-
Notifications
You must be signed in to change notification settings - Fork 16
/
buffer.go
302 lines (267 loc) · 6.74 KB
/
buffer.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// This is a derivitive work of Go's bytes.Buffer implementation.
//
// Originally copyright 2009 The Go Authors. All rights reserved.
//
// Modifications copyright 2018 Steven Allen. All rights reserved.
//
// Use of this source code is governed by both a BSD-style and an MIT-style
// license that can be found in the LICENSE_BSD and LICENSE files.
package pool
import (
"io"
)
// Buffer is a buffer like bytes.Buffer that:
//
// 1. Uses a buffer pool.
// 2. Frees memory on read.
//
// If you only have a few buffers and read/write at a steady rate, *don't* use
// this package, it'll be slower.
//
// However:
//
// 1. If you frequently create/destroy buffers, this implementation will be
// significantly nicer to the allocator.
// 2. If you have many buffers with bursty traffic, this implementation will use
// significantly less memory.
type Buffer struct {
// Pool is the buffer pool to use. If nil, this Buffer will use the
// global buffer pool.
Pool *BufferPool
buf []byte
rOff int
// Preallocated slice for samll reads/writes.
// This is *really* important for performance and only costs 8 words.
bootstrap [64]byte
}
// NewBuffer constructs a new buffer initialized to `buf`.
// Unlike `bytes.Buffer`, we *copy* the buffer but don't reuse it (to ensure
// that we *only* use buffers from the pool).
func NewBuffer(buf []byte) *Buffer {
b := new(Buffer)
if len(buf) > 0 {
b.buf = b.getBuf(len(buf))
copy(b.buf, buf)
}
return b
}
// NewBufferString is identical to NewBuffer *except* that it allows one to
// initialize the buffer from a string (without having to allocate an
// intermediate bytes slice).
func NewBufferString(buf string) *Buffer {
b := new(Buffer)
if len(buf) > 0 {
b.buf = b.getBuf(len(buf))
copy(b.buf, buf)
}
return b
}
func (b *Buffer) grow(n int) int {
wOff := len(b.buf)
bCap := cap(b.buf)
if bCap >= wOff+n {
b.buf = b.buf[:wOff+n]
return wOff
}
bSize := b.Len()
minCap := 2*bSize + n
// Slide if cap >= minCap.
// Reallocate otherwise.
if bCap >= minCap {
copy(b.buf, b.buf[b.rOff:])
} else {
// Needs new buffer.
newBuf := b.getBuf(minCap)
copy(newBuf, b.buf[b.rOff:])
b.returnBuf()
b.buf = newBuf
}
b.rOff = 0
b.buf = b.buf[:bSize+n]
return bSize
}
func (b *Buffer) getPool() *BufferPool {
if b.Pool == nil {
return GlobalPool
}
return b.Pool
}
func (b *Buffer) returnBuf() {
if cap(b.buf) > len(b.bootstrap) {
b.getPool().Put(b.buf)
}
b.buf = nil
}
func (b *Buffer) getBuf(n int) []byte {
if n <= len(b.bootstrap) {
return b.bootstrap[:n]
}
return b.getPool().Get(n)
}
// Len returns the number of bytes that can be read from this buffer.
func (b *Buffer) Len() int {
return len(b.buf) - b.rOff
}
// Cap returns the current capacity of the buffer.
//
// Note: Buffer *may* re-allocate when writing (or growing by) `n` bytes even if
// `Cap() < Len() + n` to avoid excessive copying.
func (b *Buffer) Cap() int {
return cap(b.buf)
}
// Bytes returns the slice of bytes currently buffered in the Buffer.
//
// The buffer returned by Bytes is valid until the next call grow, truncate,
// read, or write. Really, just don't touch the Buffer until you're done with
// the return value of this function.
func (b *Buffer) Bytes() []byte {
return b.buf[b.rOff:]
}
// String returns the string representation of the buffer.
//
// It returns `<nil>` the buffer is a nil pointer.
func (b *Buffer) String() string {
if b == nil {
return "<nil>"
}
return string(b.buf[b.rOff:])
}
// WriteString writes a string to the buffer.
//
// This function is identical to Write except that it allows one to write a
// string directly without allocating an intermediate byte slice.
func (b *Buffer) WriteString(buf string) (int, error) {
wOff := b.grow(len(buf))
return copy(b.buf[wOff:], buf), nil
}
// Truncate truncates the Buffer.
//
// Panics if `n > b.Len()`.
//
// This function may free memory by shrinking the internal buffer.
func (b *Buffer) Truncate(n int) {
if n < 0 || n > b.Len() {
panic("truncation out of range")
}
b.buf = b.buf[:b.rOff+n]
b.shrink()
}
// Reset is equivalent to Truncate(0).
func (b *Buffer) Reset() {
b.returnBuf()
b.rOff = 0
}
// ReadByte reads a single byte from the Buffer.
func (b *Buffer) ReadByte() (byte, error) {
if b.rOff >= len(b.buf) {
return 0, io.EOF
}
c := b.buf[b.rOff]
b.rOff++
return c, nil
}
// WriteByte writes a single byte to the Buffer.
func (b *Buffer) WriteByte(c byte) error {
wOff := b.grow(1)
b.buf[wOff] = c
return nil
}
// Grow grows the internal buffer such that `n` bytes can be written without
// reallocating.
func (b *Buffer) Grow(n int) {
wOff := b.grow(n)
b.buf = b.buf[:wOff]
}
// Next is an alternative to `Read` that returns a byte slice instead of taking
// one.
//
// The returned byte slice is valid until the next read, write, grow, or
// truncate.
func (b *Buffer) Next(n int) []byte {
m := b.Len()
if m < n {
n = m
}
data := b.buf[b.rOff : b.rOff+n]
b.rOff += n
return data
}
// Write writes the byte slice to the buffer.
func (b *Buffer) Write(buf []byte) (int, error) {
wOff := b.grow(len(buf))
return copy(b.buf[wOff:], buf), nil
}
// WriteTo copies from the buffer into the given writer until the buffer is
// empty.
func (b *Buffer) WriteTo(w io.Writer) (int64, error) {
if b.rOff < len(b.buf) {
n, err := w.Write(b.buf[b.rOff:])
b.rOff += n
if b.rOff > len(b.buf) {
panic("invalid write count")
}
b.shrink()
return int64(n), err
}
return 0, nil
}
// MinRead is the minimum slice size passed to a Read call by
// Buffer.ReadFrom. As long as the Buffer has at least MinRead bytes beyond
// what is required to hold the contents of r, ReadFrom will not grow the
// underlying buffer.
const MinRead = 512
// ReadFrom reads from the given reader into the buffer.
func (b *Buffer) ReadFrom(r io.Reader) (int64, error) {
n := int64(0)
for {
wOff := b.grow(MinRead)
// Use *entire* buffer.
b.buf = b.buf[:cap(b.buf)]
read, err := r.Read(b.buf[wOff:])
b.buf = b.buf[:wOff+read]
n += int64(read)
switch err {
case nil:
case io.EOF:
err = nil
fallthrough
default:
b.shrink()
return n, err
}
}
}
// Read reads at most `len(buf)` bytes from the internal buffer into the given
// buffer.
func (b *Buffer) Read(buf []byte) (int, error) {
if len(buf) == 0 {
return 0, nil
}
if b.rOff >= len(b.buf) {
return 0, io.EOF
}
n := copy(buf, b.buf[b.rOff:])
b.rOff += n
b.shrink()
return n, nil
}
func (b *Buffer) shrink() {
c := b.Cap()
// Either nil or bootstrap.
if c <= len(b.bootstrap) {
return
}
l := b.Len()
if l == 0 {
// Shortcut if empty.
b.returnBuf()
b.rOff = 0
} else if l*8 < c {
// Only shrink when capacity > 8x length. Avoids shrinking too aggressively.
newBuf := b.getBuf(l)
copy(newBuf, b.buf[b.rOff:])
b.returnBuf()
b.rOff = 0
b.buf = newBuf[:l]
}
}