-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnet.py
210 lines (190 loc) · 7.11 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import torchvision
import torch.nn as nn
import numpy as np
from torchvision import models
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(1, 32, 5, padding=2), # batch, 32, 16, 16
nn.LeakyReLU(0.2, True),
)
self.conv2 = nn.Sequential(
nn.Conv2d(32, 64, 5, padding=2), # batch, 64, 16, 16
nn.LeakyReLU(0.2, True),
nn.AvgPool2d(2, stride=2) # batch, 64, 8, 8
)
self.fc = nn.Sequential(
nn.Linear(64 * 8 * 8, 1024),
nn.LeakyReLU(0.2, True),
nn.Linear(1024, 1),
nn.Sigmoid()
)
def forward(self, x):
'''
x: batch, width, height, channel=1
'''
x = x.view(x.size(0), 1, 16, 16)
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class Generator(nn.Module):
def __init__(self, input_size, num_feature):
self.num_feature = num_feature
super(Generator, self).__init__()
self.fc = nn.Linear(input_size, num_feature) # batch,32*32
self.br = nn.Sequential(
nn.BatchNorm2d(1),
nn.ReLU(True)
)
self.downsample1 = nn.Sequential(
nn.Conv2d(1, 50, 3, stride=1, padding=1), # batch, 50, 32, 32
nn.BatchNorm2d(50),
nn.ReLU(True)
)
self.downsample2 = nn.Sequential(
nn.Conv2d(50, 25, 3, stride=1, padding=1), # batch, 25, 32, 32
nn.BatchNorm2d(25),
nn.ReLU(True)
)
self.downsample3 = nn.Sequential(
nn.Conv2d(25, 1, 2, stride=2), # batch, 1, 16, 16
nn.Tanh()
)
def forward(self, x):
x = self.fc(x)
x = x.view(x.size(0), 1, 32, 32)
x = self.downsample1(x)
x = self.downsample2(x)
x = self.downsample3(x)
x = x.view(x.size(0), 256)
return x
def grl_hook(coeff):
def fun1(grad):
return -coeff*grad.clone()
return fun1
def calc_coeff(iter_num, high=1.0, low=0.0, alpha=10.0, max_iter=10000.0):
return np.float(2.0 * (high - low) / (1.0 + np.exp(-alpha*iter_num / max_iter)) - (high - low) + low)
def init_weights(m):
classname = m.__class__.__name__
if classname.find('Conv2d') != -1 or classname.find('ConvTranspose2d') != -1:
nn.init.kaiming_uniform_(m.weight)
nn.init.zeros_(m.bias)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight, 1.0, 0.02)
nn.init.zeros_(m.bias)
elif classname.find('Linear') != -1:
nn.init.xavier_normal_(m.weight)
nn.init.zeros_(m.bias)
resnet_dict = {"ResNet18":models.resnet18, "ResNet34":models.resnet34, "ResNet50":models.resnet50, "ResNet101":models.resnet101, "ResNet152":models.resnet152}
class ResNetFc(nn.Module):
def __init__(self, resnet_name, use_bottleneck=True, bottleneck_dim=256, new_cls=False, class_num=1000):
super(ResNetFc, self).__init__()
model_resnet = resnet_dict[resnet_name](pretrained=True)
self.conv1 = model_resnet.conv1
self.bn1 = model_resnet.bn1
self.relu = model_resnet.relu
self.maxpool = model_resnet.maxpool
self.layer1 = model_resnet.layer1
self.layer2 = model_resnet.layer2
self.layer3 = model_resnet.layer3
self.layer4 = model_resnet.layer4
self.avgpool = model_resnet.avgpool
self.feature_layers = nn.Sequential(self.conv1, self.bn1, self.relu, self.maxpool, \
self.layer1, self.layer2, self.layer3, self.layer4, self.avgpool)
self.use_bottleneck = use_bottleneck
self.new_cls = new_cls
if new_cls:
if self.use_bottleneck:
self.bottleneck = nn.Linear(model_resnet.fc.in_features, bottleneck_dim)
self.fc = nn.Linear(bottleneck_dim, class_num)
self.bottleneck.apply(init_weights)
self.fc.apply(init_weights)
self.__in_features = bottleneck_dim
else:
self.fc = nn.Linear(model_resnet.fc.in_features, class_num)
self.fc.apply(init_weights)
self.__in_features = model_resnet.fc.in_features
else:
self.fc = model_resnet.fc
self.__in_features = model_resnet.fc.in_features
def forward(self, x):
x = self.feature_layers(x)
x = x.view(x.size(0), -1)
if self.use_bottleneck and self.new_cls:
x = self.bottleneck(x)
y = self.fc(x)
return x, y
def output_num(self):
return self.__in_features
def get_parameters(self):
if self.new_cls:
if self.use_bottleneck:
parameter_list = [{"params":self.feature_layers.parameters(), "lr_mult":1, 'decay_mult':2}, \
{"params":self.bottleneck.parameters(), "lr_mult":10, 'decay_mult':2}, \
{"params":self.fc.parameters(), "lr_mult":10, 'decay_mult':2}]
else:
parameter_list = [{"params":self.feature_layers.parameters(), "lr_mult":1, 'decay_mult':2}, \
{"params":self.fc.parameters(), "lr_mult":10, 'decay_mult':2}]
else:
parameter_list = [{"params":self.parameters(), "lr_mult":1, 'decay_mult':2}]
return parameter_list
class Net(nn.Module):
def __init__(self, input_size,class_num):
super(Net, self).__init__()
self.fc = nn.Sequential(
nn.Linear(input_size,240),
nn.ReLU(),
nn.Linear(240,180),
nn.ReLU(),
nn.Linear(180,120),
nn.ReLU(),
)
self.fc1 = nn.Sequential(
nn.Linear(120,class_num)
)
self.fc2 = models.resnet50(pretrained=True).fc
def forward(self, x):
x = x.view(x.size(0),-1)
x = self.fc(x)
x = self.fc1(x)
return x
class AdversarialNetwork(nn.Module):
def __init__(self, in_feature, hidden_size):
super(AdversarialNetwork, self).__init__()
self.ad_layer1 = nn.Linear(in_feature, hidden_size)
self.ad_layer2 = nn.Linear(hidden_size, hidden_size)
self.ad_layer3 = nn.Linear(hidden_size, 1)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.dropout1 = nn.Dropout(0.5)
self.dropout2 = nn.Dropout(0.5)
self.sigmoid = nn.Sigmoid()
self.apply(init_weights)
self.iter_num = 0
self.alpha = 10
self.low = 0.0
self.high = 1.0
self.max_iter = 10000.0
def forward(self, x):
if self.training:
self.iter_num += 1
coeff = calc_coeff(self.iter_num, self.high, self.low, self.alpha, self.max_iter)
x = x * 1.0
x.register_hook(grl_hook(coeff))
x = self.ad_layer1(x)
x = self.relu1(x)
x = self.dropout1(x)
x = self.ad_layer2(x)
x = self.relu2(x)
x = self.dropout2(x)
y = self.ad_layer3(x)
y = self.sigmoid(y)
return y
def output_num(self):
return 1
def get_parameters(self):
return [{"params":self.parameters(), "lr_mult":10, 'decay_mult':2}]