-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_diff.py
executable file
·458 lines (384 loc) · 15.5 KB
/
get_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#!/usr/bin/env python3
import sys
import os
import argparse
import cv2
from skimage.metrics import structural_similarity
from skimage import img_as_ubyte
from datetime import datetime, timedelta, timezone
import time
import numpy as np
import subprocess as sp
from threading import Thread, Event
from queue import Queue
import curses
from keras.models import load_model
FULL_WIDTH = 1280
FULL_HEIGHT = 720
SMALL_SIZE = (426, 240)
utc = timezone.utc
# https://answers.opencv.org/question/92450/processing-camera-stream-in-opencv-pushing-it-over-rtmp-nginx-rtmp-module-using-ffmpeg/
FFMPEG_COMMAND = [
'ffmpeg',
'-y',
'-f', 'rawvideo',
'-vcodec', 'rawvideo',
'-s', f'{FULL_WIDTH}x{FULL_HEIGHT}',
'-pix_fmt', 'bgr24',
'-i', '-',
'-codec', 'copy',
'-f', 'v4l2',
'/dev/video3'
]
class ThreadWithSettingsAndMessages(Thread):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.settings = {}
self.message_queue = Queue()
def set_setting(self, setting, value):
self.settings[setting] = value
def get_setting(self, setting):
return self.settings[setting]
def toggle_setting(self, setting):
self.settings[setting] = not self.settings[setting]
return self.settings[setting]
def has_message(self) -> bool:
return self.message_queue.qsize() > 0
def get_message(self):
# don't block
if self.has_message:
return self.message_queue.get()
return None
class ImageCompareThread(ThreadWithSettingsAndMessages):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.work_queue = Queue()
self.result = None
self.stoprequest = Event()
self.settings = {
'use_hull': False,
'use_and': False,
'use_model': True,
}
self.base = cv2.imread('base.png', -1)
self.base_small = cv2.resize(self.base, SMALL_SIZE)
def run(self):
# get model here
# https://github.com/anilsathyan7/Portrait-Segmentation
model = load_model('deconv_bnoptimized_munet.h5', compile=False)
while not self.stoprequest.isSet():
live = self.work_queue.get()
mask = None
if self.get_setting('use_model'):
mask = self.infer_from_model(live, model)
else:
mask = self.compare_to_background(live)
# https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_contours/py_contour_features/py_contour_features.html#
contours, hierarchy = cv2.findContours(
mask,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
largest_contour = None
area = 0
for cnt in contours:
if cv2.contourArea(cnt) > area:
largest_contour = cnt
area = cv2.contourArea(cnt)
contour = None
if self.settings['use_hull'] is True:
contour = cv2.convexHull(largest_contour)
else:
contour = largest_contour
contour_mask = np.zeros(self.base_small.shape, np.uint8)
# https://stackoverflow.com/a/50022122
contour_mask = cv2.drawContours(contour_mask, [contour], -1, (255, 255, 255), -1)
contour_mask_big = cv2.resize(contour_mask, (FULL_WIDTH, FULL_HEIGHT))
contour_blur = cv2.medianBlur(contour_mask_big, 21)
self.result = contour_blur
def infer_from_model(self, live, model):
# based on
# https://news.ycombinator.com/item?id=22842823
try:
start = datetime.now(utc)
frame = cv2.cvtColor(live, cv2.COLOR_BGR2RGB)
simg = cv2.resize(frame, (128, 128), interpolation=cv2.INTER_AREA)
simg = simg.reshape((1, 128, 128, 3)) / 255.0
preprocessing = datetime.now(utc)
out = model.predict(simg)
predicting = datetime.now(utc)
mask = out.reshape((128, 128, 1))
mask = img_as_ubyte(mask)
mask = cv2.resize(mask, SMALL_SIZE)
postprocessing = datetime.now(utc)
preprocessing_diff = preprocessing - start
predicting_diff = predicting - preprocessing
postprocessing_diff = postprocessing - predicting
total_diff = postprocessing - start
message = (
f"Preprocessing took {preprocessing_diff.total_seconds()*1000:.0f} ms, "
f"Predicting took {predicting_diff.total_seconds()*1000:.0f} ms, "
f"Postprocessing took {postprocessing_diff.total_seconds()*1000:.0f} ms, "
f"total: {total_diff.total_seconds()*1000:.0f} ms."
)
self.message_queue.put(message)
return mask
except Exception as e:
message = str(e)
self.message_queue.put(f"Error on model: {message}")
return None
def compare_to_background(self, live):
# compare images
start = datetime.now(utc)
live_small = cv2.resize(live, SMALL_SIZE)
preprocessing = datetime.now(utc)
# https://www.pyimagesearch.com/2017/06/19/image-difference-with-opencv-and-python/
# TODO: this takes to the most of the processing time, make more efficient
(score, diff) = structural_similarity(self.base_small, live_small, full=True, multichannel=True)
diff = (diff * 255).astype("uint8")
ssim_time = datetime.now(utc)
b, g, r = cv2.split(diff)
color_mask_b = cv2.threshold(b, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
color_mask_g = cv2.threshold(g, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
color_mask_r = cv2.threshold(r, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
mask = None
if self.settings['use_and']:
mask = cv2.bitwise_and(color_mask_b, color_mask_g, color_mask_r)
else:
mask = cv2.bitwise_or(color_mask_b, color_mask_g, color_mask_r)
now = datetime.now(utc)
preprocessing_diff = preprocessing - start
ssim = ssim_time - start
postprocessing_diff = now - ssim_time
total_diff = now - start
message = (
f"Preprocessing took {preprocessing_diff.total_seconds()*1000:.0f} ms, "
f"SSIM took {ssim.total_seconds()*1000:.0f} ms, "
f"Postprocessing took {postprocessing_diff.total_seconds()*1000:.0f} ms, "
f"total: {total_diff.total_seconds()*1000:.0f} ms."
)
self.message_queue.put(message)
return mask
def put_work(self, message):
self.work_queue.put(message)
def join(self, timeout=None):
self.stoprequest.set()
super().join(timeout)
class MaskingThread(ThreadWithSettingsAndMessages):
def __init__(self, worker_thread: Thread, *args, **kwargs):
super().__init__(*args, **kwargs)
self.stoprequest = Event()
self.worker_thread = worker_thread
self.cap = cv2.VideoCapture()
self.settings = {
'use_green': True,
}
self.frame_count = 0
def run(self):
contour_mask = None
green = np.zeros((FULL_HEIGHT, FULL_WIDTH, 3), np.uint8)
# Fill image with green color for greenscreen
green[:] = (0, 255, 0)
base_blur = cv2.imread('base_blur.png', -1)
# loosely based on
# https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
cap = self.cap
# try to have higher perf by using V4L2 here
# https://stackoverflow.com/a/55779890
cap.open(0, apiPreference=cv2.CAP_V4L2)
cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'))
cap.set(cv2.CAP_PROP_FRAME_WIDTH, FULL_WIDTH)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, FULL_HEIGHT)
cap.set(cv2.CAP_PROP_FPS, 30)
proc = sp.Popen(FFMPEG_COMMAND, stdin=sp.PIPE, stderr=sp.PIPE, shell=False)
ret, live = cap.read()
self.worker_thread.put_work(live)
while not self.stoprequest.isSet():
start = datetime.now(utc)
ret, live = cap.read()
reading = datetime.now(utc)
if self.worker_thread.result is not None:
contour_mask = self.worker_thread.result
self.worker_thread.result = None
self.worker_thread.put_work(live)
# TODO: better wait for first result from other thread
if contour_mask is not None:
# based on
# https://www.learnopencv.com/alpha-blending-using-opencv-cpp-python/
# Convert uint8 to float
foreground = live.astype(float)
background = None
if self.settings['use_green']:
background = green.astype(float)
else:
background = base_blur.astype(float)
# Normalize the alpha mask to keep intensity between 0 and 1
alpha = contour_mask.astype(float) / 255
# Multiply the foreground with the alpha matte
foreground = cv2.multiply(alpha, foreground)
# Multiply the background with ( 1 - alpha )
background = cv2.multiply(1.0 - alpha, background)
# Add the masked foreground and background.
outImage = cv2.add(foreground, background).astype('uint8')
masking = datetime.now(utc)
self.frame_count += 1
proc.stdin.write(outImage.tostring())
writing = datetime.now(utc)
reading_diff = reading - start
masking_diff = masking - reading
writing_diff = writing - masking
total_diff = writing - start
message = (
f"Reading took {reading_diff.total_seconds()*1000:.0f} ms, "
f"masking took {masking_diff.total_seconds()*1000:.0f} ms, "
f"writing took {writing_diff.total_seconds()*1000:.0f} ms, "
f"total: {total_diff.total_seconds()*1000:.0f} ms."
)
self.message_queue.put(message)
cap.release()
def join(self, timeout=None):
self.stoprequest.set()
super().join(timeout)
def get_framecount(self):
frame_count = self.frame_count
self.frame_count = 0
return frame_count
def handle_input(
stdscr, image_compare_thread: ThreadWithSettingsAndMessages, masking_thread: ThreadWithSettingsAndMessages
):
curses.start_color()
curses.init_pair(1, curses.COLOR_GREEN, curses.COLOR_BLUE)
curses.init_pair(2, curses.COLOR_YELLOW, curses.COLOR_BLACK)
stdscr.bkgd(curses.color_pair(1))
stdscr.nodelay(True)
stdscr.refresh()
# Hull info
win1 = curses.newwin(5, 20, 0, 0)
win1.bkgd(curses.color_pair(2))
win1.box()
win1.addstr(2, 2, "(H)ull inactive")
win1.refresh()
# And/Or info
win2 = curses.newwin(5, 20, 0, 20)
win2.bkgd(curses.color_pair(2))
win2.box()
win2.addstr(2, 2, "(A)nd inactive")
win2.refresh()
green_win = curses.newwin(5, 20, 0, 40)
green_win.bkgd(curses.color_pair(2))
green_win.box()
green_win.addstr(2, 2, "(G)reen active")
green_win.refresh()
model_win = curses.newwin(5, 20, 0, 60)
model_win.bkgd(curses.color_pair(2))
model_win.box()
model_win.addstr(2, 2, "(M)odel used")
model_win.refresh()
win3 = curses.newwin(5, 20, 0, 100)
win3.bkgd(curses.color_pair(2))
win3.box()
win3.addstr(2, 2, "(Q)uit")
win3.refresh()
last_fps_update = datetime.now(utc)
fps_win = curses.newwin(5, 20, 5, 00)
fps_win.bkgd(curses.color_pair(2))
fps_win.box()
fps_win.refresh()
# message windows
masking_message_win = curses.newwin(10, 120, 10, 0)
masking_message_win.bkgd(curses.color_pair(2))
masking_message_win.box()
masking_message_win.refresh()
masking_message_queue = Queue()
compare_message_win = curses.newwin(10, 120, 20, 0)
compare_message_win.bkgd(curses.color_pair(2))
compare_message_win.box()
compare_message_win.refresh()
compare_message_queue = Queue()
while True:
key = ''
try:
key = str(stdscr.getkey())
except curses.error:
pass
if key == 'h':
win1.clear()
win1.box()
if image_compare_thread.toggle_setting('use_hull'):
win1.addstr(2, 2, "(H)ull active")
else:
win1.addstr(2, 2, "(H)ull inactive")
win1.refresh()
elif key == 'a':
win2.clear()
win2.box()
if image_compare_thread.toggle_setting('use_and'):
win2.addstr(2, 2, "(A)nd active")
else:
win2.addstr(2, 2, "(A)nd inactive")
win2.refresh()
elif key == 'g':
green_win.clear()
green_win.box()
if masking_thread.toggle_setting('use_green'):
green_win.addstr(2, 2, "(G)reen active")
else:
green_win.addstr(2, 2, "(G)reen inactive")
green_win.refresh()
elif key == 'm':
model_win.clear()
model_win.box()
if image_compare_thread.toggle_setting('use_model'):
model_win.addstr(2, 2, "(M)odel active")
else:
model_win.addstr(2, 2, "(M)odel inactive")
model_win.refresh()
elif key == 'q':
break
elif key == os.linesep:
break
if masking_thread.has_message():
masking_message_win.clear()
masking_message_win.box()
masking_message_queue.put(masking_thread.get_message())
messages = []
for i in range(0, min(8, masking_message_queue.qsize())):
message = masking_message_queue.get()
masking_message_win.addstr(i + 1, 2, message)
messages.append(message)
masking_message_win.refresh()
for message in messages:
masking_message_queue.put(message)
if image_compare_thread.has_message():
compare_message_win.clear()
compare_message_win.box()
compare_message_queue.put(image_compare_thread.get_message())
messages = []
for i in range(0, min(8, compare_message_queue.qsize())):
message = compare_message_queue.get()
compare_message_win.addstr(i + 1, 2, message)
messages.append(message)
compare_message_win.refresh()
for message in messages:
compare_message_queue.put(message)
# update fps counter once per second
if datetime.now(utc) - last_fps_update > timedelta(seconds=1):
frame_count = masking_thread.get_framecount()
fps_win.clear()
fps_win.box()
fps_win.addstr(2, 2, f"{frame_count} fps")
fps_win.refresh()
last_fps_update = datetime.now(utc)
def main(argv=None):
image_compare_thread = ImageCompareThread()
image_compare_thread.start()
masking_thread = MaskingThread(image_compare_thread)
masking_thread.start()
try:
curses.wrapper(handle_input, image_compare_thread, masking_thread)
except KeyboardInterrupt:
print("Exiting...")
image_compare_thread.join()
masking_thread.join()
if __name__ == '__main__':
sys.exit(main())