-
Notifications
You must be signed in to change notification settings - Fork 0
/
papers.html
1401 lines (1345 loc) · 82.9 KB
/
papers.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="icon" href="img/favico.png" type="image/png">
<title>Lidiaxp</title>
<link href="vendor/fontawesome-free/css/all.min.css" rel="stylesheet" type="text/css">
<link href="https://fonts.googleapis.com/css?family=Montserrat:400,700" rel="stylesheet" type="text/css">
<link href="https://fonts.googleapis.com/css?family=Lato:400,700,400italic,700italic" rel="stylesheet" type="text/css">
<link href="vendors/magnific-popup/magnific-popup.css" rel="stylesheet" type="text/css">
<link href="css/freelancer.min.css" rel="stylesheet">
<!-- Bootstrap CSS -->
<link rel="stylesheet" href="css/bootstrap.css">
<link rel="stylesheet" href="vendors/linericon/style.css">
<link rel="stylesheet" href="css/font-awesome.min.css">
<link rel="stylesheet" href="vendors/owl-carousel/owl.carousel.min.css">
<link rel="stylesheet" href="vendors/lightbox/simpleLightbox.css">
<link rel="stylesheet" href="vendors/nice-select/css/nice-select.css">
<link rel="stylesheet" href="vendors/animate-css/animate.css">
<link rel="stylesheet" href="vendors/popup/magnific-popup.css">
<link rel="stylesheet" href="vendors/flaticon/flaticon.css">
<!-- main css -->
<link rel="stylesheet" href="css/style.css">
<link rel="stylesheet" href="css/responsive.css">
</head>
<body>
<!--================Header Menu Area =================-->
<header class="header_area">
<div class="main_menu">
<nav class="navbar navbar-expand-lg navbar-light" id="mainNav">
<div class="container box_1620">
<!-- Brand and toggle get grouped for better mobile display -->
<a class="navbar-brand logo_h" href="index.html"><img src="img/branco.png" alt=""></a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarSupportedContent" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse offset" id="navbarSupportedContent">
<ul class="nav navbar-nav menu_nav ml-auto">
<li class="nav-item active"><a class="nav-link" href="index.html#top">Home</a></li>
<!-- <li class="nav-item"><a class="nav-link" href="index.html">About</a></li> -->
<li class="nav-item"><a class="nav-link" href="index.html#experience">Education</a></li>
<li class="nav-item"><a class="nav-link" href="#services">Publications</a></li>
<li class="nav-item"><a class="nav-link" href="index.html#awards">Awards</a></li>
<li class="nav-item"><a class="nav-link" href="index.html#portfolio">Personal Projects</a></li>
<li class="nav-item"><a class="nav-link" href="index.html#contact">Contact</a></li>
<!--<li class="nav-item"><a class="nav-link" href="#contact">Contact</a></li>-->
</ul>
</div>
</div>
</nav>
</div>
</header>
<!--================Header Menu Area =================-->
<!--================Home Banner Area =================-->
<section class="banner_area">
<div class="box_1620">
<div class="banner_inner d-flex align-items-center">
<div class="container">
<div class="banner_content text-center">
<h2>Publications</h2>
<div class="page_link">
<a href="index.html">Home</a>
<a href="portfolio.html">Publications</a>
</div>
</div>
</div>
</div>
</div>
</section>
<!--================End Home Banner Area =================-->
<!--================Home Gallery Area =================-->
<section class="home_gallery_area p_120" id="portfolio">
<!-- <div class="container">
<div class="main_title">
<h2>Latest Papers</h2>
<p>To reinvent the wheel</p>
</div>
<div class="isotope_fillter">
<ul class="gallery_filter list">
<li class="active" data-filter="*"><a href="#">All</a></li>
<li data-filter=".iot"><a href="#">Robotic / IoT</a></li>
<li data-filter=".ia"><a href="#">Artificial Intelligence</a></li>
<li data-filter=".design"><a href="#">Design</a></li>
<li data-filter=".sistema"><a href="#">Systems</a></li>
<li data-filter=".games"><a href="#">Games</a></li>
<li data-filter=".mr"><a href="#">Mixed Reality</a></li>
</ul>
</div>
</div> -->
<!---------------------------------->
<div class="container">
<div class="gallery_f_inner row imageGallery1">
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#jiraA2024">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/jiraA2024.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>JINT - 2024</h4>
<p>Multi-UAV Collaborative System</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#arxivA2024">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/arxivA2024.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>Arxiv - 2024</h4>
<p>Dynamic Q-planning</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#jira2023">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/jira2023.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>IJIRA - 2023</h4>
<p>Performance analysis</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#icuas2023">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/icuas2023.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>ICUAS - 2023</h4>
<p>Overview for High-Speed Flight</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#ziwi2023">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/ziwi2023.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>Soft Computing - 2023</h4>
<p>Ziwi: indoor and outdoor planning network</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#larsctdr2022">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/larsctdr2022.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>LARS CTDR - 2022</h4>
<p>Path Planning Algorithms for UAVs</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#icuas20221">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/plannie.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>ICUAS - 2022</h4>
<p>Plannie: A benchmark framework</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#icuas20222">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/bench3d.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>ICUAS - 2022</h4>
<p>A 3D Benchmark</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#lars20211">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/classical.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>LARS - 2021</h4>
<p>Contributions of Classical Path Planning Techniques</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#lars20212">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/XR.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>LARS - 2021</h4>
<p>Extended Reality for Robots</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#lars20213">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/algaeMonitoring.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>LARS - 2021</h4>
<p>Algae Monitoring with UAV</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#lars20214">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/detectVegetation.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>LARS - 2021</h4>
<p>Detect Vegetation with UAV</p>
</div>
</div>
</div>
<!---------------------------------->
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#icuas2021">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/icuasPhoto.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>ICUAS - 2021</h4>
<p>Novel - Classical Approach</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#lars2020">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/larsPhoto.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>LARS - 2020</h4>
<p>Review - Metaheurist Approach</p>
</div>
</div>
</div>
<!---------------------------------->
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#brazilianJournal1">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/evaluateCoverage.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>Brazilian Journal of Development - 2020</h4>
<p>Evaluation of Coverage and Capcity</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#brazilianJournal2">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/indoorSimulator.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>Brazilian Journal of Development - 2020</h4>
<p>Indoor Simulator for Next Generation</p>
</div>
</div>
</div>
<!---------------------------------->
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#imoc2019">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/imoc.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>IMOC - 2019</h4>
<p>Modeling in Corridors at 10 GHz</p>
</div>
</div>
</div>
<!---------------------------------->
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#encom2018">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/encom.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>Encom - 2018</h4>
<p>Coverage analysis with PyLayers</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#momag20181">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/perdaPercurso.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>Momag - 2018</h4>
<p>Path Loss Characterization</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#momag20182">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/ambienteNaoIonizante.jpg" alt="">
</a>
</div>
<div class="g_item_text">
<h4>Momag - 2018</h4>
<p>Radiation Assessment 3D module</p>
</div>
</div>
</div>
<!---------------------------------->
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#sbgames20181">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/ann.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>SBGames - 2018</h4>
<p>ANN to recognize pattern</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#sbgames20182">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/diy.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>SBGames - 2018</h4>
<p>Do it yourself</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#ctda2017">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/customPylayers.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>I CTDA - 2017</h4>
<p>Custom PyLayers</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#sbgames2017">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/battletest.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>SBGames - 2017</h4>
<p>BattleTest</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#sbpc2016">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/ops.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>SBPC - 2016</h4>
<p>OPS</p>
</div>
</div>
</div>
<div class="col-lg-4 col-md-4 col-sm-6">
<div class="h_gallery_item">
<div class="g_img_item">
<a class="portfolio-item d-block mx-auto" href="#ereds2015">
<div class="portfolio-item-caption d-flex position-absolute h-100 w-100">
<div class="portfolio-item-caption-content my-auto w-100 text-center text-white">
</div>
</div>
<img class="img-fluid" src="img/gallery/papers/circular.png" alt="">
</a>
</div>
<div class="g_item_text">
<h4>EREDS - 2015</h4>
<p>Forecast System for Buses</p>
</div>
</div>
</div>
</div>
</div>
</section>
<!--================End Home Gallery Area ===============l==-->
<!--================Start Modal =================-->
<div class="portfolio-modal mfp-hide" id="jiraA2024">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Multi-UAV Collaborative System for the Identification of Surface Cyanobacterial Blooms and Aquatic Macrophytes
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/jiraA2024.png" alt="">
<p class="mb-5">
Aquatic macrophyte is a generic denomination for macro-algae with active photosynthetic parts that remain totally or partially submerged in fresh or salty water, in rivers and lakes. Currently, algae monitoring is carried out manually by collecting samples to send for laboratory analysis. In most cases, harmful algal blooms are already widespread when the results are disclosed. This paper proposes the application of a team of heterogeneous Unmanned Aerial Vehicles (UAVs) that cooperate to increase the system’s overall observation range and reduce the reaction time. Leader UAV, featured with a deep-learning-based vision system, covers a pre-determined region and determines high-interest inspection areas in real-time. Through a multi-robot Informative Path Planning (MIPP) approach, the leader UAV coordinates a team of customized quadcopter (named ART2) to reach points of interest, managing their route dynamically. ART2s are able to land on water, and collect and test samples in situ by applying phosphorescence sensors. While path planning, task assignment, and route management are centralized operations, each UAV is conducted by a decentralized trajectory tracking control. Simulations performed in a realistic environment implemented on the Unity platform and experimental proof of concepts demonstrated the reliability of the proposed approach. The presented multi-UAV framework with heterogeneous agents also enables the reconfiguration and expansion of specific objectives, in addition to minimizing the task completion time by executing different processes in parallel. This preventive monitoring enables a plague control action in advance, solving it faster, cheaper, and more effectively.
</p>
<p class="mb-5"><a href="https://link.springer.com/article/10.1007/s10846-023-02043-6">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="arxivA2024">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Dynamic Q-planning for Online UAV Path Planning in Unknown and Complex Environments
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/arxivA2024.png" alt="">
<p class="mb-5">
Unmanned Aerial Vehicles need an online path planning capability to move in high-risk missions in unknown and complex environments to complete them safely. However, many algorithms reported in the literature may not return reliable trajectories to solve online problems in these scenarios. The Q-Learning algorithm, a Reinforcement Learning Technique, can generate trajectories in real-time and has demonstrated fast and reliable results. This technique, however, has the disadvantage of defining the iteration number. If this value is not well defined, it will take a long time or not return an optimal trajectory. Therefore, we propose a method to dynamically choose the number of iterations to obtain the best performance of Q-Learning. The proposed method is compared to the Q-Learning algorithm with a fixed number of iterations, A*, Rapid-Exploring Random Tree, and Particle Swarm Optimization. As a result, the proposed Q-learning algorithm demonstrates the efficacy and reliability of online path planning with a dynamic number of iterations to carry out online missions in unknown and complex environments.
</p>
<p class="mb-5"><a href="https://arxiv.org/pdf/2402.06297.pdf">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="jira2023">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Performance analysis of path planning techniques for autonomous robots
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/jira2023.png" alt="">
<p class="mb-5">
Autonomous robots can use path planning techniques to determine the optimal trajectory during the mission. These techniques can be classified as classical, meta heuristic, or machine learning-based. The choice of each technique for a mission depends on its specific requirements, such as finding the shortest path, completing the mission in the minimum time, or/and exploring the environment, among others. Therefore, the path planning algorithms analysis is essential to assist in selecting the appropriate technique. In the literature, the path planning algorithms are typically compared within the same category, and a general analysis is conducted to decide which technique to employ for a particular mission. However, this paper aims to delve deeper into the behavior and performance of these three path planning techniques. The analysis is based on simulations in various environments to understand how each technique behaves and performs, specifically focusing on computation costs, time, and path length efficiency.
</p>
<p class="mb-5"><a href="https://link.springer.com/article/10.1007/s41315-023-00298-8">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="icuas2023">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Overview of UAV Trajectory Planning for High-Speed Flight
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/icuas2023.png" alt="">
<p class="mb-5">
The use of autonomous unmanned aerial vehicles has increased for High-Speed flights, leading to the need for improved performance. Trajectory planning is the primary approach to achieving high speeds, as it is safer and more flexible than other planning types. Some approaches include polynomial trajectories, optimization-based, search-based, sampling-based, and artificial intelligence, mainly reinforcement learning. This paper provides an overview of the main techniques for high-speed trajectory planning in UAVs and the challenges associated with them. It also describes essential UAV dynamics, control, and perception to reach high speeds. These techniques are demonstrated in several missions and environments, describing their methodologies. Finally, we discuss the open problems and potential future research directions in this field.
</p>
<p class="mb-5"><a href="https://www.researchgate.net/publication/371681355_Overview_of_UAV_Trajectory_Planning_for_High-Speed_Flight">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="ziwi2023">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Ziwi: indoor and outdoor planning network—framework to collection, modeling and network structure based on computational optimization and measurements
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/ziwi2023.png" alt="">
<p class="mb-5">
Society is increasingly connected, utilizing more data that demands greater capacity and better channel quality. Furthermore, wireless networks are being inserted into the population's daily lives. Therefore, solutions capable of transferring a high volume of data are increasingly needed. In this context, we present a framework that aims to network planning through data collection, modeling, and routers optimization in the environment. Ziwi framework can simulate wireless networks in indoor and outdoor environments with the main classical propagation models, obtain and calculate metrics and performance parameters. It is possible to measure data by cell phone and send it to the website quickly. Furthermore, it can model the data and compare with different propagation models. Also, optimize them using a genetic algorithm or permutation, choosing whether or not to consider sockets to turn on the routers and how many routers are needed to place in the environment. In addition, have a virtual reality environment aiming at greater interactivity with the data. We analyzed framework results comparing with Close-In propagation model, free space model, and statically using the root mean square error metric. Measurements were made in a real environment using the Ziwi mobile application, inserting data captured on Ziwi website to validate the framework.
</p>
<p class="mb-5"><a href="https://link.springer.com/article/10.1007/s00500-022-07682-9">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="larsctdr2022">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Path Planning Algorithms in Unknown and Unstructured Environments for UAVs
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/larsctdr2022.png" alt="">
<p class="mb-5">
For an Unmanned Aerial Vehicle to become autonomous, it must perform actions without human interference. Regardless of its application area, path planning is required to carry out a mission. Nowadays, several applications require the UAV to operate in an unknown, 3D, and unstructured environment. Another essential point is considering the movement restrictions in the execution of the movements, where achieving smooth curves reduces the number of stops on 90 degrees curves. One observable aspect among the existing and most used techniques is” which would be the best technique to work in each of these environments”. This work aims to answer this question with a deeper analysis of all path planning categories: classic, metaheuristic, and machine learning. We develop our planner to analyze these techniques considering completeness, distance, time, CPU usage, memory usage, collision prevention, and robustness. This planner is modular, so it is possible to add new techniques and scenarios to be studied. We also performed tests in simulated and real environments.
</p>
<p class="mb-5"><a href="https://sol.sbc.org.br/index.php/sbrlars_estendido/article/download/23332/23159/">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="icuas20221">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Plannie: A Benchmark Framework for Autonomous Robots Path Planning Algorithms Integrated to Simulated and Real Environments
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/plannie.png" alt="">
<p class="mb-5">
Over the years, research has enabled robots to become more autonomous, determining their trajectories. Thus, path planning is an important area in autonomous robots. With the growing number of path planning algorithms, it is essential to have a framework capable of analyzing several algorithms in the same scenario to assess their capabilities. This paper presents Plannie, a framework to develop, simulate, benchmark, and test path planning algorithms in 2D and 3D environments in the real world. It supports many path planning algorithms, such as classic, metaheuristic, and machine learning. Furthermore, this framework offers several maps from an external database. However, it is also possible the build new maps in addition to having control, mapping, and localization techniques available for testing in a real environment. Plannie also offers planning modules that involve dynamic obstacle avoidance, coverage, traveling salesman problems, and multi-robot algorithms. Finally, we demonstrate the capability of the Plannie benchmarking several path planning algorithms in different maps. Plannie is open-source.
</p>
<p class="mb-5"><a href="https://ieeexplore.ieee.org/document/9836102">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="icuas20222">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
A 3D Benchmark for UAV Path Planning Algorithms: Missions Complexity, Evaluation and Performance
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/bench3d.png" alt="">
<p class="mb-5">
Unnamed Aerial Vehicles can carry out several missions. It is essential to use path planning algorithms to obtain an efficient trajectory without collision to complete these missions. Several path planning algorithms in the literature are divided into four categories: exact classic, approximate classic, meta heuristic, and machine learning. However, it is not easy to define which is the best for each mission among all path planning algorithms. In this context, an analysis between these categories can facilitate research determining the techniques that obtain better results in each UAV mission. So, in this work, we perform a deep benchmarking of 3D path planning techniques in a simulated and real environment. As a result, classical techniques demonstrate better capacities in dynamic path planning. On the other hand, meta heuristic and machine learning techniques performed the best results for static path planning.
</p>
<p class="mb-5"><a href="https://ieeexplore.ieee.org/document/9836190">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="ctda2017">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Customization of the PyLayers Open Source Tool for Electric Field Prediction in Indoor Environments
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/customPylayers.png" alt="">
<p class="mb-5">
This article uses the open source simulator PyLayers, developed in Python language, which allows its customization, so in this work a simulation was done in an indoor environment with access points (APs) using the IEEE 802.11ac standard and through electric field graphs it was possible to verify the level of electromagnetic exposure to which users were submitted and was subsequently evaluated if the levels were within the safety limits defined by National Telecommunications Agency.
</p>
<p class="mb-5"><a href="https://1drv.ms/b/s!Ahl8DHSTZfirkoFNvzMVB9Hc242NNA">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="lars2020">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Comparison between Meta Heuristic Algorithms for Path Planning
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/larsPhoto.png" alt="">
<p class="mb-5">
Unmanned Aerial Vehicle (UAV) has been increasingly employed in several missions with a pre-defined path. Over the years, the use of Unmanned Aerial Vehicles (UAV) has become necessary in complex environments, where it demands high computational cost and execution time for traditional algorithms. To solve this problem meta heuristic algorithms are used. Meta heuristics are generic algorithms to solve problems without having to describe each step until the result and search for the best possible answer in an acceptable computational time. The simulations are made in Python, with it, a statistical analyses was realized based on execution time and path length between algorithms Particle Swarm Optimization (PSO), Grey Wolf Optimization (GWO) and Glowworm Swarm Optimization (GSO). Despite the GWO returns the paths in a shorter time, the PSO showed better performance with similar execution time and shorter path length. However, the reliability of the algorithms will depend on the size of the environment. PSO is less reliable in large environments, while the GWO maintains the same reliability.
</p>
<p class="mb-5"><a href="https://www.semanticscholar.org/paper/Comparison-between-Meta-Heuristic-Algorithms-for-Rocha-Vivaldini/e2867fac0201c67c2f25660cd67ddeb57eb41c04">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="icuas2021">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
A UAV Global Planner to Improve Path Planning in Unstructured Environments
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/icuasPhoto.png" alt="">
<p class="mb-5">
A good performance for path planning is essential to carry out real-world missions. In this paper, the path planning consists of a global planner, that finds the optimal path, and in a local planner, recalculates the path to avoid obstacles. The main focus is to improve the performance of local planning techniques decreasing the complexity. There are two main ways to do it: bidirectional algorithms, improving time, and global planners, improving time and completeness. Thus, we propose a global planner algorithm that generates auxiliary nodes, backtracking by the goal node. We perform a comparison among A*, Bi A*, Artificial Potential Field (APF), Bi APF, Rapid Exploring Random Tree (RRT), and Bi RRT with and without the global planner through statistical metrics of time, path length, CPU, and memory. The results show the advantages of using bidirectional algorithms and the proposed global planner. The bidirectional algorithms decrease the time to return to the trajectory and sometimes assist in the algorithm's completeness. The proposed global planner reduced the planning time by 91.6% and improved the completeness of all algorithms in an unstructured indoor environment.
</p>
<p class="mb-5"><a href="https://ieeexplore.ieee.org/abstract/document/9476692">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="sbpc2016">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
OPS – an online platform for open source projects
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/ops.png" alt="">
<p class="mb-5">
When young people enter engineering courses, they are usually excited and motivated to do new projects and learn how to use different technologies. However, most of them come from regular schools, without having taken any technical course in the area, and consequently without the necessary knowledge to develop the idea you want. Although there is a lot of content available on the internet, most of it is disorganized, unintuitive and in a foreign language. With this situation in mind, a website was built where these young people can exchange ideas about their projects together with other people who are also facing the same reality, doing similar projects without effective support.
</p>
<p class="mb-5"><a href="http://www.sbpcnet.org.br/livro/68ra/resumos/resumos/5375_17d36943e2eba3d1ebfcbd30e69e32947.pdf">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="sbgames2017">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
BattleTest: Educational System for Encouraging Learning in Elementary School with Games
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/battletest.png" alt="">
<p class="mb-5">
This game aims to help children's learning from gamification, having characteristics to earn extra points for the students' grades, encouraging them to improve in school to gain new talents and unlock items in the game and thus compete on equal terms with their friends. It was defined as a mobile game because it takes into account the growth in the sector today and because of its portability compared to other means, in addition to being the most practical way to encourage the use of the game by students at school as supplementary and encouraging material for studies of them. With this system, the aim is to improve the engagement of young people in basic subjects, so when they enter high school they do not feel the basic requirements of the subjects are missing, reducing their difficulty during the school period through games.
</p>
<p class="mb-5"><a href="https://www.sbgames.org/sbgames2017/papers/CulturaShort/175554.pdf">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="sbgames20182">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Do it yourself: When technology joins the cardboard
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/diy.png" alt="">
<p class="mb-5">
This paper presents an alternative way to play video game interactively. To construct the control of the game, it will be used cardboard to build the structure, aluminum foil for the contact with the microcontroller, and a microcontroller, that will be an Arduino based on ATMega 32U4. To attract the attention of the public, will be developed games different than conventional, being the first a race in outer space. To test the viability of the project, a pilot test was made with the Makey Makey board that would build an Atari control made with cardboard to replace the computer mouse.
</p>
<p class="mb-5"><a href="https://www.sbgames.org/sbgames2018/files/papers/ComputacaoShort/188271.pdf">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="sbgames20181">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Bulbasaur, Charmander or Squirtle: An Application of Artificial Neural Networks for Pattern Recognition
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/ann.png" alt="">
<p class="mb-5">
This paper presents the use of an artificial neural network in pattern recognition. To validate its applicability, the determination of the starter pok ́emon based on the personality of the player was used as a theoretical problem. To solve the problem, a multi-layered neural network using a RPROP learning algorithm was developed.
</p>
<p class="mb-5"><a href="https://www.sbgames.org/sbgames2018/files/papers/ComputacaoShort/188392.pdf">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="momag20182">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Non-Ionizing Radiation Assessment Module for a Tool with 3D Virtual Environment
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/ambienteNaoIonizante.jpg" alt="">
<p class="mb-5">
This article presents the steps to develop a 3D module, an extension added to the Simulator for Mobile Communication Network Planning. Through the code developed for the tool and the guidelines of Resolution No. 303 of the National Telecommunications Agency, of July 2002, the original code was restructured, the module created in accordance with the norms and the creation of new antennas for the virtual environment . Using Virtual Reality techniques present in the tool, it is possible to build scenarios, configure antennas and collect data that make it possible to assess whether a certain area is receiving radiation or not. In the module, it is possible to see the value of the transmission power, the field strength, the antenna being analyzed, the transmission frequency, whether the environment is receiving radiation or not, as well as the threshold allowed by ANATEL.
</p>
<p class="mb-5"><a href="https://www.researchgate.net/publication/338655798_Modulo_de_Avaliacao_a_Radiacao_Nao_Ionizante_para_uma_Ferramenta_com_Ambiente_Virtual_3D">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>
Close Project</a>
</div>
</div>
</div>
</div>
</div>
<div class="portfolio-modal mfp-hide" id="momag20181">
<div class="portfolio-modal-dialog bg-white">
<a class="close-button d-none d-md-block portfolio-modal-dismiss" href="#">
<i class="fa fa-3x fa-times"></i>
</a>
<div class="container text-center">
<div class="row">
<div class="col-lg-8 mx-auto">
<h2 class="text-secondary text-uppercase mb-0">
Characterization of Path Loss and Bioinspired Optimization of the SPM Radio-Propagation Model for LTE Networks in Wooded Areas
</h2>
<hr class="star-dark mb-5">
<img class="img-fluid mb-5" src="img/gallery/papers/perdaPercurso.png" alt="">
<p class="mb-5">
In this work, the Standard Propagation Model (SPM) path loss prediction model was adjusted using a genetic algorithm (AG) and the propagation characteristics of a wooded area in the city of Belém-Pará in the frequency range of 2 were also analyzed. .6 GHz. The article also makes a comparative analysis with classical models such as Free Space Model, Okumura-Hata Model, Walfisch-Ikegami Model, COST 231 Model, Ericsson Model 9999, ECC-33 Model, SUI Model and Extended SUI Model using the Matlab software. It will be described how SPM can be calibrated and applied as a radio planning tool in a given forested area. For that, a measurement campaign (drive test – DT) was carried out in the city of Belém-PA in a wooded area. SPM and WalfischIkegami showed the smallest path loss error for the wooded area compared to all other propagation models.
</p>
<p class="mb-5"><a href="https://www.researchgate.net/publication/343080349_Caracterizacao_da_Perda_de_Percurso_e_Otimizacao_Bioinspirada_do_Modelo_de_Radio-Propagacao_SPM_para_Redes_LTE_em_Areas_Arborizadas">Avaiable</a></p>
<a class="btn btn-primary btn-lg rounded-pill portfolio-modal-dismiss" href="#">
<i class="fa fa-close"></i>