-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy patheval.py
164 lines (139 loc) · 7.86 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
from copy import copy
from pathlib import Path
import numpy as np
from skimage.io import imsave
from tqdm import tqdm
from dataset.database import parse_database_name, get_database_split, get_ref_point_cloud, get_diameter, get_object_center
from estimator import name2estimator
from utils.base_utils import load_cfg, save_pickle, read_pickle, project_points, transformation_crop
from utils.database_utils import compute_normalized_view_correlation
from utils.draw_utils import draw_bbox, concat_images_list, draw_bbox_3d, pts_range_to_bbox_pts
from utils.pose_utils import compute_metrics_impl, scale_rotation_difference_from_cameras
def get_gt_info(que_pose, que_K, render_poses, render_Ks, object_center):
gt_corr = compute_normalized_view_correlation(que_pose[None], render_poses, object_center, False)
gt_ref_idx = np.argmax(gt_corr[0])
gt_scale_r2q, gt_angle_r2q = scale_rotation_difference_from_cameras(
render_poses[gt_ref_idx][None], que_pose[None], render_Ks[gt_ref_idx][None], que_K[None], object_center)
gt_scale_r2q, gt_angle_r2q = gt_scale_r2q[0], gt_angle_r2q[0]
gt_position = project_points(object_center[None], que_pose, que_K)[0][0]
size = 128
gt_bbox = np.concatenate([gt_position - size / 2 * gt_scale_r2q, np.full(2, size) * gt_scale_r2q])
return gt_position, gt_scale_r2q, gt_angle_r2q, gt_ref_idx, gt_bbox, gt_corr[0]
def visualize_intermediate_results(img, K, inter_results, ref_info, object_bbox_3d, object_center=None, pose_gt=None):
ref_imgs = ref_info['ref_imgs'] # an,rfn,h,w,3
if pose_gt is not None:
gt_position, gt_scale_r2q, gt_angle_r2q, gt_ref_idx, gt_bbox, gt_scores = \
get_gt_info(pose_gt, K, ref_info['poses'], ref_info['Ks'], object_center)
output_imgs = []
if 'det_scale_r2q' in inter_results and 'sel_angle_r2q' in inter_results:
# visualize detection
det_scale_r2q = inter_results['det_scale_r2q']
det_position = inter_results['det_position']
det_que_img = inter_results['det_que_img']
size = det_que_img.shape[0]
pr_bbox = np.concatenate([det_position - size / 2 * det_scale_r2q, np.full(2, size) * det_scale_r2q])
bbox_img = img
if pose_gt is not None: bbox_img = draw_bbox(bbox_img, gt_bbox, color=(0, 255, 0))
bbox_img = draw_bbox(bbox_img, pr_bbox, color=(0, 0, 255))
output_imgs.append(bbox_img)
# visualize selection
sel_angle_r2q = inter_results['sel_angle_r2q'] #
sel_scores = inter_results['sel_scores'] #
h, w, _ = det_que_img.shape
sel_img_rot, _ = transformation_crop(det_que_img, np.asarray([w / 2, h / 2], np.float32), 1.0, -sel_angle_r2q, h)
an = ref_imgs.shape[0]
sel_img = concat_images_list(det_que_img, sel_img_rot, *[ref_imgs[an // 2, score_idx] for score_idx in np.argsort(-sel_scores)[:5]], vert=True)
if pose_gt is not None:
sel_img_rot_gt, _ = transformation_crop(det_que_img, np.asarray([w/2, h/2], np.float32), 1.0, -gt_angle_r2q, h)
sel_img_gt = concat_images_list(det_que_img, sel_img_rot_gt, *[ref_imgs[an // 2, score_idx] for score_idx in np.argsort(-gt_scores)[:5]], vert=True)
sel_img = concat_images_list(sel_img, sel_img_gt)
output_imgs.append(sel_img)
# visualize refinements
refine_poses = inter_results['refine_poses']
refine_imgs = []
for k in range(1,len(refine_poses)):
pose_in, pose_out = refine_poses[k-1], refine_poses[k]
bbox_pts_in, _ = project_points(object_bbox_3d, pose_in, K)
bbox_pts_out, _ = project_points(object_bbox_3d, pose_out, K)
bbox_img = draw_bbox_3d(img, bbox_pts_in, (255, 0, 0))
if pose_gt is not None:
bbox_pts_gt, _ = project_points(object_bbox_3d, pose_gt, K)
bbox_img = draw_bbox_3d(bbox_img, bbox_pts_gt, (0, 255, 0))
bbox_img = draw_bbox_3d(bbox_img, bbox_pts_out, (0, 0, 255))
refine_imgs.append(bbox_img)
output_imgs.append(concat_images_list(*refine_imgs))
return concat_images_list(*output_imgs)
def visualize_final_poses(img, K, object_bbox_3d, pose_pr, pose_gt=None):
bbox_pts_pr, _ = project_points(object_bbox_3d, pose_pr, K)
bbox_img = img
if pose_gt is not None:
bbox_pts_gt, _ = project_points(object_bbox_3d, pose_gt, K)
bbox_img = draw_bbox_3d(bbox_img, bbox_pts_gt)
bbox_img = draw_bbox_3d(bbox_img, bbox_pts_pr, (0, 0, 255))
return bbox_img
def main(args):
# estimator
cfg = load_cfg(args.cfg)
object_name = args.object_name
if object_name.startswith('linemod'):
ref_database_name = que_database_name = object_name
que_split = 'linemod_test'
elif object_name.startswith('genmop'):
ref_database_name = object_name+'-ref'
que_database_name = object_name+'-test'
que_split = 'all'
else:
raise NotImplementedError
ref_database = parse_database_name(ref_database_name)
estimator = name2estimator[cfg['type']](cfg)
ref_split = que_split if args.split_type is None else args.split_type
estimator.build(ref_database, split_type=ref_split)
que_database = parse_database_name(que_database_name)
_, que_ids = get_database_split(que_database, que_split)
object_pts = get_ref_point_cloud(ref_database)
object_center = get_object_center(ref_database)
object_bbox_3d = pts_range_to_bbox_pts(np.max(object_pts,0), np.min(object_pts,0))
est_name = estimator.cfg["name"] # + f'-{args.render_pose_name}'
est_name = est_name + args.split_type if args.split_type is not None else est_name
Path(f'data/eval/poses/{object_name}').mkdir(exist_ok=True,parents=True)
Path(f'data/vis_inter/{est_name}/{object_name}').mkdir(exist_ok=True,parents=True)
Path(f'data/vis_final/{est_name}/{object_name}').mkdir(exist_ok=True,parents=True)
if not args.eval_only:
pose_pr_list = []
for que_id in tqdm(que_ids):
# estimate pose
img = que_database.get_image(que_id)
K = que_database.get_K(que_id)
pose_pr, inter_results = estimator.predict(img, K)
pose_pr_list.append(pose_pr)
pose_gt = que_database.get_pose(que_id)
inter_img = visualize_intermediate_results(img, K, inter_results, estimator.ref_info, object_bbox_3d, object_center, pose_gt)
imsave(f'data/vis_inter/{est_name}/{object_name}/{que_id}-inter.jpg', inter_img)
final_img = visualize_final_poses(img, K, object_bbox_3d, pose_pr, pose_gt)
imsave(f'data/vis_final/{est_name}/{object_name}/{que_id}-bbox3d.jpg', final_img)
save_pickle(pose_pr_list, f'data/eval/poses/{object_name}/{est_name}.pkl')
else:
pose_pr_list = read_pickle(f'data/eval/poses/{object_name}/{est_name}.pkl')
# evaluation metrics
pose_gt_list = [que_database.get_pose(que_id) for que_id in que_ids]
que_Ks = [que_database.get_K(que_id) for que_id in que_ids]
object_diameter = get_diameter(que_database)
def get_eval_msg(pose_in_list,msg_in,scale=1.0):
msg_in = copy(msg_in)
results = compute_metrics_impl(object_pts, object_diameter, pose_gt_list, pose_in_list, que_Ks, scale, symmetric=args.symmetric)
for k, v in results.items(): msg_in+=f'{k} {v:.4f} '
return msg_in + '\n'
msg_pr = f'{object_name:10} {est_name:20} '
msg_pr=get_eval_msg(pose_pr_list, msg_pr)
print(msg_pr)
with open('data/performance.log','a') as f: f.write(msg_pr)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, required=True)
parser.add_argument('--object_name', type=str, default='warrior')
parser.add_argument('--eval_only', action='store_true', dest='eval_only', default=False)
parser.add_argument('--symmetric', action='store_true', dest='symmetric', default=False)
parser.add_argument('--split_type', type=str, default=None)
args = parser.parse_args()
main(args)