forked from feng257/LeinaoPAI
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_imagenetfolder.py
47 lines (38 loc) · 1.68 KB
/
dataset_imagenetfolder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import config
def make_imagenetfolder_loader(batch_size, num_workers=2, data_root=config.docker_imagenet_folder_root, train=True, val=True, pin_memory=True):
print("Building ImageNet Folder data loader with {} workers".format(num_workers))
ds = []
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if train:
train_dataset = torchvision.datasets.ImageFolder(root=(data_root+'train/'),
transform=transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,]),
target_transform=None,)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=batch_size, shuffle=True,
num_workers=num_workers, pin_memory=pin_memory)
ds.append(train_loader)
if val:
val_dataset = torchvision.datasets.ImageFolder(root=(data_root+'val/'),
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,]),
target_transform=None,)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=batch_size, shuffle=False,
num_workers=num_workers, pin_memory=pin_memory)
ds.append(val_loader)
ds = ds[0] if len(ds) == 1 else ds
return ds