-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathtorch_coco_train_script.py
190 lines (162 loc) · 10.5 KB
/
torch_coco_train_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/usr/bin/env python3
import os, sys
os.environ["KECAM_BACKEND"] = "torch"
import torch
import kecam
import pycocotools, cv2, torchvision, tqdm, h5py # Not using here, just in case for later error
BUILDIN_DATASETS = {
"coco_dog_cat": {
"url": "https://github.com/leondgarse/keras_cv_attention_models/releases/download/assets/coco_dog_cat.tar.gz",
"dataset_file": "detections.json",
},
}
global_device = torch.device("cuda:0") if torch.cuda.is_available() and int(os.environ.get("CUDA_VISIBLE_DEVICES", "0")) >= 0 else torch.device("cpu")
def build_optimizer(model, name="sgd", lr=0.01, momentum=0.937, weight_decay=5e-4):
g = [], [], [] # optimizer parameter groups
bn = tuple(v for k, v in torch.nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d()
for v in model.modules():
if hasattr(v, "bias") and isinstance(v.bias, torch.nn.Parameter): # bias (no decay)
g[2].append(v.bias)
if isinstance(v, bn): # weight (no decay)
g[1].append(v.weight)
elif hasattr(v, "weight") and isinstance(v.weight, torch.nn.Parameter): # weight (with decay)
g[0].append(v.weight)
name_lower = name.lower()
if name_lower == "sgd":
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
elif name_lower == "adamw":
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
optimizer.add_param_group({"params": g[0], "weight_decay": weight_decay}) # add g0 with weight_decay
optimizer.add_param_group({"params": g[1], "weight_decay": 0.0}) # add g1 (BatchNorm2d weights)
return optimizer
def parse_arguments(argv):
import argparse
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-d", "--data_name", type=str, default="coco_dog_cat", help="Dataset json file like coco.json")
parser.add_argument("-i", "--input_shape", nargs="+", type=int, default=(640, 640), help="Model input shape. A single int value or 2 for height width.")
parser.add_argument(
"-B", "--backbone", type=str, default=None, help="Detector backbone, name in format [sub_dir].[model_name]. Default None for header preset."
)
parser.add_argument(
"--backbone_pretrained",
type=str,
default="imagenet",
help="If build backbone with pretrained weights. Mostly one of [imagenet, imagenet21k, noisy_student]",
)
parser.add_argument("-D", "--det_header", type=str, default="yolov8.YOLOV8_N", help="Detector header, name in format [sub_dir].[model_name]")
parser.add_argument(
"--additional_backbone_kwargs", type=str, default=None, help="Json format backbone kwargs like '{\"drop_connect_rate\": 0.05}'. Note all quote marks"
)
parser.add_argument(
"--additional_det_header_kwargs", type=str, default=None, help="Json format backbone kwargs like '{\"fpn_depth\": 3}'. Note all quote marks"
)
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Batch size")
parser.add_argument("-e", "--epochs", type=int, default=100, help="Total epochs")
parser.add_argument("-p", "--optimizer", type=str, default="SGD", help="Optimizer name. One of [Adam, SGD].")
parser.add_argument("-I", "--initial_epoch", type=int, default=0, help="Initial epoch when restore from previous interrupt")
parser.add_argument(
"-s",
"--basic_save_name",
type=str,
default=None,
help="Basic save name for model and history. None means a combination of parameters, or starts with _ as a suffix to default name",
)
parser.add_argument(
"-r", "--restore_path", type=str, default=None, help="Restore model from saved h5 by `keras.models.load_model` directly. Higher priority than model"
)
parser.add_argument("--pretrained", type=str, default=None, help="If build model with pretrained weights. Mostly used is `coco`")
parser.add_argument("--seed", type=int, default=None, help="Set random seed if not None")
parser.add_argument("--summary", action="store_true", help="show model summary")
parser.add_argument("--eval_start_epoch", type=int, default=0, help="eval process start epoch, set -1 for `epochs * 1 // 4`")
""" Optimizer arguments like Learning rate, weight decay and momentum """
lr_group = parser.add_argument_group("Optimizer arguments like Learning rate, weight decay and momentum")
lr_group.add_argument("--lr", type=float, default=0.01, help="Learning rate")
lr_group.add_argument("--weight_decay", type=float, default=5e-4, help="Weight decay")
lr_group.add_argument("--lr_warmup_steps", type=int, default=3, help="Learning rate warmup epochs")
lr_group.add_argument("--momentum", type=float, default=0.937, help="Momentum for SGD / SGDW / RMSprop optimizer")
""" Dataset parameters """
ds_group = parser.add_argument_group("Dataset arguments")
ds_group.add_argument("--close_mosaic_epochs", type=int, default=10, help="Epochs closing mosaic mixing in the end of training")
ds_group.add_argument("--rescale_mode", type=str, default="raw01", help="Rescale mode, one of [tf, torch, raw, raw01]")
args = parser.parse_known_args(argv)[0]
args.input_shape = args.input_shape[:2] if len(args.input_shape) > 1 else [args.input_shape[0], args.input_shape[0]]
args.additional_det_header_kwargs = json.loads(args.additional_det_header_kwargs) if args.additional_det_header_kwargs else {}
args.additional_backbone_kwargs = json.loads(args.additional_backbone_kwargs) if args.additional_backbone_kwargs else {}
if args.basic_save_name is None and args.restore_path is not None:
basic_save_name = os.path.splitext(os.path.basename(args.restore_path))[0]
basic_save_name = basic_save_name[:-7] if basic_save_name.endswith("_latest") else basic_save_name
args.basic_save_name = basic_save_name
return args
if __name__ == "__main__":
import sys
args = parse_arguments(sys.argv[1:])
print(">>>> All args:", args)
if args.seed is not None:
kecam.imagenet.train_func.set_random_seed(args.seed)
""" Dataset """
if args.data_name in BUILDIN_DATASETS:
from keras_cv_attention_models.download_and_load import download_buildin_dataset
args.data_name = download_buildin_dataset(args.data_name, BUILDIN_DATASETS, cache_subdir="datasets")
train_dataset, _, total_images, num_classes = kecam.coco.data.init_dataset(
data_path=args.data_name, batch_size=args.batch_size, image_size=args.input_shape, rescale_mode=args.rescale_mode, with_info=True
)
image, labels = next(iter(train_dataset))
print(">>>> total_images: {}, num_classes: {}".format(total_images, num_classes))
""" Model """
input_shape = (*args.input_shape, 3)
if args.backbone is not None:
backbone = kecam.imagenet.train_func.init_model(args.backbone, input_shape, 0, args.backbone_pretrained, **args.additional_backbone_kwargs)
args.additional_det_header_kwargs.update({"backbone": backbone})
args.additional_det_header_kwargs.update({"classifier_activation": None})
model = kecam.imagenet.train_func.init_model(args.det_header, input_shape, num_classes, args.pretrained, **args.additional_det_header_kwargs)
if args.summary:
model.summary()
model.to(global_device)
basic_save_name = args.basic_save_name or "{}_{}".format(model.name, os.path.basename(args.data_name))
print(">>>> basic_save_name:", basic_save_name)
ema = kecam.imagenet.callbacks.ModelEMA(basic_save_name=basic_save_name, updates=args.initial_epoch * total_images // max(64, args.batch_size))
ema.set_model(model)
""" Optimizer, loss and Metrics """
# lr = args.lr * args.batch_size / 512
optimizer = build_optimizer(model, name=args.optimizer, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
loss = kecam.coco.torch_losses.Loss(device=global_device, nc=num_classes, input_shape=args.input_shape)
box_loss_metric = kecam.imagenet.metrics.LossMeanMetricWrapper(loss, loss_attr_name="box_loss")
cls_loss_metric = kecam.imagenet.metrics.LossMeanMetricWrapper(loss, loss_attr_name="cls_loss")
dfl_loss_metric = kecam.imagenet.metrics.LossMeanMetricWrapper(loss, loss_attr_name="dfl_loss")
""" Compile """
if hasattr(torch, "compile") and torch.cuda.is_available() and torch.cuda.get_device_capability()[0] > 6:
print(">>>> Calling torch.compile")
model = torch.compile(model)
grad_accumulate = max(round(64 / args.batch_size), 1)
metrics = [box_loss_metric, cls_loss_metric, dfl_loss_metric]
model.train_compile(optimizer=optimizer, loss=loss, metrics=metrics, grad_accumulate=grad_accumulate, grad_max_norm=10.0)
if args.restore_path is not None:
print(">>>> Reload weights from:", args.restore_path)
model.load(args.restore_path) # Reload wights after compile
if os.path.exists(ema.save_file_path):
print(">>>> Reload EMA model weights from:", ema.save_file_path)
ema.ema.load(ema.save_file_path)
""" Callback """
warmup_train = kecam.imagenet.callbacks.WarmupTrain(steps_per_epoch=len(train_dataset), warmup_epochs=args.lr_warmup_steps)
close_mosaic = kecam.imagenet.callbacks.CloseMosaic(train_dataset, close_mosaic_epoch=args.epochs - args.close_mosaic_epochs)
start_epoch = args.epochs * 1 // 4 if args.eval_start_epoch < 0 else args.eval_start_epoch # coco eval starts from 1/4 epochs
nms_kwargs = {"nms_method": "hard", "nms_iou_or_sigma": 0.65, "nms_max_output_size": 300}
coco_ap_eval = kecam.coco.eval_func.COCOEvalCallback(args.data_name, args.batch_size, start_epoch=start_epoch, rescale_mode=args.rescale_mode, **nms_kwargs)
coco_ap_eval.model = ema.ema
""" Learning rate scheduler and training """
learning_rate_scheduler = lambda epoch: kecam.imagenet.callbacks.linear_scheduler(epoch, args.lr, decay_step=args.epochs, warmup_steps=args.lr_warmup_steps)
# (1 - epoch / args.epochs) * args.lr + epoch / args.epochs * args.lr * args.lr # linear from ultralytics
lr_scheduler = kecam.imagenet.callbacks.LearningRateScheduler(learning_rate_scheduler)
other_kwargs = {}
latest_save, hist = kecam.imagenet.train_func.train(
compiled_model=model,
epochs=args.epochs,
train_dataset=train_dataset,
test_dataset=None,
initial_epoch=args.initial_epoch,
lr_scheduler=lr_scheduler,
basic_save_name=basic_save_name,
init_callbacks=[warmup_train, close_mosaic, coco_ap_eval, ema],
logs=None,
**other_kwargs,
)