-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_pcn.py
86 lines (72 loc) · 2.55 KB
/
main_pcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#! /usr/bin/python3
# -*- coding: utf-8 -*-
# @Author: Peng Xiang
import argparse
import logging
import os
import numpy as np
import sys
import torch
from pprint import pprint
from config_pcn import cfg
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.CONST.DEVICE
def set_seed(seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_args_from_command_line():
parser = argparse.ArgumentParser(
description='The argument parser of SnowflakeNet')
parser.add_argument('--test', dest='test',
help='Test neural networks', action='store_true')
parser.add_argument('--baseline', dest='baseline',
help='First train the PCN as baseline', action='store_true')
parser.add_argument('--backbone', dest='backbone',
help='Second train the Asymmetrical Siamese PCN as backbone', action='store_true')
parser.add_argument('--inference', dest='inference',
help='Inference for benchmark', action='store_true')
args = parser.parse_args()
return args
def main():
# Get args from command line
args = get_args_from_command_line()
print('cuda available ', torch.cuda.is_available())
# Print config
# print('Use config:')
# pprint(cfg)
if not args.test and not args.inference:
if args.baseline:
from core.train_baseline import train_baseline
train_baseline(cfg)
elif args.backbone:
from core.train_backbone import train_backbone
train_backbone(cfg)
else:
from core.train_pcn import train_net
train_net(cfg)
else:
if cfg.CONST.WEIGHTS is None:
raise Exception(
'Please specify the path to checkpoint in the configuration file!')
if args.test:
if args.baseline:
from core.test_baseline import test_baseline
test_baseline(cfg)
elif args.backbone:
from core.test_backbone import test_backbone
test_backbone(cfg)
else:
from core.test_pcn import test_net
test_net(cfg)
else:
from core.inference_pcn import inference_net
inference_net(cfg)
if __name__ == '__main__':
# Check python version
seed = 1
set_seed(seed)
# logging.basicConfig(
# format='[%(levelname)s] %(asctime)s %(message)s', level=logging.DEBUG)
main()