diff --git a/Mathlib/Algebra/Group/Defs.lean b/Mathlib/Algebra/Group/Defs.lean index 21534c8fd115f..330098f8d05fa 100644 --- a/Mathlib/Algebra/Group/Defs.lean +++ b/Mathlib/Algebra/Group/Defs.lean @@ -113,7 +113,7 @@ variable [Ring R] [AddCommMonoid M] [Module R M] (r : R) (N : Submodule R M) (m ``` Without the macro, the expression would elaborate as `m + ↑(r • n : ↑N) : M`. With the macro, the expression elaborates as `m + r • (↑n : M) : M`. -To get the first intepretation, one can write `m + (r • n :)`. +To get the first interpretation, one can write `m + (r • n :)`. Here is a quick review of the expression tree elaborator: 1. It builds up an expression tree of all the immediately accessible operations diff --git a/Mathlib/Algebra/Group/WithOne/Basic.lean b/Mathlib/Algebra/Group/WithOne/Basic.lean index 3f7ae36f5602a..db9f3ac68d8f4 100644 --- a/Mathlib/Algebra/Group/WithOne/Basic.lean +++ b/Mathlib/Algebra/Group/WithOne/Basic.lean @@ -58,8 +58,8 @@ section lift variable [Mul α] [MulOneClass β] -/-- Lift a semigroup homomorphism `f` to a bundled monoid homorphism. -/ -@[to_additive "Lift an add semigroup homomorphism `f` to a bundled add monoid homorphism."] +/-- Lift a semigroup homomorphism `f` to a bundled monoid homomorphism. -/ +@[to_additive "Lift an add semigroup homomorphism `f` to a bundled add monoid homomorphism."] def lift : (α →ₙ* β) ≃ (WithOne α →* β) where toFun f := { toFun := fun x => Option.casesOn x 1 f, map_one' := rfl, diff --git a/Mathlib/Algebra/Star/StarAlgHom.lean b/Mathlib/Algebra/Star/StarAlgHom.lean index 0c92c3b6c592f..c537cc18c0171 100644 --- a/Mathlib/Algebra/Star/StarAlgHom.lean +++ b/Mathlib/Algebra/Star/StarAlgHom.lean @@ -531,7 +531,7 @@ variable (R A B C : Type*) [Monoid R] [NonUnitalNonAssocSemiring A] [DistribMulA [NonUnitalNonAssocSemiring B] [DistribMulAction R B] [Star B] [NonUnitalNonAssocSemiring C] [DistribMulAction R C] [Star C] -/-- The first projection of a product is a non-unital ⋆-algebra homomoprhism. -/ +/-- The first projection of a product is a non-unital ⋆-algebra homomorphism. -/ @[simps!] def fst : A × B →⋆ₙₐ[R] A := { NonUnitalAlgHom.fst R A B with map_star' := fun _ => rfl } @@ -629,7 +629,7 @@ namespace StarAlgHom variable (R A B C : Type*) [CommSemiring R] [Semiring A] [Algebra R A] [Star A] [Semiring B] [Algebra R B] [Star B] [Semiring C] [Algebra R C] [Star C] -/-- The first projection of a product is a ⋆-algebra homomoprhism. -/ +/-- The first projection of a product is a ⋆-algebra homomorphism. -/ @[simps!] def fst : A × B →⋆ₐ[R] A := { AlgHom.fst R A B with map_star' := fun _ => rfl } diff --git a/Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean b/Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean index 028f650c93d58..d675da0cfa740 100644 --- a/Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean +++ b/Mathlib/AlgebraicTopology/DoldKan/Homotopies.lean @@ -53,7 +53,7 @@ compatible the application of additive functors (see `map_Hσ`). ## References * [Albrecht Dold, *Homology of Symmetric Products and Other Functors of Complexes*][dold1958] -* [Paul G. Goerss, John F. Jardine, *Simplical Homotopy Theory*][goerss-jardine-2009] +* [Paul G. Goerss, John F. Jardine, *Simplicial Homotopy Theory*][goerss-jardine-2009] -/ diff --git a/Mathlib/AlgebraicTopology/ExtraDegeneracy.lean b/Mathlib/AlgebraicTopology/ExtraDegeneracy.lean index d61c3bd48f37b..cd3bb8133a51d 100644 --- a/Mathlib/AlgebraicTopology/ExtraDegeneracy.lean +++ b/Mathlib/AlgebraicTopology/ExtraDegeneracy.lean @@ -40,7 +40,7 @@ the augmentation on the alternating face map complex of `X` is a homotopy equivalence. ## References -* [Paul G. Goerss, John F. Jardine, *Simplical Homotopy Theory*][goerss-jardine-2009] +* [Paul G. Goerss, John F. Jardine, *Simplicial Homotopy Theory*][goerss-jardine-2009] -/ @@ -78,7 +78,7 @@ attribute [reassoc (attr := simp)] s'_comp_ε s_comp_δ₀ /-- If `ed` is an extra degeneracy for `X : SimplicialObject.Augmented C` and `F : C ⥤ D` is a functor, then `ed.map F` is an extra degeneracy for the -augmented simplical object in `D` obtained by applying `F` to `X`. -/ +augmented simplicial object in `D` obtained by applying `F` to `X`. -/ def map {D : Type*} [Category D] {X : SimplicialObject.Augmented C} (ed : ExtraDegeneracy X) (F : C ⥤ D) : ExtraDegeneracy (((whiskering _ _).obj F).obj X) where s' := F.map ed.s' diff --git a/Mathlib/AlgebraicTopology/Nerve.lean b/Mathlib/AlgebraicTopology/Nerve.lean index 537cb6c7e41ab..d284f58aab70b 100644 --- a/Mathlib/AlgebraicTopology/Nerve.lean +++ b/Mathlib/AlgebraicTopology/Nerve.lean @@ -18,7 +18,7 @@ By definition, the type of `n`-simplices of `nerve C` is `ComposableArrows C n`, which is the category `Fin (n + 1) ⥤ C`. ## References -* [Paul G. Goerss, John F. Jardine, *Simplical Homotopy Theory*][goerss-jardine-2009] +* [Paul G. Goerss, John F. Jardine, *Simplicial Homotopy Theory*][goerss-jardine-2009] -/ diff --git a/Mathlib/AlgebraicTopology/SimplexCategory.lean b/Mathlib/AlgebraicTopology/SimplexCategory.lean index 1aef771a54ef3..76081e6d63044 100644 --- a/Mathlib/AlgebraicTopology/SimplexCategory.lean +++ b/Mathlib/AlgebraicTopology/SimplexCategory.lean @@ -97,7 +97,7 @@ protected def Hom (a b : SimplexCategory) := namespace Hom -/-- Make a moprhism in `SimplexCategory` from a monotone map of `Fin`'s. -/ +/-- Make a morphism in `SimplexCategory` from a monotone map of `Fin`'s. -/ def mk {a b : SimplexCategory} (f : Fin (a.len + 1) →o Fin (b.len + 1)) : SimplexCategory.Hom a b := f #align simplex_category.hom.mk SimplexCategory.Hom.mk diff --git a/Mathlib/AlgebraicTopology/SplitSimplicialObject.lean b/Mathlib/AlgebraicTopology/SplitSimplicialObject.lean index 3c37f676ffcb3..c00555412f750 100644 --- a/Mathlib/AlgebraicTopology/SplitSimplicialObject.lean +++ b/Mathlib/AlgebraicTopology/SplitSimplicialObject.lean @@ -14,7 +14,7 @@ import Mathlib.CategoryTheory.Limits.Shapes.Products In this file, we introduce the notion of split simplicial object. If `C` is a category that has finite coproducts, a splitting -`s : Splitting X` of a simplical object `X` in `C` consists +`s : Splitting X` of a simplicial object `X` in `C` consists of the datum of a sequence of objects `s.N : ℕ → C` (which we shall refer to as "nondegenerate simplices") and a sequence of morphisms `s.ι n : s.N n → X _[n]` that have @@ -341,7 +341,7 @@ def mk' {X : SimplicialObject C} (s : Splitting X) : Split C := /-- Morphisms in `SimplicialObject.Split C` are morphisms of simplicial objects that are compatible with the splittings. -/ structure Hom (S₁ S₂ : Split C) where - /-- the morphism between the underlying simplical objects -/ + /-- the morphism between the underlying simplicial objects -/ F : S₁.X ⟶ S₂.X /-- the morphism between the "nondegenerate" `n`-simplices for all `n : ℕ` -/ f : ∀ n : ℕ, S₁.s.N n ⟶ S₂.s.N n diff --git a/Mathlib/Analysis/Convolution.lean b/Mathlib/Analysis/Convolution.lean index 8dc0cece4f998..13ca46eaf22b2 100644 --- a/Mathlib/Analysis/Convolution.lean +++ b/Mathlib/Analysis/Convolution.lean @@ -27,7 +27,7 @@ For many applications we can take `L = ContinuousLinearMap.lsmul ℝ ℝ` or We also define `ConvolutionExists` and `ConvolutionExistsAt` to state that the convolution is well-defined (everywhere or at a single point). These conditions are needed for pointwise -computations (e.g. `ConvolutionExistsAt.distrib_add`), but are generally not stong enough for any +computations (e.g. `ConvolutionExistsAt.distrib_add`), but are generally not strong enough for any local (or global) properties of the convolution. For this we need stronger assumptions on `f` and/or `g`, and generally if we impose stronger conditions on one of the functions, we can impose weaker conditions on the other. diff --git a/Mathlib/CategoryTheory/Abelian/Homology.lean b/Mathlib/CategoryTheory/Abelian/Homology.lean index 7a24eae161591..7ed7b9483ec72 100644 --- a/Mathlib/CategoryTheory/Abelian/Homology.lean +++ b/Mathlib/CategoryTheory/Abelian/Homology.lean @@ -129,7 +129,7 @@ def desc' {W : A} (e : kernel g ⟶ W) (he : kernel.lift g f w ≫ e = 0) : homo (homology'IsoCokernelLift _ _ _).hom ≫ cokernel.desc _ e he #align homology.desc' homology'.desc' -/-- Obtain a moprhism to the homology, given a morphism to the kernel. -/ +/-- Obtain a morphism to the homology, given a morphism to the kernel. -/ def lift {W : A} (e : W ⟶ cokernel f) (he : e ≫ cokernel.desc f g w = 0) : W ⟶ homology' f g w := kernel.lift _ e he ≫ (homology'IsoKernelDesc _ _ _).inv #align homology.lift homology'.lift diff --git a/Mathlib/CategoryTheory/Sites/Grothendieck.lean b/Mathlib/CategoryTheory/Sites/Grothendieck.lean index ad483f36f4d3d..515f5768223d9 100644 --- a/Mathlib/CategoryTheory/Sites/Grothendieck.lean +++ b/Mathlib/CategoryTheory/Sites/Grothendieck.lean @@ -606,7 +606,7 @@ def bind {X : C} (S : J.Cover X) (T : ∀ I : S.Arrow, J.Cover I.Y) : J.Cover X J.bind_covering S.condition fun _ _ _ => (T _).condition⟩ #align category_theory.grothendieck_topology.cover.bind CategoryTheory.GrothendieckTopology.Cover.bind -/-- The canonical moprhism from `S.bind T` to `T`. -/ +/-- The canonical morphism from `S.bind T` to `T`. -/ def bindToBase {X : C} (S : J.Cover X) (T : ∀ I : S.Arrow, J.Cover I.Y) : S.bind T ⟶ S := homOfLE <| by rintro Y f ⟨Z, e1, e2, h1, _, h3⟩ diff --git a/Mathlib/Data/Int/Cast/Defs.lean b/Mathlib/Data/Int/Cast/Defs.lean index f5f84d3e6ce4e..5c4068ccca3f2 100644 --- a/Mathlib/Data/Int/Cast/Defs.lean +++ b/Mathlib/Data/Int/Cast/Defs.lean @@ -40,11 +40,11 @@ protected def Int.castDef {R : Type u} [NatCast R] [Neg R] : ℤ → R /-- An `AddGroupWithOne` is an `AddGroup` with a 1. It also contains data for the unique homomorphisms `ℕ → R` and `ℤ → R`. -/ class AddGroupWithOne (R : Type u) extends IntCast R, AddMonoidWithOne R, AddGroup R where - /-- The canonical homorphism `ℤ → R`. -/ + /-- The canonical homomorphism `ℤ → R`. -/ intCast := Int.castDef - /-- The canonical homorphism `ℤ → R` agrees with the one from `ℕ → R` on `ℕ`. -/ + /-- The canonical homomorphism `ℤ → R` agrees with the one from `ℕ → R` on `ℕ`. -/ intCast_ofNat : ∀ n : ℕ, intCast (n : ℕ) = Nat.cast n := by intros; rfl - /-- The canonical homorphism `ℤ → R` for negative values is just the negation of the values + /-- The canonical homomorphism `ℤ → R` for negative values is just the negation of the values of the canonical homomorphism `ℕ → R`. -/ intCast_negSucc : ∀ n : ℕ, intCast (Int.negSucc n) = - Nat.cast (n + 1) := by intros; rfl #align add_group_with_one AddGroupWithOne diff --git a/Mathlib/GroupTheory/GroupAction/Opposite.lean b/Mathlib/GroupTheory/GroupAction/Opposite.lean index 57fb6de5fc37f..45376cc60d9b2 100644 --- a/Mathlib/GroupTheory/GroupAction/Opposite.lean +++ b/Mathlib/GroupTheory/GroupAction/Opposite.lean @@ -83,7 +83,7 @@ end MulOpposite /-! ### Right actions In this section we establish `SMul αᵐᵒᵖ β` as the canonical spelling of right scalar multiplication -of `β` by `α`, and provide convienient notations. +of `β` by `α`, and provide convenient notations. -/ namespace RightActions diff --git a/Mathlib/Init/Control/Lawful.lean b/Mathlib/Init/Control/Lawful.lean index 4d5140830be1c..0648f90d15b50 100644 --- a/Mathlib/Init/Control/Lawful.lean +++ b/Mathlib/Init/Control/Lawful.lean @@ -67,7 +67,7 @@ following theorem as a simp theorem. theorem run_fun (f : σ → m (α × σ)) (st : σ) : StateT.run (fun s => f s) st = f st := rfl ``` -If we decleare this theorem as a simp theorem, `StateT.run f st` is simplified to `f st` by eta +If we declare this theorem as a simp theorem, `StateT.run f st` is simplified to `f st` by eta reduction. This breaks the structure of `StateT`. So, we declare a constructor-like definition `StateT.mk` and a simp theorem for it. -/ @@ -155,7 +155,7 @@ following theorem as a simp theorem. theorem run_fun (f : σ → m α) (r : σ) : ReaderT.run (fun r' => f r') r = f r := rfl ``` -If we decleare this theorem as a simp theorem, `ReaderT.run f st` is simplified to `f st` by eta +If we declare this theorem as a simp theorem, `ReaderT.run f st` is simplified to `f st` by eta reduction. This breaks the structure of `ReaderT`. So, we declare a constructor-like definition `ReaderT.mk` and a simp theorem for it. -/ diff --git a/Mathlib/LinearAlgebra/Dimension/Basic.lean b/Mathlib/LinearAlgebra/Dimension/Basic.lean index 45cda19b20e6d..847e4db176181 100644 --- a/Mathlib/LinearAlgebra/Dimension/Basic.lean +++ b/Mathlib/LinearAlgebra/Dimension/Basic.lean @@ -179,7 +179,7 @@ variable {R : Type w} {S : Type v} [CommRing R] [Ring S] [Algebra R S] {R' : Type w'} {S' : Type v'} [CommRing R'] [Ring S'] [Algebra R' S'] /-- If `S / R` and `S' / R'` are algebras, `i : R' →+* R` and `j : S →+* S'` are injective ring -homorphisms, such that `R' → R → S → S'` and `R' → S'` commute, then the rank of `S / R` is +homomorphisms, such that `R' → R → S → S'` and `R' → S'` commute, then the rank of `S / R` is smaller than or equal to the rank of `S' / R'`. -/ theorem lift_rank_le_of_injective_injective (i : R' →+* R) (j : S →+* S') (hi : Injective i) (hj : Injective j) @@ -192,7 +192,7 @@ theorem lift_rank_le_of_injective_injective simp_rw [smul_def, AddMonoidHom.coe_coe, map_mul, this] /-- If `S / R` and `S' / R'` are algebras, `i : R →+* R'` is a surjective ring homomorphism, -`j : S →+* S'` is an injective ring homorphism, such that `R → R' → S'` and `R → S → S'` commute, +`j : S →+* S'` is an injective ring homomorphism, such that `R → R' → S'` and `R → S → S'` commute, then the rank of `S / R` is smaller than or equal to the rank of `S' / R'`. -/ theorem lift_rank_le_of_surjective_injective (i : R →+* R') (j : S →+* S') (hi : Surjective i) (hj : Injective j) diff --git a/Mathlib/ModelTheory/ElementarySubstructures.lean b/Mathlib/ModelTheory/ElementarySubstructures.lean index 463cba9173e7d..0fb97f07ad355 100644 --- a/Mathlib/ModelTheory/ElementarySubstructures.lean +++ b/Mathlib/ModelTheory/ElementarySubstructures.lean @@ -31,7 +31,7 @@ variable {L : Language} {M : Type*} {N : Type*} {P : Type*} {Q : Type*} variable [L.Structure M] [L.Structure N] [L.Structure P] [L.Structure Q] -/-- A substructure is elementary when every formula applied to a tuple in the subtructure +/-- A substructure is elementary when every formula applied to a tuple in the substructure agrees with its value in the overall structure. -/ def Substructure.IsElementary (S : L.Substructure M) : Prop := ∀ ⦃n⦄ (φ : L.Formula (Fin n)) (x : Fin n → S), φ.Realize (((↑) : _ → M) ∘ x) ↔ φ.Realize x @@ -39,7 +39,7 @@ def Substructure.IsElementary (S : L.Substructure M) : Prop := variable (L M) -/-- An elementary substructure is one in which every formula applied to a tuple in the subtructure +/-- An elementary substructure is one in which every formula applied to a tuple in the substructure agrees with its value in the overall structure. -/ structure ElementarySubstructure where toSubstructure : L.Substructure M diff --git a/Mathlib/NumberTheory/NumberField/CanonicalEmbedding.lean b/Mathlib/NumberTheory/NumberField/CanonicalEmbedding.lean index d6a73b652fb79..9dc54d24fd202 100644 --- a/Mathlib/NumberTheory/NumberField/CanonicalEmbedding.lean +++ b/Mathlib/NumberTheory/NumberField/CanonicalEmbedding.lean @@ -22,7 +22,7 @@ into the type `(K →+* ℂ) → ℂ` of `ℂ`-vectors indexed by the complex em ## Main definitions and results -* `NumberField.canonicalEmbedding`: the ring homorphism `K →+* ((K →+* ℂ) → ℂ)` defined by +* `NumberField.canonicalEmbedding`: the ring homomorphism `K →+* ((K →+* ℂ) → ℂ)` defined by sending `x : K` to the vector `(φ x)` indexed by `φ : K →+* ℂ`. * `NumberField.canonicalEmbedding.integerLattice.inter_ball_finite`: the intersection of the diff --git a/Mathlib/RingTheory/IsTensorProduct.lean b/Mathlib/RingTheory/IsTensorProduct.lean index d6b28c61ffa26..393ea32410ced 100644 --- a/Mathlib/RingTheory/IsTensorProduct.lean +++ b/Mathlib/RingTheory/IsTensorProduct.lean @@ -429,7 +429,7 @@ instance TensorProduct.isPushout' {R S T : Type*} [CommRing R] [CommRing S] [Com #align tensor_product.is_pushout' TensorProduct.isPushout' /-- If `S' = S ⊗[R] R'`, then any pair of `R`-algebra homomorphisms `f : S → A` and `g : R' → A` -such that `f x` and `g y` commutes for all `x, y` descends to a (unique) homomoprhism `S' → A`. +such that `f x` and `g y` commutes for all `x, y` descends to a (unique) homomorphism `S' → A`. -/ --@[simps (config := .lemmasOnly) apply] --Porting note: removed and added by hand noncomputable def Algebra.pushoutDesc [H : Algebra.IsPushout R S R' S'] {A : Type*} [Semiring A]