-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
61 lines (50 loc) · 2.35 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import logging
import os
import sys
import time
import numpy as np
def log_dir(exp_dir):
"""Make directory of log file and initialize logging module"""
if not os.path.exists(exp_dir):
os.makedirs(exp_dir)
log_format = '%(asctime)s %(filename)s:%(lineno)d %(funcName)s %(levelname)s | %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, force=True)
fh = logging.FileHandler(os.path.join(exp_dir, "log.txt"))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
def get_key_from_dict(d, value):
k = [k for k, v in d.items() if v == value]
return k
def reduce_mem_usage(df):
""" iterate through all the columns of a dataframe and modify the data type
to reduce memory usage.
"""
start_mem = df.memory_usage().sum() / 1024 ** 2
logging.info('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum() / 1024 ** 2
logging.info('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
logging.info('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df