From 2a5ca00ad61cbfeb69f150701048e3b67d20e073 Mon Sep 17 00:00:00 2001 From: Leonardo de Moura Date: Wed, 8 May 2024 01:31:05 +0200 Subject: [PATCH] perf: issue at `binop%` and `binrel%` elaborators (#4092) This issue was affecting several Mathlib files. @mattrobball @semorrison This is a different solution for the issue. The comment at `Extra.lean` describes the new solution and documents the new issues found with the previous one. closes #4085 --- src/Lean/Elab/Extra.lean | 28 +- tests/lean/run/binop_binrel_perf_issue.lean | 1015 +++++++++++++++++++ 2 files changed, 1042 insertions(+), 1 deletion(-) create mode 100644 tests/lean/run/binop_binrel_perf_issue.lean diff --git a/src/Lean/Elab/Extra.lean b/src/Lean/Elab/Extra.lean index fd03c0f9f0fa..c4acb68e1238 100644 --- a/src/Lean/Elab/Extra.lean +++ b/src/Lean/Elab/Extra.lean @@ -273,7 +273,33 @@ where match (← get).max? with | none => modify fun s => { s with max? := type } | some max => - unless (← withNewMCtxDepth <| isDefEqGuarded max type) do + /- + Remark: Previously, we used `withNewMCtxDepth` to prevent metavariables in `max` and `type` from being assigned. + + Reason: This is a heuristic procedure for introducing coercions in scenarios such as: + - Given `(n : Nat) (i : Int)`, elaborate `n = i`. The coercion must be inserted at `n`. + Consider the elaboration problem `(n + 0) + i`, where the type of term `0` is a metavariable. + We do not want it to be elaborated as `(Int.ofNat n + Int.ofNat (0 : Nat)) + i`; instead, we prefer the result to be `(Int.ofNat n + (0 : Int)) + i`. + Here is another example where we avoid assigning metavariables: `max := BitVec n` and `type := BitVec ?m`. + + However, the combination `withNewMCtxDepth <| isDefEqGuarded max type` introduced performance issues in several + Mathlib files because `isDefEq` was spending a lot of time unfolding definitions in `max` and `type` before failing. + + To address this issue, we allowed only reducible definitions to be unfolded during this check, using + `withNewMCtxDepth <| withReducible <| isDefEqGuarded max type`. This change fixed some performance issues but created new ones. + Lean was now spending time trying to use `hasCoe`, likely occurring in places where `withNewMCtxDepth <| isDefEqGuarded max type` + used to succeed but was now failing after we introduced `withReducible`. + + We then considered using just `isDefEqGuarded max type` and changing the definition of `isUnknown`. In the new definition, + the else-case would be `| e => e.hasExprMVar` instead of `| _ => false`. However, we could not even compile this repo using + this configuration. The problem arises because some files require coercions even when `max` contains metavariables, + for example: `max := Option ?m` and `type := Name`. + + As a result, rather than restricting reducibility, we decided to set `Meta.Config.isDefEqStuckEx := true`. + This means that if `isDefEq` encounters a subproblem `?m =?= a` where `?m` is non-assignable, it aborts the test + instead of unfolding definitions. + -/ + unless (← withNewMCtxDepth <| withConfig (fun config => { config with isDefEqStuckEx := true }) <| isDefEqGuarded max type) do if (← hasCoe type max) then return () else if (← hasCoe max type) then diff --git a/tests/lean/run/binop_binrel_perf_issue.lean b/tests/lean/run/binop_binrel_perf_issue.lean new file mode 100644 index 000000000000..fae2fac9841b --- /dev/null +++ b/tests/lean/run/binop_binrel_perf_issue.lean @@ -0,0 +1,1015 @@ +/-! +This is a minimization of an `isDefEq` timeout from Mathlib.Algebra.Module.Submodule.Localization, +where it is reasonably fast with `set_option backward.isDefEq.lazyWhnfCore false`, +but very slow with the default `isDefEq` algorithm. +-/ + +section Mathlib.Init.Set + +set_option autoImplicit true + +def Set (α : Type u) := α → Prop + +def setOf {α : Type u} (p : α → Prop) : Set α := p + +namespace Set + +protected def Mem (a : α) (s : Set α) : Prop := s a + +instance : Membership α (Set α) := ⟨Set.Mem⟩ + +end Set + +end Mathlib.Init.Set + +section Mathlib.Init.ZeroOne + +set_option autoImplicit true + +class Zero.{u} (α : Type u) where + zero : α + +instance (priority := 300) Zero.toOfNat0 {α} [Zero α] : OfNat α (nat_lit 0) where + ofNat := ‹Zero α›.1 + +class One (α : Type u) where + one : α + +instance (priority := 300) One.toOfNat1 {α} [One α] : OfNat α (nat_lit 1) where + ofNat := ‹One α›.1 + +end Mathlib.Init.ZeroOne + +section Mathlib.Init.Function + +universe u₁ u₂ + +variable {α : Sort u₁} {β : Sort u₂} + +def Function.Injective (f : α → β) : Prop := + ∀ ⦃a₁ a₂⦄, f a₁ = f a₂ → a₁ = a₂ + +def Function.Surjective (f : α → β) : Prop := + ∀ b, ∃ a, f a = b + +end Mathlib.Init.Function + +section Mathlib.Data.Subtype + +variable {α : Sort _} {p : α → Prop} + +protected theorem Subtype.ext : ∀ {a1 a2 : { x // p x }}, (a1 : α) = (a2 : α) → a1 = a2 + | ⟨_, _⟩, ⟨_, _⟩, rfl => rfl + +theorem Subtype.coe_injective : Function.Injective (fun (a : Subtype p) ↦ (a : α)) := fun _ _ ↦ Subtype.ext + +end Mathlib.Data.Subtype + +section Mathlib.Data.Set.Defs + +universe u v w + +namespace Set + +variable {α : Type u} {β : Type v} + +def preimage (f : α → β) (s : Set β) : Set α := setOf fun x => f x ∈ s + +infixl:80 " ⁻¹' " => preimage + +variable {ι : Sort _} {f : ι → α} + +def range (f : ι → α) : Set α := setOf fun x => ∃ y, f y = x + +end Set + +end Mathlib.Data.Set.Defs + +section Mathlib.Data.FunLike.Basic + +class DFunLike (F : Sort _) (α : outParam (Sort _)) (β : outParam <| α → Sort _) where + coe : F → ∀ a : α, β a + +abbrev FunLike F α β := DFunLike F α fun _ => β + +namespace DFunLike + +variable {F α β} [i : DFunLike F α β] + +instance (priority := 100) hasCoeToFun : CoeFun F (fun _ ↦ ∀ a : α, β a) where + coe := @DFunLike.coe _ _ β _ + +end DFunLike + +end Mathlib.Data.FunLike.Basic + +section Mathlib.Logic.Relator + +universe u₁ u₂ v₁ v₂ + +variable {α : Sort u₁} {β : Sort u₂} {γ : Sort v₁} {δ : Sort v₂} +variable (R : α → β → Prop) (S : γ → δ → Prop) + +def LiftFun (f : α → γ) (g : β → δ) : Prop := + ∀⦃a b⦄, R a b → S (f a) (g b) + +infixr:40 " ⇒ " => LiftFun + +end Mathlib.Logic.Relator + +section Mathlib.Data.Quot + +variable {α : Sort _} {β : Sort _} + +namespace Quotient + +variable {γ : Sort _} {φ : Sort _} {s₁ : Setoid α} {s₂ : Setoid β} {s₃ : Setoid γ} + +protected def mk'' (a : α) : Quotient s₁ := + Quot.mk s₁.1 a + +theorem surjective_Quotient_mk'' : Function.Surjective (Quotient.mk'' : α → Quotient s₁) := + Quot.exists_rep + +protected def liftOn' (q : Quotient s₁) (f : α → φ) (h : ∀ a b, @Setoid.r α s₁ a b → f a = f b) : + φ := + Quotient.liftOn q f h + +protected def map' (f : α → β) (h : (s₁.r ⇒ s₂.r) f f) : Quotient s₁ → Quotient s₂ := + (Quot.lift fun x ↦ Quot.mk _ (f x)) fun _ _ h₁ ↦ Quot.sound <| h h₁ + +protected def map₂' (f : α → β → γ) (h : (s₁.r ⇒ s₂.r ⇒ s₃.r) f f) : + Quotient s₁ → Quotient s₂ → Quotient s₃ := + Quotient.lift₂ (fun x y ↦ Quotient.mk _ (f x y)) fun _ _ _ _ h₁ h₂ ↦ Quot.sound <| h h₁ h₂ + +end Quotient + +end Mathlib.Data.Quot + +section Mathlib.Data.SetLike.Basic + +class SetLike (A : Type _) (B : outParam <| Type _) where + protected coe : A → Set B + +namespace SetLike + +variable {A : Type _} {B : Type _} [i : SetLike A B] + +instance : CoeTC A (Set B) where coe := SetLike.coe + +instance (priority := 100) instMembership : Membership B A := + ⟨fun x p => x ∈ (p : Set B)⟩ + +instance (priority := 100) : CoeSort A (Type _) := + ⟨fun p => { x : B // x ∈ p }⟩ + +end SetLike + +end Mathlib.Data.SetLike.Basic + +section Mathlib.Algebra.Group.Defs + +universe u v w + +class HVAdd (α : Type u) (β : Type v) (γ : outParam (Type w)) where + hVAdd : α → β → γ + +class HSMul (α : Type u) (β : Type v) (γ : outParam (Type w)) where + hSMul : α → β → γ + +class VAdd (G : Type u) (P : Type v) where + vadd : G → P → P + +class SMul (M : Type u) (α : Type v) where + smul : M → α → α + +infixl:65 " +ᵥ " => HVAdd.hVAdd +infixr:73 " • " => HSMul.hSMul + +macro_rules | `($x • $y) => `(leftact% HSMul.hSMul $x $y) + +instance instHSMul {α β} [SMul α β] : HSMul α β β where + hSMul := SMul.smul + +instance instHVAdd {α β} [VAdd α β] : HVAdd α β β where + hVAdd := VAdd.vadd + +class AddSemigroup (G : Type u) extends Add G where + protected add_assoc : ∀ a b c : G, a + b + c = a + (b + c) + +class MulOneClass (M : Type u) extends One M, Mul M where + +class AddZeroClass (M : Type u) extends Zero M, Add M where + protected zero_add : ∀ a : M, 0 + a = a + protected add_zero : ∀ a : M, a + 0 = a + + +class AddMonoid (M : Type u) extends AddSemigroup M, AddZeroClass M where + protected nsmul : Nat → M → M + +instance AddMonoid.toNatSMul {M : Type _} [AddMonoid M] : SMul Nat M := + ⟨AddMonoid.nsmul⟩ + +class AddCommMonoid (M : Type u) extends AddMonoid M + +def SubNegMonoid.sub' {G : Type u} [AddMonoid G] [Neg G] (a b : G) : G := a + -b + +class SubNegMonoid (G : Type u) extends AddMonoid G, Neg G, Sub G where + protected sub := SubNegMonoid.sub' + protected zsmul : Int → G → G + +instance SubNegMonoid.SMulInt {M} [SubNegMonoid M] : SMul Int M := + ⟨SubNegMonoid.zsmul⟩ + +class AddGroup (A : Type u) extends SubNegMonoid A where + protected add_left_neg : ∀ a : A, -a + a = 0 + +class AddCommGroup (G : Type u) extends AddGroup G, AddCommMonoid G + +end Mathlib.Algebra.Group.Defs + +section Mathlib.Algebra.Opposites + +variable {α : Type _} + +structure PreOpposite (α : Type _) : Type _ where + op' :: + unop' : α + +def MulOpposite (α : Type _) : Type _ := PreOpposite α +def AddOpposite (α : Type _) : Type _ := PreOpposite α + +postfix:max "ᵐᵒᵖ" => MulOpposite + +postfix:max "ᵃᵒᵖ" => AddOpposite + +namespace MulOpposite + +def unop : αᵐᵒᵖ → α := + PreOpposite.unop' + +end MulOpposite + +namespace AddOpposite + +def op : α → αᵃᵒᵖ := + PreOpposite.op' + +def unop : αᵃᵒᵖ → α := + PreOpposite.unop' + +instance instZero [Zero α] : Zero αᵃᵒᵖ where zero := op 0 +instance instAdd [Add α] : Add αᵃᵒᵖ where add x y := op (unop y + unop x) +instance instNeg [Neg α] : Neg αᵃᵒᵖ where neg x := op <| -(unop x) + +end AddOpposite + +end Mathlib.Algebra.Opposites + +section Mathlib.Algebra.Group.Hom.Defs + +variable {M N A B : Type _} + +structure AddMonoidHom (M : Type _) (N : Type _) [Add M] [Add N] where + protected toFun : M → N + +infixr:25 " →+ " => AddMonoidHom + +structure MonoidHom (M : Type _) (N : Type _) [Mul M] [Mul N] where + protected toFun : M → N + +infixr:25 " →* " => MonoidHom + +instance MonoidHom.instFunLike [Mul M] [Mul N] : FunLike (M →* N) M N where + coe f := f.toFun + +instance AddMonoidHom.instFunLike [Add A] [Add B] : FunLike (A →+ B) A B where + coe f := f.toFun + +end Mathlib.Algebra.Group.Hom.Defs + +section Mathlib.GroupTheory.GroupAction.Defs + +variable {M N α : Type _} + +instance (priority := 910) Mul.toSMul (α : Type _) [Mul α] : SMul α α := + ⟨(· * ·)⟩ + +namespace SMul + +variable [SMul M α] + +def comp.smul (g : N → M) (n : N) (a : α) : α := + g n • a + +variable (α) + +def comp (g : N → M) : SMul N α where smul := SMul.comp.smul g + +end SMul + +namespace VAdd + +variable [VAdd M α] + +def comp.vadd (g : N → M) (n : N) (a : α) : α := + g n +ᵥ a + +end VAdd + +variable [AddMonoid M] [VAdd M α] + +namespace VAdd + +variable (α) + +def compHom [AddMonoid N] (g : N →+ M) : VAdd N α where + vadd := VAdd.comp.vadd g + +end VAdd + +end Mathlib.GroupTheory.GroupAction.Defs + +section Mathlib.GroupTheory.Subsemigroup.Basic + +class MulMemClass (S : Type _) (M : Type _) [Mul M] [SetLike S M] : Prop where + +class AddMemClass (S : Type _) (M : Type _) [Add M] [SetLike S M] : Prop where + +structure Subsemigroup (M : Type _) [Mul M] where + carrier : Set M + +structure AddSubsemigroup (M : Type _) [Add M] where + carrier : Set M + +end Mathlib.GroupTheory.Subsemigroup.Basic + +section Mathlib.Algebra.Group.InjSurj + +namespace Function + +namespace Injective + +variable {M₁ : Type _} {M₂ : Type _} + +protected def mulOneClass [Mul M₁] [One M₁] [MulOneClass M₂] (f : M₁ → M₂) (hf : Injective f) (one : f 1 = 1) + (mul : ∀ x y, f (x * y) = f x * f y) : MulOneClass M₁ := + { ‹One M₁›, ‹Mul M₁› with } + +variable [Add M₁] [Zero M₁] + +protected def addZeroClass [AddZeroClass M₂] (f : M₁ → M₂) (hf : Injective f) (zero : f 0 = 0) + (add : ∀ x y, f (x + y) = f x + f y) : AddZeroClass M₁ := + { ‹Zero M₁›, ‹Add M₁› with + zero_add := sorry, + add_zero := sorry } + +protected def addSemigroup [AddSemigroup M₂] (f : M₁ → M₂) (hf : Injective f) + (add : ∀ x y, f (x + y) = f x + f y) : AddSemigroup M₁ := + { ‹Add M₁› with add_assoc := sorry } + +variable [SMul Nat M₁] + +protected def addMonoid [AddMonoid M₂] (f : M₁ → M₂) (hf : Injective f) (zero : f 0 = 0) + (add : ∀ x y, f (x + y) = f x + f y) (nsmul : ∀ (x) (n : Nat), f (n • x) = n • f x) : AddMonoid M₁ := + { hf.addZeroClass f zero add, hf.addSemigroup f add with + nsmul := fun n x => n • x } + +end Injective + +namespace Surjective + +variable {M₁ : Type _} {M₂ : Type _} [Add M₂] + +protected def addSemigroup [AddSemigroup M₁] (f : M₁ → M₂) (hf : Surjective f) + (add : ∀ x y, f (x + y) = f x + f y) : AddSemigroup M₂ := + { ‹Add M₂› with add_assoc := sorry } + +variable [Zero M₂] + +protected def addZeroClass [AddZeroClass M₁] (f : M₁ → M₂) (hf : Surjective f) (zero : f 0 = 0) + (add : ∀ x y, f (x + y) = f x + f y) : AddZeroClass M₂ := + { ‹Zero M₂›, ‹Add M₂› with + zero_add := sorry, + add_zero := sorry } + +variable [SMul Nat M₂] + +protected def addMonoid [AddMonoid M₁] (f : M₁ → M₂) (hf : Surjective f) (zero : f 0 = 0) + (add : ∀ x y, f (x + y) = f x + f y) (nsmul : ∀ (x) (n : Nat), f (n • x) = n • f x) : AddMonoid M₂ := + { hf.addSemigroup f add, hf.addZeroClass f zero add with + nsmul := fun n x => n • x } + +variable [Neg M₂] [Sub M₂] [SMul Int M₂] + +protected def subNegMonoid [SubNegMonoid M₁] (f : M₁ → M₂) (hf : Surjective f) (zero : f 0 = 0) + (add : ∀ x y, f (x + y) = f x + f y) + (nsmul : ∀ (x) (n : Nat), f (n • x) = n • f x) : SubNegMonoid M₂ := + { hf.addMonoid f zero add nsmul, ‹Sub M₂›, ‹Neg M₂› with + zsmul := fun n x => n • x } + +protected def addGroup [AddGroup M₁] (f : M₁ → M₂) (hf : Surjective f) (zero : f 0 = 0) + (add : ∀ x y, f (x + y) = f x + f y) + (nsmul : ∀ (x) (n : Nat), f (n • x) = n • f x) : AddGroup M₂ := + { hf.subNegMonoid f zero add nsmul with + add_left_neg := sorry } + +end Surjective + +end Function + + +end Mathlib.Algebra.Group.InjSurj + +section Mathlib.Algebra.Group.Opposite + +variable {α : Type _} + +namespace AddOpposite + +instance instAddSemigroup [AddSemigroup α] : AddSemigroup αᵃᵒᵖ where + add_assoc x y z := sorry + +instance instAddZeroClass [AddZeroClass α] : AddZeroClass αᵃᵒᵖ where + toAdd := instAdd + toZero := instZero + zero_add _ := sorry + add_zero _ := sorry + +instance instAddMonoid [AddMonoid α] : AddMonoid αᵃᵒᵖ := + { instAddZeroClass with + toAddSemigroup := instAddSemigroup + nsmul := fun n a => op <| n • a.unop } + +instance instSubNegMonoid [SubNegMonoid α] : SubNegMonoid αᵃᵒᵖ where + toAddMonoid := instAddMonoid + toNeg := instNeg + zsmul n a := op <| n • a.unop + +instance instAddGroup [AddGroup α] : AddGroup αᵃᵒᵖ where + toSubNegMonoid := instSubNegMonoid + add_left_neg _ := sorry + +end AddOpposite + +end Mathlib.Algebra.Group.Opposite + +section Mathlib.GroupTheory.Subsemigroup.Operations + +variable {M : Type _} + +namespace MulMemClass + +variable {A : Type _} [Mul M] [SetLike A M] [hA : MulMemClass A M] (S' : A) + +instance (priority := 900) mul : Mul S' := + ⟨fun a b => ⟨a.1 * b.1, sorry⟩⟩ + +end MulMemClass + +namespace AddMemClass + +variable {A : Type _} [Add M] [SetLike A M] [hA : AddMemClass A M] (S' : A) + +instance (priority := 900) add : Add S' := + ⟨fun a b => ⟨a.1 + b.1, sorry⟩⟩ + +end AddMemClass + +end Mathlib.GroupTheory.Subsemigroup.Operations + +section Mathlib.GroupTheory.Submonoid.Basic + +variable {M : Type _} {N : Type _} +variable {A : Type _} + +variable [MulOneClass M] {s : Set M} +variable [AddZeroClass A] {t : Set A} + +structure Submonoid (M : Type _) [MulOneClass M] extends Subsemigroup M where + +class SubmonoidClass (S : Type _) (M : Type _) [MulOneClass M] [SetLike S M] extends + MulMemClass S M : Prop + +structure AddSubmonoid (M : Type _) [AddZeroClass M] extends AddSubsemigroup M where + +class AddSubmonoidClass (S : Type _) (M : Type _) [AddZeroClass M] [SetLike S M] extends + AddMemClass S M : Prop + +namespace AddSubmonoid + +instance : SetLike (AddSubmonoid A) A where + coe s := s.carrier + +instance : AddSubmonoidClass (AddSubmonoid A) A where + +end AddSubmonoid + +namespace Submonoid + +instance : SetLike (Submonoid M) M where + coe s := s.carrier + +instance : SubmonoidClass (Submonoid M) M where + +end Submonoid + +end Mathlib.GroupTheory.Submonoid.Basic + +section Mathlib.GroupTheory.Submonoid.Operations + +variable {M : Type _} [MulOneClass M] (S : Submonoid M) +variable {B : Type _} [AddZeroClass B] (T : AddSubmonoid B) + +section + +variable {A M₁ : Type _} [SetLike A M₁] (S' : A) + +instance one [One M₁] : One S' := + ⟨⟨1, sorry⟩⟩ + +instance zero [Zero M₁] : Zero S' := + ⟨⟨0, sorry⟩⟩ + +end + +namespace AddSubmonoidClass + +instance nSMul {M} [AddMonoid M] {A : Type _} [SetLike A M] + [AddSubmonoidClass A M] (S : A) : SMul Nat S := + ⟨fun n a => ⟨n • a.1, sorry⟩⟩ + +end AddSubmonoidClass + +namespace SubmonoidClass + +instance (priority := 75) toMulOneClass {M : Type _} [MulOneClass M] {A : Type _} [SetLike A M] + [SubmonoidClass A M] (S : A) : MulOneClass S := + Subtype.coe_injective.mulOneClass Subtype.val sorry sorry + +instance (priority := 75) toAddMonoid {M : Type _} [AddMonoid M] {A : Type _} [SetLike A M] + [AddSubmonoidClass A M] (S : A) : AddMonoid S := + Subtype.coe_injective.addMonoid Subtype.val sorry sorry sorry + +end SubmonoidClass + +namespace AddSubmonoid + +def subtype : T →+ B where + toFun := Subtype.val + +end AddSubmonoid + +namespace Submonoid + +def subtype : S →* M where + toFun := Subtype.val + +end Submonoid + +namespace Submonoid + +variable {M' : Type _} {α : Type _} + +section MulOneClass + +variable [MulOneClass M'] + +instance smul [SMul M' α] (S : Submonoid M') : SMul S α := + SMul.comp _ S.subtype + +end MulOneClass + +variable [AddMonoid M'] + +instance vadd [VAdd M' α] (S : AddSubmonoid M') : VAdd S α := + VAdd.compHom _ S.subtype + +end Submonoid + +end Mathlib.GroupTheory.Submonoid.Operations + +section Mathlib.GroupTheory.Congruence + +variable (M : Type _) {N : Type _} {P : Type _} + +structure AddCon [Add M] extends Setoid M where + +variable {M} + +namespace AddCon + +section + +variable [Add M] (c : AddCon M) + +protected def Quotient := + Quotient c.toSetoid + +protected def liftOn {β} {c : AddCon M} (q : c.Quotient) (f : M → β) (h : ∀ a b, c.r a b → f a = f b) : + β := + Quotient.liftOn' q f h + +instance hasAdd : Add c.Quotient := + ⟨Quotient.map₂' (· + ·) sorry⟩ + +end + +section AddZeroClass + +variable [AddZeroClass M] [AddZeroClass P] (c : AddCon M) + +variable (f : M →+ P) + +def lift : c.Quotient →+ P where + toFun x := (AddCon.liftOn x f) sorry + +end AddZeroClass + +section Monoids + +instance zero [AddZeroClass M] (c : AddCon M) : Zero c.Quotient where + zero := Quotient.mk'' (0 : M) + +instance _root_.AddCon.Quotient.nsmul {M : Type _} [AddMonoid M] (c : AddCon M) : + SMul Nat c.Quotient where + smul n := (Quotient.map' (n • ·)) sorry + +instance addSemigroup {M : Type _} [AddSemigroup M] (c : AddCon M) : AddSemigroup c.Quotient := + { (Function.Surjective.addSemigroup _ Quotient.surjective_Quotient_mk'' sorry : + AddSemigroup c.Quotient) with + toAdd := AddCon.hasAdd _ } + +instance addMonoid {M : Type _} [AddMonoid M] (c : AddCon M) : AddMonoid c.Quotient := + { (Function.Surjective.addMonoid _ Quotient.surjective_Quotient_mk'' sorry sorry sorry : AddMonoid c.Quotient) with + toAddSemigroup := AddCon.addSemigroup _ + toZero := AddCon.zero _ } + +end Monoids + +variable [AddGroup M] [AddGroup N] [AddGroup P] (c : AddCon M) + +instance hasNeg : Neg c.Quotient := + ⟨(Quotient.map' Neg.neg) sorry⟩ + +instance hasSub : Sub c.Quotient := + ⟨(Quotient.map₂' (· - ·)) sorry⟩ + +instance _root_.AddCon.Quotient.zsmul {M : Type _} [AddGroup M] (c : AddCon M) : + SMul Int c.Quotient := + ⟨fun z => (Quotient.map' (z • ·)) sorry⟩ + +instance addGroup : AddGroup c.Quotient := + { (Function.Surjective.addGroup Quotient.mk'' + Quotient.surjective_Quotient_mk'' sorry sorry sorry : AddGroup c.Quotient) with + toAddMonoid := AddCon.addMonoid _ + toNeg := AddCon.hasNeg _ + toSub := AddCon.hasSub _ } + +end AddCon + +end Mathlib.GroupTheory.Congruence + +section Mathlib.GroupTheory.GroupAction.Opposite + +variable {α} + +instance Add.toHasOppositeVAdd [Add α] : VAdd αᵃᵒᵖ α := + ⟨fun c x => x + c.unop⟩ + +instance AddMonoid.toOppositeVAdd [AddMonoid α] : VAdd αᵃᵒᵖ α where + vadd := (· +ᵥ ·) + +end Mathlib.GroupTheory.GroupAction.Opposite + +section Mathlib.GroupTheory.Subgroup.Basic + +variable {A : Type _} [AddGroup A] + +structure AddSubgroup (G : Type _) [AddGroup G] extends AddSubmonoid G where + +namespace AddSubgroup + +instance : SetLike (AddSubgroup A) A where + coe s := s.carrier + +end AddSubgroup + +end Mathlib.GroupTheory.Subgroup.Basic + +section Mathlib.GroupTheory.GroupAction.Basic + +universe u v + +namespace VAdd + +variable (M : Type u) [AddMonoid M] {α : Type v} [VAdd M α] + +def orbit (a : α) := + Set.range fun m : M => m +ᵥ a + +variable (G α : Type _) [AddGroup G] [VAdd G α] + +def orbitRel : Setoid α where + r a b := a ∈ orbit G b + iseqv := sorry + +end VAdd + +end Mathlib.GroupTheory.GroupAction.Basic + +section Mathlib.GroupTheory.Subgroup.MulOpposite + +variable {G : Type _} [AddGroup G] + +protected def AddSubgroup.op (H : AddSubgroup G) : AddSubgroup Gᵃᵒᵖ where + carrier := MulOpposite.unop ⁻¹' (H : Set G) + +end Mathlib.GroupTheory.Subgroup.MulOpposite + +section Mathlib.Algebra.Quotient + +universe u v + +class HasQuotient (A : outParam <| Type u) (B : Type v) where + quotient' : B → Type max u v + +def HasQuotient.Quotient (A : outParam <| Type u) {B : Type v} + [HasQuotient A B] (b : B) : Type max u v := + HasQuotient.quotient' b + +notation:35 G " ⧸ " H:34 => HasQuotient.Quotient G H + +end Mathlib.Algebra.Quotient + +section Mathlib.GroupTheory.Coset + +variable {α : Type _} + +namespace QuotientAddGroup + +variable [AddGroup α] (s : AddSubgroup α) + +def leftRel : Setoid α := + VAdd.orbitRel s.op α + +instance instHasQuotientAddSubgroup : HasQuotient α (AddSubgroup α) := + ⟨fun s => Quotient (leftRel s)⟩ + +end QuotientAddGroup + +end Mathlib.GroupTheory.Coset + +section Mathlib.Algebra.Module.LinearMap.Basic + +open Function + +universe u u' v w x y z + +variable {R R₁ R₂ R₃ k S M M₁ M₂ M₃ : Type _} + +structure LinearMap (R : Type _) [Mul R] (M : Type _) + (M₂ : Type _) [AddCommMonoid M] [AddCommMonoid M₂] [SMul R M] [SMul R M₂] extends + AddMonoidHom M M₂ + +notation:25 M " →ₗ[" R:25 "] " M₂:0 => LinearMap R M M₂ + +namespace LinearMap + +section AddCommMonoid + +variable [Mul R] [Mul S] + +section + +variable [AddCommMonoid M] [AddCommMonoid M₃] +variable [SMul R M] [SMul R M₃] + +instance instFunLike : FunLike (M →ₗ[R] M₃) M M₃ where + coe f := f.toFun + +end + +section + +variable [AddCommMonoid M] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] +variable {module_M₁ : SMul R M₁} {module_M₂ : SMul R M₂} {module_M₃ : SMul R M₃} +variable (f : M₂ →ₗ[R] M₃) (g : M₁ →ₗ[R] M₂) + +def comp : M₁ →ₗ[R] M₃ where + toFun := f ∘ g + +end + +end AddCommMonoid + +end LinearMap + +end Mathlib.Algebra.Module.LinearMap.Basic + +section Mathlib.Algebra.Module.Submodule.Basic + +universe u v + +variable {R : Type u} {M : Type v} + +structure Submodule (R : Type u) (M : Type v) [Mul R] [AddCommMonoid M] [SMul R M] extends + AddSubmonoid M : Type v + +instance setLike [Mul R] [AddCommMonoid M] [SMul R M] : SetLike (Submodule R M) M where + coe s := s.carrier + +def Submodule.toAddSubgroup [Mul R] [AddCommGroup M] {module_M : SMul R M} (p : Submodule R M) : AddSubgroup M := + { p.toAddSubmonoid with } + +end Mathlib.Algebra.Module.Submodule.Basic + +section Mathlib.Algebra.Module.Submodule.RestrictScalars + +variable (S : Type _) {R M : Type _} [Mul R] [AddCommMonoid M] [Mul S] + [SMul S M] [SMul R M] + +def Submodule.restrictScalars (V : Submodule R M) : Submodule S M where + carrier := V + +end Mathlib.Algebra.Module.Submodule.RestrictScalars + +section Mathlib.GroupTheory.QuotientGroup + +universe u x + +namespace QuotientAddGroup + +variable {G : Type u} [AddGroup G] (N : AddSubgroup G) {M : Type x} [AddMonoid M] + +protected def con : AddCon G where + toSetoid := leftRel N + +instance Quotient.addGroup : AddGroup (G ⧸ N) := + (QuotientAddGroup.con N).addGroup + +instance Quotient.addCommGroup {G : Type _} [AddCommGroup G] (N : AddSubgroup G) : AddCommGroup (G ⧸ N) := + { toAddGroup := @QuotientAddGroup.Quotient.addGroup _ _ N } + +def lift (φ : G →+ M) : G ⧸ N →+ M := + (QuotientAddGroup.con N).lift φ + +end QuotientAddGroup + +end Mathlib.GroupTheory.QuotientGroup + +section Mathlib.Algebra.Algebra.Basic + +universe u v + +class Algebra (R : Type u) (A : Type v) [Mul R] [Mul A] extends SMul R A, + R →* A where + +end Mathlib.Algebra.Algebra.Basic + +section Mathlib.Algebra.Module.LocalizedModule + +namespace LocalizedModule + +universe u v + +variable {R : Type u} [MulOneClass R] (S : Submonoid R) +variable (M : Type v) [AddCommMonoid M] [SMul R M] + +def r (a b : M × S) : Prop := + ∃ u : S, u • b.2 • a.1 = u • a.2 • b.1 + +instance r.setoid : Setoid (M × S) where + r := r S M + iseqv := sorry + +def _root_.LocalizedModule : Type max u v := + Quotient (r.setoid S M) + +section + +variable {M S} + +def mk (m : M) (s : S) : LocalizedModule S M := + Quotient.mk' ⟨m, s⟩ + +instance : AddCommMonoid (LocalizedModule S M) := sorry + +noncomputable instance isModule' : SMul R (LocalizedModule S M) := sorry + +end + +end LocalizedModule + +universe u v + +variable {R : Type _} [MulOneClass R] (S : Submonoid R) +variable {M M' M'' : Type _} [AddCommMonoid M] [AddCommMonoid M'] +variable [SMul R M] [SMul R M'] +variable (f : M →ₗ[R] M') + +class IsLocalizedModule (S : Submonoid R) (f : M →ₗ[R] M') : Prop where + +namespace IsLocalizedModule + +variable [IsLocalizedModule S f] + +noncomputable def fromLocalizedModule (f : M →ₗ[R] M') [IsLocalizedModule S f] : + LocalizedModule S M →ₗ[R] M' := + sorry + +variable {S} + +noncomputable def mk' (m : M) (s : S) : M' := + fromLocalizedModule S f (LocalizedModule.mk m s) + +end IsLocalizedModule + +end Mathlib.Algebra.Module.LocalizedModule + +section Mathlib.LinearAlgebra.Quotient + +namespace Submodule + +variable {R M : Type _} {r : R} {x y : M} [Mul R] [AddCommGroup M] [SMul R M] +variable (p : Submodule R M) + +open LinearMap + +def quotientRel : Setoid M := + QuotientAddGroup.leftRel p.toAddSubgroup + +instance hasQuotient : HasQuotient M (Submodule R M) := + ⟨fun p => Quotient (quotientRel p)⟩ + +namespace Quotient + +def mk {p : Submodule R M} : M → M ⧸ p := + Quotient.mk'' + +instance addCommGroup : AddCommGroup (M ⧸ p) := + QuotientAddGroup.Quotient.addCommGroup p.toAddSubgroup + +section Module + +variable {S : Type _} + +instance module' [Mul S] [SMul S R] [SMul S M] (P : Submodule R M) : + SMul S (M ⧸ P) := sorry + +instance module (P : Submodule R M) : SMul R (M ⧸ P) := + Quotient.module' P + +end Module + +end Quotient + +section + +variable {M₂ : Type _} [AddCommGroup M₂] [SMul R M₂] + +def mkQ : M →ₗ[R] M ⧸ p where + toFun := Quotient.mk + +end + +variable {M₂ : Type _} [AddCommGroup M₂] [SMul R M₂] + +def liftQ (f : M →ₗ[R] M₂) : M ⧸ p →ₗ[R] M₂ := + { QuotientAddGroup.lift p.toAddSubgroup f.toAddMonoidHom with } + +variable (q : Submodule R M₂) + +def mapQ (f : M →ₗ[R] M₂) : M ⧸ p →ₗ[R] M₂ ⧸ q := + p.liftQ (q.mkQ.comp f) + +end Submodule + +end Mathlib.LinearAlgebra.Quotient + +section Mathlib.Algebra.Module.Submodule.Localization + +universe u u' v v' + +variable {R : Type u} (S : Type u') {M : Type v} {N : Type v'} +variable [MulOneClass R] [Mul S] [AddCommGroup M] [AddCommGroup N] +variable [SMul R M] [SMul R N] [Algebra R S] [SMul S N] +variable (p : Submonoid R) (f : M →ₗ[R] N) [IsLocalizedModule p f] +variable (M' : Submodule R M) + +/-- Let `S` be the localization of `R` at `p` and `N` be the localization of `M` at `p`. +This is the localization of an `R`-submodule of `M` viewed as an `S`-submodule of `N`. -/ +def Submodule.localized' : Submodule S N where + carrier := setOf fun x => ∃ m ∈ M', ∃ s : p, IsLocalizedModule.mk' f m s = x + +/-- The localization map of a quotient module. -/ +def Submodule.toLocalizedQuotient' : M ⧸ M' →ₗ[R] N ⧸ M'.localized' S p f := + Submodule.mapQ M' ((M'.localized' S p f).restrictScalars R) f + +-- Should after `binrel%` and `binop%` were fixed +set_option maxHeartbeats 1000 in +theorem Submodule.toLocalizedQuotient'_mk₄ (x : M) : + (M'.toLocalizedQuotient' S p f (Submodule.Quotient.mk x)) = (Submodule.Quotient.mk (f x)) := + rfl + +end Mathlib.Algebra.Module.Submodule.Localization