- 14.0238 |
- 8.199 |
- 4.2588 |
-
-
- quant_post |
- 37.0498 |
- 21.7081 |
- 11.0779 |
- 14.0947 |
- 8.1926 |
- 4.2934 |
-
-
- MobileNetV2 |
- FP32 baseline |
- 25.0396 |
- 15.2862 |
- 9.6609 |
- 22.909 |
- 14.1797 |
- 8.8325 |
-
-
- quant_aware |
- 28.1583 |
- 18.3317 |
- 11.8103 |
- 16.9158 |
- 11.1606 |
- 7.4148 |
-
-
- quant_post |
- 28.1631 |
- 18.3917 |
- 11.8333 |
- 16.9399 |
- 11.1772 |
- 7.4176 |
-
-
- ResNet50 |
- FP32 baseline |
- 185.3705 |
- 113.0825 |
- 87.0741 |
- 177.7367 |
- 110.0433 |
- 74.4114 |
-
-
- quant_aware |
- 327.6883 |
- 202.4536 |
- 106.243 |
- 243.5621 |
- 150.0542 |
- 78.4205 |
-
-
- quant_post |
- 328.2683 |
- 201.9937 |
- 106.744 |
- 242.6397 |
- 150.0338 |
- 79.8659 |
-
-
- 麒麟970 |
- MobileNetV1 |
- FP32 baseline |
- 101.2455 |
- 56.4053 |
- 35.6484 |
- 94.8985 |
- 51.7251 |
- 31.9511 |
-
-
- quant_aware |
- 62.5012 |
- 32.1863 |
- 16.6018 |
- 57.7477 |
- 29.2116 |
- 15.0703 |
-
-
- quant_post |
- 62.4412 |
- 32.2585 |
- 16.6215 |
- 57.825 |
- 29.2573 |
- 15.1206 |
-
-
- MobileNetV2 |
- FP32 baseline |
- 70.4176 |
- 42.0795 |
- 25.1939 |
- 68.9597 |
- 39.2145 |
- 22.6617 |
-
-
- quant_aware |
- 52.9961 |
- 31.5323 |
- 22.1447 |
- 49.4858 |
- 28.0856 |
- 18.7287 |
-
-
- quant_post |
- 53.0961 |
- 31.7987 |
- 21.8334 |
- 49.383 |
- 28.2358 |
- 18.3642 |
-
-
- ResNet50 |
- FP32 baseline |
- 586.8943 |
- 344.0858 |
- 228.2293 |
- 573.3344 |
- 351.4332 |
- 225.8006 |
-
-
- quant_aware |
- 488.361 |
- 260.1697 |
- 142.416 |
- 479.5668 |
- 249.8485 |
- 138.1742 |
-
-
- quant_post |
- 489.6188 |
- 258.3279 |
- 142.6063 |
- 480.0064 |
- 249.5339 |
- 138.5284 |
-
-
-
- |
- |
- |
- |
- |
- |
- |
- |
- |
-
-
-
+分类模型Lite时延(ms)
+
+| 设备 | 模型类型 | 压缩策略 | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
+| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
+| 高通835 | MobileNetV1 | FP32 baseline | 96.1942 | 53.2058 | 32.4468 | 88.4955 | 47.95 | 27.5189 |
+| 高通835 | MobileNetV1 | quant_aware | 60.8186 | 32.1931 | 16.4275 | 56.4311 | 29.5446 | 15.1053 |
+| 高通835 | MobileNetV1 | quant_post | 60.5615 | 32.4016 | 16.6596 | 56.5266 | 29.7178 | 15.1459 |
+| 高通835 | MobileNetV2 | FP32 baseline | 65.715 | 38.1346 | 25.155 | 61.3593 | 36.2038 | 22.849 |
+| 高通835 | MobileNetV2 | quant_aware | 48.3655 | 30.2021 | 21.9303 | 46.1487 | 27.3146 | 18.3053 |
+| 高通835 | MobileNetV2 | quant_post | 48.3495 | 30.3069 | 22.1506 | 45.8715 | 27.4105 | 18.2223 |
+| 高通835 | ResNet50 | FP32 baseline | 526.811 | 319.6486 | 205.8345 | 506.1138 | 335.1584 | 214.8936 |
+| 高通835 | ResNet50 | quant_aware | 475.4538 | 256.8672 | 139.699 | 461.7344 | 247.9506 | 145.9847 |
+| 高通835 | ResNet50 | quant_post | 476.0507 | 256.5963 | 139.7266 | 461.9176 | 248.3795 | 149.353 |
+| 高通855 | MobileNetV1 | FP32 baseline | 33.5086 | 19.5773 | 11.7534 | 31.3474 | 18.5382 | 10.0811 |
+| 高通855 | MobileNetV1 | quant_aware | 36.7067 | 21.628 | 11.0372 | 14.0238 | 8.199 | 4.2588 |
+| 高通855 | MobileNetV1 | quant_post | 37.0498 | 21.7081 | 11.0779 | 14.0947 | 8.1926 | 4.2934 |
+| 高通855 | MobileNetV2 | FP32 baseline | 25.0396 | 15.2862 | 9.6609 | 22.909 | 14.1797 | 8.8325 |
+| 高通855 | MobileNetV2 | quant_aware | 28.1583 | 18.3317 | 11.8103 | 16.9158 | 11.1606 | 7.4148 |
+| 高通855 | MobileNetV2 | quant_post | 28.1631 | 18.3917 | 11.8333 | 16.9399 | 11.1772 | 7.4176 |
+| 高通855 | ResNet50 | FP32 baseline | 185.3705 | 113.0825 | 87.0741 | 177.7367 | 110.0433 | 74.4114 |
+| 高通855 | ResNet50 | quant_aware | 327.6883 | 202.4536 | 106.243 | 243.5621 | 150.0542 | 78.4205 |
+| 高通855 | ResNet50 | quant_post | 328.2683 | 201.9937 | 106.744 | 242.6397 | 150.0338 | 79.8659 |
+| 麒麟970 | MobileNetV1 | FP32 baseline | 101.2455 | 56.4053 | 35.6484 | 94.8985 | 51.7251 | 31.9511 |
+| 麒麟970 | MobileNetV1 | quant_aware | 62.5012 | 32.1863 | 16.6018 | 57.7477 | 29.2116 | 15.0703 |
+| 麒麟970 | MobileNetV1 | quant_post | 62.4412 | 32.2585 | 16.6215 | 57.825 | 29.2573 | 15.1206 |
+| 麒麟970 | MobileNetV2 | FP32 baseline | 70.4176 | 42.0795 | 25.1939 | 68.9597 | 39.2145 | 22.6617 |
+| 麒麟970 | MobileNetV2 | quant_aware | 52.9961 | 31.5323 | 22.1447 | 49.4858 | 28.0856 | 18.7287 |
+| 麒麟970 | MobileNetV2 | quant_post | 53.0961 | 31.7987 | 21.8334 | 49.383 | 28.2358 | 18.3642 |
+| 麒麟970 | ResNet50 | FP32 baseline | 586.8943 | 344.0858 | 228.2293 | 573.3344 | 351.4332 | 225.8006 |
+| 麒麟970 | ResNet50 | quant_aware | 488.361 | 260.1697 | 142.416 | 479.5668 | 249.8485 | 138.1742 |
+| 麒麟970 | ResNet50 | quant_post | 489.6188 | 258.3279 | 142.6063 | 480.0064 | 249.5339 | 138.5284 |
+
+
@@ -430,216 +172,32 @@
| DeepLabv3+/MobileNetv2 | quant_post | 67.59 (-2.22) | 2.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) | 2.1 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |
-
-
-
-
-
-
-
-
- 图像分割模型Lite时延(ms),
- 输入尺寸769x769 |
- armv7 |
- armv8 |
-
-
- 设备 |
- 模型类型 |
- 压缩策略 |
- Thread 1 |
- Thread 2 |
- Thread 4 |
- Thread 1 |
- Thread 2 |
- Thread 4 |
-
-
- 高通835 |
- Deeplabv3- MobileNetV1 |
- FP32 baseline |
- 1227.9894 |
- 734.1922 |
- 527.9592 |
- 1109.96 |
- 699.3818 |
- 479.0818 |
-
-
- quant_aware |
- 848.6544 |
- 512.785 |
- 382.9915 |
- 752.3573 |
- 455.0901 |
- 307.8808 |
-
-
- quant_post |
- 840.2323 |
- 510.103 |
- 371.9315 |
- 748.9401 |
- 452.1745 |
- 309.2084 |
-
-
- Deeplabv3-MobileNetV2 |
- FP32 baseline |
- 1282.8126 |
- 793.2064 |
- 653.6538 |
- 1193.9908 |
- 737.1827 |
- 593.4522 |
-
-
- quant_aware |
- 976.0495 |
- 659.0541 |
- 513.4279 |
- 892.1468 |
- 582.9847 |
- 484.7512 |
-
-
- quant_post |
- 981.44 |
- 658.4969 |
- 538.6166 |
- 885.3273 |
- 586.1284 |
- 484.0018 |
-
-
- 高通855 |
- Deeplabv3-MobileNetV1 |
- FP32 baseline |
- 568.8748 |
- 339.8578 |
- 278.6316 |
- 420.6031 |
- 281.3197 |
- 217.5222 |
-
-
- quant_aware |
- 608.7578 |
- 347.2087 |
- 260.653 |
- 241.2394 |
- 177.3456 |
- 143.9178 |
-
-
- quant_post |
- 609.0142 |
- 347.3784 |
- 259.9825 |
- 239.4103 |
- 180.1894 |
- 139.9178 |
-
-
- Deeplabv3-MobileNetV2 |
- FP32 baseline |
- 639.4425 |
- 390.1851 |
- 322.7014 |
- 477.7667 |
- 339.7411 |
- 262.2847 |
-
-
- quant_aware |
- 703.7275 |
- 497.689 |
- 417.1296 |
- 394.3586 |
- 300.2503 |
- 239.9204 |
-
-
- quant_post |
- 705.7589 |
- 474.4076 |
- 427.2951 |
- 394.8352 |
- 297.4035 |
- 264.6724 |
-
-
- 麒麟970 |
- Deeplabv3-MobileNetV1 |
- FP32 baseline |
- 1682.1792 |
- 1437.9774 |
- 1181.0246 |
- 1261.6739 |
- 1068.6537 |
- 690.8225 |
-
-
- quant_aware |
- 1062.3394 |
- 1248.1014 |
- 878.3157 |
- 774.6356 |
- 710.6277 |
- 528.5376 |
-
-
- quant_post |
- 1109.1917 |
- 1339.6218 |
- 866.3587 |
- 771.5164 |
- 716.5255 |
- 500.6497 |
-
-
- Deeplabv3-MobileNetV2 |
- FP32 baseline |
- 1771.1301 |
- 1746.0569 |
- 1222.4805 |
- 1448.9739 |
- 1192.4491 |
- 760.606 |
-
-
- quant_aware |
- 1320.2905 |
- 921.4522 |
- 676.0732 |
- 1145.8801 |
- 821.5685 |
- 590.1713 |
-
-
- quant_post |
- 1320.386 |
- 918.5328 |
- 672.2481 |
- 1020.753 |
- 820.094 |
- 591.4114 |
-
-
-
- |
- |
- |
- |
- |
- |
- |
- |
- |
-
-
-
+图像分割模型Lite时延(ms), 输入尺寸769x769
+
+| 设备 | 模型类型 | 压缩策略 | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
+| ------- | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
+| 高通835 | Deeplabv3- MobileNetV1 | FP32 baseline | 1227.9894 | 734.1922 | 527.9592 | 1109.96 | 699.3818 | 479.0818 |
+| 高通835 | Deeplabv3- MobileNetV1 | quant_aware | 848.6544 | 512.785 | 382.9915 | 752.3573 | 455.0901 | 307.8808 |
+| 高通835 | Deeplabv3- MobileNetV1 | quant_post | 840.2323 | 510.103 | 371.9315 | 748.9401 | 452.1745 | 309.2084 |
+| 高通835 | Deeplabv3-MobileNetV2 | FP32 baseline | 1282.8126 | 793.2064 | 653.6538 | 1193.9908 | 737.1827 | 593.4522 |
+| 高通835 | Deeplabv3-MobileNetV2 | quant_aware | 976.0495 | 659.0541 | 513.4279 | 892.1468 | 582.9847 | 484.7512 |
+| 高通835 | Deeplabv3-MobileNetV2 | quant_post | 981.44 | 658.4969 | 538.6166 | 885.3273 | 586.1284 | 484.0018 |
+| 高通855 | Deeplabv3- MobileNetV1 | FP32 baseline | 568.8748 | 339.8578 | 278.6316 | 420.6031 | 281.3197 | 217.5222 |
+| 高通855 | Deeplabv3- MobileNetV1 | quant_aware | 608.7578 | 347.2087 | 260.653 | 241.2394 | 177.3456 | 143.9178 |
+| 高通855 | Deeplabv3- MobileNetV1 | quant_post | 609.0142 | 347.3784 | 259.9825 | 239.4103 | 180.1894 | 139.9178 |
+| 高通855 | Deeplabv3-MobileNetV2 | FP32 baseline | 639.4425 | 390.1851 | 322.7014 | 477.7667 | 339.7411 | 262.2847 |
+| 高通855 | Deeplabv3-MobileNetV2 | quant_aware | 703.7275 | 497.689 | 417.1296 | 394.3586 | 300.2503 | 239.9204 |
+| 高通855 | Deeplabv3-MobileNetV2 | quant_post | 705.7589 | 474.4076 | 427.2951 | 394.8352 | 297.4035 | 264.6724 |
+| 麒麟970 | Deeplabv3- MobileNetV1 | FP32 baseline | 1682.1792 | 1437.9774 | 1181.0246 | 1261.6739 | 1068.6537 | 690.8225 |
+| 麒麟970 | Deeplabv3- MobileNetV1 | quant_aware | 1062.3394 | 1248.1014 | 878.3157 | 774.6356 | 710.6277 | 528.5376 |
+| 麒麟970 | Deeplabv3- MobileNetV1 | quant_post | 1109.1917 | 1339.6218 | 866.3587 | 771.5164 | 716.5255 | 500.6497 |
+| 麒麟970 | Deeplabv3-MobileNetV2 | FP32 baseline | 1771.1301 | 1746.0569 | 1222.4805 | 1448.9739 | 1192.4491 | 760.606 |
+| 麒麟970 | Deeplabv3-MobileNetV2 | quant_aware | 1320.2905 | 921.4522 | 676.0732 | 1145.8801 | 821.5685 | 590.1713 |
+| 麒麟970 | Deeplabv3-MobileNetV2 | quant_post | 1320.386 | 918.5328 | 672.2481 | 1020.753 | 820.094 | 591.4114 |
+
+
+
+
### 3.2 剪裁