Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add agent types #1831

Merged
merged 10 commits into from
Oct 8, 2024
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 8 additions & 1 deletion letta/client/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from letta.data_sources.connectors import DataConnector
from letta.functions.functions import parse_source_code
from letta.memory import get_memory_functions
from letta.schemas.agent import AgentState, CreateAgent, UpdateAgentState
from letta.schemas.agent import AgentState, CreateAgent, UpdateAgentState, AgentType
from letta.schemas.block import (
Block,
CreateBlock,
Expand Down Expand Up @@ -68,6 +68,7 @@ def agent_exists(self, agent_id: Optional[str] = None, agent_name: Optional[str]
def create_agent(
self,
name: Optional[str] = None,
agent_type: Optional[AgentType] = None,
vivek3141 marked this conversation as resolved.
Show resolved Hide resolved
embedding_config: Optional[EmbeddingConfig] = None,
llm_config: Optional[LLMConfig] = None,
memory: Memory = ChatMemory(human=get_human_text(DEFAULT_HUMAN), persona=get_persona_text(DEFAULT_PERSONA)),
Expand Down Expand Up @@ -319,6 +320,8 @@ def agent_exists(self, agent_id: str) -> bool:
def create_agent(
self,
name: Optional[str] = None,
# agent config
agent_type: Optional[AgentType] = None,
# model configs
embedding_config: EmbeddingConfig = None,
llm_config: LLMConfig = None,
Expand Down Expand Up @@ -381,6 +384,7 @@ def create_agent(
memory=memory,
tools=tool_names,
system=system,
agent_type=agent_type if agent_type else AgentType.base_agent,
llm_config=llm_config if llm_config else self._default_llm_config,
embedding_config=embedding_config if embedding_config else self._default_embedding_config,
)
Expand Down Expand Up @@ -1462,6 +1466,8 @@ def agent_exists(self, agent_id: Optional[str] = None, agent_name: Optional[str]
def create_agent(
self,
name: Optional[str] = None,
# agent config
agent_type: Optional[AgentType] = None,
# model configs
embedding_config: EmbeddingConfig = None,
llm_config: LLMConfig = None,
Expand Down Expand Up @@ -1524,6 +1530,7 @@ def create_agent(
memory=memory,
tools=tool_names,
system=system,
agent_type=agent_type if agent_type else AgentType.base_agent,
llm_config=llm_config if llm_config else self._default_llm_config,
embedding_config=embedding_config if embedding_config else self._default_embedding_config,
),
Expand Down
2 changes: 2 additions & 0 deletions letta/metadata.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,6 +218,7 @@ class AgentModel(Base):
tools = Column(JSON)

# configs
agent_type = Column(String)
llm_config = Column(LLMConfigColumn)
embedding_config = Column(EmbeddingConfigColumn)

Expand All @@ -243,6 +244,7 @@ def to_record(self) -> AgentState:
memory=Memory.load(self.memory), # load dictionary
system=self.system,
tools=self.tools,
agent_type=self.agent_type,
llm_config=self.llm_config,
embedding_config=self.embedding_config,
metadata_=self.metadata_,
Expand Down
14 changes: 14 additions & 0 deletions letta/schemas/agent.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import uuid
from datetime import datetime
from enum import Enum
from typing import Dict, List, Optional, Union

from pydantic import BaseModel, Field, field_validator
Expand All @@ -21,6 +22,15 @@ class BaseAgent(LettaBase, validate_assignment=True):
user_id: Optional[str] = Field(None, description="The user id of the agent.")


class AgentType(str, Enum):
"""
Enum to represent the type of agent.
"""

base_agent = "base_agent"
vivek3141 marked this conversation as resolved.
Show resolved Hide resolved
split_thread_agent = "split_thread_agent"


class AgentState(BaseAgent):
"""
Representation of an agent's state. This is the state of the agent at a given time, and is persisted in the DB backend. The state has all the information needed to recreate a persisted agent.
Expand Down Expand Up @@ -52,6 +62,9 @@ class AgentState(BaseAgent):
# system prompt
system: str = Field(..., description="The system prompt used by the agent.")

# agent configuration
agent_type: AgentType = Field(..., description="The type of agent.")

# llm information
llm_config: LLMConfig = Field(..., description="The LLM configuration used by the agent.")
embedding_config: EmbeddingConfig = Field(..., description="The embedding configuration used by the agent.")
Expand All @@ -64,6 +77,7 @@ class CreateAgent(BaseAgent):
memory: Optional[Memory] = Field(None, description="The in-context memory of the agent.")
tools: Optional[List[str]] = Field(None, description="The tools used by the agent.")
system: Optional[str] = Field(None, description="The system prompt used by the agent.")
agent_type: Optional[AgentType] = Field(None, description="The type of agent.")
llm_config: Optional[LLMConfig] = Field(None, description="The LLM configuration used by the agent.")
embedding_config: Optional[EmbeddingConfig] = Field(None, description="The embedding configuration used by the agent.")

Expand Down
7 changes: 6 additions & 1 deletion letta/server/server.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from fastapi import HTTPException

import letta.constants as constants
from letta.schemas.agent import AgentType
import letta.server.utils as server_utils
import letta.system as system
from letta.agent import Agent, save_agent
Expand Down Expand Up @@ -335,7 +336,10 @@ def _load_agent(self, user_id: str, agent_id: str, interface: Union[AgentInterfa
# Make sure the memory is a memory object
assert isinstance(agent_state.memory, Memory)

letta_agent = Agent(agent_state=agent_state, interface=interface, tools=tool_objs)
if agent_state.agent_type == AgentType.base_agent:
letta_agent = Agent(agent_state=agent_state, interface=interface, tools=tool_objs)
else:
raise NotImplementedError("Only base agents are supported as of right now!")

# Add the agent to the in-memory store and return its reference
logger.debug(f"Adding agent to the agent cache: user_id={user_id}, agent_id={agent_id}")
Expand Down Expand Up @@ -787,6 +791,7 @@ def create_agent(
name=request.name,
user_id=user_id,
tools=request.tools if request.tools else [],
agent_type=request.agent_type or AgentType.base_agent,
llm_config=llm_config,
embedding_config=embedding_config,
system=request.system,
Expand Down
42 changes: 42 additions & 0 deletions tests/test_agent_type.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
import json
import pytest

from letta.schemas.agent import AgentType
from letta.client.client import create_client
from letta.schemas.embedding_config import EmbeddingConfig
from letta.schemas.llm_config import LLMConfig


def test_agent_creation(agent_type):
client = create_client()
assert client is not None

if agent_type is not None:
agent_state = client.create_agent(
agent_type=agent_type,
llm_config=LLMConfig.default_config("gpt-4"),
embedding_config=EmbeddingConfig.default_config(provider="openai"),
)
else:
agent_state = client.create_agent(
llm_config=LLMConfig.default_config("gpt-4"),
embedding_config=EmbeddingConfig.default_config(provider="openai"),
)

agent = client.get_agent(agent_id=agent_state.id)
assert agent is not None

response = client.user_message(agent_id=agent_state.id, message="My name is Vivek.")
assert response is not None

print(f"Successfully created a agent of type {agent_type}!")


if __name__ == "__main__":
# Test normal agent creation
test_agent_creation(None)

# Test agent creation with agent type
test_agent_creation(AgentType.base_agent)
with pytest.raises(NotImplementedError):
test_agent_creation(AgentType.split_thread_agent)
Loading