Skip to content

Latest commit

 

History

History
142 lines (121 loc) · 4.37 KB

CHANGE_LOG.md

File metadata and controls

142 lines (121 loc) · 4.37 KB

2021.10.29 v0.1

  1. change mixins from ModuleList to ModuleDict
  2. return tokens and mems in fill_sequence, and mems becomes a tensor.
  3. CachedAutoRegressiveMixin

How to migrate old SAT ckpt to new version?

Example:

import torch
old = torch.load('xxxxx/mp_rank_00_model_states.pt.old', map_location='cpu')

# replace names, mixins index to keys
oldm = old['module']
for k in list(oldm.keys()):
    if k.startswith('mixins.0'):
        new_k = k.replace('mixins.0', 'mixins.extra_position_embedding')
    elif k.startswith('mixins.1'):
        new_k = k.replace('mixins.1', 'mixins.attention_plus')
    else:
        continue
    oldm[new_k] = oldm[k]
    del oldm[k]
# save to destination    
torch.save(old, 'xxxxx/mp_rank_00_model_states.pt')

for the older framework, you also need:

old['module']['transformer.word_embeddings.weight'] = old['module']['word_embeddings.weight']
del old['module']['word_embeddings.weight']

2021.11.5 v0.1.2

  1. Add generation.autoregressive_sampling.evalute_perplexity
  2. fix Runtime Error in skipping Nan Loss

2021.12.13 v0.1.4

  1. Add non_conflict attention_fn
  2. Add Prefix-Tuning
  3. Now, you can use kw_args['output_this_layer'] (any hooks in the transformer layers) to return values to final outputs and kw_args['output_cross_layer'] to pass values to kw_args in the next layer.

Examples:

def attention_fn(...some_args):
    ...
    kw_args['output_this_layer']['mem_kv'] = cache_kv
    ...

This will let the key 'mem_kv' appear in the outputs_per_layers[i] of logits, *outputs_per_layers = model(...).

def attention_fn(...some_args, **kw_args):
    ...
    kw_args['output_cross_layer']['last_attention_map'] = attention_map
    ...

This will let the key 'last_attention_map' appear in the next layer's kw_args (all hooks).

2021.12.13 v0.1.7

  1. Ensure enough training data, no longer always 200 times
  2. You can use kw_args['cross_layer_output']['new_key']=xxx to pass other results to each layer in position/word_embedding_forward.
  3. Add --train-data-weights.

2022.1.13 v0.1.9

  1. Add Vit
  2. Fix evaluation all_reduce bug

2022.6.3 v2.0

  1. split all the default hooks out
  2. change the order, model hooks will not override all the things. They now are the same as mixin hooks added in the front of all the mixins.

2022.6.6 v2.0

  1. from_pretrained now auto downloads models. There are two kinds of usages: SomeModel.from_pretrained(args, name) will load the weights of name model to a SomeModel with the same model arch hyper-params with name; AutoModel.from_pretrained(args, name) will return an official model (model_class Class) with the pretrained weights.
  2. ENV SAT_HOME is where we put the models in. Set it in your shell file.
  3. don't necessarily need deepspeed_config, or pass model arch hyper-params for from_pretrained. Use zero-stage 0/1/2.

2022.6.27

  1. Fix *flat_output bug.
  2. fix defualt mpu init_method bug.

2023.4.9

Large update v.0.3.0

  1. delete --sandwich-ln
  2. from_pretrained(args, name) => from_pretrained(name, args=None)
  3. MODEL_URLS fix typo
  4. enable model-only mode

2023.4.11

v.0.3.1 refactor SwissArmyTransformer as sat (package name SwissArmyTransformer)

2023.4.21

v 0.3.2 fix model-only "create then inference" bug support deepspeed 0.8.x & 0.9.x model register first try

2023.4.23

v 0.3.3 change the fp16 & to cuda order in get_model.

2023.5.15

v 0.3.4

  1. add example for nested transformer models
  2. move all print to logging, set SAT_LOGLEVEL to control

2023.5.16

v. 0.3.5

  1. add repetition penalty
  2. add quantization

2023.5.17

v. 0.3.6 support no deepspeed model-only test cpu inference test windows

2023.6.1

v. 0.3.7 update vit add qlora/lora2

2023.7.3

v. 0.4.0

  1. add xfomers memory efficient attention.
  2. pytorch 2.0 auto fast attention, attention_fn dispatch via version.
  3. add llama and chatglm2.
  4. add split model for model-parallel in inference mode.
  5. add r2 download

2023.7.13

v. 0.4.1

  1. better model parallel support (training mode split)
  2. better default zero 1/2 config
  3. test bf16 training
  4. change qkv order of chatglm1
  5. only use pytorch 2.0 attention when full / causal.

2023.9.10

v. 0.4.6

  1. add droppath and checkpoint last layer skip
  2. support multiple webdataset weighting
  3. fix lora merging
  4. add different lr in different parts, add a 'lr' attr for parameters in the disable_untrainable_params.