-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_uspsmnist_pixel.py
335 lines (285 loc) · 13.7 KB
/
train_uspsmnist_pixel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from data_list import ImageList
import os
from torch.autograd import Variable
import loss as loss_func
import numpy as np
import network
def train(args, model, ad_net, random_layer, train_loader, train_loader1, optimizer, optimizer_ad, epoch, start_epoch, method,
D_s, D_t, G_s2t, G_t2s, criterion_Sem, criterion_GAN, criterion_cycle, criterion_identity, optimizer_G,
optimizer_D_t, optimizer_D_s,
classifier1, classifier1_optim, fake_S_buffer, fake_T_buffer):
model.train()
len_source = len(train_loader)
len_target = len(train_loader1)
if len_source > len_target:
num_iter = len_source
else:
num_iter = len_target
for batch_idx in range(num_iter):
if batch_idx % len_source == 0:
iter_source = iter(train_loader)
if batch_idx % len_target == 0:
iter_target = iter(train_loader1)
data_source, label_source = iter_source.next()
data_source, label_source = data_source.cuda(), label_source.cuda()
data_target, label_target = iter_target.next()
data_target = data_target.cuda()
optimizer.zero_grad()
optimizer_ad.zero_grad()
features_source, outputs_source = model(data_source)
features_target, outputs_target = model(data_target)
features = torch.cat((features_source, features_target), dim=0)
outputs = torch.cat((outputs_source, outputs_target), dim=0)
loss = nn.CrossEntropyLoss()(outputs.narrow(0, 0, data_source.size(0)), label_source)
softmax_output = nn.Softmax(dim=1)(outputs)
# _, outputs_source1 = classifier1(data_source)
# _, outputs_target1 = classifier1(data_target)
outputs_source1 = classifier1(data_source)
outputs_target1 = classifier1(data_target)
output1 = torch.cat((outputs_source1, outputs_target1), dim=0)
softmax_output1 = nn.Softmax(dim=1)(output1)
softmax_output = (1 - args.cla_plus_weight) * softmax_output + args.cla_plus_weight * softmax_output1
if epoch > start_epoch:
if method == 'CDAN-E':
entropy = loss_func.Entropy(softmax_output)
loss += loss_func.CDAN([features, softmax_output], ad_net, entropy, network.calc_coeff(num_iter*(epoch-start_epoch)+batch_idx), random_layer)
elif method == 'CDAN':
loss += loss_func.CDAN([features, softmax_output], ad_net, None, None, random_layer)
elif method == 'DANN':
loss += loss_func.DANN(features, ad_net)
else:
raise ValueError('Method cannot be recognized.')
# Cycle
num_feature = features.size(0)
# =================train discriminator T
real_label = Variable(torch.ones(num_feature)).cuda()
fake_label = Variable(torch.zeros(num_feature)).cuda()
# 训练生成器
optimizer_G.zero_grad()
# Identity loss
same_t = G_s2t(data_source)
loss_identity_t = criterion_identity(same_t, data_target)
same_s = G_t2s(G_s2t(data_source))
loss_identity_s = criterion_identity(same_s, data_source)
# Gan loss
fake_t = G_s2t(data_source)
pred_fake = D_t(fake_t)
loss_G_s2t = criterion_GAN(pred_fake, label_source.float())
fake_s = G_t2s(fake_t)
pred_fake = D_s(fake_s)
loss_G_t2s = criterion_GAN(pred_fake, label_source.float())
# cycle loss
recovered_s = G_t2s(fake_t)
loss_cycle_sts = criterion_cycle(recovered_s, data_source)
recovered_t = G_s2t(fake_s)
loss_cycle_tst = criterion_cycle(recovered_t, data_target)
# sem loss
_,pred_recovered_s = model(recovered_s)
_,pred_fake_t = model(fake_t)
loss_sem_t2s = criterion_Sem(pred_recovered_s, pred_fake_t)
_,pred_recovered_t = model(recovered_t)
_,pred_fake_s = model(fake_s)
loss_sem_s2t = criterion_Sem(pred_recovered_t, pred_fake_s)
loss_cycle = loss_cycle_tst + loss_cycle_sts
weight_in_loss_g = args.weight_in_loss_g.split(',')
loss_G = float(weight_in_loss_g[0]) * (loss_identity_s + loss_identity_t) + \
float(weight_in_loss_g[1]) * (loss_G_s2t + loss_G_t2s) + \
float(weight_in_loss_g[2]) * loss_cycle + \
float(weight_in_loss_g[3]) * (loss_sem_s2t + loss_sem_t2s)
# 训练softmax分类器
# _,outputs_fake = classifier1(fake_t.detach())
outputs_fake = classifier1(fake_t.detach())
# 分类器优化
classifier_loss1 = nn.CrossEntropyLoss()(outputs_fake, label_source)
classifier1_optim.zero_grad()
classifier_loss1.backward()
classifier1_optim.step()
total_loss = loss + args.cyc_loss_weight * loss_G
total_loss.backward()
optimizer.step()
optimizer_G.step()
###### Discriminator S ######
optimizer_D_s.zero_grad()
# Real loss
pred_real = D_s(data_source)
loss_D_real = criterion_GAN(pred_real, real_label)
# Fake loss
fake_s = fake_S_buffer.push_and_pop(fake_s)
pred_fake = D_s(fake_s.detach())
loss_D_fake = criterion_GAN(pred_fake, fake_label)
# Total loss
loss_D_s = loss_D_real + loss_D_fake
loss_D_s.backward()
optimizer_D_s.step()
###################################
###### Discriminator t ######
optimizer_D_t.zero_grad()
# Real loss
pred_real = D_t(data_target)
loss_D_real = criterion_GAN(pred_real, real_label)
# Fake loss
fake_t = fake_T_buffer.push_and_pop(fake_t)
pred_fake = D_t(fake_t.detach())
loss_D_fake = criterion_GAN(pred_fake, fake_label)
# Total loss
loss_D_t = loss_D_real + loss_D_fake
loss_D_t.backward()
optimizer_D_t.step()
if epoch > start_epoch:
optimizer_ad.step()
if (batch_idx + epoch * num_iter) % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLoss+G: {:.6f}'.format(
epoch, batch_idx * args.batch_size, num_iter * args.batch_size,
100. * batch_idx / num_iter, loss.item(), total_loss.item()))
def test(args,epoch,config, model, test_loader):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.cuda(), target.cuda()
feature, output = model(data)
test_loss += nn.CrossEntropyLoss()(output, target).item()
pred = output.data.cpu().max(1, keepdim=True)[1]
correct += pred.eq(target.data.cpu().view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
log_str = "epoch: {}, Accuracy: {}/{} ({:.4f}%)".format(
epoch, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset))
config["out_file"].write(log_str + "\n")
config["out_file"].flush()
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='CDAN USPS MNIST')
parser.add_argument('--method', type=str, default='CDAN-E', choices=['CDAN', 'CDAN-E', 'DANN'])
parser.add_argument('--task', default='USPS2MNIST', help='task to perform')
parser.add_argument('--batch_size', type=int, default=256, help='input batch size for training (default: 64)')
parser.add_argument('--test_batch_size', type=int, default=1000, help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=40, metavar='N', help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)')
parser.add_argument('--gpu_id', type=str,default="0", help='cuda device id')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--log_interval', type=int, default=10, help='how many batches to wait before logging training status')
parser.add_argument('--random', type=bool, default=False, help='whether to use random')
parser.add_argument('--output_dir',type=str,default="digits/u2m")
parser.add_argument('--cla_plus_weight',type=float,default=0.3)
parser.add_argument('--cyc_loss_weight',type=float,default=0.05)
parser.add_argument('--weight_in_loss_g',type=str,default='1,1,1,1')
args = parser.parse_args()
torch.manual_seed(args.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# train config
import os.path as osp
import datetime
config = {}
config['method'] = args.method
config["gpu"] = args.gpu_id
config['cyc_loss_weight'] = args.cyc_loss_weight
config['cla_plus_weight'] = args.cla_plus_weight
config['weight_in_loss_g'] = args.weight_in_loss_g
config["epochs"] = args.epochs
config["output_for_test"] = True
config["output_path"] = "snapshot/" + args.output_dir
if not osp.exists(config["output_path"]):
os.system('mkdir -p ' + config["output_path"])
config["out_file"] = open(osp.join(config["output_path"], "log_{}_{}.txt".
format(args.task,str(datetime.datetime.utcnow()))),
"w")
config["out_file"].write(str(config))
config["out_file"].flush()
if args.task == 'USPS2MNIST':
source_list = 'data/usps2mnist/usps_train.txt'
target_list = 'data/usps2mnist/mnist_train.txt'
test_list = 'data/usps2mnist/mnist_test.txt'
start_epoch = 1
decay_epoch = 6
elif args.task == 'MNIST2USPS':
source_list = 'data/usps2mnist/mnist_train.txt'
target_list = 'data/usps2mnist/usps_train.txt'
test_list = 'data/usps2mnist/usps_test.txt'
start_epoch = 1
decay_epoch = 5
else:
raise Exception('task cannot be recognized!')
train_loader = torch.utils.data.DataLoader(
ImageList(open(source_list).readlines(), transform=transforms.Compose([
transforms.Resize((28,28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]), mode='L'),
batch_size=args.batch_size, shuffle=True, num_workers=1, drop_last=True)
train_loader1 = torch.utils.data.DataLoader(
ImageList(open(target_list).readlines(), transform=transforms.Compose([
transforms.Resize((28,28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]), mode='L'),
batch_size=args.batch_size, shuffle=True, num_workers=1, drop_last=True)
test_loader = torch.utils.data.DataLoader(
ImageList(open(test_list).readlines(), transform=transforms.Compose([
transforms.Resize((28,28)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
]), mode='L'),
batch_size=args.test_batch_size, shuffle=True, num_workers=1)
model = network.LeNet()
model = model.cuda()
class_num = 10
# 添加G,D,和额外的分类器
import itertools
from utils import ReplayBuffer
import net
z_dimension = 784
D_s = network.models["Discriminator_um_pixel"]()
D_s = D_s.cuda()
G_s2t = network.models["Generator_um_pixel"](z_dimension, 500)
G_s2t = G_s2t.cuda()
D_t = network.models["Discriminator_um_pixel"]()
D_t = D_t.cuda()
G_t2s = network.models["Generator_um_pixel"](z_dimension, 500)
G_t2s = G_t2s.cuda()
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()
criterion_Sem = torch.nn.L1Loss()
optimizer_G = torch.optim.Adam(itertools.chain(G_s2t.parameters(), G_t2s.parameters()), lr=0.0003)
optimizer_D_s = torch.optim.Adam(D_s.parameters(), lr=0.0003)
optimizer_D_t = torch.optim.Adam(D_t.parameters(), lr=0.0003)
fake_S_buffer = ReplayBuffer()
fake_T_buffer = ReplayBuffer()
## 添加分类器
#classifier1 = network.LeNet()
classifier1 = net.Net(784,10)
classifier1 = classifier1.cuda()
classifier1_optim = optim.Adam(classifier1.parameters(), lr=0.0003)
if args.random:
random_layer = network.RandomLayer([model.output_num(), class_num], 500)
ad_net = network.AdversarialNetwork(500, 500)
random_layer.cuda()
else:
random_layer = None
ad_net = network.AdversarialNetwork(model.output_num() * class_num, 500)
ad_net = ad_net.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, weight_decay=0.0005, momentum=0.9)
optimizer_ad = optim.SGD(ad_net.parameters(), lr=args.lr, weight_decay=0.0005, momentum=0.9)
for epoch in range(1, args.epochs + 1):
if epoch % decay_epoch == 0:
for param_group in optimizer.param_groups:
param_group["lr"] = param_group["lr"] * 0.5
train(args, model, ad_net, random_layer, train_loader, train_loader1, optimizer, optimizer_ad, epoch, start_epoch, args.method,
D_s, D_t, G_s2t, G_t2s, criterion_Sem, criterion_GAN, criterion_cycle, criterion_identity, optimizer_G,
optimizer_D_t, optimizer_D_s,
classifier1, classifier1_optim, fake_S_buffer, fake_T_buffer
)
test(args,epoch,config, model, test_loader)
if __name__ == '__main__':
main()