-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathoption.py
37 lines (34 loc) · 2.31 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import argparse
import torch
class Options():
def __init__(self):
parser = argparse.ArgumentParser(description='PyTorch Segmentation')
# model and dataset
parser.add_argument('--n_class', type=int, default=7, help='segmentation classes')
parser.add_argument('--data_path', type=str, help='path to dataset where images store')
parser.add_argument('--model_path', type=str, help='path to store trained model files, no need to include task specific name')
parser.add_argument('--log_path', type=str, help='path to store tensorboard log files, no need to include task specific name')
parser.add_argument('--task_name', type=str, help='task name for naming saved model files and log files')
parser.add_argument('--mode', type=int, default=1, choices=[1, 2, 3], help='mode for training procedure. 1.fcn 2.fcn+1 3.fcn+2')
parser.add_argument('--dataset', type=int, default=2, choices=[1, 2], help='dataset for training procedure. 1.deep 2.IA')
parser.add_argument('--train', action='store_true', default=False, help='train')
parser.add_argument('--val', action='store_true', default=False, help='val')
parser.add_argument('--context10', type=int, default=2, help='context10')
parser.add_argument('--context15', type=int, default=3, help='context15')
parser.add_argument('--pre_path', type=str, default="", help='name for pre model path')
parser.add_argument('--glo_path_10', type=str, default="", help='name for medium model path')
parser.add_argument('--glo_path_15', type=str, default="", help='name for large model path')
parser.add_argument('--batch_size', type=int, default=6, help='batch size for origin global image (without downsampling)')
parser.add_argument('--sub_batch_size', type=int, default=6, help='batch size for using local image patches')
parser.add_argument('--size_p', type=int, default=508, help='size (in pixel) for cropped local image')
parser.add_argument('--size_g', type=int, default=508, help='size (in pixel) for resized global image')
# the parser
self.parser = parser
def parse(self):
args = self.parser.parse_args()
args.num_epochs = 100
args.start = 50
args.lens = 50
args.lr = 5e-5
return args