-
Notifications
You must be signed in to change notification settings - Fork 450
/
Copy pathBuiltinCommand.lean
741 lines (623 loc) · 28.6 KB
/
BuiltinCommand.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
/-
Copyright (c) 2021 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Util.CollectLevelParams
import Lean.Meta.Reduce
import Lean.Elab.DeclarationRange
import Lean.Elab.Eval
import Lean.Elab.Command
import Lean.Elab.Open
import Lean.Elab.SetOption
import Lean.PrettyPrinter
namespace Lean.Elab.Command
@[builtin_command_elab moduleDoc] def elabModuleDoc : CommandElab := fun stx => do
match stx[1] with
| Syntax.atom _ val =>
let doc := val.extract 0 (val.endPos - ⟨2⟩)
let range ← Elab.getDeclarationRange stx
modifyEnv fun env => addMainModuleDoc env ⟨doc, range⟩
| _ => throwErrorAt stx "unexpected module doc string{indentD stx[1]}"
private def addScope (isNewNamespace : Bool) (isNoncomputable : Bool) (header : String) (newNamespace : Name) : CommandElabM Unit := do
modify fun s => { s with
env := s.env.registerNamespace newNamespace,
scopes := { s.scopes.head! with header := header, currNamespace := newNamespace, isNoncomputable := s.scopes.head!.isNoncomputable || isNoncomputable } :: s.scopes
}
pushScope
if isNewNamespace then
activateScoped newNamespace
private def addScopes (isNewNamespace : Bool) (isNoncomputable : Bool) : Name → CommandElabM Unit
| .anonymous => pure ()
| .str p header => do
addScopes isNewNamespace isNoncomputable p
let currNamespace ← getCurrNamespace
addScope isNewNamespace isNoncomputable header (if isNewNamespace then Name.mkStr currNamespace header else currNamespace)
| _ => throwError "invalid scope"
private def addNamespace (header : Name) : CommandElabM Unit :=
addScopes (isNewNamespace := true) (isNoncomputable := false) header
def withNamespace {α} (ns : Name) (elabFn : CommandElabM α) : CommandElabM α := do
addNamespace ns
let a ← elabFn
modify fun s => { s with scopes := s.scopes.drop ns.getNumParts }
pure a
private def popScopes (numScopes : Nat) : CommandElabM Unit :=
for _ in [0:numScopes] do
popScope
private def checkAnonymousScope : List Scope → Option Name
| { header := "", .. } :: _ => none
| { header := h, .. } :: _ => some h
| _ => some .anonymous -- should not happen
private def checkEndHeader : Name → List Scope → Option Name
| .anonymous, _ => none
| .str p s, { header := h, .. } :: scopes =>
if h == s then
(.str · s) <$> checkEndHeader p scopes
else
some h
| _, _ => some .anonymous -- should not happen
@[builtin_command_elab «namespace»] def elabNamespace : CommandElab := fun stx =>
match stx with
| `(namespace $n) => addNamespace n.getId
| _ => throwUnsupportedSyntax
@[builtin_command_elab «section»] def elabSection : CommandElab := fun stx => do
match stx with
| `(section $header:ident) => addScopes (isNewNamespace := false) (isNoncomputable := false) header.getId
| `(section) => addScope (isNewNamespace := false) (isNoncomputable := false) "" (← getCurrNamespace)
| _ => throwUnsupportedSyntax
@[builtin_command_elab noncomputableSection] def elabNonComputableSection : CommandElab := fun stx => do
match stx with
| `(noncomputable section $header:ident) => addScopes (isNewNamespace := false) (isNoncomputable := true) header.getId
| `(noncomputable section) => addScope (isNewNamespace := false) (isNoncomputable := true) "" (← getCurrNamespace)
| _ => throwUnsupportedSyntax
@[builtin_command_elab «end»] def elabEnd : CommandElab := fun stx => do
let header? := (stx.getArg 1).getOptionalIdent?;
let endSize := match header? with
| none => 1
| some n => n.getNumParts
let scopes ← getScopes
if endSize < scopes.length then
modify fun s => { s with scopes := s.scopes.drop endSize }
popScopes endSize
else -- we keep "root" scope
let n := (← get).scopes.length - 1
modify fun s => { s with scopes := s.scopes.drop n }
popScopes n
throwError "invalid 'end', insufficient scopes"
match header? with
| none =>
if let some name := checkAnonymousScope scopes then
throwError "invalid 'end', name is missing (expected {name})"
| some header =>
if let some name := checkEndHeader header scopes then
addCompletionInfo <| CompletionInfo.endSection stx (scopes.map fun scope => scope.header)
throwError "invalid 'end', name mismatch (expected {if name == `«» then `nothing else name})"
private partial def elabChoiceAux (cmds : Array Syntax) (i : Nat) : CommandElabM Unit :=
if h : i < cmds.size then
let cmd := cmds.get ⟨i, h⟩;
catchInternalId unsupportedSyntaxExceptionId
(elabCommand cmd)
(fun _ => elabChoiceAux cmds (i+1))
else
throwUnsupportedSyntax
@[builtin_command_elab choice] def elabChoice : CommandElab := fun stx =>
elabChoiceAux stx.getArgs 0
/-- Declares one or more universe variables.
`universe u v`
`Prop`, `Type`, `Type u` and `Sort u` are types that classify other types, also known as
*universes*. In `Type u` and `Sort u`, the variable `u` stands for the universe's *level*, and a
universe at level `u` can only classify universes that are at levels lower than `u`. For more
details on type universes, please refer to [the relevant chapter of Theorem Proving in Lean][tpil
universes].
Just as type arguments allow polymorphic definitions to be used at many different types, universe
parameters, represented by universe variables, allow a definition to be used at any required level.
While Lean mostly handles universe levels automatically, declaring them explicitly can provide more
control when writing signatures. The `universe` keyword allows the declared universe variables to be
used in a collection of definitions, and Lean will ensure that these definitions use them
consistently.
[tpil universes]: https://lean-lang.org/theorem_proving_in_lean4/dependent_type_theory.html#types-as-objects
(Type universes on Theorem Proving in Lean)
```lean
/- Explicit type-universe parameter. -/
def id₁.{u} (α : Type u) (a : α) := a
/- Implicit type-universe parameter, equivalent to `id₁`.
Requires option `autoImplicit true`, which is the default. -/
def id₂ (α : Type u) (a : α) := a
/- Explicit standalone universe variable declaration, equivalent to `id₁` and `id₂`. -/
universe u
def id₃ (α : Type u) (a : α) := a
```
On a more technical note, using a universe variable only in the right-hand side of a definition
causes an error if the universe has not been declared previously.
```lean
def L₁.{u} := List (Type u)
-- def L₂ := List (Type u) -- error: `unknown universe level 'u'`
universe u
def L₃ := List (Type u)
```
## Examples
```lean
universe u v w
structure Pair (α : Type u) (β : Type v) : Type (max u v) where
a : α
b : β
#check Pair.{v, w}
-- Pair : Type v → Type w → Type (max v w)
```
-/
@[builtin_command_elab «universe»] def elabUniverse : CommandElab := fun n => do
n[1].forArgsM addUnivLevel
@[builtin_command_elab «init_quot»] def elabInitQuot : CommandElab := fun _ => do
match (← getEnv).addDecl Declaration.quotDecl with
| Except.ok env => setEnv env
| Except.error ex => throwError (ex.toMessageData (← getOptions))
/-- Adds names from other namespaces to the current namespace.
The command `export Some.Namespace (name₁ name₂)` makes `name₁` and `name₂`:
- visible in the current namespace without prefix `Some.Namespace`, like `open`, and
- visible from outside the current namespace `N` as `N.name₁` and `N.name₂`.
## Examples
```lean
namespace Morning.Sky
def star := "venus"
end Morning.Sky
namespace Evening.Sky
export Morning.Sky (star)
-- `star` is now in scope
#check star
end Evening.Sky
-- `star` is visible in `Evening.Sky`
#check Evening.Sky.star
```
-/
@[builtin_command_elab «export»] def elabExport : CommandElab := fun stx => do
let `(export $ns ($ids*)) := stx | throwUnsupportedSyntax
let nss ← resolveNamespace ns
let currNamespace ← getCurrNamespace
if nss == [currNamespace] then throwError "invalid 'export', self export"
let mut aliases := #[]
for idStx in ids do
let id := idStx.getId
let declName ← resolveNameUsingNamespaces nss idStx
if (← getInfoState).enabled then
addConstInfo idStx declName
aliases := aliases.push (currNamespace ++ id, declName)
modify fun s => { s with env := aliases.foldl (init := s.env) fun env p => addAlias env p.1 p.2 }
/-- Makes names from other namespaces visible without writing the namespace prefix.
Names that are made available with `open` are visible within the current `section` or `namespace`
block. This makes referring to (type) definitions and theorems easier, but note that it can also
make [scoped instances], notations, and attributes from a different namespace available.
The `open` command can be used in a few different ways:
* `open Some.Namespace.Path1 Some.Namespace.Path2` makes all non-protected names in
`Some.Namespace.Path1` and `Some.Namespace.Path2` available without the prefix, so that
`Some.Namespace.Path1.x` and `Some.Namespace.Path2.y` can be referred to by writing only `x` and
`y`.
* `open Some.Namespace.Path hiding def1 def2` opens all non-protected names in `Some.Namespace.Path`
except `def1` and `def2`.
* `open Some.Namespace.Path (def1 def2)` only makes `Some.Namespace.Path.def1` and
`Some.Namespace.Path.def2` available without the full prefix, so `Some.Namespace.Path.def3` would
be unaffected.
This works even if `def1` and `def2` are `protected`.
* `open Some.Namespace.Path renaming def1 → def1', def2 → def2'` same as `open Some.Namespace.Path
(def1 def2)` but `def1`/`def2`'s names are changed to `def1'`/`def2'`.
This works even if `def1` and `def2` are `protected`.
* `open scoped Some.Namespace.Path1 Some.Namespace.Path2` **only** opens [scoped instances],
notations, and attributes from `Namespace1` and `Namespace2`; it does **not** make any other name
available.
* `open <any of the open shapes above> in` makes the names `open`-ed visible only in the next
command or expression.
[scoped instance]: https://lean-lang.org/theorem_proving_in_lean4/type_classes.html#scoped-instances
(Scoped instances in Theorem Proving in Lean)
## Examples
```lean
/-- SKI combinators https://en.wikipedia.org/wiki/SKI_combinator_calculus -/
namespace Combinator.Calculus
def I (a : α) : α := a
def K (a : α) : β → α := fun _ => a
def S (x : α → β → γ) (y : α → β) (z : α) : γ := x z (y z)
end Combinator.Calculus
section
-- open everything under `Combinator.Calculus`, *i.e.* `I`, `K` and `S`,
-- until the section ends
open Combinator.Calculus
theorem SKx_eq_K : S K x = I := rfl
end
-- open everything under `Combinator.Calculus` only for the next command (the next `theorem`, here)
open Combinator.Calculus in
theorem SKx_eq_K' : S K x = I := rfl
section
-- open only `S` and `K` under `Combinator.Calculus`
open Combinator.Calculus (S K)
theorem SKxy_eq_y : S K x y = y := rfl
-- `I` is not in scope, we have to use its full path
theorem SKxy_eq_Iy : S K x y = Combinator.Calculus.I y := rfl
end
section
open Combinator.Calculus
renaming
I → identity,
K → konstant
#check identity
#check konstant
end
section
open Combinator.Calculus
hiding S
#check I
#check K
end
section
namespace Demo
inductive MyType
| val
namespace N1
scoped infix:68 " ≋ " => BEq.beq
scoped instance : BEq MyType where
beq _ _ := true
def Alias := MyType
end N1
end Demo
-- bring `≋` and the instance in scope, but not `Alias`
open scoped Demo.N1
#check Demo.MyType.val == Demo.MyType.val
#check Demo.MyType.val ≋ Demo.MyType.val
-- #check Alias -- unknown identifier 'Alias'
end
```
-/
@[builtin_command_elab «open»] def elabOpen : CommandElab
| `(open $decl:openDecl) => do
let openDecls ← elabOpenDecl decl
modifyScope fun scope => { scope with openDecls := openDecls }
| _ => throwUnsupportedSyntax
open Lean.Parser.Term
private def typelessBinder? : Syntax → Option (Array (TSyntax [`ident, `Lean.Parser.Term.hole]) × Bool)
| `(bracketedBinderF|($ids*)) => some (ids, true)
| `(bracketedBinderF|{$ids*}) => some (ids, false)
| _ => none
/-- If `id` is an identifier, return true if `ids` contains `id`. -/
private def containsId (ids : Array (TSyntax [`ident, ``Parser.Term.hole])) (id : TSyntax [`ident, ``Parser.Term.hole]) : Bool :=
id.raw.isIdent && ids.any fun id' => id'.raw.getId == id.raw.getId
/--
Auxiliary method for processing binder annotation update commands: `variable (α)` and `variable {α}`.
The argument `binder` is the binder of the `variable` command.
The method returns an array containing the "residue", that is, variables that do not correspond to updates.
Recall that a `bracketedBinder` can be of the form `(x y)`.
```
variable {α β : Type}
variable (α γ)
```
The second `variable` command updates the binder annotation for `α`, and returns "residue" `γ`.
-/
private def replaceBinderAnnotation (binder : TSyntax ``Parser.Term.bracketedBinder) : CommandElabM (Array (TSyntax ``Parser.Term.bracketedBinder)) := do
let some (binderIds, explicit) := typelessBinder? binder | return #[binder]
let varDecls := (← getScope).varDecls
let mut varDeclsNew := #[]
let mut binderIds := binderIds
let mut binderIdsIniSize := binderIds.size
let mut modifiedVarDecls := false
for varDecl in varDecls do
let (ids, ty?, explicit') ← match varDecl with
| `(bracketedBinderF|($ids* $[: $ty?]? $(annot?)?)) =>
if annot?.isSome then
for binderId in binderIds do
if containsId ids binderId then
throwErrorAt binderId "cannot update binder annotation of variables with default values/tactics"
pure (ids, ty?, true)
| `(bracketedBinderF|{$ids* $[: $ty?]?}) =>
pure (ids, ty?, false)
| `(bracketedBinderF|[$id : $_]) =>
for binderId in binderIds do
if binderId.raw.isIdent && binderId.raw.getId == id.getId then
throwErrorAt binderId "cannot change the binder annotation of the previously declared local instance `{id.getId}`"
varDeclsNew := varDeclsNew.push varDecl; continue
| _ =>
varDeclsNew := varDeclsNew.push varDecl; continue
if explicit == explicit' then
-- no update, ensure we don't have redundant annotations.
for binderId in binderIds do
if containsId ids binderId then
throwErrorAt binderId "redundant binder annotation update"
varDeclsNew := varDeclsNew.push varDecl
else if binderIds.all fun binderId => !containsId ids binderId then
-- `binderIds` and `ids` are disjoint
varDeclsNew := varDeclsNew.push varDecl
else
let mkBinder (id : TSyntax [`ident, ``Parser.Term.hole]) (explicit : Bool) : CommandElabM (TSyntax ``Parser.Term.bracketedBinder) :=
if explicit then
`(bracketedBinderF| ($id $[: $ty?]?))
else
`(bracketedBinderF| {$id $[: $ty?]?})
for id in ids do
if let some idx := binderIds.findIdx? fun binderId => binderId.raw.isIdent && binderId.raw.getId == id.raw.getId then
binderIds := binderIds.eraseIdx idx
modifiedVarDecls := true
varDeclsNew := varDeclsNew.push (← mkBinder id explicit)
else
varDeclsNew := varDeclsNew.push (← mkBinder id explicit')
if modifiedVarDecls then
modifyScope fun scope => { scope with varDecls := varDeclsNew }
if binderIds.size != binderIdsIniSize then
binderIds.mapM fun binderId =>
if explicit then
`(bracketedBinderF| ($binderId))
else
`(bracketedBinderF| {$binderId})
else
return #[binder]
/-- Declares one or more typed variables, or modifies whether already-declared variables are
implicit.
Introduces variables that can be used in definitions within the same `namespace` or `section` block.
When a definition mentions a variable, Lean will add it as an argument of the definition. The
`variable` command is also able to add typeclass parameters. This is useful in particular when
writing many definitions that have parameters in common (see below for an example).
Variable declarations have the same flexibility as regular function paramaters. In particular they
can be [explicit, implicit][binder docs], or [instance implicit][tpil classes] (in which case they
can be anonymous). This can be changed, for instance one can turn explicit variable `x` into an
implicit one with `variable {x}`. Note that currently, you should avoid changing how variables are
bound and declare new variables at the same time; see [issue 2789] for more on this topic.
See [*Variables and Sections* from Theorem Proving in Lean][tpil vars] for a more detailed
discussion.
[tpil vars]: https://lean-lang.org/theorem_proving_in_lean4/dependent_type_theory.html#variables-and-sections
(Variables and Sections on Theorem Proving in Lean)
[tpil classes]: https://lean-lang.org/theorem_proving_in_lean4/type_classes.html
(Type classes on Theorem Proving in Lean)
[binder docs]: https://leanprover-community.github.io/mathlib4_docs/Lean/Expr.html#Lean.BinderInfo
(Documentation for the BinderInfo type)
[issue 2789]: https://github.com/leanprover/lean4/issues/2789
(Issue 2789 on github)
## Examples
```lean
section
variable
{α : Type u} -- implicit
(a : α) -- explicit
[instBEq : BEq α] -- instance implicit, named
[Hashable α] -- instance implicit, anonymous
def isEqual (b : α) : Bool :=
a == b
#check isEqual
-- isEqual.{u} {α : Type u} (a : α) [instBEq : BEq α] (b : α) : Bool
variable
{a} -- `a` is implicit now
def eqComm {b : α} := a == b ↔ b == a
#check eqComm
-- eqComm.{u} {α : Type u} {a : α} [instBEq : BEq α] {b : α} : Prop
end
```
The following shows a typical use of `variable` to factor out definition arguments:
```lean
variable (Src : Type)
structure Logger where
trace : List (Src × String)
#check Logger
-- Logger (Src : Type) : Type
namespace Logger
-- switch `Src : Type` to be implicit until the `end Logger`
variable {Src}
def empty : Logger Src where
trace := []
#check empty
-- Logger.empty {Src : Type} : Logger Src
variable (log : Logger Src)
def len :=
log.trace.length
#check len
-- Logger.len {Src : Type} (log : Logger Src) : Nat
variable (src : Src) [BEq Src]
-- at this point all of `log`, `src`, `Src` and the `BEq` instance can all become arguments
def filterSrc :=
log.trace.filterMap
fun (src', str') => if src' == src then some str' else none
#check filterSrc
-- Logger.filterSrc {Src : Type} (log : Logger Src) (src : Src) [inst✝ : BEq Src] : List String
def lenSrc :=
log.filterSrc src |>.length
#check lenSrc
-- Logger.lenSrc {Src : Type} (log : Logger Src) (src : Src) [inst✝ : BEq Src] : Nat
end Logger
```
-/
@[builtin_command_elab «variable»] def elabVariable : CommandElab
| `(variable $binders*) => do
-- Try to elaborate `binders` for sanity checking
runTermElabM fun _ => Term.withAutoBoundImplicit <|
Term.elabBinders binders fun _ => pure ()
for binder in binders do
let binders ← replaceBinderAnnotation binder
-- Remark: if we want to produce error messages when variables shadow existing ones, here is the place to do it.
for binder in binders do
let varUIds ← getBracketedBinderIds binder |>.mapM (withFreshMacroScope ∘ MonadQuotation.addMacroScope)
modifyScope fun scope => { scope with varDecls := scope.varDecls.push binder, varUIds := scope.varUIds ++ varUIds }
| _ => throwUnsupportedSyntax
open Meta
def elabCheckCore (ignoreStuckTC : Bool) : CommandElab
| `(#check%$tk $term) => withoutModifyingEnv <| runTermElabM fun _ => Term.withDeclName `_check do
-- show signature for `#check id`/`#check @id`
if let `($_:ident) := term then
try
for c in (← resolveGlobalConstWithInfos term) do
addCompletionInfo <| .id term c (danglingDot := false) {} none
logInfoAt tk <| .ofPPFormat { pp := fun
| some ctx => ctx.runMetaM <| PrettyPrinter.ppSignature c
| none => return f!"{c}" -- should never happen
}
return
catch _ => pure () -- identifier might not be a constant but constant + projection
let e ← Term.elabTerm term none
Term.synthesizeSyntheticMVarsNoPostponing (ignoreStuckTC := ignoreStuckTC)
let e ← Term.levelMVarToParam (← instantiateMVars e)
let type ← inferType e
if e.isSyntheticSorry then
return
logInfoAt tk m!"{e} : {type}"
| _ => throwUnsupportedSyntax
@[builtin_command_elab Lean.Parser.Command.check] def elabCheck : CommandElab := elabCheckCore (ignoreStuckTC := true)
@[builtin_command_elab Lean.Parser.Command.reduce] def elabReduce : CommandElab
| `(#reduce%$tk $term) => withoutModifyingEnv <| runTermElabM fun _ => Term.withDeclName `_reduce do
let e ← Term.elabTerm term none
Term.synthesizeSyntheticMVarsNoPostponing
let e ← Term.levelMVarToParam (← instantiateMVars e)
-- TODO: add options or notation for setting the following parameters
withTheReader Core.Context (fun ctx => { ctx with options := ctx.options.setBool `smartUnfolding false }) do
let e ← withTransparency (mode := TransparencyMode.all) <| reduce e (skipProofs := false) (skipTypes := false)
logInfoAt tk e
| _ => throwUnsupportedSyntax
def hasNoErrorMessages : CommandElabM Bool := do
return !(← get).messages.hasErrors
def failIfSucceeds (x : CommandElabM Unit) : CommandElabM Unit := do
let resetMessages : CommandElabM MessageLog := do
let s ← get
let messages := s.messages;
modify fun s => { s with messages := {} };
pure messages
let restoreMessages (prevMessages : MessageLog) : CommandElabM Unit := do
modify fun s => { s with messages := prevMessages ++ s.messages.errorsToWarnings }
let prevMessages ← resetMessages
let succeeded ← try
x
hasNoErrorMessages
catch
| ex@(Exception.error _ _) => do logException ex; pure false
| Exception.internal id _ => do logError (← id.getName); pure false
finally
restoreMessages prevMessages
if succeeded then
throwError "unexpected success"
@[builtin_command_elab «check_failure»] def elabCheckFailure : CommandElab
| `(#check_failure $term) => do
failIfSucceeds <| elabCheckCore (ignoreStuckTC := false) (← `(#check $term))
| _ => throwUnsupportedSyntax
private def mkEvalInstCore (evalClassName : Name) (e : Expr) : MetaM Expr := do
let α ← inferType e
let u ← getDecLevel α
let inst := mkApp (Lean.mkConst evalClassName [u]) α
try
synthInstance inst
catch _ =>
-- Put `α` in WHNF and try again
try
let α ← whnf α
synthInstance (mkApp (Lean.mkConst evalClassName [u]) α)
catch _ =>
-- Fully reduce `α` and try again
try
let α ← reduce (skipTypes := false) α
synthInstance (mkApp (Lean.mkConst evalClassName [u]) α)
catch _ =>
throwError "expression{indentExpr e}\nhas type{indentExpr α}\nbut instance{indentExpr inst}\nfailed to be synthesized, this instance instructs Lean on how to display the resulting value, recall that any type implementing the `Repr` class also implements the `{evalClassName}` class"
private def mkRunMetaEval (e : Expr) : MetaM Expr :=
withLocalDeclD `env (mkConst ``Lean.Environment) fun env =>
withLocalDeclD `opts (mkConst ``Lean.Options) fun opts => do
let α ← inferType e
let u ← getDecLevel α
let instVal ← mkEvalInstCore ``Lean.MetaEval e
let e := mkAppN (mkConst ``Lean.runMetaEval [u]) #[α, instVal, env, opts, e]
instantiateMVars (← mkLambdaFVars #[env, opts] e)
private def mkRunEval (e : Expr) : MetaM Expr := do
let α ← inferType e
let u ← getDecLevel α
let instVal ← mkEvalInstCore ``Lean.Eval e
instantiateMVars (mkAppN (mkConst ``Lean.runEval [u]) #[α, instVal, mkSimpleThunk e])
unsafe def elabEvalUnsafe : CommandElab
| `(#eval%$tk $term) => do
let declName := `_eval
let addAndCompile (value : Expr) : TermElabM Unit := do
let value ← Term.levelMVarToParam (← instantiateMVars value)
let type ← inferType value
let us := collectLevelParams {} value |>.params
let value ← instantiateMVars value
let decl := Declaration.defnDecl {
name := declName
levelParams := us.toList
type := type
value := value
hints := ReducibilityHints.opaque
safety := DefinitionSafety.unsafe
}
Term.ensureNoUnassignedMVars decl
addAndCompile decl
-- Elaborate `term`
let elabEvalTerm : TermElabM Expr := do
let e ← Term.elabTerm term none
Term.synthesizeSyntheticMVarsNoPostponing
if (← Term.logUnassignedUsingErrorInfos (← getMVars e)) then throwAbortTerm
if (← isProp e) then
mkDecide e
else
return e
-- Evaluate using term using `MetaEval` class.
let elabMetaEval : CommandElabM Unit := do
-- act? is `some act` if elaborated `term` has type `CommandElabM α`
let act? ← runTermElabM fun _ => Term.withDeclName declName do
let e ← elabEvalTerm
let eType ← instantiateMVars (← inferType e)
if eType.isAppOfArity ``CommandElabM 1 then
let mut stx ← Term.exprToSyntax e
unless (← isDefEq eType.appArg! (mkConst ``Unit)) do
stx ← `($stx >>= fun v => IO.println (repr v))
let act ← Lean.Elab.Term.evalTerm (CommandElabM Unit) (mkApp (mkConst ``CommandElabM) (mkConst ``Unit)) stx
pure <| some act
else
let e ← mkRunMetaEval e
let env ← getEnv
let opts ← getOptions
let act ← try addAndCompile e; evalConst (Environment → Options → IO (String × Except IO.Error Environment)) declName finally setEnv env
let (out, res) ← act env opts -- we execute `act` using the environment
logInfoAt tk out
match res with
| Except.error e => throwError e.toString
| Except.ok env => do setEnv env; pure none
let some act := act? | return ()
act
-- Evaluate using term using `Eval` class.
let elabEval : CommandElabM Unit := runTermElabM fun _ => Term.withDeclName declName do
-- fall back to non-meta eval if MetaEval hasn't been defined yet
-- modify e to `runEval e`
let e ← mkRunEval (← elabEvalTerm)
let env ← getEnv
let act ← try addAndCompile e; evalConst (IO (String × Except IO.Error Unit)) declName finally setEnv env
let (out, res) ← liftM (m := IO) act
logInfoAt tk out
match res with
| Except.error e => throwError e.toString
| Except.ok _ => pure ()
if (← getEnv).contains ``Lean.MetaEval then do
elabMetaEval
else
elabEval
| _ => throwUnsupportedSyntax
@[builtin_command_elab «eval», implemented_by elabEvalUnsafe]
opaque elabEval : CommandElab
@[builtin_command_elab «synth»] def elabSynth : CommandElab := fun stx => do
let term := stx[1]
withoutModifyingEnv <| runTermElabM fun _ => Term.withDeclName `_synth_cmd do
let inst ← Term.elabTerm term none
Term.synthesizeSyntheticMVarsNoPostponing
let inst ← instantiateMVars inst
let val ← synthInstance inst
logInfo val
pure ()
@[builtin_command_elab «set_option»] def elabSetOption : CommandElab := fun stx => do
let options ← Elab.elabSetOption stx[1] stx[2]
modify fun s => { s with maxRecDepth := maxRecDepth.get options }
modifyScope fun scope => { scope with opts := options }
@[builtin_macro Lean.Parser.Command.«in»] def expandInCmd : Macro
| `($cmd₁ in $cmd₂) => `(section $cmd₁:command $cmd₂ end)
| _ => Macro.throwUnsupported
@[builtin_command_elab Parser.Command.addDocString] def elabAddDeclDoc : CommandElab := fun stx => do
match stx with
| `($doc:docComment add_decl_doc $id) =>
let declName ← resolveGlobalConstNoOverloadWithInfo id
if let .none ← findDeclarationRangesCore? declName then
-- this is only relevant for declarations added without a declaration range
-- in particular `Quot.mk` et al which are added by `init_quot`
addAuxDeclarationRanges declName stx id
addDocString declName (← getDocStringText doc)
| _ => throwUnsupportedSyntax
@[builtin_command_elab Parser.Command.exit] def elabExit : CommandElab := fun _ =>
logWarning "using 'exit' to interrupt Lean"
@[builtin_command_elab Parser.Command.import] def elabImport : CommandElab := fun _ =>
throwError "invalid 'import' command, it must be used in the beginning of the file"
@[builtin_command_elab Parser.Command.eoi] def elabEoi : CommandElab := fun _ =>
return
end Lean.Elab.Command