-
Notifications
You must be signed in to change notification settings - Fork 29
/
few_shot.py
248 lines (186 loc) · 8.58 KB
/
few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python
# coding: utf-8
import os
import argparse
from pprint import pprint
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import models, datasets
import numpy as np
from tqdm import tqdm
from datasets import isic
from datasets import eurosat
from datasets import cropdiseases
from datasets import chestx
from datasets import few_shot_dataset
from datasets.dtd import DTD
from datasets.pets import Pets
from datasets.cars import Cars
from datasets.food import Food
from datasets.sun397 import SUN397
from datasets.voc2007 import VOC2007
from datasets.flowers import Flowers
from datasets.aircraft import Aircraft
from datasets.caltech101 import Caltech101
class FewShotTester():
def __init__(self, backbone, dataloader, n_way, n_support, n_query, iter_num, device):
self.backbone = backbone
self.protonet = ProtoNet(self.backbone)
self.dataloader = dataloader
self.n_way = n_way
self.n_support = n_support
self.n_query = n_query
self.iter_num = iter_num
self.device = device
def test(self):
loss, acc, std = self.evaluate(self.protonet, self.dataloader, self.n_support, self.n_query, self.iter_num)
print('Test Acc = %4.2f%% +- %4.2f%%' %(acc, 1.96 * std / np.sqrt(self.iter_num)))
return acc, std
def extract_episode(self, data, n_support, n_query):
# data: N x C x H x W
n_examples = data.size(1)
if n_query == -1:
n_query = n_examples - n_support
example_inds = torch.randperm(n_examples)[:(n_support+n_query)]
support_inds = example_inds[:n_support]
query_inds = example_inds[n_support:]
xs = data[:, support_inds]
xq = data[:, query_inds]
return {
'xs': xs.to(self.device),
'xq': xq.to(self.device)
}
def evaluate(self, model, data_loader, n_support, n_query, iter_num, desc=None):
model.eval()
loss_all = []
acc_all = []
if desc is not None:
data_loader = tqdm(data_loader, desc=desc)
with torch.no_grad():
for data, targets in tqdm(data_loader, desc=f'Few-shot test episodes'):
sample = self.extract_episode(data, n_support, n_query)
loss_val, acc_val = model.loss(sample)
loss_all.append(loss_val.item())
acc_all.append(acc_val.item() * 100.)
loss = np.mean(loss_all)
acc = np.mean(acc_all)
std = np.std(acc_all)
return loss, acc, std
# Model classes and functions
def euclidean_dist(x, y):
# x: N x D
# y: M x D
n = x.size(0)
m = y.size(0)
d = x.size(1)
assert d == y.size(1)
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
return torch.pow(x - y, 2).sum(2)
class Flatten(nn.Module):
def __init__(self):
super(Flatten, self).__init__()
def forward(self, x):
return x.view(x.size(0), -1)
class ProtoNet(nn.Module):
def __init__(self, encoder):
super(ProtoNet, self).__init__()
self.encoder = encoder
def loss(self, sample):
with torch.no_grad():
xs = Variable(sample['xs']) # support
xq = Variable(sample['xq']) # query
n_class = xs.size(0)
assert xq.size(0) == n_class
n_support = xs.size(1)
n_query = xq.size(1)
target_inds = torch.arange(0, n_class).view(n_class, 1, 1).expand(n_class, n_query, 1).long()
target_inds = Variable(target_inds, requires_grad=False)
if xq.is_cuda:
target_inds = target_inds.cuda()
x = torch.cat([xs.view(n_class * n_support, *xs.size()[2:]),
xq.view(n_class * n_query, *xq.size()[2:])], 0)
z = self.encoder.forward(x)
z_dim = z.size(-1)
z_proto = z[:n_class*n_support].view(n_class, n_support, z_dim).mean(1)
zq = z[n_class*n_support:]
dists = euclidean_dist(zq, z_proto)
log_p_y = F.log_softmax(-dists, dim=1).view(n_class, n_query, -1)
loss_val = -log_p_y.gather(2, target_inds).squeeze().view(-1).mean()
_, y_hat = log_p_y.max(2)
acc_val = torch.eq(y_hat, target_inds.squeeze()).float().mean()
return loss_val, acc_val
class ResNetBackbone(nn.Module):
def __init__(self, model_name):
super().__init__()
self.model_name = model_name
self.model = models.resnet50(pretrained=False)
del self.model.fc
state_dict = torch.load(os.path.join('models', self.model_name + '.pth'))
self.model.load_state_dict(state_dict)
self.model.train()
print("num parameters:", sum(p.numel() for p in self.model.parameters()))
def forward(self, x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
x = self.model.avgpool(x)
x = torch.flatten(x, 1)
return x
# name: {class, root, num_classes (not necessary here), metric}
FEW_SHOT_DATASETS = {
'cropdiseases': [cropdiseases, '../data/CropDiseases', None, 'accuracy'],
'eurosat': [eurosat, '../data/EuroSAT', None, 'accuracy'],
'isic': [isic, '../data/ISIC', None, 'accuracy'],
'chestx': [chestx, '../data/ChestX', None, 'accuracy'],
'aircraft': [Aircraft, '../data/Aircraft', 100, 'accuracy'],
'caltech101': [Caltech101, '../data/Caltech101', 102, 'accuracy'],
'cars': [Cars, '../data/Cars', 196, 'accuracy'],
'cifar10': [datasets.CIFAR10, '../data/CIFAR10', 10, 'accuracy'],
'cifar100': [datasets.CIFAR100, '../data/CIFAR100', 100, 'accuracy'],
'dtd': [DTD, '../data/DTD', 47, 'accuracy'],
'flowers': [Flowers, '../data/Flowers', 102, 'accuracy'],
'food': [Food, '../data/Food', 101, 'accuracy'],
'pets': [Pets, '../data/Pets', 37, 'accuracy'],
'sun397': [SUN397, '../data/SUN397', 397, 'accuracy'],
'voc2007': [VOC2007, '../data/VOC2007', 20, 'accuracy'],
}
# Main code
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluate pretrained self-supervised model on few-shot recognition.')
parser.add_argument('-m', '--model', type=str, default='deepcluster-v2',
help='name of the pretrained model to load and evaluate (deepcluster-v2 | supervised)')
parser.add_argument('-d', '--dataset', type=str, default='eurosat', help='name of the dataset to evaluate on')
parser.add_argument('-i', '--image-size', type=int, default=224, help='the size of the input images')
parser.add_argument('--n-way', type=int, default=5, help='the number of classes per episode (n-way) in few-shot evaluation')
parser.add_argument('--n-support', type=int, default=5, help='the number of images per class for fitting (n-support) in few-shot evaluation')
parser.add_argument('--n-query', type=int, default=15, help='the number of images per class for testing (n-query) in few-shot evaluation')
parser.add_argument('--iter-num', type=int, default=600, help='the number of testing episodes in few-shot evaluation')
parser.add_argument('-n', '--no-norm', action='store_true', default=False,
help='whether to turn off data normalisation (based on ImageNet values)')
parser.add_argument('--device', type=str, default='cuda', help='CUDA or CPU training (cuda | cpu)')
args = parser.parse_args()
args.norm = not args.no_norm
pprint(args)
# load dataset
dset, data_dir, num_classes, metric = FEW_SHOT_DATASETS[args.dataset]
if args.dataset in ['cropdiseases', 'eurosat', 'isic', 'chestx']:
datamgr = dset.SetDataManager(data_dir, args.image_size, n_episode=args.iter_num,
n_way=args.n_way, n_support=args.n_support, n_query=args.n_query)
else:
datamgr = few_shot_dataset.SetDataManager(dset, data_dir, num_classes, args.image_size, n_episode=args.iter_num,
n_way=args.n_way, n_support=args.n_support, n_query=args.n_query)
dataloader = datamgr.get_data_loader(aug=False, normalise=args.norm)
# load pretrained model
model = ResNetBackbone(args.model)
model = model.to(args.device)
# evaluate model on dataset by protonet few-shot-learning evaluation
tester = FewShotTester(model, dataloader, args.n_way, args.n_support, args.n_query, args.iter_num, args.device)
test_acc, test_std = tester.test()