Skip to content

Latest commit

 

History

History
108 lines (78 loc) · 3.23 KB

README.md

File metadata and controls

108 lines (78 loc) · 3.23 KB

Run AlphaFold2 step by step

AlphaFold2 (and AlphaFold-Multimer) running process is splited into four parts:

  1. Search homologous sequences and templates
  2. Run models 1-5 to produce the unrelaxed models
  3. Relax models
  4. Sort models by confidence score

Usage

  1. Install AlphaFold v2.2

  2. Install Python packages

    pip install -U scikit-learn
    pip install -U matplotlib
    pip install -U seaborn
  3. Download AlphaFold-StepByStep

    git clone https://github.com/lipan6461188/AlphaFold-StepByStep.git
    cd AlphaFold-StepByStep
    chmod +x *.py
    export PATH=$(pwd):$PATH
  4. Set config.ini

    [ALPHAFOLD2]
    alphafold_path = /path/to/alphafold-2.2.0
    
    [EXCUTABLE]
    jackhmmer_binary_path       = 
    hhblits_binary_path         = 
    hhsearch_binary_path        = 
    hmmsearch_binary_path       = 
    hmmbuild_binary_path        = 
    kalign_binary_path          = 
    
    [DATABASE]
    params_parent_dir           = /AF2_db
    uniref90_database_path      = /AF2_db/uniref90/uniref90.fasta
    mgnify_database_path        = /AF2_db/mgnify/mgy_clusters.fa
    template_mmcif_dir          = /AF2_db/pdb_mmcif/mmcif_files
    obsolete_pdbs_path          = /AF2_db/pdb_mmcif/obsolete.dat
    uniprot_database_path       = /AF2_db/uniprot/uniprot.fasta
    pdb_seqres_database_path    = /AF2_db/pdb_mmcif/pdb_seqres_old.txt
    uniclust30_database_path    = /AF2_db/uniclust30/UniRef30_2020_02
    bfd_database_path           = /AF2_db/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt
  5. Run AlphaFold-StepByStep

    Run the complete process:

    # AlphaFold-Multimer
    run_af_multimer.py examples/1ajy.fasta examples/1ajy
    # Add --skip_refine to skip the relax process
    
    # AlphaFold2
    run_af2.py examples/1ajy_A.fasta examples/1ajy_A

    Optional, you can run AlphaFold2 (and Multimer) step by step:

    # Step 1: Search homologous sequences and templates (Use CPU)
    run_af_multimer_step1.py examples/1ajy.fasta examples/1ajy
    
    # Step 2: Run models 1-5 to produce the unrelaxed models (Use GPU)
    export CUDA_VISIBLE_DEVICES="1" # which GPU card to use
    run_af_multimer_step2.py examples/1ajy/features.pkl.gz examples/1ajy
    
    # Step 3: Relax models (Use CPU)
    for idx in $(seq 1 5);
    do
    	run_af_multimer_step3.py \
          examples/1ajy/unrelaxed_model_${idx}_multimer.pdb \
          examples/1ajy/relaxed_model_${idx}_multimer.pdb
    done
    
    # Step 4: Sort and visualize (Use CPU)
    cd examples/1ajy
    run_af_multimer_step4.py result_model_1_multimer.pkl,result_model_2_multimer.pkl,result_model_3_multimer.pkl,result_model_4_multimer.pkl,result_model_5_multimer.pkl relaxed_model_1_multimer.pdb,relaxed_model_2_multimer.pdb,relaxed_model_3_multimer.pdb,relaxed_model_4_multimer.pdb,relaxed_model_5_multimer.pdb ./

Outputs

predicted_aligned_error

1.png

pLDDT

2.png

Protein structure

3.png

Visualize the pLDDT with command rangecolor bfactor, 50 #f08253 70 #fada4d 90 #7ec9ef 100 #1b57ce in UCSF Chimera.