Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multiindex support for pack_df #78

Merged
merged 5 commits into from
May 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 18 additions & 39 deletions src/nested_pandas/series/packer.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,36 +57,6 @@ def pack(
return pack_seq(obj, name=name, index=index, dtype=dtype)


def pack_flat_into_df(df: pd.DataFrame, name=None) -> pd.DataFrame:
"""Pack a "flat" dataframe into a "nested" dataframe.

For the input dataframe with repeated indexes, make a pandas.DataFrame,
where each original column is replaced by a column of lists, and,
optionally, a "structure" column is added, containing a structure of
lists with the original columns.

Parameters
----------
df : pd.DataFrame
Input dataframe, with repeated indexes.

name : str, optional
Name of the structure column. The default is None, which means no
structure column is added.

Returns
-------
pd.DataFrame
Output dataframe.
"""
# TODO: we can optimize name=None case a bit
struct_series = pack_flat(df, name=name)
packed_df = struct_series.nest.to_lists()
if name is not None:
packed_df[name] = struct_series
return packed_df


def pack_flat(df: pd.DataFrame, name: str | None = None) -> pd.Series:
"""Make a structure of lists representation of a "flat" dataframe.

Expand Down Expand Up @@ -116,7 +86,7 @@ def pack_flat(df: pd.DataFrame, name: str | None = None) -> pd.Series:
nested_pandas.series.packer.pack_lists : Pack a dataframe of nested arrays.
"""

# TODO: think about the case when the data is pre-sorted and we don't need a data copy.
# pandas knows when index is pre-sorted, so it would do nothing if it is already sorted
flat = df.sort_index(kind="stable")
return pack_sorted_df_into_struct(flat, name=name)

Expand Down Expand Up @@ -177,6 +147,9 @@ def pack_sorted_df_into_struct(df: pd.DataFrame, name: str | None = None) -> pd.
pd.Series
Output series, with unique indexes.
"""
if not df.index.is_monotonic_increasing:
raise ValueError("The index of the input dataframe must be sorted")

packed_df = view_sorted_df_as_list_arrays(df)
# No need to validate the dataframe, the length of the nested arrays is forced to be the same by
# the view_sorted_df_as_list_arrays function.
Expand Down Expand Up @@ -243,8 +216,11 @@ def view_sorted_df_as_list_arrays(df: pd.DataFrame) -> pd.DataFrame:
Output dataframe, with unique indexes. It is a view over the input
dataframe, so it would mute the input dataframe if modified.
"""
if not df.index.is_monotonic_increasing:
raise ValueError("The index of the input dataframe must be sorted")

offset_array = calculate_sorted_index_offsets(df.index)
unique_index = df.index.values[offset_array[:-1]]
unique_index = df.index[offset_array[:-1]]

series_ = {
column: view_sorted_series_as_list_array(df[column], offset_array, unique_index)
Expand Down Expand Up @@ -278,10 +254,13 @@ def view_sorted_series_as_list_array(
Output series, with unique indexes. It is a view over the input series,
so it would mute the input series if modified.
"""
if not series.index.is_monotonic_increasing:
raise ValueError("The index of the input series must be sorted")

if offset is None:
offset = calculate_sorted_index_offsets(series.index)
if unique_index is None:
unique_index = series.index.values[offset[:-1]]
unique_index = series.index[offset[:-1]]

list_array = pa.ListArray.from_arrays(
offset,
Expand Down Expand Up @@ -309,12 +288,12 @@ def calculate_sorted_index_offsets(index: pd.Index) -> np.ndarray:
Output array of offsets, one element more than the number of unique
index values.
"""
# TODO: implement multi-index support
index_diff = np.diff(index.values, prepend=index.values[0] - 1, append=index.values[-1] + 1)

if np.any(index_diff < 0):
raise ValueError("Table index must be strictly sorted.")
if not index.is_monotonic_increasing:
raise ValueError("The index must be sorted")

offset = np.nonzero(index_diff)[0]
# pd.Index.duplicated returns False for the first occurance and True for all others.
# So our offsets would be indexes of these False values with the array length in the end.
offset_but_last = np.nonzero(~index.duplicated(keep="first"))[0]
offset = np.append(offset_but_last, len(index))

return offset
126 changes: 75 additions & 51 deletions tests/nested_pandas/series/test_packer.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from nested_pandas import NestedDtype
from nested_pandas.series import packer
from numpy.testing import assert_array_equal
Expand All @@ -14,7 +15,7 @@ def test_pack_with_flat_df():
"a": [1, 2, 3, 4],
"b": [0, 1, 0, 1],
},
index=[1, 2, 1, 2],
index=pd.MultiIndex.from_arrays(([1, 1, 1, 1], [1, 2, 1, 2])),
)
series = packer.pack(df, name="series")

Expand All @@ -23,7 +24,7 @@ def test_pack_with_flat_df():
(np.array([1, 3]), np.array([0, 0])),
(np.array([2, 4]), np.array([1, 1])),
],
index=[1, 2],
index=pd.MultiIndex.from_arrays(([1, 1], [1, 2])),
dtype=NestedDtype.from_fields(dict(a=pa.int64(), b=pa.int64())),
name="series",
)
Expand Down Expand Up @@ -87,55 +88,6 @@ def test_pack_with_series_of_dfs():
assert_series_equal(series, desired)


def test_pack_flat_into_df():
"""Test pack_flat_into_df()."""
df = pd.DataFrame(
data={
"a": [7, 8, 9, 1, 2, 3, 4, 5, 6],
"b": [0, 1, 0, 0, 1, 0, 1, 0, 1],
},
index=[4, 4, 4, 1, 1, 2, 2, 3, 3],
)
actual = packer.pack_flat_into_df(df, name="struct")

desired = pd.DataFrame(
data={
"a": pd.Series(
data=[
np.array([1, 2]),
np.array([3, 4]),
np.array([5, 6]),
np.array([7, 8, 9]),
],
dtype=pd.ArrowDtype(pa.list_(pa.int64())),
index=[1, 2, 3, 4],
),
"b": pd.Series(
data=[
np.array([0, 1]),
np.array([0, 1]),
np.array([0, 1]),
np.array([0, 1, 0]),
],
dtype=pd.ArrowDtype(pa.list_(pa.int64())),
index=[1, 2, 3, 4],
),
"struct": pd.Series(
data=[
(np.array([1, 2]), np.array([0, 1])),
(np.array([3, 4]), np.array([0, 1])),
(np.array([5, 6]), np.array([0, 1])),
(np.array([7, 8, 9]), np.array([0, 1, 0])),
],
dtype=NestedDtype.from_fields(dict(a=pa.int64(), b=pa.int64())),
index=[1, 2, 3, 4],
),
},
)

assert_frame_equal(actual, desired)


def test_pack_flat():
"""Test pack_flat()."""
df = pd.DataFrame(
Expand Down Expand Up @@ -186,6 +138,19 @@ def test_pack_sorted_df_into_struct():
assert_series_equal(actual, desired)


def test_pack_sorted_df_into_struct_raises_when_not_sorted():
"""Test pack_sorted_df_into_struct() raises when not sorted."""
df = pd.DataFrame(
data={
"a": [1, 2, 3, 4, 5, 6, 7, 8, 9],
"b": [0, 1, 0, 1, 0, 1, 0, 1, 0],
},
index=[1, 2, 1, 2, 3, 3, 4, 4, 4],
)
with pytest.raises(ValueError):
packer.pack_sorted_df_into_struct(df)


def test_pack_lists():
"""Test pack_lists()."""
packed_df = pd.DataFrame(
Expand Down Expand Up @@ -362,6 +327,19 @@ def test_view_sorted_df_as_list_arrays():
assert_frame_equal(nested_df, desired_nested)


def test_view_sorted_df_as_list_arrays_raises_when_not_sorted():
"""Test view_sorted_df_as_list_arrays() raises when not sorted."""
flat_df = pd.DataFrame(
data={
"a": [1, 2, 3, 4, 5, 6, 7, 8, 9],
"b": [0, 1, 0, 1, 0, 1, 0, 1, 0],
},
index=[1, 2, 1, 2, 3, 3, 4, 4, 4],
)
with pytest.raises(ValueError):
packer.view_sorted_df_as_list_arrays(flat_df)


def test_view_sorted_series_as_list_array():
"""Test view_sorted_series_as_list_array()."""
series = pd.Series(
Expand All @@ -383,3 +361,49 @@ def test_view_sorted_series_as_list_array():
dtype=pd.ArrowDtype(pa.list_(pa.int64())),
)
assert_series_equal(nested, desired_nested)


def test_view_sorted_series_as_list_array_raises_when_not_sorted():
"""Test view_sorted_series_as_list_array() raises when not sorted."""
series = pd.Series(
data=[1, 2, 3, 4, 5, 6, 7, 8, 9],
index=[1, 2, 1, 2, 3, 3, 4, 4, 4],
)
with pytest.raises(ValueError):
packer.view_sorted_series_as_list_array(series)


@pytest.mark.parametrize(
"index,offsets",
[
(pd.Index([1, 2, 3, 4]), np.array([0, 1, 2, 3, 4])),
(pd.Index([1, 1, 2, 2, 3, 3, 4, 4, 4]), np.array([0, 2, 4, 6, 9])),
(pd.Index([1, 1, 1, 1, 1, 1, 1, 1, 1]), np.array([0, 9])),
(pd.Index([1, 2, 2, 2, 3, 3, 4]), np.array([0, 1, 4, 6, 7])),
(
pd.MultiIndex.from_product([[1, 2, 3], ["a", "a", "b", "b", "b"]]),
np.array([0, 2, 5, 7, 10, 12, 15]),
),
(
pd.MultiIndex.from_arrays(
(
[1, 1, 1, 1, 1, 1, 2, 2],
["a", "a", "a", "a", "b", "b", "z", "z"],
[1, 2, 2, 2, 9, 9, 9, 9],
),
names=["id1", "id2", "id3"],
),
np.array([0, 1, 4, 6, 8]),
),
],
)
def test_calculate_sorted_index_offsets(index, offsets):
"""Test calculate_sorted_index_offsets()."""
assert_array_equal(packer.calculate_sorted_index_offsets(index), offsets)


def test_calculate_sorted_index_offsets_raises_when_not_sorted():
"""Test calculate_sorted_index_offsets() raises when not sorted."""
index = pd.Index([1, 2, 1, 2, 3, 3, 4, 4, 4])
with pytest.raises(ValueError):
packer.calculate_sorted_index_offsets(index)