Skip to content

Latest commit

 

History

History
170 lines (119 loc) · 4.37 KB

cpp-getting-started.md

File metadata and controls

170 lines (119 loc) · 4.37 KB

This section shows how to use PPLNN step by step with an example api_intro.cc. Refer to API Reference for more details.

For brevity, we assume that using namespace ppl::nn; is always used in the following code snippets.

Creating engines

In PPLNN, an Engine is a collection of op implementations running on specified devices such as CPU or NVIDIA GPU. For example, we can use the built-in x86::EngineFactory:

Engine* x86::EngineFactory::Create(const x86::EngineOptions&);

to create an engine which runs on x86-compatible CPUs:

x86::EngineOptions x86_options;
Engine* x86_engine = x86::EngineFactory::Create(x86_options);

Or use

cuda::EngineOptions cuda_options;
// ... set options
Engine* cuda::EngineFactory::Create(cuda_options);

to create an engine running on NVIDIA GPUs.

Registering Built-in Op Implementations(optional)

For example, use x86::RegisterBuiltinOpImpls() to load built-in op implementations. You may also need to call cuda::RegisterBuiltinOpImpls() for cuda engine, etc.

Creating an ONNX RuntimeBuilder

We can create an onnx::RuntimeBuilder with the following function:

onnx::RuntimeBuilder* onnx::RuntimeBuilderFactory::Create();

and load model from a file or a buffer:

ppl::common::RetCode LoadModel(const char* model_file);
ppl::common::RetCode LoadModel(const char* model_buf, uint64_t buf_len);

Then we set the resources used for processing:

struct Resources final {
    Engine** engines;
    uint32_t engine_num;
};

ppl::common::RetCode SetResources(const Resources&)

where the field engines of Resources is the x86_engine we created:

vector<Engine*> engine_ptrs;
engines.push_back(x86_engine);
resources.engines = engine_ptrs.data();

Note that the caller MUST guarantee that elements of engines are valid during the life cycle of the Runtime object.

PPLNN also supports multiple engines running in the same model. For example:

Engine* x86_engine = x86::EngineFactory::Create(x86::EngineOptions());
Engine* cuda_engine = cuda::EngineFactory::Create(cuda::EngineOptions());

vector<unique_ptr<Engine>> engines;
engines.emplace_back(unique_ptr<Engine>(x86_engine));
engines.emplace_back(unique_ptr<Engine>(cuda_engine));
// TODO add other engines

// use x86 and cuda engines to run this model
vector<Engine*> engine_ptrs = {x86_engine, cuda_engine};

Resources resources;
resources.engines = engine_ptrs.data();
resources.engine_num = engine_ptrs.size();
...

PPLNN will partition the model and assign different ops to these engines automatically.

Creating a Runtime

Before creating Runtime instances we need to do some preparations:

builder->Preprocess();

then use

Runtime* RuntimeBuilder::CreateRuntime();

to create a Runtime.

Filling Inputs

We can get graph inputs using the following functions of Runtime:

uint32_t Runtime::GetInputCount() const;
Tensor* Runtime::GetInputTensor(uint32_t idx) const;

and fill input data(using random data in this example):

for (uint32_t c = 0; c < runtime->GetInputCount(); ++c) {
    auto t = runtime->GetInputTensor(c);
    auto shape = t->GetShape();

    auto nr_element = shape->CalcBytesIncludingPadding() / sizeof(float);
    vector<float> buffer(nr_element);

    // fill random input data
    std::default_random_engine eng;
    std::uniform_real_distribution<float> dis(-1.0f, 1.0f);
    for (uint32_t i = 0; i < nr_element; ++i) {
        buffer[i] = dis(eng);
    }

    // our random data is treated as NDARRAY
    TensorShape src_desc = *t->GetShape();
    src_desc.SetDataFormat(DATAFORMAT_NDARRAY);

    // input tensors may require different data format
    auto status = t->ConvertFromHost(buffer.data(), src_desc);
    if (status != RC_SUCCESS) {
        // ......
    }
}

Evaluating the Compute Graph

use the Runtime::Run():

RetCode status = runtime->Run();

Getting Results

Iterates each output:

for (uint32_t c = 0; c < runtime->GetOutputCount(); ++c) {
    auto t = runtime->GetOutputTensor(c);

    const TensorShape* dst_desc = t->GetShape();
    dst_desc->SetDataFormat(DATAFORMAT_NDARRAY);
    auto bytes = dst_desc->CalcBytesIncludingPadding();
    vector<char> buffer(bytes);

    auto status = t->ConvertToHost((void*)buffer.data(), *dst_desc);
    // ......
}