forked from PaulDanielML/MuJoCo_RL_UR5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Grasping_Agent_multidiscrete.py
446 lines (374 loc) · 20.8 KB
/
Grasping_Agent_multidiscrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# Author: Paul Daniel ([email protected])
import gym
import torch
import torchvision.transforms as T
import torch.nn.functional as F
import torch.optim as optim
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from Modules import ReplayBuffer, Transition, simple_Transition
from termcolor import colored
import numpy as np
import pickle
import random
import copy
import math
from collections import deque, defaultdict
import time
from Modules import MULTIDISCRETE_RESNET
HEIGHT = 200
WIDTH = 200
N_EPISODES = 1000
STEPS_PER_EPISODE = 50
MEMORY_SIZE = 2000
MAX_POSSIBLE_SAMPLES = 12 # Number of transitions that fits on GPU memory for one backward-call (12 for RGB-D)
NUMBER_ACCUMULATIONS_BEFORE_UPDATE = 1 # How often to accumulate gradients before updating
BATCH_SIZE = MAX_POSSIBLE_SAMPLES*NUMBER_ACCUMULATIONS_BEFORE_UPDATE # Effective batch size
GAMMA = 0.0
LEARNING_RATE = 0.001
EPS_STEADY = 0.0
EPS_START = 1.0
EPS_END = 0.2
EPS_DECAY = 8000
SAVE_WEIGHTS = True
MODEL = 'RESNET'
ALGORITHM = 'DQN'
OPTIMIZER = 'ADAM'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Grasp_Agent():
"""
Example class for an agent interacting with the 'GraspEnv'-environment.
Implements some basic methods for normalization, action selection, observation transformation and learning.
"""
def __init__(self, height=HEIGHT, width=WIDTH, learning_rate=LEARNING_RATE, mem_size=MEMORY_SIZE, eps_start=EPS_START, eps_end=EPS_END, eps_decay=EPS_DECAY, depth_only=False, load_path=None, train=True, seed=20, optimizer=OPTIMIZER):
"""
Args:
height: Observation height (in pixels).
width: Observation width (in pixels).
mem_size: Number of transitions to be stored in the replay buffer.
eps_start, eps_end, eps_decay: Parameters describing the decay of epsilon.
load_path: If training is to be resumed based on existing weights, they will be loaded from this path.
train: If True, will be fully initialized, including replay buffer. Can be set to False for demonstration purposes.
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
self.WIDTH = width
self.HEIGHT = height
self.depth_only = depth_only
if train:
self.env = gym.make('gym_grasper:Grasper-v0', image_height=HEIGHT, image_width=WIDTH, render=False)
# self.env = gym.make('gym_grasper:Grasper-v0', image_height=HEIGHT, image_width=WIDTH)
else:
self.env = gym.make('gym_grasper:Grasper-v0', image_height=HEIGHT, image_width=WIDTH, show_obs=False, demo=True, render=True)
self.n_actions_1, self.n_actions_2 = self.env.action_space.nvec[0], self.env.action_space.nvec[1]
self.output = self.n_actions_1 * self.n_actions_2
# Initialize networks
self.policy_net = MULTIDISCRETE_RESNET(number_actions_dim_2=self.n_actions_2).to(device)
# Only need a target network if gamma is not zero
if GAMMA != 0.0:
self.target_net = MULTIDISCRETE_RESNET(number_actions_dim_2=self.n_actions_2).to(device)
# No need for training on target net, we just copy the weigts from policy nets if we use it
self.target_net.eval()
# Load weights if training should not start from scratch
if load_path is not None:
checkpoint = torch.load(load_path)
self.policy_net.load_state_dict(checkpoint['model_state_dict'])
if GAMMA != 0.0:
self.target_net.load_state_dict(checkpoint['model_state_dict'])
print('Successfully loaded weights from {}.'.format(load_path))
# Set up some transforms
self.normal_rgb = T.Compose([T.ToPILImage(), T.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), T.ToTensor()])
# self.normal_rgb = T.Compose([T.ToPILImage(), T.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), T.ToTensor(), \
# T.Lambda(lambda x : x + 0.01*torch.randn_like(x))])
self.normal_rgb_no_jitter_no_noise = T.Compose([T.ToTensor()])
self.normal_depth =T.Compose([T.Lambda(lambda x : x + 0.01*torch.randn_like(x))])
# self.normal_depth =T.Compose([T.Lambda(lambda x : x + 0.001*torch.randn_like(x))])
self.depth_threshold = np.round(self.env.model.cam_pos0[self.env.model.camera_name2id('top_down')][2] \
- self.env.TABLE_HEIGHT + 0.01, decimals=3)
self.last_action = None
if train:
# Set up replay buffer
# TODO: Implement prioritized experience replay
if GAMMA == 0.0:
# Don't need to store the next state in the buffer if gamma is 0
self.memory = ReplayBuffer(mem_size, simple=True)
else:
self.memory = ReplayBuffer(mem_size)
if optimizer == 'SGD':
# Using SGD with parameters described in TossingBot paper
self.optimizer = optim.SGD(self.policy_net.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.00002)
elif optimizer == 'ADAM':
self.optimizer = optim.Adam(self.policy_net.parameters(), lr=learning_rate, weight_decay=0.00002)
if load_path is not None:
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
self.steps_done = checkpoint['step'] if 'step' in checkpoint.keys() else 0
self.eps_threshold = checkpoint['epsilon'] if 'epsilon' in checkpoint.keys() else EPS_STEADY
self.DESCRIPTION = '_continue_' + load_path[:-11] + '_at_' + str(self.steps_done)
self.WEIGHT_PATH = load_path
self.greedy_rotations = checkpoint['greedy_rotations'] if 'greedy_rotations' in checkpoint.keys() else defaultdict(int)
self.greedy_rotations_successes = checkpoint['greedy_rotations_successes'] if 'greedy_rotations_successes' in checkpoint.keys() else defaultdict(int)
self.random_rotations_successes = checkpoint['random_rotations_successes'] if 'random_rotations_successes' in checkpoint.keys() else defaultdict(int)
else:
self.steps_done = 0
self.eps_threshold = EPS_START
date = '_'.join([str(time.localtime()[1]), str(time.localtime()[2]), str(time.localtime()[0]), str(time.localtime()[3]), str(time.localtime()[4])])
self.DESCRIPTION = '_'.join([ALGORITHM ,MODEL, 'LR', str(learning_rate), 'OPTIM', optimizer, 'H', str(HEIGHT), \
'W', str(WIDTH), 'STEPS', str(N_EPISODES*STEPS_PER_EPISODE), 'BUFFER_SIZE', str(MEMORY_SIZE), 'BATCH_SIZE', str(BATCH_SIZE), 'SEED', str(seed)])
self.WEIGHT_PATH = self.DESCRIPTION + '_' + date + '_weights.pt'
self.greedy_rotations = defaultdict(int)
self.greedy_rotations_successes = defaultdict(int)
self.random_rotations_successes = defaultdict(int)
# Tensorboard setup
self.writer = SummaryWriter(comment=self.DESCRIPTION)
if not self.depth_only:
self.writer.add_graph(self.policy_net, torch.zeros(1, 4, self.WIDTH, self.HEIGHT).to(device))
else:
self.writer.add_graph(self.policy_net, torch.zeros(1, 1, self.WIDTH, self.HEIGHT).to(device))
self.last_1000_rewards = deque(maxlen=1000)
self.last_100_loss = deque(maxlen=100)
self.last_1000_actions = deque(maxlen=1000)
def epsilon_greedy(self, state):
"""
Returns an action according to the epsilon-greedy policy.
Args:
state: An observation / state that will be forwarded through the policy net if greedy action is chosen.
"""
sample = random.random()
self.eps_threshold = EPS_END + (EPS_START - EPS_END) * \
math.exp(-1. * self.steps_done / EPS_DECAY)
# self.eps_threshold = EPS_STEADY
self.writer.add_scalar('Epsilon', self.eps_threshold, global_step=self.steps_done)
self.steps_done += 1
# if self.steps_done < 2*BATCH_SIZE:
# self.last_action = 'random'
# return torch.tensor([[random.randrange(self.output)]], dtype=torch.long)
if sample > self.eps_threshold:
self.last_action = 'greedy'
with torch.no_grad():
# For RESNET
max_idx = self.policy_net(state.to(device)).view(-1).max(0)[1]
max_idx = max_idx.view(1)
# Do not want to store replay buffer in GPU memory, so put action tensor to cpu.
return max_idx.unsqueeze_(0).cpu()
# else:
# self.last_action = 'random'
# return torch.tensor([[random.randrange(self.output)]], dtype=torch.long)
# Little trick for faster training: When sampling a random action, check the depth value
# of the selected pixel and resample until you get a pixel corresponding to a point on the table
else:
self.last_action = 'random'
while True:
action = random.randrange(self.output)
action_1 = action % self.n_actions_1
x = action_1 % self.env.IMAGE_WIDTH
y = action_1 // self.env.IMAGE_WIDTH
depth = self.env.current_observation['depth'][y][x]
coordinates = self.env.controller.pixel_2_world(pixel_x=x, pixel_y=y, depth=depth, height=self.env.IMAGE_HEIGHT, width=self.env.IMAGE_WIDTH)
if coordinates[2] >= (self.env.TABLE_HEIGHT - 0.01):
break
return torch.tensor([[action]], dtype=torch.long)
def greedy(self, state):
"""
Always returns the greedy action. For demonstrating learned behaviour.
Args:
state: An observation / state that will be forwarded through the policy network to receive the action with the highest Q value.
"""
self.last_action = 'greedy'
with torch.no_grad():
max_o = self.policy_net(state.to(device)).view(-1).max(0)
max_idx = max_o[1]
max_value = max_o[0]
return max_idx, max_value.item()
def transform_observation(self, observation, normalize=True, jitter_and_noise=True):
"""
Takes an observation dictionary, transforms it into a normalized tensor of shape (1,4,height,width).
The returned tensor will already be on the gpu if one is available.
NEW: Also adds some random noise to the input.
Args:
observation: Observation to be transformed.
"""
depth = copy.deepcopy(observation['depth'])
depth[np.where(depth > self.depth_threshold)] = self.depth_threshold
if normalize:
if not self.depth_only:
rgb = copy.deepcopy(observation['rgb'])
depth += np.random.normal(loc=0, scale=0.001, size=depth.shape)
depth *= -1
depth_min = np.min(depth)
depth_max = np.max(depth)
depth = (depth - depth_min) / (depth_max - depth_min)
else:
rgb = observation['rgb'].astype(np.float32)
# Add channel dimension to np-array depth.
depth = np.expand_dims(depth, 0)
# Apply rgb normalization transform, this rearanges dimensions, transforms into float tensor,
# scales values to range [0,1]
if not self.depth_only:
if normalize and jitter_and_noise:
rgb_tensor = self.normal_rgb(rgb).float()
if normalize and not jitter_and_noise:
rgb_tensor = self.normal_rgb_no_jitter_no_noise(rgb).float()
if not normalize:
# Read in the means and stds from another file, created by 'normalize.py'
self.means, self.stds = self.get_mean_std()
self.standardize_rgb = T.Compose([T.ToTensor(), T.Normalize(self.means[0:3], self.stds[0:3])])
rgb_tensor = self.standardize_rgb(rgb).float()
depth_tensor = torch.tensor(depth).float()
# Depth values need to be normalized separately, as they are not int values. Therefore, T.ToTensor() does not work for them.
# if normalize:
# depth_tensor = self.normal_depth(depth_tensor)
if not normalize:
self.standardize_depth =T.Compose([T.Normalize(self.means[3], self.stds[3]), T.Lambda(lambda x : x + 0.001*torch.randn_like(x))])
depth_tensor = self.standardize_depth(depth_tensor)
if not self.depth_only:
obs_tensor = torch.cat((rgb_tensor, depth_tensor), dim=0)
else:
obs_tensor = depth_tensor.detach().clone()
# Add batch dimension.
obs_tensor.unsqueeze_(0)
if not self.depth_only:
del rgb, depth, rgb_tensor, depth_tensor
else:
del depth, depth_tensor
return obs_tensor
def get_mean_std(self):
"""
Reads and returns the mean and standard deviation values created by 'normalize.py'.
"""
with open('mean_and_std', 'rb') as file:
raw = file.read()
values = pickle.loads(raw)
return values[0:4], values[4:8]
def transform_action(self, action):
action_value = action.item()
action_1 = action_value % self.n_actions_1
action_2 = action_value // self.n_actions_1
return np.array([action_1, action_2])
def learn(self):
"""
Example implementaion of a training method, using standard DQN-learning.
Samples batches from the replay buffer, feeds them through the policy net, calculates loss,
and calls the optimizer.
"""
# Make sure we have collected enough data for at least one batch
if len(self.memory) < 2*BATCH_SIZE:
print('Filling the replay buffer ...')
return
# Sample the replay buffer
transitions = self.memory.sample(BATCH_SIZE)
# Transpose the batch for easier access (see https://stackoverflow.com/a/19343/3343043)
if GAMMA == 0.0:
batch = simple_Transition(*zip(*transitions))
else:
batch = Transition(*zip(*transitions))
# Gradient accumulation to bypass GPU memory restrictions
for i in range(NUMBER_ACCUMULATIONS_BEFORE_UPDATE):
# Transfer weights every TARGET_NETWORK_UPDATE steps
if GAMMA != 0.0:
if self.steps_done % TARGET_NETWORK_UPDATE == 0:
self.target_net.load_state_dict(self.policy_net.state_dict())
start_idx = i * MAX_POSSIBLE_SAMPLES
end_idx = (i+1) * MAX_POSSIBLE_SAMPLES
state_batch = torch.cat(batch.state[start_idx:end_idx]).to(device)
action_batch = torch.cat(batch.action[start_idx:end_idx]).to(device)
if GAMMA != 0.0:
next_state_batch = torch.cat(batch.next_state[start_idx:end_idx]).to(device)
reward_batch = torch.cat(batch.reward[start_idx:end_idx]).to(device)
# Current Q prediction of our policy net, for the actions we took
q_pred = self.policy_net(state_batch).view(MAX_POSSIBLE_SAMPLES, -1).gather(1, action_batch)
# q_pred = self.policy_net(state_batch).gather(1, action_batch)
if GAMMA == 0.0:
q_expected = reward_batch.float()
else:
# Q prediction of the target net of the next state
q_next_state = self.target_net(next_state_batch).max(1)[0].unsqueeze(1).detach()
# Calulate expected Q value using Bellmann: Q_t = r + gamma*Q_t+1
q_expected = reward_batch + (GAMMA * q_next_state)
loss = F.binary_cross_entropy(q_pred, q_expected) / NUMBER_ACCUMULATIONS_BEFORE_UPDATE
loss.backward()
self.last_100_loss.append(loss.item())
# self.writer.add_scalar('Average loss', loss, global_step=self.steps_done)
self.optimizer.step()
self.optimizer.zero_grad()
def update_tensorboard(self, reward, action):
"""
Method for keeping track of tensorboard metrics.
Args:
reward: Reward to be added to the list of last 1000 rewards.
action: Last action chosen by the current policy.
"""
rotation_action = action[1]
self.last_1000_actions.append(rotation_action)
if self.last_action == 'greedy':
self.greedy_rotations[str(rotation_action)] += 1
if reward == 1:
self.greedy_rotations_successes[str(rotation_action)] += 1
else:
if reward == 1:
self.random_rotations_successes[str(rotation_action)] += 1
if self.steps_done % 1000 == 0:
self.writer.add_histogram('Rotation action distribution/Last1000', np.array(self.last_1000_actions), global_step=self.steps_done, bins=[i for i in range(self.n_actions_2)])
if self.steps_done % 10 == 0:
self.writer.add_scalars('Total number of rotation actions/Greedy', self.greedy_rotations, self.steps_done)
self.writer.add_scalars('Total number of successful rotation actions/Greedy', self.greedy_rotations_successes, self.steps_done)
self.writer.add_scalars('Total number of successful rotation actions/Random', self.random_rotations_successes, self.steps_done)
self.last_1000_rewards.append(reward)
if len(self.last_1000_rewards) > 99:
if self.steps_done % 10 == 0:
last_100 = np.array([self.last_1000_rewards[i] for i in range(-100,0)])
mean_reward_100 = np.mean(last_100)
self.writer.add_scalar('Mean reward/Last100', mean_reward_100, global_step=self.steps_done)
# grasps_in_last_100 = np.count_nonzero(last_100 == 1)
# self.writer.add_scalar('Number of succ. grasps in last 100 steps', grasps_in_last_100, global_step=self.steps_done)
if len(self.last_1000_rewards) > 999:
if self.steps_done % 10 == 0:
mean_reward_1000 = np.mean(self.last_1000_rewards)
self.writer.add_scalar('Mean reward/Last1000', mean_reward_1000, global_step=self.steps_done)
if len(self.last_100_loss) > 99:
if self.steps_done % 10 == 0:
self.writer.add_scalar('Mean loss/Last100', np.mean(self.last_100_loss), global_step=self.steps_done)
def main():
for rand_seed in [999]:
for lr in [0.0005]:
LOAD_PATH = 'DQN_RESNET_LR_0.001_OPTIM_ADAM_H_200_W_200_STEPS_35000_BUFFER_SIZE_2000_BATCH_SIZE_12_SEED_81_9_7_2020_9_52_weights.pt'
agent = Grasp_Agent(seed=rand_seed, load_path=None, learning_rate=lr, depth_only=False)
agent.optimizer.zero_grad()
for episode in range(1, N_EPISODES+1):
state = agent.env.reset()
state = agent.transform_observation(state)
print(colored('CURRENT EPSILON: {}'.format(agent.eps_threshold), color='blue', attrs=['bold']))
for step in range(1, STEPS_PER_EPISODE+1):
print('#################################################################')
print(colored('EPISODE {} STEP {}'.format(episode, step), color='white', attrs=['bold']))
print('#################################################################')
action = agent.epsilon_greedy(state)
env_action = agent.transform_action(action)
next_state, reward, done, _ = agent.env.step(env_action, action_info=agent.last_action)
agent.update_tensorboard(reward, env_action)
reward = torch.tensor([[reward]])
next_state = agent.transform_observation(next_state)
if GAMMA == 0.0:
agent.memory.push(state, action, reward)
else:
agent.memory.push(state, action, next_state, reward)
state = next_state
agent.learn()
if SAVE_WEIGHTS:
torch.save({
'step': agent.steps_done,
'model_state_dict': agent.policy_net.state_dict(),
'optimizer_state_dict': agent.optimizer.state_dict(),
'epsilon': agent.eps_threshold,
'greedy_rotations': agent.greedy_rotations,
'greedy_rotations_successes': agent.greedy_rotations_successes,
'random_rotations_successes': agent.random_rotations_successes
}, agent.WEIGHT_PATH)
# torch.save(agent.policy_net.state_dict(), WEIGHT_PATH)
print('Saved checkpoint to {}.'.format(agent.WEIGHT_PATH))
print(f'Finished training (rand_seed = {rand_seed}).')
agent.writer.close()
agent.env.close()
if __name__ == '__main__':
main()