forked from Eelis/hybrid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bool_util.v
57 lines (45 loc) · 1.09 KB
/
bool_util.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
Require Export Bool.
Require Setoid.
Set Implicit Arguments.
Section beq.
Variable A : Type.
Variable beq : A -> A -> bool.
Variable beq_ok : forall x y, beq x y = true <-> x = y.
Lemma beq_refl : forall x, beq x x = true.
Proof.
intros. rewrite (beq_ok x x). reflexivity.
Qed.
End beq.
Lemma andb_intro : forall a b, a = true -> b = true -> a && b = true.
Proof.
intros. subst. reflexivity.
Qed.
Lemma andb_elim : forall a b, a && b = true -> a = true /\ b = true.
Proof.
destruct a; destruct b; intuition.
Qed.
Lemma band_discr : forall b1 b2,
b1 = true ->
b2 = true ->
~(b1 && b2 = false).
Proof.
intros. subst. discriminate.
Qed.
Lemma bool_case : forall b, {b = true} + {b = false}.
Proof.
destruct b; auto.
Qed.
Lemma not_false_true b : b = true -> b <> false.
Proof.
intros. destruct b; discriminate.
Qed.
Ltac band_discr :=
match goal with
| _: ?X && ?Y = false |- _ => apply (@band_discr X Y); trivial
end.
Ltac bool_solver :=
match goal with
| |- ?X && ?Y = true =>
eapply (proj2 (andb_true_iff _ _)); split; bool_solver
| _ => idtac
end.