Skip to content

Latest commit

 

History

History
232 lines (177 loc) · 9.63 KB

2d_human_pose_demo.md

File metadata and controls

232 lines (177 loc) · 9.63 KB

2D Human Pose Demo


2D Human Pose Top-Down Image Demo

Using gt human bounding boxes as input

We provide a demo script to test a single image, given gt json file.

python demo/top_down_img_demo.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-root ${IMG_ROOT} --json-file ${JSON_FILE} \
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR}]

Examples:

python demo/top_down_img_demo.py \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results

To run demos on CPU:

python demo/top_down_img_demo.py \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --img-root tests/data/coco/ --json-file tests/data/coco/test_coco.json \
    --out-img-root vis_results \
    --device=cpu

Using mmdet for human bounding box detection

We provide a demo script to run mmdet for human detection, and mmpose for pose estimation.

Assume that you have already installed mmdet.

python demo/top_down_img_demo_with_mmdet.py \
    ${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-root ${IMG_ROOT} --img ${IMG_FILE} \
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}]

Examples:

python demo/top_down_img_demo_with_mmdet.py \
    demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
    https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --img-root tests/data/coco/ \
    --img 000000196141.jpg \
    --out-img-root vis_results

2D Human Pose Top-Down Video Demo

We also provide a video demo to illustrate the results.

Assume that you have already installed mmdet.

python demo/top_down_video_demo_with_mmdet.py \
    ${MMDET_CONFIG_FILE} ${MMDET_CHECKPOINT_FILE} \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --video-path ${VIDEO_PATH} \
    --out-video-root ${OUTPUT_VIDEO_ROOT} \
    [--show --device ${GPU_ID or CPU}] \
    [--bbox-thr ${BBOX_SCORE_THR} --kpt-thr ${KPT_SCORE_THR}] \
    [--use-multi-frames] [--online]

Note that

  1. ${VIDEO_PATH} can be the local path or URL link to video file.

  2. You can turn on the [--use-multi-frames] option to use multi frames for inference in the pose estimation stage.

  3. If the [--online] option is set to True, future frame information can not be used when using multi frames for inference in the pose estimation stage.

Examples:

For single-frame inference that do not rely on extra frames to get the final results of the current frame, try this:

python demo/top_down_video_demo_with_mmdet.py \
    demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
    https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w48_coco_256x192.py \
    https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth \
    --video-path demo/resources/demo.mp4 \
    --out-video-root vis_results

For multi-frame inference that rely on extra frames to get the final results of the current frame, try this:

python demo/top_down_video_demo_with_mmdet.py \
    demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py \
    https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    configs/body/2d_kpt_sview_rgb_vid/posewarper/posetrack18/hrnet_w48_posetrack18_384x288_posewarper_stage2.py \
    https://download.openmmlab.com/mmpose/top_down/posewarper/hrnet_w48_posetrack18_384x288_posewarper_stage2-4abf88db_20211130.pth  \
    --video-path https://user-images.githubusercontent.com/87690686/137440639-fb08603d-9a35-474e-b65f-46b5c06b68d6.mp4 \
    --out-video-root vis_results \
    --use-multi-frames --online

Using the full image as input

We also provide a video demo which does not require human bounding box detection. If the video is cropped with the human centered in the screen, we can simply use the full image as the model input.

python demo/top_down_video_demo_full_frame_without_det.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --video-path ${VIDEO_PATH} \
    --out-video-root ${OUTPUT_VIDEO_ROOT} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR}]

Note that ${VIDEO_PATH} can be the local path or URL link to video file.

Examples:

python demo/top_down_video_demo_full_frame_without_det.py \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/vipnas_res50_coco_256x192.py \
     https://download.openmmlab.com/mmpose/top_down/vipnas/vipnas_res50_coco_256x192-cc43b466_20210624.pth \
    --video-path https://user-images.githubusercontent.com/87690686/169808764-29e5678c-6762-4f43-8666-c3e60f94338f.mp4 \
    --show

We also provide a GPU version which can accelerate inference and save CPU workload. Assume that you have already installed ffmpegcv. If the --nvdecode option is turned on, the video reader can support NVIDIA-VIDEO-DECODING for some qualified Nvidia GPUs, which can further accelerate the inference.

python demo/top_down_video_demo_full_frame_without_det_gpuaccel.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --video-path ${VIDEO_PATH} \
    --out-video-root ${OUTPUT_VIDEO_ROOT} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR}] \
    [--nvdecode]

Examples:

python demo/top_down_video_demo_full_frame_without_det_gpuaccel.py \
    configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/vipnas_res50_coco_256x192.py \
     https://download.openmmlab.com/mmpose/top_down/vipnas/vipnas_res50_coco_256x192-cc43b466_20210624.pth \
    --video-path https://user-images.githubusercontent.com/87690686/169808764-29e5678c-6762-4f43-8666-c3e60f94338f.mp4 \
    --out-video-root vis_results

2D Human Pose Bottom-Up Image Demo

We provide a demo script to test a single image.

python demo/bottom_up_img_demo.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --img-path ${IMG_PATH}\
    --out-img-root ${OUTPUT_DIR} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR} --pose-nms-thr ${POSE_NMS_THR}]

Examples:

python demo/bottom_up_img_demo.py \
    configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py \
    https://download.openmmlab.com/mmpose/bottom_up/hrnet_w32_coco_512x512-bcb8c247_20200816.pth \
    --img-path tests/data/coco/ \
    --out-img-root vis_results

2D Human Pose Bottom-Up Video Demo

We also provide a video demo to illustrate the results.

python demo/bottom_up_video_demo.py \
    ${MMPOSE_CONFIG_FILE} ${MMPOSE_CHECKPOINT_FILE} \
    --video-path ${VIDEO_PATH} \
    --out-video-root ${OUTPUT_VIDEO_ROOT} \
    [--show --device ${GPU_ID or CPU}] \
    [--kpt-thr ${KPT_SCORE_THR} --pose-nms-thr ${POSE_NMS_THR}]

Note that ${VIDEO_PATH} can be the local path or URL link to video file.

Examples:

python demo/bottom_up_video_demo.py \
    configs/body/2d_kpt_sview_rgb_img/associative_embedding/coco/hrnet_w32_coco_512x512.py \
    https://download.openmmlab.com/mmpose/bottom_up/hrnet_w32_coco_512x512-bcb8c247_20200816.pth \
    --video-path demo/resources/demo.mp4 \
    --out-video-root vis_results

Speed Up Inference

Some tips to speed up MMPose inference:

For top-down models, try to edit the config file. For example,

  1. set flip_test=False in topdown-res50.
  2. set post_process='default' in topdown-res50.
  3. use faster human bounding box detector, see MMDetection.

For bottom-up models, try to edit the config file. For example,

  1. set flip_test=False in AE-res50.
  2. set adjust=False in AE-res50.
  3. set refine=False in AE-res50.
  4. use smaller input image size in AE-res50.