forked from hunkim/PyTorchZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path09_01_softmax_loss.py
52 lines (42 loc) · 1.47 KB
/
09_01_softmax_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from torch import nn, tensor, max
import numpy as np
# Cross entropy example
# One hot
# 0: 1 0 0
# 1: 0 1 0
# 2: 0 0 1
Y = np.array([1, 0, 0])
Y_pred1 = np.array([0.7, 0.2, 0.1])
Y_pred2 = np.array([0.1, 0.3, 0.6])
print(f'Loss1: {np.sum(-Y * np.log(Y_pred1)):.4f}')
print(f'Loss2: {np.sum(-Y * np.log(Y_pred2)):.4f}')
# Softmax + CrossEntropy (logSoftmax + NLLLoss)
loss = nn.CrossEntropyLoss()
# target is of size nBatch
# each element in target has to have 0 <= value < nClasses (0-2)
# Input is class, not one-hot
Y = tensor([0], requires_grad=False)
# input is of size nBatch x nClasses = 1 x 4
# Y_pred are logits (not softmax)
Y_pred1 = tensor([[2.0, 1.0, 0.1]])
Y_pred2 = tensor([[0.5, 2.0, 0.3]])
l1 = loss(Y_pred1, Y)
l2 = loss(Y_pred2, Y)
print(f'PyTorch Loss1: {l1.item():.4f} \nPyTorch Loss2: {l2.item():.4f}')
print(f'Y_pred1: {max(Y_pred1.data, 1)[1].item()}')
print(f'Y_pred2: {max(Y_pred2.data, 1)[1].item()}')
# target is of size nBatch
# each element in target has to have 0 <= value < nClasses (0-2)
# Input is class, not one-hot
Y = tensor([2, 0, 1], requires_grad=False)
# input is of size nBatch x nClasses = 2 x 4
# Y_pred are logits (not softmax)
Y_pred1 = tensor([[0.1, 0.2, 0.9],
[1.1, 0.1, 0.2],
[0.2, 2.1, 0.1]])
Y_pred2 = tensor([[0.8, 0.2, 0.3],
[0.2, 0.3, 0.5],
[0.2, 0.2, 0.5]])
l1 = loss(Y_pred1, Y)
l2 = loss(Y_pred2, Y)
print(f'Batch Loss1: {l1.item():.4f} \nBatch Loss2: {l2.data:.4f}')