diff --git a/src/Init/Data/List/Basic.lean b/src/Init/Data/List/Basic.lean index adbda6093d32..ba2985afdab3 100644 --- a/src/Init/Data/List/Basic.lean +++ b/src/Init/Data/List/Basic.lean @@ -27,24 +27,32 @@ Recall that `length`, `get`, `set`, `foldl`, and `concat` have already been defi The operations are organized as follow: * Equality: `beq`, `isEqv`. * Lexicographic ordering: `lt`, `le`, and instances. +* Head and tail operators: `head`, `head?`, `headD?`, `tail`, `tail?`, `tailD`. * Basic operations: - `map`, `filter`, `filterMap`, `foldr`, `append`, `join`, `pure`, `bind`, `replicate`, and `reverse`. + `map`, `filter`, `filterMap`, `foldr`, `append`, `join`, `pure`, `bind`, `replicate`, and + `reverse`. +* Additional functions defined in terms of these: `leftpad`, `rightPad`, and `reduceOption`. * List membership: `isEmpty`, `elem`, `contains`, `mem` (and the `∈` notation), and decidability for predicates quantifying over membership in a `List`. * Sublists: `take`, `drop`, `takeWhile`, `dropWhile`, `partition`, `dropLast`, - `isPrefixOf`, `isPrefixOf?`, `isSuffixOf`, `isSuffixOf?`, `Subset`, `Sublist`, `rotateLeft` and `rotateRight`. -* Manipulating elements: `replace`, `insert`, `erase`, `eraseP`, `eraseIdx`, `find?`, `findSome?`, and `lookup`. + `isPrefixOf`, `isPrefixOf?`, `isSuffixOf`, `isSuffixOf?`, `Subset`, `Sublist`, + `rotateLeft` and `rotateRight`. +* Manipulating elements: `replace`, `insert`, `erase`, `eraseP`, `eraseIdx`. +* Finding elements: `find?`, `findSome?`, `findIdx`, `indexOf`, `findIdx?`, `indexOf?`, + `countP`, `count`, and `lookup`. * Logic: `any`, `all`, `or`, and `and`. * Zippers: `zipWith`, `zip`, `zipWithAll`, and `unzip`. * Ranges and enumeration: `range`, `iota`, `enumFrom`, and `enum`. * Minima and maxima: `minimum?` and `maximum?`. -* Other functions: `intersperse`, `intercalate`, `eraseDups`, `eraseReps`, `span`, `groupBy`, `removeAll` +* Other functions: `intersperse`, `intercalate`, `eraseDups`, `eraseReps`, `span`, `groupBy`, + `removeAll` (currently these functions are mostly only used in meta code, and do not have API suitable for verification). -Further operations are defined in `Init.Data.List.BasicAux` (because they use `Array` in their implementations), namely: +Further operations are defined in `Init.Data.List.BasicAux` +(because they use `Array` in their implementations), namely: * Variant getters: `get!`, `get?`, `getD`, `getLast`, `getLast!`, `getLast?`, and `getLastD`. -* Head and tail: `head`, `head!`, `head?`, `headD`, `tail!`, `tail?`, and `tailD`. +* Head and tail: `head!`, `tail!`. * Other operations on sublists: `partitionMap`, `rotateLeft`, and `rotateRight`. -/ @@ -315,6 +323,16 @@ def headD : (as : List α) → (fallback : α) → α @[simp 1100] theorem headD_nil : @headD α [] d = d := rfl @[simp 1100] theorem headD_cons : @headD α (a::l) d = a := rfl +/-! ### tail -/ + +/-- Get the tail of a nonempty list, or return `[]` for `[]`. -/ +def tail : List α → List α + | [] => [] + | _::as => as + +@[simp] theorem tail_nil : @tail α [] = [] := rfl +@[simp] theorem tail_cons : @tail α (a::as) = as := rfl + /-! ### tail? -/ /-- @@ -577,6 +595,28 @@ theorem replicate_succ (a : α) (n) : replicate (n+1) a = a :: replicate n a := | zero => simp | succ n ih => simp only [ih, replicate_succ, length_cons, Nat.succ_eq_add_one] +/-! ## Additional functions -/ + +/-! ### leftpad and rightpad -/ + +/-- +Pads `l : List α` on the left with repeated occurrences of `a : α` until it is of length `n`. +If `l` is initially larger than `n`, just return `l`. +-/ +def leftpad (n : Nat) (a : α) (l : List α) : List α := replicate (n - length l) a ++ l + +/-- +Pads `l : List α` on the right with repeated occurrences of `a : α` until it is of length `n`. +If `l` is initially larger than `n`, just return `l`. +-/ +def rightpad (n : Nat) (a : α) (l : List α) : List α := l ++ replicate (n - length l) a + +/-! ### reduceOption-/ + +/-- Drop `none`s from a list, and replace each remaining `some a` with `a`. -/ +@[inline] def reduceOption {α} : List (Option α) → List α := + List.filterMap id + /-! ## List membership * `L.contains a : Bool` determines, using a `[BEq α]` instance, whether `L` contains an element `· == a`. @@ -1080,6 +1120,8 @@ def eraseIdx : List α → Nat → List α @[simp] theorem eraseIdx_cons_zero : (a::as).eraseIdx 0 = as := rfl @[simp] theorem eraseIdx_cons_succ : (a::as).eraseIdx (i+1) = a :: as.eraseIdx i := rfl +/-! Finding elements -/ + /-! ### find? -/ /-- @@ -1117,6 +1159,46 @@ theorem findSome?_cons {f : α → Option β} : (a::as).findSome? f = match f a with | some b => some b | none => as.findSome? f := rfl +/-! ### findIdx -/ + +/-- Returns the index of the first element satisfying `p`, or the length of the list otherwise. -/ +@[inline] def findIdx (p : α → Bool) (l : List α) : Nat := go l 0 where + /-- Auxiliary for `findIdx`: `findIdx.go p l n = findIdx p l + n` -/ + @[specialize] go : List α → Nat → Nat + | [], n => n + | a :: l, n => bif p a then n else go l (n + 1) + +/-! ### indexOf -/ + +/-- Returns the index of the first element equal to `a`, or the length of the list otherwise. -/ +def indexOf [BEq α] (a : α) : List α → Nat := findIdx (· == a) + +/-! ### findIdx? -/ + +/-- Return the index of the first occurrence of an element satisfying `p`. -/ +def findIdx? (p : α → Bool) : List α → (start : Nat := 0) → Option Nat +| [], _ => none +| a :: l, i => if p a then some i else findIdx? p l (i + 1) + +/-! ### indexOf? -/ + +/-- Return the index of the first occurrence of `a` in the list. -/ +@[inline] def indexOf? [BEq α] (a : α) : List α → Option Nat := findIdx? (· == a) + +/-! ### countP -/ + +/-- `countP p l` is the number of elements of `l` that satisfy `p`. -/ +@[inline] def countP (p : α → Bool) (l : List α) : Nat := go l 0 where + /-- Auxiliary for `countP`: `countP.go p l acc = countP p l + acc`. -/ + @[specialize] go : List α → Nat → Nat + | [], acc => acc + | x :: xs, acc => bif p x then go xs (acc + 1) else go xs acc + +/-! ### count -/ + +/-- `count a l` is the number of occurrences of `a` in `l`. -/ +@[inline] def count [BEq α] (a : α) : List α → Nat := countP (· == a) + /-! ### lookup -/ /-- @@ -1281,6 +1363,14 @@ where @[simp] theorem range_zero : range 0 = [] := rfl +/-! ### range' -/ + +/-- `range' start len step` is the list of numbers `[start, start+step, ..., start+(len-1)*step]`. + It is intended mainly for proving properties of `range` and `iota`. -/ +def range' : (start len : Nat) → (step : Nat := 1) → List Nat + | _, 0, _ => [] + | s, n+1, step => s :: range' (s+step) n step + /-! ### iota -/ /-- diff --git a/src/Init/Data/List/Impl.lean b/src/Init/Data/List/Impl.lean index 76e52cd16069..a2303a562d4f 100644 --- a/src/Init/Data/List/Impl.lean +++ b/src/Init/Data/List/Impl.lean @@ -193,6 +193,17 @@ theorem replicateTR_loop_eq : ∀ n, replicateTR.loop a n acc = replicate n a ++ apply funext; intro α; apply funext; intro n; apply funext; intro a exact (replicateTR_loop_replicate_eq _ 0 n).symm +/-! ## Additional functions -/ + +/-! ### leftpad -/ + +/-- Optimized version of `leftpad`. -/ +@[inline] def leftpadTR (n : Nat) (a : α) (l : List α) : List α := + replicateTR.loop a (n - length l) l + +@[csimp] theorem leftpad_eq_leftpadTR : @leftpad = @leftpadTR := by + funext α n a l; simp [leftpad, leftpadTR, replicateTR_loop_eq] + /-! ## Sublists -/ /-! ### take -/ @@ -366,6 +377,26 @@ def unzipTR (l : List (α × β)) : List α × List β := /-! ## Ranges and enumeration -/ +/-! ### range' -/ + +/-- Optimized version of `range'`. -/ +@[inline] def range'TR (s n : Nat) (step : Nat := 1) : List Nat := go n (s + step * n) [] where + /-- Auxiliary for `range'TR`: `range'TR.go n e = [e-n, ..., e-1] ++ acc`. -/ + go : Nat → Nat → List Nat → List Nat + | 0, _, acc => acc + | n+1, e, acc => go n (e-step) ((e-step) :: acc) + +@[csimp] theorem range'_eq_range'TR : @range' = @range'TR := by + funext s n step + let rec go (s) : ∀ n m, + range'TR.go step n (s + step * n) (range' (s + step * n) m step) = range' s (n + m) step + | 0, m => by simp [range'TR.go] + | n+1, m => by + simp [range'TR.go] + rw [Nat.mul_succ, ← Nat.add_assoc, Nat.add_sub_cancel, Nat.add_right_comm n] + exact go s n (m + 1) + exact (go s n 0).symm + /-! ### iota -/ /-- Tail-recursive version of `List.iota`. -/ diff --git a/src/Init/Data/List/Lemmas.lean b/src/Init/Data/List/Lemmas.lean index 7052e4623873..2efb5b4c8e52 100644 --- a/src/Init/Data/List/Lemmas.lean +++ b/src/Init/Data/List/Lemmas.lean @@ -2577,6 +2577,10 @@ theorem cons_subset_cons {l₁ l₂ : List α} (a : α) (s : l₁ ⊆ l₂) : a theorem Subset.map {l₁ l₂ : List α} (f : α → β) (H : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂ := fun x => by simp only [mem_map]; exact .imp fun a => .imp_left (@H _) +@[deprecated (since := "2024-07-28")] +theorem map_subset {l₁ l₂ : List α} {f : α → β} (h : l₁ ⊆ l₂) : map f l₁ ⊆ map f l₂ := + Subset.map f h + theorem Subset.filter {l₁ l₂ : List α} (p : α → Bool) (H : l₁ ⊆ l₂) : filter p l₁ ⊆ filter p l₂ := fun x => by simp_all [mem_filter, subset_def.1 H] diff --git a/tests/lean/run/starsAndBars.lean b/tests/lean/run/starsAndBars.lean index 97707205c29b..c39eb2966692 100644 --- a/tests/lean/run/starsAndBars.lean +++ b/tests/lean/run/starsAndBars.lean @@ -1,6 +1,6 @@ -@[simp] def List.count [DecidableEq α] : List α → α → Nat +@[simp] def List.count' [DecidableEq α] : List α → α → Nat | [], _ => 0 - | a::as, b => if a = b then as.count b + 1 else as.count b + | a::as, b => if a = b then as.count' b + 1 else as.count' b inductive StarsAndBars : Nat → Nat → Type where | nil : StarsAndBars 0 0 @@ -11,7 +11,7 @@ namespace StarsAndBars namespace Ex1 -def toList : StarsAndBars s b → { bs : List Bool // bs.count false = s ∧ bs.count true = b } +def toList : StarsAndBars s b → { bs : List Bool // bs.count' false = s ∧ bs.count' true = b } | nil => ⟨[], by simp⟩ | star h => ⟨false :: toList h, by simp [(toList h).2]⟩ | bar h => ⟨true :: toList h, by simp [(toList h).2]⟩ @@ -27,13 +27,13 @@ end Ex1 /- Same example with explicit proofs -/ namespace Ex2 -theorem toList_star_proof (h : bs.count false = s ∧ bs.count true = b) : (false :: bs).count false = s.succ ∧ (false :: bs).count true = b := by +theorem toList_star_proof (h : bs.count' false = s ∧ bs.count' true = b) : (false :: bs).count' false = s.succ ∧ (false :: bs).count' true = b := by simp [*] -theorem toList_bar_proof (h : bs.count false = s ∧ bs.count true = b) : (true :: bs).count false = s ∧ (true :: bs).count true = b.succ := by +theorem toList_bar_proof (h : bs.count' false = s ∧ bs.count' true = b) : (true :: bs).count' false = s ∧ (true :: bs).count' true = b.succ := by simp [*] -def toList : StarsAndBars s b → { bs : List Bool // bs.count false = s ∧ bs.count true = b } +def toList : StarsAndBars s b → { bs : List Bool // bs.count' false = s ∧ bs.count' true = b } | nil => ⟨[], by simp⟩ | star h => ⟨false :: toList h, toList_star_proof (toList h).property⟩ | bar h => ⟨true :: toList h, toList_bar_proof (toList h).property⟩