diff --git a/Mathlib/Analysis/NormedSpace/Basic.lean b/Mathlib/Analysis/NormedSpace/Basic.lean index 601f304da34cd..89c3c21d736f2 100644 --- a/Mathlib/Analysis/NormedSpace/Basic.lean +++ b/Mathlib/Analysis/NormedSpace/Basic.lean @@ -86,6 +86,17 @@ variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace α E] variable {F : Type*} [SeminormedAddCommGroup F] [NormedSpace α F] +theorem dist_smul_add_one_sub_smul_le [NormedSpace ℝ E] {r : ℝ} {x y : E} (h : r ∈ Icc 0 1) : + dist (r • x + (1 - r) • y) x ≤ dist y x := + calc + dist (r • x + (1 - r) • y) x = ‖1 - r‖ * ‖x - y‖ := by + simp_rw [dist_eq_norm', ← norm_smul, sub_smul, one_smul, smul_sub, ← sub_sub, ← sub_add, + sub_right_comm] + _ = (1 - r) * dist y x := by + rw [Real.norm_eq_abs, abs_eq_self.mpr (sub_nonneg.mpr h.2), dist_eq_norm'] + _ ≤ (1 - 0) * dist y x := by gcongr; exact h.1 + _ = dist y x := by rw [sub_zero, one_mul] + theorem eventually_nhds_norm_smul_sub_lt (c : α) (x : E) {ε : ℝ} (h : 0 < ε) : ∀ᶠ y in 𝓝 x, ‖c • (y - x)‖ < ε := have : Tendsto (fun y => ‖c • (y - x)‖) (𝓝 x) (𝓝 0) :=