-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
445 lines (323 loc) · 14.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
Copyright (c) 2021 TU Darmstadt
Author: Nikita Araslanov <[email protected]>
License: Apache License 2.0
"""
from __future__ import print_function
import os
import sys
import numpy as np
import time
import random
import setproctitle
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import *
from models import get_model
from base_trainer import BaseTrainer
from opts import get_arguments
from core.config import cfg, cfg_from_file, cfg_from_list
from utils.timer import Timer
from utils.stat_manager import StatManager
from utils.davis2017 import evaluate_semi
from labelprop.crw import CRW
from torch.utils.tensorboard import SummaryWriter
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
class Trainer(BaseTrainer):
def __init__(self, args, cfg):
super(Trainer, self).__init__(args, cfg)
# train loader for target domain
self.loader = get_dataloader(args, cfg, 'train')
# alias
self.denorm = self.loader.dataset.denorm
# val loaders for source and target domains
self.valloaders = get_dataloader(args, cfg, 'val')
# writers (only main)
self.writer_val = {}
for val_set in self.valloaders.keys():
logdir_val = os.path.join(args.logdir, val_set)
self.writer_val[val_set] = SummaryWriter(logdir_val)
# model
self.net = get_model(cfg, remove_layers=cfg.MODEL.REMOVE_LAYERS)
print("Train Net: ")
print(self.net)
# optimizer using different LR
net_params = self.net.parameter_groups(cfg.MODEL.LR, cfg.MODEL.WEIGHT_DECAY)
print("Optimising parameter groups: ")
for i, g in enumerate(net_params):
print("[{}]: # parameters: {}, lr = {:4.3e}".format(i, len(g["params"]), g["lr"]))
self.optim = self.get_optim(net_params, cfg.MODEL)
print("# of params: ", len(list(self.net.parameters())))
# LR scheduler
if cfg.MODEL.LR_SCHEDULER == "step":
self.scheduler = torch.optim.lr_scheduler.StepLR(self.optim, \
step_size=cfg.MODEL.LR_STEP, \
gamma=cfg.MODEL.LR_GAMMA)
elif cfg.MODEL.LR_SCHEDULER == "linear": # linear decay
def lr_lambda(epoch):
mult = 1 - epoch / (float(self.cfg.TRAIN.NUM_EPOCHS) - self.start_epoch)
mult = mult ** self.cfg.MODEL.LR_POWER
#print("Linear Scheduler: mult = {:4.3f}".format(mult))
return mult
self.scheduler = torch.optim.lr_scheduler.LambdaLR(self.optim, lr_lambda)
else:
self.scheduler = None
self.vis_batch = None
# using cuda
self.net.cuda()
self.crw = CRW(cfg.TEST)
# checkpoint management
self.checkpoint.create_model(self.net, self.optim)
if not args.resume is None:
self.start_epoch, self.best_score = self.checkpoint.load(args.resume, "cuda:0")
def step_seg(self, epoch, batch_src, key, temp=None, train=False, visualise=False, \
save_batch=False, writer=None, tag="train_src"):
frames, masks_gt, n_obj, seq_name = batch_src
# semi-supervised: select only the first
frames = frames.flatten(0,1)
masks_gt = masks_gt.flatten(0,1)
masks_gt = masks_gt[:, :n_obj.item()]
masks_ref = masks_gt.clone()
masks_ref[1:] *= 0
T = frames.shape[0]
fetch = {"res3": lambda x: x[0], \
"res4": lambda x: x[1], \
"key": lambda x: x[2]}
# number of iterations
bs = self.cfg.TRAIN.BATCH_SIZE
feats = []
t0 = time.time()
torch.cuda.empty_cache()
for t in range(0, T, bs):
# next frame
frames_batch = frames[t:t+bs].cuda()
# source forward pass
feats_ = self.net(frames_batch, embd_only=True)
feats.append(fetch[key](feats_).cpu())
feats = torch.cat(feats, 0)
print("Inference: {:4.3f}s".format(time.time() - t0))
sys.stdout.flush()
t0 = time.time()
outs = self.crw.forward(feats, masks_ref)
print("CRW propagation: {:4.3f}s".format(time.time() - t0))
sys.stdout.flush()
outs["masks_gt"] = masks_gt.argmax(1)
if visualise:
outs["frames"] = frames
self._visualise_seg(epoch, outs, writer, tag)
if save_batch:
# Saving batch for visualisation
# saving the batch for visualisation
self.save_vis_batch(tag, batch_src)
return outs
def step(self, epoch, batch_in, train=False, visualise=False, save_batch=False, writer=None, tag="train"):
frames1, frames2, affine1, affine2 = batch_in
assert frames1.size() == frames2.size(), "Frames shape mismatch"
# We could simply do
# images1 = frames1.flatten(0,1).cuda()
# images2 = frames2.flatten(0,1).cuda()
# Instead we pull the reference frame from the 2nd view
# to the first view so that the regularising branch is
# always in evaluation mode to save the GPU memory
B,T,C,H,W = frames1.shape
images1 = torch.cat((frames1, frames2[:, ::T]), 1)
images1 = images1.flatten(0,1).cuda()
images2 = frames2[:, 1:].flatten(0,1).cuda()
affine1 = affine1.flatten(0,1).cuda()
affine2 = affine2.flatten(0,1).cuda()
# source forward pass
losses, outs = self.net(images1, frames2=images2, T=T, \
affine=affine1, affine2=affine2, \
dbg=visualise)
if train:
self.optim.zero_grad()
losses["main"].backward()
self.optim.step()
if visualise:
self._visualise(epoch, outs, T, writer, tag)
if save_batch:
# Saving batch for visualisation
self.save_vis_batch(tag, batch_in)
# summarising the losses
# into python scalars
losses_ret = {}
for key, val in losses.items():
losses_ret[key] = val.mean().item()
return losses_ret, outs
def train_epoch(self, epoch):
stat = StatManager()
# adding stats for classes
timer = Timer("Epoch {}".format(epoch))
step = partial(self.step, train=True, visualise=False)
# training mode
self.net.train()
# for m in self.net.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.eval()
for i, batch in enumerate(self.loader):
save_batch = i == 0
#
# Forward pass
#
losses, _ = step(epoch, batch, save_batch=save_batch, tag="train")
for loss_key, loss_val in losses.items():
stat.update_stats(loss_key, loss_val)
# intermediate logging
if i % 10 == 0:
msg = "Loss [{:04d}]: ".format(i)
for loss_key, loss_val in losses.items():
msg += " {} {:.4f} | ".format(loss_key, loss_val)
msg += " | Im/Sec: {:.1f}".format(i * self.cfg.TRAIN.BATCH_SIZE / timer.get_stage_elapsed())
print(msg)
sys.stdout.flush()
for name, val in stat.items():
print("{}: {:4.3f}".format(name, val))
self.writer.add_scalar('all/{}'.format(name), val, epoch)
# plotting learning rate
for ii, l in enumerate(self.optim.param_groups):
print("Learning rate [{}]: {:4.3e}".format(ii, l['lr']))
self.writer.add_scalar('lr/enc_group_%02d' % ii, l['lr'], epoch)
# plotting moment distance
if stat.has_vals("lr_gamma"):
self.writer.add_scalar('hyper/gamma', stat.summarize_key("lr_gamma"), epoch)
if epoch % self.cfg.LOG.ITER_TRAIN == 0:
self.visualise_results(epoch, self.writer, "train", self.step)
def validation(self, epoch, writer, loader, tag=None, max_iter=None):
stat = StatManager()
if max_iter is None:
max_iter = len(loader)
# Fast test during the training
def eval_batch(batch):
loss, masks = self.step(epoch, batch, train=False, visualise=False)
for loss_key, loss_val in loss.items():
stat.update_stats(loss_key, loss_val)
return masks
self.net.eval()
print("Starting validation")
sys.stdout.flush()
for n, batch in enumerate(loader):
with torch.no_grad():
# note video length assumed 1
eval_batch(batch)
if not tag is None and not self.has_vis_batch(tag):
self.save_vis_batch(tag, batch)
checkpoint_score = 0.0
# total classification loss
for stat_key, stat_val in stat.items():
writer.add_scalar('all/{}'.format(stat_key), stat_val, epoch)
print('Loss {}: {:4.3f}'.format(stat_key, stat_val))
if not tag is None and epoch % self.cfg.LOG.ITER_TRAIN == 0:
self.visualise_results(epoch, writer, tag, self.step)
return checkpoint_score
def validation_seg(self, epoch, writer, loader, key="all", temp=None, tag=None, max_iter=None):
vis = key == "res4"
stat = StatManager()
if max_iter is None:
max_iter = len(loader)
if temp is None:
temp = self.cfg.TEST.TEMP
step_fn = partial(self.step_seg, key=key, temp=temp, train=False, visualise=vis, writer=writer)
# Fast test during the training
def eval_batch(n, batch):
tag_n = tag + "_{:02d}".format(n)
masks = step_fn(epoch, batch, tag=tag_n)
return masks
self.net.eval()
def davis_mask(masks):
masks = masks.cpu()
num_objects = int(masks.max())
tmp = torch.ones(num_objects, *masks.shape)
tmp = tmp * torch.arange(1, num_objects + 1)[:, None, None, None]
return (tmp == masks[None, ...]).long().numpy()
Js = {"M": [], "R": [], "D": []}
Fs = {"M": [], "R": [], "D": []}
timer = Timer("[Epoch {}] Validation-Seg".format(epoch))
tag_key = "{}_{}_{:3.2f}".format(tag, key, temp)
for n, batch in enumerate(loader):
seq_name = batch[-1][0]
print("Sequence: ", seq_name)
sys.stdout.flush()
with torch.no_grad():
masks_out = eval_batch(n, batch)
# second element is assumed to be always GT masks
masks_gt = davis_mask(masks_out["masks_gt"])
masks_pred = davis_mask(masks_out["masks_pred_idx"])
assert masks_gt.shape == masks_pred.shape
# converting to a digestible format
# [num_objects, seq_length, height, width]
if not tag_key is None and not self.has_vis_batch(tag_key):
self.save_vis_batch(tag_key, batch)
start_t = time.time()
metrics_res = evaluate_semi((masks_gt, ), (masks_pred, ))
J, F = metrics_res['J'], metrics_res['F']
print("Evaluation: {:4.3f}s".format(time.time() - start_t))
print("Jaccard: ", J["M"])
print("F-Score: ", F["M"])
for l in ("M", "R", "D"):
Js[l] += J[l]
Fs[l] += F[l]
msg = "{} | Im/Sec: {:.1f}".format(n, n * batch[0].shape[1] / timer.get_stage_elapsed())
print(msg)
sys.stdout.flush()
g_measures = ['J&F-Mean', 'J-Mean', 'J-Recall', 'J-Decay', 'F-Mean', 'F-Recall', 'F-Decay']
# Generate dataframe for the general results
final_mean = (np.mean(Js["M"]) + np.mean(Fs["M"])) / 2.
g_res = [final_mean, \
np.mean(Js["M"]), np.mean(Js["R"]), np.mean(Js["D"]), \
np.mean(Fs["M"]), np.mean(Fs["R"]), np.mean(Fs["D"])]
for (name, val) in zip(g_measures, g_res):
writer.add_scalar('{}_{:3.2f}/{}'.format(key, temp, name), val, epoch)
print('{}: {:4.3f}'.format(name, val))
return final_mean
def train(args, cfg):
setproctitle.setproctitle("dense-ulearn | {}".format(args.run))
if args.seed is not None:
print("Setting the seed: {}".format(args.seed))
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
trainer = Trainer(args, cfg)
timer = Timer()
def time_call(func, msg, *args, **kwargs):
timer.reset_stage()
val = func(*args, **kwargs)
print(msg + (" {:3.2}m".format(timer.get_stage_elapsed() / 60.)))
return val
for epoch in range(trainer.start_epoch, cfg.TRAIN.NUM_EPOCHS + 1):
# training 1 epoch
time_call(trainer.train_epoch, "Train epoch: ", epoch)
print("Epoch >>> {:02d} <<< ".format(epoch))
if epoch % cfg.LOG.ITER_VAL == 0:
for val_set in ("val_video", ):
time_call(trainer.validation, "Validation / {} / Val: ".format(val_set), \
epoch, trainer.writer_val[val_set], trainer.valloaders[val_set], tag=val_set)
best_layer = None
best_score = -1e10
for val_set in ("val_video_seg", ):
writer = trainer.writer_val[val_set]
loader = trainer.valloaders[val_set]
for layer in ("key", "res4"):
msg = ">>> Validation {} / {} <<<".format(layer, val_set)
score = time_call(trainer.validation_seg, msg, epoch, writer, loader, key=layer, tag=val_set)
if score > best_score:
best_score = score
best_layer = layer
print("Best score / layer: {:4.2f} / {}".format(best_score, best_layer))
if val_set =="val_video_seg":
trainer.checkpoint_best(best_score, epoch, best_layer)
if not trainer.scheduler is None and cfg.MODEL.LR_SCHED_USE_EPOCH:
trainer.scheduler.step()
def main():
args = get_arguments(sys.argv[1:])
# Reading the config
cfg_from_file(args.cfg_file)
if args.set_cfgs is not None:
cfg_from_list(args.set_cfgs)
train(args, cfg)
if __name__ == "__main__":
main()