Releases: lewagon/data-runner
py-3.10.6-2024-q1
Upgrade nbresult
to 0.1.0
cf lewagon/nbresult#12
py-3.10.6-2022-q4-v8
add missing unidecode
module to allow assess DL challenge lewagon-assess/data-paintings-denoising-lyrics-detector-solution
to run
py-3.8.12-2022-q2-v2-schlum-v1
Corrective runner for B2B Schlum batch from py-3.8.12-2022-q2-v2
This branch introduces a corrective runner for the B2B Schlumberger batch based on the py-3.8.12-2022-q2-v2
branch
The students of the batch are supposed to have ran the Q2 2022 data-setup
But for some reason the numpy and pandas package versions of the students do not correspond to the setup contraints and the Kitt validation of the challenges fails
Setup constraints for base py-3.8.12-2022-q2-v2
branch:
numpy<1.20
pandas<1.4
Collected students versions:
pandas==1.4.4
numpy==1.23.3
py-3.10.6-2022-q4-v7
data setup 2002 Q4:
- remove rosetta for apple silicon
- python 3.10.6
- tensorflow 2.10.0 (tensorflow-macos 2.10.0)
updates:
- pandas 1.4.4
- add memoized-property
requirements from lewagon/data-setup#244
Data Engineering v0.0.2
According to the new Glovebox data runner implementation, the only requirements for this release is a good old bash
py-3.8.12-de-v0.0.1
add poetry
Data Engineering v0
Adds
- pytest
- dockerfile
- PyYAML
- poetry
DS Bootcamp 2022 MLOps v0
this adds:
pytest-asyncio
httpx
DS Bootcamp 2022 Q2 v2
bump nbresult
to 0.0.8
DS Bootcamp 2022 Q2
- bump
nbresult
to 0.0.7